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Preface

This volume contains papers from the 25th International Conference on Computational Linguistics
(Coling 2014) held in Dublin, Ireland. The conference is organized by the Centre for Global Intelligent
Content (CNGL) and held at the Helix Conference Centre at Dublin City University (DCU) from 25-29
August 2014, under the auspices of the International Committee on Computational Linguistics (ICCL).

COLING is almost 50 years old, its first gathering having taken place in New York in 1965. It has been
organized once every two years, initially in odd years and then in even years, after COLING 1976 in
Ottawa. Throughout its long history, COLING’s aspiration to provide an amicable forum for participants
with broad backgrounds to present and share their ideas remains the same. We believe that the inherent
complexity of language is worthy of study from diverse perspectives and that COLING provides a venue
for fruitful interdisciplinary interaction.

We accepted 217 papers (138 oral presentations and 79 poster presentations) from 685 effective
submissions, having received 705 submissions in total. Regardless of the format of presentation, all
of the accepted papers were allocated 12 pages in the proceedings.

The review process of a large conference such as COLING is always complex and occasionally
encounters difficulties. The program committee has to cope with the challenges of selecting which
papers to accept among a large quantity of high quality submissions. The task of choosing 217 papers
from 685 strong submissions covering the ever broadening fields of computational linguistics was not an
easy one.

To cope with the anticipated difficulties, we asked six senior colleagues to join the Scientific Advisory
Board (SAB) and help us through all stages of reviewing papers. They are: Ralph Grishman (New York
University, USA), Yuji Matsumoto (NAIST, Japan), Joakim Nivre (Uppsala Univ., Sweden), Michael
Picheny (IBM TJ Watson Research Center, USA), Donia Scott (Univ. of Sussex, UK), and Chengqing
Zong (CAS, China).

We had 20 thematic areas and each area was chaired by two or more area chairs. Thanks to over 800
responsive reviewers, the review process proceeded in a very smooth manner, and each paper was read
at least by three reviewers. In some cases, papers and their reviews were carefully assessed by Area
Co-Chairs, one of the SAB members and by us, in our roles as Program Committee Co-Chairs. We
are extremely happy with the very strong set of papers that has been accepted for presentation at the
conference. It is, however, with regret that we had no choice but to reject a large number of high quality
papers, due to the sheer volume of submissions received.

We would like to thank the SAB members and the Program Committee Area Chairs for their dedicated
and efficient review work, and our reviewers for their professionalism in delivering high quality reviews.
We also thank the authors of all the papers for submitting their fruits of labour to COLING. Although we
were only able to accept a small subset of the submitted papers, we do hope that all authors and reviewers
have benefited from this process of indirect dialogue.

Last but not least, we would like to thank the people who made COLING 2014 and this volume possible.
We thank General Chairs, Josef van Genabith (Universitéit des Saarlandes/DFKI) and Andy Way (CNGL,
DCU), and the chairs of the Local Organizing Committee, Cara Green (CNGL, DCU) and John Judge
(CNGL/NCLT, DCU), for their tireless work. We are especially grateful to the Publications Chairs,
Joachim Wagner (CNGL, DCU), Liadh Kelly (CNGL, DCU) and Lorraine Goeuriot (CNGL, DCU), for
their hard work in preparing the proceedings.

Prof. Jan Hajic (Charles University, Czech Republic)
Prof. Junichi Tsujii (Microsoft Research, China)
COLING 2014 Program Committee Co-Chairs

July 8, 2014
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Welcome from the General Chairs

We are very pleased indeed to welcome you all to COLING 2014, the 25th International Conference
on Computational Linguistics. We are particularly proud that the ICCL selected Dublin City University
(DCU) as the location of COLING 2014.

DCU and its National Centre for Language Technology (NCLT) have a long track record in NLP. Unlike
India, the previous COLING host country, Ireland is a very small country. A unique feature of the Irish
University landscape is that universities team up with industry partners and each other to pool expertise
to form large research centres. DCU is a founding member of CNGL, the Centre for Gobal Intelligent
Content. COLING 2014 is organised by DCU in partnership with the CNGL, and as General Chairs we
are proud to represent both DCU and CNGL.

The conference is taking place at the Helix Conference Centre, a stunning building added to the DCU
campus in 2002. DCU is a young, dynamic and ambitious university; since admitting its first students in
1980, DCU has grown in both student numbers and size and now occupies a 72-acre site in Glasnevin, just
to the north of Dublin city centre. To date almost 50,000 students have graduated from DCU and are now
playing significant roles in enterprise and business globally. Today in 2014, DCU delivers more than 200
programmes to over 12,000 students across its four faculties — Humanities and Social Sciences, Science
and Health, Engineering and Computing and DCU Business School. DCU’s excellence is recognised
internationally and it is ranked among the top-50 young Universities worldwide (QS *Top 50 under 50’
2013). In the last eight years, DCU has twice been named Sunday Times ‘University of the Year’.

At the time of writing, the total number of people registered to attend COLING has exceeded 675. With
delegates from 58 countries, COLING 2014 will witness a colourful diversity of language and culture,
which is appropriate given that Dublin is known as the localisation capital of the world. Some evidence
for this comes from our sponsors, to whom we are extremely grateful: Baidu, eBay, Microsoft, Symantec
and Google.

We are very pleased with the programme that has been assembled for you, comprising of four days
for the main conference with a total of 138 oral presentations, 79 posters and a special track with 28
demo presentations, two days of workshops and tutorials before the main conference, and other satellite
workshops immediately after. 18 topical workshops with a sharp focus on issues of key interest today
will be attended by about 191 delegates, and the 6 high-quality tutorials are sure to attract large crowds.
Social events include a welcome reception on the evening of 24th August, the conference banquet in the
Guinness Storehouse on 26th, and excursions to some beautiful places of interest on 27th.

When DCU was awarded COLING two years ago, our own personal situations were quite different. One
of us was away working in the translation industry in the UK, while the other was leading the Science
Foundation Ireland and Industry-funded CNGL research center. Over the past few months, we have
changed countries, and jobs: Andy is back as Deputy Director of the CNGL’s Centre for Intelligent
Content, while Josef has moved to Saarbriicken to take up a Chair and a Scientific Directorship at DFKI.

While these changes were taking place, we both had the backing of a remarkable team. The organization
of an event on the scale of COLING takes enormous energy, planning and commitment from a large
number of individuals. We have assembled a large, competent team of volunteers who are available to
assist you while you are here in Dublin. We are sure that all of you participating at COLING — at
tutorials, workshops, or the main conference — will enjoy the time you spend here in Ireland, and will
look back on the event as one of the most memorable that you attend. Finally, thanks to all of you for
coming. We hope you all enjoy the conference, that you benefit from the excellent programme that has
been assembled, and that you go away from here having made new friends.

Prof. Josef Van Genabith (Universitit des Saarlandes/DFKI, Germany)
Prof. Andy Way (CNGL, DCU, Ireland)
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Martin Kay — Does a Computational Linguist have to be a Linguist?

Martin will give his invited talk on Friday August 29th.

After Dinner Speaker

Tony Veale — Creative Twitterbots: Putting Words (and Wit) Into the Mouths of Bots
Tony will give his talk after the conference dinner on Wednesday August 27th.
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Prior-informed Distant Supervision for Temporal Evidence Classification
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Identification of Basic Phrases for Kazakh Language using Maximum Entropy Model
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Collecting Bilingual Audio in Remote Indigenous Communities
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Stephen Roller, Katrin Erk and Gemma Boleda

Automatic Discovery of Adposition Typology
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Active Learning in Noisy Conditions for Spoken Language Understanding
Hossein Hadian and Hossein Sameti
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Stig-Arne Gronroos, Sami Virpioja, Peter Smit and Mikko Kurimo

Japanese Word Reordering Integrated with Dependency Parsing
Kazushi Yoshida, Tomohiro Ohno, Yoshihide Kato and Shigeki Matsubara
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Yanran Li and Sujian Li
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Kiem-Hieu Nguyen, Xavier Tannier and Véronique Moriceau

Integrating Language and Vision to Generate Natural Language Descriptions of Videos in
the Wild

Jesse Thomason, Subhashini Venugopalan, Sergio Guadarrama, Kate Saenko and Ray-
mond Mooney

Cross-Topic Authorship Attribution: Will Out-Of-Topic Data Help?
Upendra Sapkota, Thamar Solorio, Manuel Montes, Steven Bethard and Paolo Rosso

Online Gaming for Crowd-sourcing Phrase-equivalents
A Kumaran, Melissa Densmore and Shaishav Kumar
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Soon Gill Hong, Sin-hee Cho and Mun Yong Yi
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Yi-jie Tang and Hsin-Hsi Chen
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Global Methods for Cross-lingual Semantic Role and Predicate Labelling
Lonneke van der Plas, Marianna Apidianaki and Chenhua Chen

Multilingual Semantic Parsing : Parsing Multiple Languages into Semantic Representa-
tions

Zhanming Jie and Wei Lu

Unsupervised Word Sense Induction using Distributional Statistics
Kartik Goyal and Eduard Hovy

Group based Self Training for E-Commerce Product Record Linkage
Xin Zhao, Yuexin Wu, Hongfei Yan and Xiaoming Li

Reducing Over-Weighting in Supervised Term Weighting for Sentiment Analysis
Haibing Wu and Xiaodong Gu

Sentiment Classification with Graph Co-Regularization
Guangyou Zhou, Jun Zhao and Daojian Zeng

Hybrid Deep Belief Networks for Semi-supervised Sentiment Classification
Shusen Zhou, Qingcai Chen, Xiaolong Wang and Xiaoling Li

Latent Dynamic Model with Category Transition Constraint for Opinion Classification
Takeshi Kobayakawa
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Yanyan Zhao, Wanxiang Che, Honglei Guo, Bing Qin, Zhong Su and Ting Liu
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Session Tud1: (15:45-17:25) Syntax, Grammar Induction, Syntactic and Semantic
Parsing 11

Hybrid Grammars for Discontinuous Parsing
Mark-Jan Nederhof and Heiko Vogler

From neighborhood to parenthood: the advantages of dependency representation over
bigrams in Brown clustering
Simon Suster and Gertjan van Noord

An Empirical Evaluation of Automatic Conversion from Constituency to Dependency in
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Katalin Ilona Simkd, Veronika Vincze, Zsolt Szdnt6 and Richard Farkas

Deep-Syntactic Parsing
Miguel Ballesteros, Bernd Bohnet, Simon Mille and Leo Wanner

Session Tud2: (15:45-17:25) Semantic Processing, Distributional Semantics and
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Modeling Newswire Events using Neural Networks for Anomaly Detection
Pradeep Dasigi and Eduard Hovy

Million-scale Derivation of Semantic Relations from a Manually Constructed Predicate
Taxonomy

Motoki Sano, Kentaro Torisawa, Julien Kloetzer, Chikara Hashimoto, Istvdn Varga and
Jong-Hoon Oh

Combining Supervised and Unsupervised Parsing for Distributional Similarity
Martin Riedl, Irina Alles and Chris Biemann

A Markovian approach to distributional semantics with application to semantic composi-

tionality
Edouard Grave, Guillaume Obozinski and Francis Bach
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17:00-17:25
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Session Tu43: (15:45-17:25) Applications II

A Beam-Search Decoder for Disfluency Detection
Xuancong Wang, Hwee Tou Ng and Khe Chai Sim

Single Document Keyphrase Extraction Using Label Information
Sumit Negi

Predicting Interesting Things in Text
Michael Gamon, Arjun Mukherjee and Patrick Pantel

Context Dependent Claim Detection
Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud Aharoni and Noam Slonim

Session Tud4: (15:45-17:25) Language Resources

Annotating Argument Components and Relations in Persuasive Essays
Christian Stab and Iryna Gurevych

Building a Hierarchically Aligned Chinese-English Parallel Treebank
Dun Deng and Nianwen Xue

3arif: A Corpus of Modern Standard and Egyptian Arabic Tweets Annotated for Epistemic
Modality Using Interactive Crowdsourcing

Rania Al-Sabbagh, Roxana Girju and Jana Diesner

Empirical Analysis of Aggregation Methods for Collective Annotation
Ciyang Qing, Ulle Endriss, Raquel Fernandez and Justin Kruger
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Thursday, August 28, 2014

09:00-10:15

10:15-10:45

10:45-11:10

11:10-11:35

11:35-12:00

12:00-12:25

Session Th11: (09:00-10:15) Invited Talk 3

Annotation Adaptation and Language Adaptation in NLP
Qun Liu

Coffee Break

Session Th21: (10:45-12:25) IE/Database Linking I

Collective Named Entity Disambiguation using Graph Ranking and Clique Partitioning
Approaches

Ayman Alhelbawy and Robert Gaizauskas

Analysis and Refinement of Temporal Relation Aggregation
Taylor Cassidy and Heng Ji

The Wisdom of Minority: Unsupervised Slot Filling Validation based on Multi-dimensional
Truth-Finding

Dian Yu, Hongzhao Huang, Taylor Cassidy, Heng Ji, Chi Wang, Shi Zhi, Jiawei Han, Clare
Voss and Malik Magdon-Ismail

Common Space Embedding of Primal-Dual Relation Semantic Spaces
Hidekazu Oiwa and Jun’ichi Tsujii

x1



Thursday, August 28, 2014 (continued)

10:45-11:10

11:10-11:35

11:35-12:00

12:00-12:25

10:45-11:10

11:10-11:35

11:35-12:00

12:00-12:25

Session Th22: (10:45-12:25) Lexical Semantics and Ontologies I

An Enhanced Lesk Word Sense Disambiguation Algorithm through a Distributional Se-
mantic Model
Pierpaolo Basile, Annalina Caputo and Giovanni Semeraro

Word Sense Induction Using Lexical Chain based Hypergraph Model
Tao Qian, Donghong JI, Mingyao Zhang, Chong Teng and Congling Xia

Minimally Supervised Classification to Semantic Categories using Automatically Acquired
Symmetric Patterns

Roy Schwartz, Roi Reichart and Ari Rappoport

Novel Word-sense Identification
Paul Cook, Jey Han Lau, Diana McCarthy and Timothy Baldwin

Session Th23: (10:45-12:25) Natural Language Generation and Summarization I

Learning to Summarise Related Sentences
Emmanouil Tzouridis, Jamal Nasir and Ulf Brefeld

Learning to Generate Coherent Summary with Discriminative Hidden Semi-Markov Model
Hitoshi Nishikawa, Kazuho Arita, Katsumi Tanaka, Tsutomu Hirao, Toshiro Makino and

Yoshihiro Matsuo

Query-Focused Opinion Summarization for User-Generated Content
Lu Wang, Hema Raghavan, Claire Cardie and Vittorio Castelli

Generating Supplementary Travel Guides from Social Media
Liu Yang, Jing Jiang, Lifu Huang, Minghui Qiu and Lizi Liao

xli



Thursday, August 28, 2014 (continued)

10:45-11:10

11:10-11:35

11:35-12:00

12:00-12:25

12:25-14:00

14:00-14:25

14:25-14:50

14:50-15:15

Session Th24: (10:45-12:25) Modeling of Discourse and Dialogue IV and Multimodal
Processing

Ensemble-Based Medical Relation Classification
Jennifer D’Souza and Vincent Ng

Combining Natural and Artificial Examples to Improve Implicit Discourse Relation Iden-
tification
Chloé Braud and Pascal Denis

Reinforcement Learning of Cooperative Persuasive Dialogue Policies using Framing
Takuya Hiraoka, Graham Neubig, Sakriani Sakti, Tomoki Toda and Satoshi Nakamura

Towards multimodal modeling of physicians’ diagnostic confidence and self-awareness
using medical narratives

Joseph Bullard, Cecilia Ovesdotter Alm, Qi Yu, Pengcheng Shi and Anne Haake

Lunch Break

Session Th31: (14:00-15:15) Semantic Processing, Distributional Semantics and
Compositional Semantics 111

Towards Semantic Validation of a Derivational Lexicon
Britta Zeller, Sebastian Padé and Jan Snajder

Detecting Learner Errors in the Choice of Content Words Using Compositional Distribu-
tional Semantics

Ekaterina Kochmar and Ted Briscoe

A Novel Distributional Approach to Multilingual Conceptual Metaphor Recognition
Michael Mohler, Bryan Rink, David Bracewell and Marc Tomlinson

xlii



Thursday, August 28, 2014 (continued)

14:00-14:25

14:25-14:50

14:50-15:15

14:00-14:25

14:25-14:50

14:50-15:15

14:00-14:25

14:25-14:50

14:50-15:15

15:15-15:45

Session Th32: (14:00-15:15) Morphology, Word Segmentation, Tagging and Chunk-
ing I

Part of Speech Tagging for French Social Media Data
Farhad Nooralahzadeh, Caroline Brun and Claude Roux

Morphological Analysis for Japanese Noisy Text based on Character-level and Word-level
Normalization
Itsumi Saito, Kugatsu Sadamitsu, Hisako Asano and Yoshihiro Matsuo

Adapting taggers to Twitter with not-so-distant supervision
Barbara Plank, Dirk Hovy, Ryan McDonald and Anders Sggaard

Session Th33: (14:00-15:15) Speech Recognition, Text-To-Speech, Spoken Language
Understanding

Interpolated Dirichlet Class Language Model for Speech Recognition Incorporating Long-

distance N-grams
Md. Akmal Haidar and Douglas O’Shaughnessy

Situated Incremental Natural Language Understanding using a Multimodal,
Linguistically-driven Update Model
Casey Kennington, Spyros Kousidis and David Schlangen

Quality Estimation for Automatic Speech Recognition
Matteo Negri, Marco Turchi, José G. C. de Souza and Falavigna Daniele

Session Th34: (14:00-15:15) Lesser Resourced Languages

A Generic Anaphora Resolution Engine for Indian Languages
Sobha Lalitha Devi, Vijay Sundar Ram and Pattabhi RK Rao

Converting Phrase Structures to Dependency Structures in Sanskrit
Pawan Goyal and Amba Kulkarni

Uncertainty Detection in Hungarian Texts
Veronika Vincze

Coffee Break

xliii



Thursday, August 28, 2014 (continued)

15:45-16:10

16:10-16:35

16:35-17:00

17:00-17:25

15:45-16:10

16:10-16:35

16:35-17:00

17:00-17:25

Session Th41: (15:45-17:25) Syntax, Grammar Induction, Syntactic and Semantic
Parsing 111

Rediscovering Annotation Projection for Cross-Lingual Parser Induction
Jorg Tiedemann

Synchronous Constituent Context Model for Inducing Bilingual Synchronous Structures
Xiangyu Duan, Min Zhang and Qiaoming Zhu

Syntactic Parsing and Compound Recognition via Dual Decomposition: Application to
French

Joseph Le Roux, Antoine Rozenknop and Matthieu Constant

Learning the Taxonomy of Function Words for Parsing
Dongchen Li, Xiantao Zhang, Dingsheng Luo and Xihong Wu

Session Th42: (15:45-17:25) Machine Translation I

A Neural Reordering Model for Phrase-based Translation
Peng Li, Yang Liu, Maosong Sun, Tatsuya Izuha and Dakun Zhang

Recurrent Neural Network-based Tuple Sequence Model for Machine Translation
Youzheng Wu, Taro Watanabe and Chiori Hori

Class-Based Language Modeling for Translating into Morphologically Rich Languages
Arianna Bisazza and Christof Monz

Latent Domain Translation Models in Mix-of-Domains Haystack
Cuong Hoang and Khalil Sima’an

xliv



Thursday, August 28, 2014 (continued)

15:45-16:10

16:10-16:35

16:35-17:00

17:00-17:25

15:45-16:10

16:10-16:35

16:35-17:00

17:00-17:25

Session Th43: (15:45-17:25) Linguistic and Cognitive Issues in CL and NLP I

Language Family Relationship Preserved in Non-native English
Ryo Nagata

Why Gender and Age Prediction from Tweets is Hard: Lessons from a Crowdsourcing
Experiment

Dong Nguyen, Dolf Trieschnigg, A. Seza Dogruoz, Rilana Gravel, Mariet Theune, Theo
Meder and Franciska De Jong

Exploring Syntactic Features for Native Language Identification: A Variationist Perspec-
tive on Feature Encoding and Ensemble Optimization
Serhiy Bykh and Detmar Meurers

Applying automatically parsed corpora to the study of language variation
Jelke Bloem, Arjen Versloot and Fred Weerman

Session Th44: (15:45-17:25) Natural Language Generation and Summarization II
and Paraphrasing

Empirical analysis of exploiting review helpfulness for extractive summarization of online
reviews

Wenting Xiong and Diane Litman

Lexico-syntactic text simplification and compression with typed dependencies
Mandya Angrosh, Tadashi Nomoto and Advaith Siddharthan

Learning when to point: A data-driven approach
Albert Gatt and Patrizia Paggio

Generating Acrostics via Paraphrasing and Heuristic Search
Benno Stein, Matthias Hagen and Christof Brautigam

xlv



Friday, August 29, 2014

09:00-10:15

10:15-10:45

10:45-11:10

11:10-11:35

11:35-12:00

12:00-12:25

10:45-11:10

11:10-11:35

11:35-12:00

12:00-12:25

Session Fr11: (09:00-10:15) Invited Talk 4

Does a Computational Linguist have to be a Linguist?
Martin Kay

Coffee Break
Session Fr21: (10:45-12:25) Machine Translation 11

Query Lattice for Translation Retrieval
Meiping Dong, Yong Cheng, Yang Liu, Jia Xu, Maosong Sun, Tatsuya Izuha and Jie Hao

RED: A Reference Dependency Based MT Evaluation Metric
Hui Yu, Xiaofeng Wu, Jun Xie, Wenbin Jiang, Qun Liu and Shouxun Lin

Quality Estimation of English-French Machine Translation: A Detailed Study of the Role
of Syntax

Rasoul Kaljahi, Jennifer Foster, Johann Roturier and Raphael Rubino

Effective Incorporation of Source Syntax into Hierarchical Phrase-based Translation
Tong Xiao, Adria de Gispert, Jingbo Zhu and Bill Byrne

Session Fr22: (10:45-12:25) IE/Database Linking II

BEL: Bagging for Entity Linking
Zhe Zuo, Gjergji Kasneci, Toni Gruetze and Felix Naumann

Exploratory Relation Extraction in Large Text Corpora
Alan Akbik, Thilo Michael and Christoph Boden

An Analysis of Causality between Events and its Relation to Temporal Information
Paramita Mirza and Sara Tonelli

Exploring Fine-grained Entity Type Constraints for Distantly Supervised Relation Extrac-

tion
Yang Liu, Kang Liu, Liheng Xu and Jun Zhao

xlvi



Friday, August 29, 2014 (continued)

10:45-11:10

11:10-11:35

11:35-12:00

12:00-12:25

10:45-11:10

11:10-11:35

11:35-12:00

12:00-12:25

12:25-14:00

Session Fr23: (10:45-12:25) Linguistic and Cognitive Issues in CL and NLP I1

Using Collections of Human Language Intuitions to Measure Corpus Representativeness
Reinhard Rapp

Limited memory incremental coreference resolution
Kellie Webster and James R. Curran

Left-corner Transitions on Dependency Parsing
Hiroshi Noji and Yusuke Miyao

Data-driven Measurement of Child Language Development with Simple Syntactic Tem-
plates
Shannon Lubetich and Kenji Sagae

Session Fr24: (10:45-12:25) Lexical Semantics and Ontologies 11

Employing Event Inference to Improve Semi-Supervised Chinese Event Extraction
Peifeng Li, Qiaoming Zhu and Guodong Zhou

Supervised Ranking of Co-occurrence Profiles for Acquisition of Continuous Lexical At-
tributes

Julian Brooke and Graeme Hirst

Unsupervised extraction of semantic relations using discourse cues
Juliette Conrath, Stergos Afantenos, Nicholas Asher and Philippe Muller

HARPY: Hypernyms and Alignment of Relational Paraphrases
Adam Grycner and Gerhard Weikum

Lunch Break

x1vii



Friday, August 29, 2014 (continued)

14:00-14:25

14:25-14:50

14:50-15:15

14:00-14:25

14:25-14:50

14:50-15:15

14:00-14:25

14:25-14:50

14:50-15:15

Session Fr31: (14:00-15:15) Machine Translation I1I

Limitations of MT Quality Estimation Supervised Systems: The Tails Prediction Problem
Erwan Moreau and Carl Vogel

Augment Dependency-to-String Translation with Fixed and Floating Structures
Jun Xie, Jinan Xu and Qun Liu

Soft Dependency Matching for Hierarchical Phrase-based Machine Translation
Hailong Cao, Dongdong Zhang, Ming Zhou and Tiejun Zhao

Session Fr32: (14:00-15:15) Lexical Semantics and Ontologies I11

Using Spreading Activation to Evaluate and Improve Ontologies
Ronan Mac an tSaoir

Learning to Distinguish Hypernyms and Co-Hyponyms
Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir and Bill Keller

"One Entity per Discourse" and "One Entity per Collocation” Improve Named-Entity Dis-
ambiguation
Ander Barrena, Eneko Agirre, Bernardo Cabaleiro, Anselmo Pefias and Aitor Soroa

Session Fr33: (14:00-15:15) IE/Database Linking IIT

Comparable Study of Event Extraction in Newswire and Biomedical Domains
Makoto Miwa, Paul Thompson, loannis Korkontzelos and Sophia Ananiadou

A Probabilistic Co-Bootstrapping Method for Entity Set Expansion
Bei Shi, Zhenzhong Zhang, Le Sun and Xianpei Han

Separating Brands from Types: an Investigation of Different Features for the Food Domain
Michael Wiegand and Dietrich Klakow

x1viii



Friday, August 29, 2014 (continued)

14:00-14:25

14:25-14:50

14:50-15:15

15:15-15:45

15:45-16:15

16:15-16:45

16:45-17:25

Session Fr34: (14:00-15:15) Morphology, Word Segmentation, Tagging and Chunk-
ing II

Unsupervised Instance-Based Part of Speech Induction Using Probable Substitutes
Deniz Yuret, Mehmet Ali Yatbaz and Enis Sert

Solving Substitution Ciphers with Combined Language Models
Bradley Hauer, Ryan Hayward and Grzegorz Kondrak

Unsupervised Word Segmentation in Context

Gabriel Synnaeve, Isabelle Dautriche, Benjamin Borschinger, Mark Johnson and Em-
manuel Dupoux

Coffee Break

Session Fr41: (15:45-17:25) Best Paper Talks and Closing

Relation Classification via Convolutional Deep Neural Network
Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou and Jun Zhao

A context-based model for Sentiment Analysis in Twitter
Andrea Vanzo, Danilo Croce and Roberto Basili

Closing Ceremony

xlix






Learning from 26 Languages: Program Management and Science in the
Babel Program

Mary Harper
Incisive Analysis Office
Intelligence Advanced Research Projects Activity
Office of the Director of National Intelligence
USA

mary.harper@iarpa.gov

Invited Speaker Abstract

This presentation will illustrate how program management and science can cooperate to increase our
understanding of human languages and algorithms for processing them. In this presentation, I will use
the IARPA Babel program as an example. The goal of the Babel Program is to rapidly develop speech
recognition capability for keyword search in new languages, working with speech recorded in a variety
of conditions and with limited amounts of transcription. The speech data is recorded in native countries
and contains variability in speaker demographics and recording conditions. The Program will ultimately
address a broad set of languages with a variety of phonotactic, phonological, tonal, morphological, and
syntactic characteristics. I will discuss the data resources collected to support the research, the challenges
that performers have faced when working with a variety of languages collected in realistic environments,
the lessons learned, and future directions.
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Unsupervised learning of rhetorical structure with un-topic models

Diarmuid O Séaghdha Simone Teufel
Computer Laboratory Computer Laboratory
University of Cambridge University of Cambridge
Cambridge, UK Cambridge, UK
do242@cam.ac.uk sht25@cam.ac.uk
Abstract

In this paper we investigate whether unsupervised models can be used to induce conventional
aspects of rhetorical language in scientific writing. We rely on the intuition that the rhetorical
language used in a document is general in nature and independent of the document’s topic.
We describe a Bayesian latent-variable model that implements this intuition. In two empirical
evaluations based on the task of argumentative zoning (AZ), we demonstrate that our generality
hypothesis is crucial for distinguishing between rhetorical and topical language and that features
provided by our unsupervised model trained on a large corpus can improve the performance of a
supervised AZ classifier.

1 Introduction

Scientific writing has many conventions. Some exist at the level of sentence construction, such as
a preference for the passive voice or for deverbal nominalisations. Others relate to the high-level
organisation of a paper: a typical paper at an NLP conference may be divided into sections covering the
introduction, related work, methods, experimental results and conclusion. There are also intermediate
levels of convention that use lexical and phrasal items to signal the role played by each part of the text in
the argument the authors wish to construct. The theory of argumentative zoning (AZ) describes how a
scientific article can be analysed in terms of text blocks (or zones) that share a rhetorical function (Teufel,
2010). For example: part of the article may consist of background information, another part may describe
the aim of the research, other parts may report the authors’ own work or compare that work to alternative
approaches in the literature. Supervised computational systems can be trained to mark up the AZ structure
of a text automatically (see Section 2); the output of such systems has been shown to aid summarisation
and human browsing of the scientific literature (Teufel and Moens, 2002; Guo et al., 2011a; Contractor et
al., 2012). However, supervised systems require manually annotated training data that must be created
anew for each discipline (and language) before they can be deployed, while large quantities of unannotated
text are often available. For this reason, there is considerable value in developing unsupervised systems
that induce aspects of rhetorical structure from unannotated text.

In this paper we advance a hypothesis about the generality of rhetorical language. We propose that the
words and linguistic constructs used to express rhetorical function in a scientific paper are independent
of the paper’s topic. Naturally there will be some variation across research areas and there may be large
differences across disciplines, but within a discipline we do not expect that the specific subject of a paper
plays a significant role in how the authors construct their argument. For example, the following template
could be used to generate an abstract for very many papers in NLP and other fields:

The problem of has received a lot of attention because of its relevance to
. CITATION proposed an approach based on the method of .

In this paper we present a method for that has the following advantages over prior work:
. We demonstrate the empirical effectiveness of our method by reporting

experiments on data, where it outperforms the approach of CITATION by _ %.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/
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This leads us to the idea of two-stage “recipes” for scientific papers, whereby the authors start with a
framework of boilerplate text that matches the rhetorical argument they wish to make. The authors can
then fill in the gaps with the substance of their research contribution.

The two-stage model is of course an idealisation of how scientists construct their papers, but it is
useful as an inspiration for a computational model that implements the generality hypothesis. We propose
BOILERPLATE-LDA, a generative model that assigns responsibility for generating each word in an
abstract to a document-specific topic model or to a rhetorical language model that is not specific to
the document. Essentially, we induce argumentative structure from the parts of the text that are not
well-explained by the topic model. Hence we describe BOILERPLATE-LDA as an “un-topic model”. We
evaluate our model in two settings: a clustering evaluation that treats BOILERPLATE-LDA as performing
unsupervised argumentative zoning, and a downstream evaluation where the induced structure is not taken
as explicitly modelling argumentative zones but is used to provide informative features for a supervised
AZ classifier. In both cases, we show that BOILERPLATE-LDA performs well on a very challenging task.

2 Related work

There has been great interest in unsupervised learning among NLP researchers due to the availability
of large amounts of unprocessed text through the Web, newswire providers, scientific repositories and
other sources in contrast to the onerous requirements of creating task-specific manually annotated data
for training supervised analysers. Particularly relevant to our work is the field of topic modelling, where
Bayesian latent-variable models are used to induce meaningful generalisations from observations of
co-occurrences. Blei et al. (2003) introduced Latent Dirichlet Allocation (LDA) as a model of thematic
structure in documents, but subsequent work has adapted the general framework to many different purposes
in modelling text as well as other kinds of data. This includes research on modelling aspects of document
structure such as topic segmentation, implementing the intuitions that neighbouring blocks of text are
coherent in the sense of lexical similarity (Purver et al., 2006; Gruber et al., 2007; Eisenstein and Barzilay,
2008; Du et al., 2013). The model most similar to ours (that we are aware of) is the model of Ritter et
al. (2010), which captures dialogue acts and transitions between them in Twitter conversations.

Despite the general popularity of unsupervised approaches, rhetorical analysis has generally been
treated as a problem for supervised machine learning. Classification-based approaches to argumentative
zoning typically use a sequence classifier such as a maximum-entropy Markov model or conditional
random field (Teufel and Moens, 2002; Siddharthan and Teufel, 2007; Hirohata et al., 2008; Guo et al.,
2010). Guo et al. (2011b) take a semi-supervised approach based on active learning and self-training.

Two unsupervised approaches in the literature are Varga et al. (2012) and Reichart and Korhonen
(2012). Varga et al. use a topic model variant called ZONE-LDA that assigns each sentence a latent
variable index or “topic” and assumes that the words in the sentence are generated from a distribution
particular to the topic; in this situation each topic is assumed to correspond to a distinct argumentative
zone. Such a model will have the effect of clustering sentences that share lexical items. Varga et al. also
propose a model they call ZONE-LDA-B, in which some common words are assigned to a “background”
distribution that is independent of the sentence category; this model performs worse than ZONE-LDA in
their evaluation. Reichart and Korhonen take an approach based on Markov random fields. They construct
a graphical model in which sentence vertices are connected by potentials weighted according to adjacency
and sentence similarity, as well as hand-defined rules about passivisation and sentence location.

The papers cited in the two preceding paragraphs have focused on rhetorical analysis in scientific
writing, yet there are many other textual genres where argumentation is conventionalised. For example,
Burstein et al. (2003) identify building blocks analogous to AZ zones in the writing of English language
learners and demonstrate that a supervised classification approach can be used to mark up their essays.
Also in the educational domain, Madnani et al. (2012) train a supervised classifier to detect the “shell”
language that learners use to organise the high-level structure of their compositions; this is quite close
to our idea of “templates” or “recipes” for scientific papers. Sauper and Barzilay (2009) and Chen et
al. (2009) both present models that learn structural conventions in Wikipedia articles without relying on
human annotation. Sauper and Barzilay’s model induces the typical section structure of Wikipedia articles



about a specific entity type (e.g., Actors or Diseases) and retrieves web snippets relevant to each section
for a target entity, before performing multidocument summarisation to produce a new entry for posting
to Wikipedia. Chen et al. take a Bayesian segmentation approach to implicitly learn the topical section
structure of articles and use a generalised Mallows model, a distribution over permutations, to identify a
canonical ordering for sections.! Other forms of general rhetorical analysis include Rhetorical Structure
Theory (Mann and Thompson, 1988; Marcu, 2000), which captures local discourse relations between
segments of text; RST provides a layer of analysis that is separate and complementary to more global
schemes such as argumentative zoning.

3 Intuitions

The performance of unsupervised learning depends on how intuitions about the task are incorporated in
the statistical model. Our approach relies on three main intuitions:

Sentence similarity: All else being equal, we expect that lexically similar sentences will have similar
purposes. At the same time, lexical similarity alone is not sufficient to capture shared argumentative
function: all sentences in a paper about parsing will be similar to each other, while the introductory
sentences of a parsing paper and a machine translation paper may share few similar lexical items.

Adjacency: The theory of argumentative zones suggests that sentences with the same rhetorical function
will often be grouped together into blocks. Additionally, we expect that authors will follow general
conventions about the order of zones, e.g., starting with background and goal statements and
progressing to results and conclusions.

Generality: We expect that the language used to convey rhetorical function is independent of the topical
content of the paper.

Sentence similarity can be captured using standard lexical similarity measures or through the clustering
effects of a topic model. The adjacency assumption can be implemented using a linear-chain sequence
model such as a Hidden Markov Model. The ZONE-LDA approach of Varga et al. (2012) relies on
sentence similarity alone. Reichart and Korhonen’s (2012) model combines sentence similarity and
adjacency. To the best of our knowledge, the generality hypothesis has not previously been investigated.
The model we describe in Section 4 incorporates all three intuitions in its structure.

4 Models

The model we propose assumes that each word in a sentence is generated either from an LDA-style topic
model or from a distribution associated with the rhetorical category assigned to the sentence. The former
captures the subject matter of the document; the latter captures conventional language that is independent
of the document’s subject matter. The sentence categories are generated from a first-order Markov model.
The assignment of responsibility for a word is implemented through a so-called “switching variable”, a
binary-valued latent variable. This is a commonly used mechanism for interpolating language models
(Griffiths et al., 2004; Reisinger and Mooney, 2010; Ahmed and Xing, 2010); in many cases, the goal is to
assign common words to a “background” distribution that is not considered an object of interest from a
topic modelling perspective. In our case it is this non-topical part of the text that is the object of interest.

The dependencies between variables in our full BOILERPLATE-LDA model are shown by the plate
diagram in Figure 1. The corresponding “generative story” is as follows:

"It would be interesting to swap in Chen et al.’s generalised Mallows model for the HMM-style ordering model in
BOILERPLATE-LDA. The former has the advantage of capturing non-local ordering effects, while the latter has the advantage of
not assuming a single canonical ordering.



for topict € {1...|T|} do
(Draw a distribution over words)
®,; ~ Dirichlet(3)
end for
for zone z € {1...|Z|} do
(Draw a distribution over words)
W, ~ Dirichlet(~)
(Draw a transition distribution)
A, ~ Dirichlet(\)
end for
(Draw the switch distribution)
X~ Beta(ao, 0'1)
fordocd € {1...|D|} do
(Draw a distribution over topics)
0, ~ Dirichlet(o)
for sentence s € Sentences(d) do
zs ~ Multinomial(A,, ;)
for word i € Words(s) do
(Draw a switch indicator)
b; = Beta(X)
if b; = 0 then
(Draw a word from the zone-word distribution)
w; ~ Multinomial(¥,,)
else
(Draw a topic)
t; ~ Multinomial(0,)
(Draw a word from the topic-word distribution)
w; ~ Multinomial (®y,)
end if
end for
end for
end for

We train the model using Gibbs sampling. Due to Dirichlet-multinomial and beta-Bernoulli conjugacy
it is relatively straightforward to integrate out the multinomial and Bernoulli distribution parameters
0, ®, W and ¥ and derive update rules for a collapsed Gibbs sampler. Each iteration of the sampler visits
each sentence in the corpus in turn, first sampling the sentence label assignment z; and then sampling for
each word in the sentence the switch indicator b; and (if b; = 1) the topic assignment ¢;. The sentence
label update is performed using what Gao and Johnson (2008) call a pointwise collapsed Gibbs sampler.
Omitting hyperparameters for clarity, the sampling probabilities can be written as

—1

fzi_1—>z + Kz fz—>zi+1 + I(Z - Zi+1) T Kz I‘(fzv,b:O + fsiv,b:() + 7)
fzi—l +Zz’ Kz f;Z+I(ZZZi+1)+Zz’ Ryt veV F(f?«’_l_‘_fsz +7|V‘)
(1)

P(z = z|z7", w, b) x

where f,_- ./ is the transition frequency from zone z to zone 2/, f, is the number of sentences assigned
zone z; I(z = z;41) has value 1 if the two zone assignments are equal and 0 otherwise; V' is the vocabulary
of word types; f., p—0 is the number of words of type z that appear in sentences assigned zone z and
whose corresponding switch variable has value 0; f,, »—o is the number of words of type v that appear in
sentence s; and whose corresponding switch variable has value 0; the superscript ~* indicates that the
frequency is calculated over all sentences except s;. We introduce observed start and end state variables
zs and z, to handle the boundaries at the beginning and end of each document.
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Figure 1: Plate diagram for BOILERPLATE-LDA

The topic and switch variables for each word are sampled in a blocked fashion; the sampling probabilities
are similar to the standard LDA updates:

fz_iij,bzo +7
Jaip=0+ Vv

fad ¥ fRd 48
Folpr + X ax [+ |VIB

P(b; = 0,t; = 0]z 77, b7, t,w) o (f,= + %o)

P(bj=1,t; =tz 79, b7 t,w) o (f, 7, + X1)

P(b; =0,t; # ®|Z_j,b_j7t7w) =0
Pb;=1,t; =0z7, b7 t,w) =0 )

where we use j to index words and ¢ to index sentences; ftwj is the number of words of type w; that are
assigned topic ¢; the superscript ~7 indicates that the frequency is calculated over all words except j.

S Experiments

5.1 Data

For evaluation, we use a collection of abstracts compiled by Guo et al. (2010). These abstracts had
originally been collected in the context of semi-automated cancer risk assessment by searching PubMed
for abstracts mentioning one or more of a list of chemicals known to have carcinogenic properties
(Korhonen et al., 2009). Guo et al. annotated abstracts for five of these chemicals using an AZ scheme
with seven categories: Background, Objective, Method, Result, Conclusion, Related work and Future
work.? In order to test whether our models can also perform over a large, heterogeneous dataset, we also
used a collection of 129,595 abstracts taken from a collection of open-access journal articles. Preprocessing
involved sentence splitting, tokenisation and part-of-speech tagging using the Stanford CoreNLP toolkit?
and the removal of all tokens containing non-alphanumeric characters, all tokens of character length one

The annotated dataset has been made available at http: //www.cl.cam.ac.uk/~yg244/abstract_az.html.
*http://nlp.stanford.edu/software/corenlp.shtml



and a small set of stop words.* This left a training corpus of 16,841,280 tokens.

5.2 Clustering Evaluation

5.2.1 Evaluation

Our first quantitative evaluation investigates whether the zones induced by BOILERPLATE-LDA corre-
spond to the argumentative zones identified by human theorists. We treat this as a clustering task with
the gold standard provided by Guo et al.’s (2010) dataset. The clustering evaluation measures we use
are the Adjusted Rand Index (Hubert and Arabie, 1985) and Adjusted Mutual Information (Vinh et al.,
2010); both measures are normalised to have a maximum value of 1 and are adjusted for chance so that
the expected score given to a random clustering is 0. This second property makes them conservative in
comparison to other evaluation measures. We report results with the number of zones |Z| € {10, 20, 50}
and number of topics |T'| € {10, 20, 50, 100}; for each combination of settings we report the average
evaluation score attained by three independent runs of the learning algorithm.

5.2.2 Models

For our evaluation, we test the following models:
BOILERPLATE-LDA: Our full model, as described in Section 4.

BOILERPLATE-LDA-MULT: A simplified model where the Markov dependencies between zone as-
signments are replaced by a flat multinomial; the probability of a zone is independent of the adjacent
sentences.

BOILERPLATE-LDA-NOTOPICS: A simplified model where all words in a sentence are generated
from the zone distribution W _; this is almost identical to Varga et al.’s (2012) ZONE-LDA model.

K-MEANS: A standard k-means clustering model run until convergence. The features for each sentence
consist of tf-idf-transformed lexical frequencies, part-of-speech tags and a location feature computed
by dividing the abstract into 5 bins.

The BOILERPLATE-LDA models are all trained for 1000 iterations of Gibbs sampling. The Dirichlet
hyperparameters are re-estimated every 10 iterations; the topic hyperparameters c are optimised using
a fixed-point iteration to maximise the log-evidence (Minka, 2003; Wallach, 2008), while the other
hyperparameters are sampled using Hamiltonian Monte Carlo (Neal, 2010). K-MEANS was run until
convergence.

5.2.3 Results

Figure 2 gives an illustration of the zone representation induced at the end of one run of BOILERPLATE-
LDA with the settings |Z| = 10, |T'| = 100. Firstly, we list the most probable words for each zone
(2a). While the model may not find a perfect match for the gold-standard inventory of argumentative
zones, we can see that some induced zones describe standard methodology (8,9), others describe results
and implications (1,3,7) and others describe motivations (2,5,6). Inspection of the transition matrix (2b)
confirms our expectation that self-transitions have the highest probability; we also observed that the
zones most frequently transitioned to from the start state are the motivational zones and the zones most
frequently transitioned from to the end state are the results/implications zones. The example abstracts in
Figure 3 illustrate how BOILERPLATE-LDA can be used to mark up the text of an abstract as “boilerplate”
or “non-boilerplate” based on the values of the switch variables b;.

“The part-of-speech tags are not used by BOILERPLATE-LDA but they are used as features for other models.
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results, suggest, our, data, study, role, findings, we, between, indicate, important, studies

study, we, using, used, investigated, determine, present, between, investigate, analysis, aim
increased, significantly, levels, showed, found, observed, significant, after, compared, higher
two, sequence, we, found, region, sequences, we, three, identified, between, different, analysis
use, more, studies, study, used, however, important, health, most, treatment, clinical, potential
role, important, known, studies, however, shown, including, involved, mechanisms, cell

case, we, patient, report, rare, most, common, reported, presented, disease, associated, cause

CI, significantly, respectively, significant, between, group, mean, higher, compared, more, found
study, years, using, two, patients, included, total, group, three, data, after, used, collected, age
we, data, analysis, used, using, new, approach, based, method, information, developed, more

(a) Most probable words for each zone

| Stat 1 2 3 4 5 6 7 8 9 10 End
Start | 0.00 0.00 0.10 0.01 0.08 024 7036 0.10 0.00 0.3 0.08 0.00
1 000 [037° 001 004 001 003 001 000 000 0.00 001 FOSON
2 /000 002 026 025 007 001 002 000 005029 001 0.00
31000 027 0.02 0.02 002 0.02 000 002 000 001 0.04
4 1000 012 002 0.09 0.00 0.03 0.00 001 000 005 0.05
5 /000 001 010 0.00 0.00 0.03 0.02 000 006 004 0.8
6 | 000 006 021 005 005 0.05 001 0.00 001 005 0.02
7 1000 002 002 001 001 015 004 0.01 0.02 0.0 0.8
8 | 000 009 001 0.4 001 007 000 0.02 0.04 0.01 0.01
9 000 001 011 005 001 005 000 0.02 020 0.01 0.00
10 | 000 005 002 001 007 002 001 0.00 001 0.12
End | 0.00 0.00 0.00 0.00 0.0 0.00 0.0 0.00 0.00 0.00 0.00 0.00

(b) Zone transition probabilities between adjacent sentences

Figure 2: Zones induced by one run of BOILERPLATE-LDA (|Z]| = 10,

T| = 100)




VASP: A Volumetric Analysis of Surface Properties Yields Insights into Protein-
Ligand Binding Specificity

compare can reveal suggest
often differences in
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other methods. Our approach, inspired by
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We applied analysis
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. In this study, we describe that
is greatly enhanced is shifted to the
is performed

Detailed investigation indicated that

As a potential application
as a relatively large
successfully high
: high “and
would provide a new opportunity as a unique (00! for the study of

Figure 3: Examples of abstracts marked up for boilerplate (underlined) and non-boilerplate (faded text) by
BOILERPLATE-LDA



Model T| | 1Zz]=10 | |Z]=20 |Z] = 50

ARI NMI | ARI NMI | ARI NMI
BOILERPLATE-LDA 10 | 0.19 0.15 | 0.09 0.09 | 0.04 0.07
20 | 0.20 0.16 | 0.03 0.10 | 0.03 0.08
50 | 0.26 0.21 | 0.18 0.16 | 0.05 0.10
100 | 0.32 0.28 | 0.20 0.20 | 0.07 0.14
BOILERPLATE-LDA-MULT 10 | 0.13 0.11 | 0.08 0.08 | 0.04 0.06
20 | 0.10 0.13 | 0.04 0.09 | 0.03 0.07
50 | 0.21 0.16 | 0.13 0.14 | 0.06 0.10
100 | 0.18 0.16 | 0.14 0.14 | 0.07 0.11
BOILERPLATE-LDA-NoToprics | O | 0.00 0.02 | 0.04 0.05 | 0.06 0.05
K-MEANS 0 [0.05 005|003 006|003 0.04

Table 1: Results of the clustering evaluation. |Z| is the number of zones; | 7’| is the number of topics.

The results of the clustering evaluation are presented in Table 1. Clearly, this is a challenging task; the
BOILERPLATE-LDA-NOTOPICS and K-MEANS models, which do not filter out topic-specific vocabulary,
perform little better than chance in terms of identifying argumentative zones (recall that for the ARI
and AMI measures, zero means “not greater than expected by chance” rather than “no correlation at
all”’). BOILERPLATE-LDA-MULT performs better than those models though not as well as the full
BOILERPLATE-LDA model, indicating that sequential structure is important for inducing rhetorical
regularities. In general, the best results are attained with low settings of | Z| and high settings of |T'|; this
seems to create the “bottleneck” effect needed to focus the model on purely rhetorical information. The
highest scores (ARI = 0.32, AMI = 0.28) are attained by BOILERPLATE-LDA with the settings | Z| = 10,
|T"| = 100.

5.3 Supervised Evaluation

5.3.1 Evaluation

A second evaluation of BOILERPLATE-LDA'’s usefulness is to test whether it can yield features that
improve the performance of a supervised argumentative zoning system. It is possible for an unsupervised
model to induce structure that does not map exactly onto a pre-existing set of labels but still captures
valuable information about the underlying phenomenon that can be of use to a supervised classifier when
combined with other information sources. To this end, we train and evaluate supervised models on the
same dataset of Guo et al. (2010) that we used for the clustering evaluation. We perform 10-fold cross-
validation and report Accuracy (proportion of sentences labelled correctly) as well as macro-averaged
Precision, Recall and F-Score. To measure statistical significance we use two-tailed paired ¢-tests,
following Dietterich (1998).

5.3.2 Models
We use two supervised sequence classification algorithms for training models:

LR: A logistic regression classifier with a “history” feature encoding the previous sentence’s label, trained
with L regularisation, using the implementation in LibLinear.°

CRF: A first-order conditional random field classifier, trained with L; regularisation, using the imple-
mentation in Mallet.”

In both cases, the predicted labelling for a test document is given by the most probable (Viterbi) sequence
according to the trained model. We use the following feature sets:

3In order to address concerns about the suitability of the ¢-tests under non-normality, we replicated the tests using Wilcoxon’s
signed-ranks test as recommended by Demsar (2006); the results were identical.

*http://www.csie.ntu.edu.tw/~cjlin/liblinear/
"http://mallet.cs.umass.edu/

10



LR CRF

Model Acc P R F Acc P R F

BASELINE 0.83 071 070 0.70 | 0.85 0.75 0.64 0.67
+BOILERPLATE-LDA | 0.84 0.72 0.71 0.71 | 0.86 0.74 0.65 0.68
+LDA-BAG (50) 0.83 0.69 0.68 0.68 | 0.84 073 0.62 0.64
+LDA-BAG (100) 0.83 069 0.69 0.69 084 072 0.64 0.66
+LDA-MAX (50) 0.83 0.71 0.69 0.69 | 0.85 0.72 0.64 0.66
+LDA-MAX (100) 0.84 071 069 0.70 | 0.85 0.74 0.63 0.66

Table 2: Results of the supervised evaluation

BASELINE: Our baseline set of features is a standard set for supervised argumentative zoning: all
unigrams and bigrams in the sentence, all part-of-speech tags in the sentence and a location feature
computed by dividing the abstract into 5 bins.

+BOILERPLATE-LDA: The baseline model with additional features corresponding to the zone index
assigned by BOILERPLATE-LDA to the sentence. We set |Z| = 10, |T'| = 100 since that setting
performed best in the clustering evaluation. As before, we use the output of three independently
learned sampling chains, giving each sentence three zone features; the classifier should learn which
chains are better than others during training.

+LDA-BAG: The baseline model with additional features derived from standard Latent Dirichlet Alloca-
tion models trained on the same corpus as BOILERPLATE-LDA. As LDA assigns a topic to each
word in a sentence, we add all topics assigned to all words in the sentence as additional features. As
above, we use the output of three sampling chains. We report results for models with 50 topics and
100 topics.

+LDA-MAX: The baseline model with additional features derived from LDA models. Here each model
assigns each sentence the single topic assigned to the greatest number of words in the sentence (ties
are broken randomly).

5.3.3 Results

Results for the supervised evaluation are presented in Table 2. +BOILERPLATE-LDA is the only aug-
mented feature set that consistently gives an improvement over the baseline features. The improvements
in accuracy are statistically significant (p < 0.01). In every case but one (which is not statistically
significant), the LDA models fail to improve on the baseline in either accuracy or F-Score, showing that
the latent structure induced by BOILERPLATE-LDA captures aspects of rhetorical language that are not
captured by topical word clustering.

6 Conclusion

We consider the work presented in this paper to be a first step towards the ambitious goal of inducing
latent descriptions of the templates used by scientists and writers in other fields. We have shown how our
hypothesis about the generality of rhetorical language allows the construction of models that can separate
out topical and rhetorical language use. One focus for future work will be to enrich the model structure; an
approach based on adaptor grammars (Johnson et al., 2006) could be used to break the reductive unigram
assumption in BOILERPLATE-LDA and identify multiword collocations that carry rhetorical information.
Another focus will be to broaden our understanding of how unsupervised rhetorical models trained on
large corpora can improve the robustness of supervised systems. For example, we have observed that
lexicalised AZ classifiers trained on texts from one scientific domain will often perform poorly on texts
from another domain; unsupervised models have the potential to induce relevant lexical commonalities
across domains.
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Abstract

This work is, to our knowledge, a first attempt at a machine learning approach to cross-lingual
coreference resolution, i.e. coreference resolution (CR) performed on a bitext. Focusing on CR
of English pronouns, we leverage language differences and enrich the feature set of a standard
monolingual CR system for English with features extracted from the Czech side of the bitext.
Our work also includes a supervised pronoun aligner that outperforms a GIZA++ baseline in
terms of both intrinsic evaluation and evaluation on CR. The final cross-lingual CR system has
successfully outperformed both a monolingual CR and a cross-lingual projection system.

1 Introduction

Coreference resolution (CR) is a well-established task in the field of Natural Language Processing (NLP).
The majority of papers published so far has focused on the monolingual CR, mostly experimenting on
the English data. An important step towards multilingual CR was the CoNLL-2012 Shared Task in
Modeling Multilingual Unrestricted Coreference in OntoNotes, where the participants were asked to
build a CR system that could be applied on three typologically different languages contained in the
OntoNotes corpus (Hovy et al., 2006): English, Chinese, and Arabic.

Same just as in other NLP tasks such as part-of-speech tagging or parsing, recent years have witnessed
a rising interest in cross-lingual projection techniques, mostly aiming at under-resourced languages.

However, little attention is paid to leveraging cross-lingual information for CR in two resource-rich
languages. This is probably due to lack of bilingual resources annotated with coreference since such
techniques would require rich linguistic annotation on both sides of the bitext. Moreover, to solve this
issue using a supervised learner, one needs the gold standard of coreference at least on the target side of
the bitext. On the other hand, given such data, the typological differences in languages can be exploited
to aid a CR system to perform better than if CR is performed independently for each language.

The motivation for solving this task is threefold. Firstly, even though Statistical Machine Translation
(SMT) has been attracting interest of the community for years, most systems do not take information be-
yond the sentence boundary into account, leaving the issues of discourse coherence unresolved. Having
a better-quality bitext with coreference resolved could drive research in discourse-aware SMT forward.
Secondly, although inter-sentential relations are neglected in SMT, current phrase-based system uninten-
tionally resolve some of the coreference links within the sentence, using just the power of phrases. This
might be leveraged by using the SMT output instead of a human-translated output in a cross-lingual CR
scenario. Finally, even monolingual CR may be improved by applying semi-supervised learning methods
in a smart way on a large bilingual corpus with automatic rich annotations, such as CzEng 1.0 (Bojar et
al., 2012).

Our work examines cross-lingual CR on the Czech-English language pair. We focus on CR of English
pronouns, particularly the 3rd person central pronouns. Central pronouns is a term coined by Quirk
(1985) embracing personal, possessive and reflexive pronouns. For the sake of simplicity, we will denote

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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3rd person central pronouns by the word pronouns in the following. We ignore noun phrase coreference
for two reasons. First, there has been no data set available for the Czech-English language pair with
noun phrase coreference annotated, yet. Second, the language differences between languages show more
clearly on pronouns than on nouns, as pronouns tend to be more constrained by various grammar rules
across different languages.

Czech and English are typologically distant languages, which is also reflected in different behavior of
pronouns. A cross-lingual CR system could substantially benefit from the necessity of the anaphor and its
antecedent to agree in gender. Czech uses grammatical genders which are more evenly distributed among
nouns than the notional genders! used in English, where male and female gender? are solely allocated
to living objects. However, benefiting from the pronoun’s gender becomes problematic for personal
pronouns in subject position which are usually dropped from the surface representation in Czech. If their
governing verb is in the past tense, the correct gender can be reconstructed from its form. With the verb in
present or future tense, the pronoun’s gender remains hidden. Possessive pronouns are used to a greater
extent in English than in Czech. Same as articles, they play the role of determiners whereas in Czech,
the determination and possession must be understood from the context. A missing Czech counterpart of
an English possessive pronoun may indicate its antecedent to be in the same sentence. Moreover, Czech
uses reflexive possessive pronouns, whose antecedent is easier to detect than for non-reflexive pronouns.
On the other hand, English reflexive pronouns, unlike the Czech, carry gender and number information
the resolver can benefit from.

In this work, we make to our knowledge a first attempt to leverage the language differences using
a machine learning approach to improve CR on bitexts. To achieve this goal, we create a supervised
CR model, proposing two sets of cross-lingual features: projected features used for Czech CR and an
indicator feature of a projected Czech coreference link obtained by a Czech CR system. Note that for the
latter set (actually comprising only a single feature), the Czech CR system would require gold annotation
of Czech coreference. We did not consider new features that would address specific Czech-English
correspondences.

The fact that a Czech counterpart is missing for many English pronouns has a negative effect on
traditional unsupervised alignment approaches. We address this issue by a supervised aligner of pronouns
that incorporates the result of the traditional aligner as a feature and adds other features that help detect
the true Czech counterparts of English pronouns.

The structure of this paper is as follows: After introducing related work in Section 2 and describing the
data used in experiments in Section 3, we present the design of a supervised approach to improve English
pronoun alignment in Section 4. Section 5 describes the cross-lingual CR system and the experiments
conducted with it. Finally, we discuss the main observations made in the experiments in Section 6 and
conclude the paper in Section 7.

2 Related work

The task of coreference resolution has been studied for a few decades, with supervised systems dominat-
ing the field. The most popular approaches have been thoroughly summarized by Ng (2010).

The system for English CR we use has been built for automatic coreference annotation in the Czech-
English parallel treebank CzEng 1.0 (Bojar et al., 2012). It is an implementation of the so-called mention
ranking model, first introduced by Denis and Baldridge (2007).

Parallel bilingual data is often exploited to solve well-known tasks such as part-of-speech tagging
(Das and Petrov, 2011), named entity recognition (Kim et al., 2012), name tagging (Li et al., 2012),
and semantic role labeling (Zhuang and Zong, 2010). Undoubtedly, this approach is most popular with
parsing. Joint parsing of both the source and the target text along with searching for the best alignment
between the trees has been approached in a more (Burkett et al., 2010) or less (Smith and Smith, 2004;
Burkett and Klein, 2008) integrated approach. However, much closer to our work is the research on

"“Nouns are classified semantically according to their coreferential relations with personal, reflexive and wh-pronouns.”

(Quirk et al., 1985, p.314)
2Quirk (1985) uses these terms instead of terms masculine and feminine related to grammatical gender.

15



bilingually-informed parsing by Haulrich (2012), in which English trees are used to enrich the feature
set for a Danish parser and vice-versa. Rosa et al. (2012) explored the same approach on the Czech-
English language pair. Moreover, they adapted this technique to parse the output of an SMT system.

As for coreference resolution in a bilingual scenario, most works focus on coreference projection (de
Souza and Orsan, 2011; Rahman and Ng, 2012; Ogrodniczuk, 2013). Research on cross-lingual CR has
been inhibited by the lack of coreference-annotated parallel corpora. There are only few such corpora, for
instance an English-Romanian corpus containing full hand-annotated coreference chains including noun
phrase coreference (Postolache et al., 2006) and two corpora with pronoun coreference annotations —
Prague Czech-English Dependency Treebank 1.0 (Haji€ et al., 2012, PCEDT) and the recently published
English-German corpus ParCor 1.0 (Guillou et al., 2014).

However, the only attempts at cross-lingual CR date back to the time before these corpora were re-
leased. Harabagiu and Maiorano (2000) designed a CR system for English-Romanian bitexts while
Mitkov and Barbu (2003) focused on the English-French language pair. Both extended their rule-based
monolingual CR systems to apply some high-precision rules from one language to enhance the result
in the other language. They both reported an improvement of about 4% in precision compared to the
monolingual systems.

As concerns a machine learning approach, in the work by Veselovskd et al. (2012), PCEDT was
employed in related tasks — to identifying types of the English personal pronoun it and Czech types of
the unexpressed subject. The tasks have been addressed by the isolated monolingual systems as well as
by taking advantage of the features from the other language.

3 Main source of the data

As mentioned in Section 2, Czech is one of a few languages for which a coreference-annotated parallel
corpus has been built — The Prague Czech-English Dependency Treebank (Haji¢ et al., 2012, PCEDT).?

PCEDT is a manually annotated Czech-English parallel treebank comprising over 1.2 million words
for each language in almost 50,000 sentence pairs. The English part contains the entire Penn Treebank—
Wall Street Journal Section (Linguistic Data Consortium, 1999) transformed into dependency trees,
whereas the Czech part comprises the translations of all the texts from the English part. The data from
both parts are annotated on three layers of linguistic description following the Prague tectogrammatics
theory (Sgall, 1967; Sgall et al., 1986) — the morphological layer (where each token from the sentence
gets a lemma and a POS tag), the analytical layer (surface syntax in the form of a dependency tree, where
each node corresponds to a token in the sentence) and the tectogrammatical layer. Tectogrammatical rep-
resentation of a sentence is a dependency tree, where only content words have their own nodes; on the
other hand, it contains additional nodes, e.g., for pronouns unexpressed on the surface. This is also the
layer where the coreference relations are annotated. PCEDT includes annotation of pronoun coreference
and the so-called grammatical coreference* for Czech as well as English.

For the purpose of this work, we ignore all annotations originally provided by PCEDT. Annotations
on the tectogrammatical layer, which is in the center of this work’s attention, are mostly manual there.
But to truly simulate the real-world scenario when given just a pair of parallel texts, we need to replace
them with ones carried out in a fully automatic manner. The only two exceptions, where we employ the
gold annotations, are the relations we aim to model, i.e. coreference links and our own annotation of
alignment for English personal pronouns (see Section 4.1).

3.1 Fully Automatic Annotation

We have conducted automatic linguistic analysis on both the English and the Czech part of PCEDT,
transforming the individual sentences into multi-layer dependency tree structures based on the Prague
tectogrammatics theory. The analysis was carried out within the Treex framework (Popel and Zabokrtsky,
2010).

3http: //hdl.handle.net/11858/00-097C-0000-0015-8DAF-4
“Its antecedent is imposed by the grammar of the language, e.g. coreference of relative pronouns.
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Treex is a multi-purpose open-source framework for NLP applications development, which integrates
a wide range of modules, such as tools for sentence splitting, tokenization, morphological analysis,
part-of-speech tagging, shallow and deep syntax parsing, named entity recognition, anaphora resolution,
among others.

Moreover, we performed an unsupervised word alignment on the complete PCEDT using the
MGIZA++ tool (Gao and Vogel, 2008), which is a multi-threaded version of the popular GIZA++ (Och
and Ney, 2000) that supports applying a saved model on a new sentence pair. We used a model trained
on CzEng 1.0, which is about 300 times bigger in terms of the number of sentence pairs. The resulting
alignment of the intersection and grow-diag-final-and types was subsequently projected onto the
tectogrammatical layer. Furthermore, a simple heuristic was applied to find the English counterparts for
reconstructed Czech personal pronouns. We denote this alignment as the original in the following.

4 Supervised alignment

The alignment described in the previous section is sufficiently accurate for content words, such as verbs,
nouns, and adjectives. However, errors become more frequent as we move to pronouns. Some reasons
for this have already been outlined in Section 1, i.e. dropped subject personal pronouns and omitted
possessive pronouns in Czech. In addition, English uses a pleonastic variant of the pronoun i#, which
also has no correspondence in Czech. Personal pronouns function in a sentence as a replacement of
nouns. Thus, it is no exception if a pronoun is translated into a noun. And finally, the translation may be
reworded to such an extent that the pronoun would carry no valuable information, and it disappears. All
these cases are difficult for GIZA++ to tackle.

The pronoun correspondence problem has been already faced concerning the alignment of the personal
pronoun it by Novak et al. (2013). The authors tried to find the Czech counterpart of it by taking the
node that is aligned to the parent of it on the Czech side and picking the argument of the aligned node
that agrees on the semantic role with the particular it. This approach assumed that the unsupervised
alignment of the parent, which is likely to be a content word, is of higher quality than the alignment of
it itself. Furthermore, it relied on high-accuracy semantic role labeling, which could only be justified
because the experiments were conducted on data manually annotated with semantic roles.

As we are working with fully automatic annotations (i.e., much less reliable) and a wider range of
words to align, we cannot just copy this rule-based approach. However, we can take a more robust
approach of supervised machine learning and transform Novdk et al.’s rule to one of the features in our
alignment model.

In Section 4.1, we describe the manual annotation of alignment, then introduce the supervised model
in Section 4.2, using features described in Section 4.3. Finally, we show the evaluation results of the
alignment model in Section 4.4.

4.1 Manual Annotation of the Data

Supervised learning requires that the training data are manually labeled with a target variable. For this
purpose, we set aside the section 19 of PCEDT. In this data, all occurrences of English personal pronouns
have been coupled with its Czech counterpart by one human annotator. If no suitable Czech expression
was found, the annotator identified a possible cause of the missing counterpart. The causes were then
categorized into three classes — pleonastic if, missing possessive pronoun and missing correspondence
due to translation rewording. So far, we do not distinguish these classes in our models and treat them in
the same manner.

We managed to align 471 occurrences of personal pronouns, which account for over 50% of all occur-
rences in the section. The overall statistics of how English personal pronouns are translated into Czech
is shown in Table 1.

It shows that more than 55% of English personal pronouns are dropped from the surface representation
of the Czech sentence, though still present in its deep structure. In contrast, English pleonastic pronouns
are not present even there. An interesting observation is that more than half of English possessives
are either translated as reflexive possessives or completely missing in the Czech sentence. All these
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CS\EN personal possessive reflexive || Total
personal unexpressed 147 1 148
personal 37 2 39
demonstrative 17 1 18
noun 15 6 21
possessive 3 78 81
reflexive possessive 68 68
reflexive 1 2 5 8
other 6 1 3 10
pleonastic 24 24
reword 12 4 16
no possessive 38 38
Total 262 201 8] 471

Table 1: The statistics on the correspondence of English personal pronouns to their Czech counterparts.
The last three Czech categories indicate the reason why there is no corresponding word in Czech for an
English pronoun.

phenomena might in the end be a source of helpful information to the CR system.

4.2 Model

The nature of the task of aligning a given English pronoun to its Czech counterpart is to pick the best-
fitting one from a bunch of candidates. The set of candidates consists of all tectogrammatical nodes in
the aligned Czech sentence. To allow the system to select no correspondence for a pronoun, we add a
special candidate representing the null alignment.

We represent the candidate ranking task as a discriminative log-linear model trained in a cost-sensitive,
one-against-all strategy with label-dependent features (csoaa—-1df) provided by the Vowpal Wabbit®
machine learning toolkit. The feature weights are optimized by running stochastic gradient descent in 40
passes over the training data.

4.3 Features

The feature set consists of the following types of features, which consider an English pronoun and a
Czech candidate from the corresponding Czech tree:

¢ Original alignment features: presumably the most valuable set of features. It indicates if there is
a link between the two nodes in the original alignment and if there is any between their parents.

e Graph features: we designed these features to somehow reflect the distance between the nodes.
The pair of aligned tectogrammatical trees is treated as a bipartite graph and a shortest path between
the nodes is found using a sequence of dependency edges and a single alignment link. We applied
the Dijkstra algorithm to find the shortest path. We ensure that it only uses a single alignment
link by setting large weights to alignments and small weights to dependency edges, i.e., 100 and 1,
respectively. The features then comprise the length of the shortest path and the sequence of edge
labels (parent, child, alignment).

e Grammatical features: these include lemmas, part-of-speech tags, reflexivity indicators, semantic
role labels both for each of the nodes individually and as a concatenation of the two.

e Combined features: these features combine selected features from the types mentioned above. The
concatenation of parents’ alignment and semantic role correspondence mimics the rule Novék et al.
(2013) used to get better Czech counterparts for English it (see Section 4). Furthermore, features
combining lemmas with direct alignment or alignment through parents are included.

‘https://github.com/JohnLangford/vowpal_wabbit/wiki
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Method Train Test

A P R F| A P R F
ORIGINAL - - - -1 73.04 7555 8240 78.83
SUPERVISED | 88.37 90.18 90.34 90.26 | 84.50 88.52 86.40 87.45

Table 2: Evaluation results of English-to-Czech pronoun alignment. The quality is measured in terms of
accuracy (A), precision (P), recall (R), and F1-score (F).

4.4 Experiments and Results

The small amount of manually annotated data led us to evaluate alignment models by 10-fold cross-
validation, with the results on the train and test partitions averaged over all folds.

We measured the quality of produced the alignment links in terms of both accuracy and F1-score, i.e.,
as the harmonic mean of precision and recall. While accuracy positively scores also the cases when a
node is correctly labeled as having no alignment, precision and recall neglect these cases at all, thus
describing how good a method is in finding the correct counterpart for a node.

Table 2 shows the performance of the supervised model with the best combination of features and
learning method parameters and compares it to the original alignment described in Section 3.1. It shows
an improvement of about 9% absolute in terms of both accuracy and F-score.

5 Cross-lingual coreference resolver for English

In this section, we describe cross-lingual coreference resolution. The CR system we use definitely does
not aim to compete with current state-of-the-art systems. However, for the purpose of research on cross-
lingual CR, it can be employed as a reasonable baseline.

In Section 5.1, we describe the supervised CR model trained and tested on the data described in
Section 5.2. We elaborate more on the design of English and aligned features in Section 5.3 and Section
5.4, respectively. Finally, several variants of the CR system are evaluated and compared in Section 5.5.

5.1 Coreference model

Our resolver employs a supervised model denoted as mention ranker by Ng (2010). Its advantage lies in
judging all antecedent candidates simultaneously, and then picking the candidate with the highest score
as the predicted antecedent. However, it is unable to exploit features that describe already formed clusters
of mentions belonging to the same entity. A typical issue related to ranking models is how to deal with
non-anaphoric mentions. We use the approach introduced by Rahman and Ng (2009) — adding a special
candidate that indicates no anaphor.

Since this work focuses only on the so-called pronoun resolution, all the anaphor candidates are En-
glish 3rd person central pronouns, i.e. personal, possessive and reflexive pronouns.

For every anaphor, we collect in the set of its antecedent candidates all semantic nouns® from the
previous sentence and the part of the current sentence prior to the anaphor.

CR can be treated as a ranking task, so we represent it in the same way as we handled alignment in
Section 3.1 — as a discriminative log-linear model trained in the csoaa—1df strategy by the Vowpal
Wabbit tool. The feature weights are optimized by running stochastic gradient descent in 20-80 passes
(the number differs across the experiments) over the training data.

5.2 Data

Models for coreference were trained on data extracted from sections 00—18 of the automatically analyzed
PCEDT (as described in Section 3). Sections 20-21 have been employed as development testing data
and Sections 22-24 as evaluation testing data. The development set has been used to select the best
configuration, which was subsequently tested on the evaluation set. The training, development, and
evaluation set consist of 19,294, 1,988 and 2,591 instances with 86%, 67%, and 73% anaphoric instances,
respectively.

®Semantic nouns are all nouns as well as pronouns acting as a noun.
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5.3 English Features

A wide range of features used by us had already been proven to be beneficial for the task of CR in
multiple prior works. The majority of the features presented here have already been used in the CR
system for Czech (Nguy et al., 2009); we keep just the language-independent. Furthermore, several
grammatical and positional features proposed by Charniak and Elsner (2009) have been added. Finally,
the feature set has been enriched with the information on named entities and WordNet” classes. All the
features disregard dependent members of a mention, describing just the head of the mention. They can
be divided into several categories:

Distance features: number of sentences, clauses, and words between the anaphor and the an-
tecedent candidate; the order of the candidate,

e Grammatical features: morphological number and gender of both the anaphor and the antecedent
candidate, agreement in gender and number; part-of-speech tag,

o Function features: they exploit dependency labels on the analytical layer and semantic roles on
the tectogrammatical layer; they also include an indicator of whether the mention plays a role of an
argument or an adjunct in the governing phrase,

o Parent features: the features of both nodes’ parents, e.g. their lemmas or semantic roles, are
compared; an indicator of whether a mention is in coordination,

e Semantic features: WordNet classes the head word is assigned to,

o Named entity features: the named entity category and subcategory returned by Stanford named
entity recognizer.® This includes also the indicator of whether the mention is a name of a person,

o Charniak features: anaphor type (pronoun in subject position, in object position, possessive pro-
noun, reflexive pronoun, other); antecedent type (noun, pronoun, other); antecedent syntactic type
(subject, object, prepositional phrase, other).

We denote this feature set as EN in all our experiments.

5.4 Alignment features

The features from the Czech nodes aligned to the given English anaphor and antecedent candidate are
obtained by moving to the corresponding Czech nodes and extracting the features as though we are trying
to resolve a Czech coreference link. As outlined in Section 1, we designed two sets of features: CS and
CS-COREF.

The CS set consists of features introduced by Nguy et. al (2009). Most of them, namely the categories
of distance, function, and parent features, are extracted in the same manner as the English ones in the
previous section. Grammatical features also contain the full positional morphological tag as designed by
Haji¢ (2004). Semantic features employ a different knowledge base, replacing WordNet by the Czech
portion of EuroWordNet (Vossen, 1998). In addition to the features more or less shared with the English
side, the Czech feature set includes a probability estimate of the antecedent candidate co-occurring with
its governing verb. This statistics has been collected on Czech National Corpus (CNC, 2005).

The CS-COREF set consists of a single binary feature indicating if there is a coreference relation
between the nodes predicted by the Czech CR system (Nguy et al., 2009), or not.

"http://wordnet .princeton.edu
$http://nlp.stanford.edu/software/CRF-NER. shtml
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5.5 Experiments and Results

The different feature sets proposed in the previous sections suggest an obvious set of experiments. The
system trained only on the monolingual EN features is put as a baseline.

The rest our experimental setups use alignment features, forming three combinations with EN features:
EN + CS, EN + CS-COREF, and EN + CS + CS-COREF. Moreover, these three experiments can be run
on the data provided either with the original or supervised alignment, which serves as extrinsic evaluation
of alignment approaches. This allows us to confirm or deny the hypothesis that the alignment plays a
significant role in cross-lingual CR (see Section 4).

For comparison, we also evaluated the system that simply projects coreference links obtained by the
Czech CR system to English.

The performance of a CR system is usually measured by scores that treat CR as a clustering problem,
e.g., MUC, B3, CEAF. As this work focuses merely on a subset of coreference expressions — pronouns
— and we only compare different feature sets trained in the same framework, we resorted to the simplest
metrics with a sufficient expression power. For each English pronoun we test if its predicted antecedent
hits any of the true antecedents within the window of the current and the previous sentence. Given
this indicator we calculate precision, recall, and F1-score, which takes into account only the nodes for
which a relation with another node exists — referential pronouns in this case (similarly to the alignment
evaluation in Section 4.4). Likewise, in order to assess quality of detecting non-referential pronouns,
accuracy is computed as well.

The final results are shown in Table 3. The overall higher numbers on the evaluation set than on the
development set probably result from a different proportion of non-anaphoric pronouns (see Section 5.2).
The smaller difference in F1-score than in accuracy also supports this explanation.

The coreference projection scores a great deal below the baseline, which suggests that this approach
is worth using only if manual annotation for at least a small amount of target language data (English in
our case) is extremely expensive.

As for the cross-lingual CR on the original alignment, all three feature set combinations have beaten
the baseline. The EN + CS-COREF system confirmed the added value of the CS-COREF feature, which,
unlike the CS feature set, conveys latent information on true Czech coreference links. Even the combi-
nation of all features performs worse than CS-COREF alone.

Moving to the experiments with supervised alignment, we can see the findings from Section 4.4 con-
firmed also in the extrinsic evaluation. All three systems outperform not only the baseline, but also all
the systems working on the original alignment. Moreover, both accuracy and F1-score order the three
feature combinations in the expected way, where the overall winner improves over the baseline in more
than 1% absolute. This improvement is significant” at p-level p < 0.1 but not at p-level p < 0.05.

6 Discussion

Using information from Czech parallel texts in English CR led to an improvement in terms of automatic
measures. To see what the main aspects in which the Czech text positively impacts the CR performance
are, we compared the output of the system trained only on the EN features with systems working on
the EN + CS and EN + CS-COREF feature sets. We used the results of the experiments run on the
development set with supervised alignment for this comparison.

Out of 1988 coreference instances in the development set, the EN + CS system improved the output
in 49 cases, while it worsened the output in 23 cases. The rest remained unchanged. Likewise, the EN +
CS-COREF system scored better than the EN one in 63 instances, while it failed in 39 instances.

The inspection of 10% instances for which the systems differed revealed that the cases when the
cross-lingual system scored better than the monolingual concur with the language differences described
in Section 1. We found that in these cases, the pronoun is often a pleonastic it or a possessive pronoun
with a Czech reflexive possessive counterpart. Finally, we noticed improvements in cases where the
Czech antecedent is easier to determine due to agreement in gender and number.

“Significance has been calculated by bootstrap resampling using 100,000 samples.
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Setup Train Dev Eval

A P R F A P R F A P R F
EN 79.13 80.12 86.00 82.96 | 60.97 60.28 79.14 68.43 | 63.72 63.28 78.78 70.19
Original alignment
CS-COREF projection | 28.64 49.57 21.75 30.23 | 36.55 4198 24.66 31.07 | 33.33 42.38 21.58 28.60
EN + CS-COREF 78.31 79.27 8525 82.15|61.77 61.07 8045 69.44 | 6430 63.74 79.62 70.80
EN + CS 8332 84.05 89.97 8691 | 6197 61.15 80.23 69.40 | 64.07 63.72 78.62 70.39
EN + CS + CS-COREF | 80.75 81.52 87.61 84.46 | 62.27 61.33 80.96 69.79 | 64.03 63.59 79.57 70.69
Supervised alignment
CS-COREF projection | 30.74 4991 24.87 33.20 | 36.60 41.38 27.61 33.12 | 33.60 41.85 23.98 30.49
EN + CS 83.19 8398 89.73 86.76 | 62.27 61.42 80.60 69.72 | 64.53 64.13 79.09 70.83
EN + CS-COREF 79.27 80.20 85.89 82.95|62.17 6127 81.11 69.81 | 64.65 64.11 79.67 71.05
EN + CS + CS-COREF | 81.99 82.78 88.53 85.56 | 62.68 61.59 81.62 70.20 | 64.69 6438 79.67 71.22

Table 3: Evaluation results of monolingual CR, CR via projection, and cross-lingual CR system trained
and tested on the data with both the original and supervised alignment. Performance is measured in terms
of accuracy (A), precision (P), recall (R) and F1-score (F).

We did not encounter an example of improvement for an English possessive pronoun having no Czech
counterpart. We might have inspected too little data for it to appear. However, these cases may get
covered after the features combining English and Czech features will be introduced.

7 Conclusion

This work introduced a largely unexplored task in the field of CR — cross-lingual CR. Given a Czech-
English bitext, we sought to improve the performance of an English pronoun CR system by enriching
the feature set with features from the aligned Czech text. Consistent improvements over the monolingual
system confirmed that cross-language differences in pronoun behavior are big enough to affect the result.
Furthermore, we have found that the quality of alignment is vital for this task.

In future work, we plan to apply this approach on a much larger parallel corpus and employ semi-
supervised techniques to improve cross-lingual as well as monolingual CR. Moreover, human translation
in the bitext can be replaced with the output of SMT system to see if we can produce valuable features
for CR from the machine-translated source text.
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Abstract

This papers presents a context-aware NLP approach to automatically detect noteworthy infor-
mation in spontaneous mobile phone conversations. The proposed method uses a supervised
modeling strategy which considers both features from the content of the conversation as well
as contextual information from the call. We empirically analyze the predictive performance of
features of different nature on a corpus of mobile phone conversations. The results of this study
reveal that the context of the conversation plays a crucial role on boosting the predictive perfor-
mance of the model.

1 Introduction

More than 6 billion people worldwide use their cellphones daily for a variety of purposes: contacting
colleagues, relatives or friends, doing business, getting help in emergency situations, etc. Previous work
(Carrascal et al., 2012) has shown that almost 40% of users frequently feel the need to recall bits of
information from their phone conversations and that 27% of the users consider the recall task to be
difficult, mainly because taking notes during a mobile phone call is not always possible (e.g. hands not
free, lack of time or devices for note-taking). In a related user study, Cycyl et al. reveal that users are
often engaged in concurrent tasks during mobile phone conversations (e.g. walking, jogging, driving,
cooking, etc), which makes taking notes an unfeasible task (Cycil et al., 2013).

In this setting, information extraction techniques could be applied to automatically detect noteworthy
information from mobile phone conversations. Related studies have focused on detecting noteworthiness
from meeting transcripts (Banerjee and Rudnicky, 2009). However, very little work has been done to
date to identify this kind of information in other types of human communication, such as spontaneous
phone conversations.

In this paper, we present a data-driven information extraction approach aimed at automatically detect-
ing fragments of phone conversations worth annotating for future recall, i.e. noteworthy. These call notes
could then be presented to the users to enable fast browsing of their conversation history, and leveraged
to design efficient information interaction techniques for supporting smart user interfaces.

Given the particular characteristics of mobile phone calls, detecting noteworthiness in them is chal-
lenging at many levels. First, the audio is captured in a natural environment rather than in controlled
settings, which results in noisy signals, and consequently in noisy transcriptions. Second, the conversa-
tions are highly fragmented due to their spontaneous nature. Finally, at a conceptual level, judging which
pieces of information are noteworthy is a very subjective task, as emerged in (Banerjee and Rudnicky,
2009), who investigated the feasibility of the task by conducting a Wizard of Oz-based user study.

Our noteworthiness modeling approach considers a supervised learning paradigm which takes into
account two types of information: (1) Contextual information both from the call (where, when, to whom,
...) and the users (gender, age, ...); and (2) Content information of the conversation. The combination

* The work was conducted while the author was intern at Telefonica Research, Barcelona, Spain.
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of both sources of information enhances the flexibility of the model to accurately predict noteworthiness
in different use scenarios.

The main contributions of this paper are:

i) We propose and evaluate a supervised machine learning model to automatically detect notewor-
thy segments of phone conversations. Our approach adopts a hybrid strategy to model conversations
exploiting both content and context-related information.

ii) We propose a new set of content and context-based features specifically designed to detect note-
worthy information in our corpus of real-world cellphone conversations, and compare their effectiveness

iii) We provide a discussion of the results, derived from our quantitative and qualitative analyses.

The paper is structured as follows. Relevant previous work is presented in Section 2. Section 3
describes the corpus of phone conversations and the annotations provided by the participants. In Section 4
we describe in-depth the extracted features. Our experimental validation and results are presented in
Section 5. Finally, Section 6 summarizes our findings and highlights some lines of future research.

2 Related work

Noteworthiness detection in conversations can be considered to be a particular form of summarization:
the aim is to summarize the conversation by keeping only the relevant pieces of information that the
user would like to refer to at a later time. Although related, the main distinction between automatic
summarization and detection of noteworthy information lays in the notion of relevance. The former aims
at generating a comprehensive record of the conversation, while the latter considers only fragments worth
registering for future recall.

Considerable research activity has recently been devoted to automatic text and speech summarization
(Maskey and Hirschberg, 2003). Many approaches have been proposed in the literature, including cluster
(Zhang et al., 2005) and graph-based methods (Garg et al., 2009; Wang and Liu, 2011) and machine
learning techniques (Jian Zhang et al., 2007; Maskey and Hirschberg, 2006; Galley, 2006), where the
task is tackled as a binary classification problem considering whether the sentence is a good candidate
for a summary or not. In addition, different types of features have been used, including lexical, acoustic
and structural characteristics (Xie et al., 2008; Maskey and Hirschberg, 2005). Recent works have been
focused on adapting summarization to the social context, exploiting user generated contents associated
with the documents (Yang et al., 2011; Hu et al., 2012). Implicit and explicit community feedback in
online collaborative websites have also been leveraged to detect highlights of media assets (San Pedro et
al., 2009).

However, few studies have focused on noteworthiness detection. Banerjee et al. investigate the fea-
sibility of discovering noteworthy pieces of information in meetings by means of a Wizard of Oz-based
user study where a human suggested notes to meeting participants during the meeting. The authors found
that the human annotator obtained a precision of 35% and a recall of 41.5%. In the same work, Baner-
jee et al. reports a low inter annotator agreement (IAA) in noteworthiness discovery. In a related work
—probably the most relevant prior-art to our work, the authors apply extractive meeting summarization
techniques to automatically detect noteworthy utterances in meetings (Banerjee and Rudnicky, 2008).
They train a Decision Tree classifier over a collection of 5 meetings, obtaining an F-score of 0.14. This
result highlights the difficulty of the task at hand and motivates to explore alternative approaches.

To overcome the difficulties posed by this task we propose two main contributions: 1) the use of
novel features engineered ad-hoc for this task, and 2) the use of contextual information. While the
former adapts the document representation to the specific problem setting, the latter allows to enhance the
representation with orthogonal information which many times provides a higher discriminative power.
This approach has been used successfully in related fields; for instance, in information retrieval tasks
rich multimodal queries have been shown to effectively boost the retrieval performance compared to
pure textual queries (Yeh et al., 2011).
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3 Corpus Collection

We used a corpus of cellphone conversations collected in a previous study (Carrascal et al., 2012). In
this study, a large sample of mobile phone conversations was recorded, semi-automatically transcribed'
and manually annotated for relevance by their participants. Over 64 days, 796 mobile phone conversa-
tions from 62 volunteering subjects (20 female) were recorded. All the participants were Spanish native
speakers, and the conversations were recorded and transcribed in Spanish. Metadata about the call (e.g.
duration, date, time) was also stored along with the actual conversation and its transcript. More details
about the corpus collection process can be found in (Carrascal et al., 2012).

All the participants were first asked to fill out a pre-study questionnaire where they provided some
personal information, including gender, marital status, education and income. Then they were asked to
annotate what parts of their calls that they would like to take a note of: i.e. noteworthy fragments of
conversations. To this end, participants used a Web-based interface that gave them access to their calls
and allowed them to highlight with the mouse the parts of the transcript that they considered to be worth
keeping for future reference.

We used these annotations as the ground truth for the studies presented in this paper, considering them
as the ideal noteworthy parts of the calls. For privacy reasons, due to the sensible nature of the data
(i.e. private phone conversations) we could not consider alternative ground truth generation schemes, for
instance collecting annotations from users other than the callers themselves.?

Finally, the participants were asked to fill out a questionnaire after annotating each call, which was
used to collect contextual information, including: location of the call (i.e at work, at home, while com-
muting, while doing shopping, while exercising), and category of the call (i.e. discuss a topic, taking an
appointment, give/receive information, asking a favor, social).

3.1 Characteristics of the Corpus

The original conversation collection consists of a total of 796 conversations, of an average length of 178
seconds (s = 384 sec.). We pre-filtered this original set to exclude calls with problems in the transcript
(e.g. empty transcript, only one speaker audible, etc). Out of the entire corpus we finally selected 659
conversations. We denote this subset of the corpus as the G dataset. The G dataset comprises 22,474
turns, with an average of 34.10 (s = 45) turns per conversation. From these, only 671 are annotated as
being noteworthy (2.98%), which represent an average of 1.02 turns (s = 1.803) per call. Given that
the vast majority of turns (97.2%) are not annotated, this can be considered a highly unbalanced dataset,
which makes the automatic modeling problem more challenging.

Hence, we considered a second dataset which included only the 295 calls from the G dataset containing
at least one annotation. This second subset, denoted as .4 amounts for approximately 45% of the G
dataset. The A dataset features 10, 642 turns, with an average of 36.07 (s = 33) turns per conversation.
From these, again 671 (6.3%) are annotated, which represent an average of 2.275 (s = 2.09) per call.
The A dataset is still highly unbalanced but significantly less than the G dataset. Table 1 summarizes the
high level characteristics of each dataset.

Class | Annotations

Turns Annotated Turns I We are in front of the fruit shop
#Calls  Total avg. per call | Total  Fraction RoA | Tomorrow we go to look for the swimsuit
g 659 22,474 34.1(s=45) | 671 2.9% RI Are you coming to eat? At what time
A 295 10, 642 36 (s = 33) 671 6.3% (0] Sure, it’s normal
Table 1: General statistics on G and A datasets. Table 2: Examples of annotations.

Given the complexity of the modeling problem, we studied the note taking behavior of participants
to identify relevant patterns that would simplify the problem. To this end, we conducted a quantitative
analysis of the note taking behavior of participants. We found that users tend to highlight complete

"Participants were given the opportunity to revise transcriptions during the annotation phase.

Receivers of the calls were aware of the study and were given the possibility to not participate in the call, but were not
directed involved in the study.
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turns as relevant, instead of parts of the turns. On average, 66.57% (s = 35.87) of the words within an
annotated turn are highlighted, with a median value of 80%. Hence, we decided to use furns —rather than
individual words— as the unit to be automatically detected as noteworthy. Using this approach, a turn is
considered to be noteworthy if it contains at least one annotated word.

3.2 Qualitative Analysis of the Corpus

Since our aim is to detect the noteworthy turns within a call, we conducted a preliminary qualitative
analysis to understand the nature of the annotations entered by the participants in the study. We distin-
guished 4 types of annotations: Giving Information (1), Requesting Information (RI), Reporting on an
Action (RoA) and Other (O). Examples of these 4 types of annotations are presented in Table 2. We
collected annotations from three collaborators of our lab for a total of 54 randomly selected turns from
the A dataset IAA, Fleiss Kappa = 0.54 (Fleiss, 1971)).

We found that 47% of the turns were classified as belonging to the Giving Information category, 22%
of the turns to the Request Information category, 26% to the Other category, and only 3% were classified
as Report on an Action. Intuitively, we had expected the Giving Information category to be the most
common in the annotated turns. However, the results obtained show that the other types of annotations
are also well represented in the data.

Two main interesting aspects emerge. First, while the vast majority of annotations correspond to turns
where a piece of information is given (e.g. We meet at 3pm), turns where information is requested are
also well represented in the sample. There are plausible explanations for this behavior, such as users
trying to include more context in the annotations. Second, more than 25% of this manually annotated
dataset was marked under the Other category, which includes turns with very diverse functionalities
(e.g. greetings, statements of agreement). This reveals that participants tend to annotate turns with very
diverse functional aspects, which poses a challenge to be added to the unbalanced nature of the dataset.

4 Feature Extraction

We follow a supervised machine learning approach to automatically detect noteworthy turns in conver-
sations. In this section we describe the features that we compute to represent conversations and which
have been engineered to capture information relevant to the problem at hand. We have divided the set
of features into two categories: Content features, that we denote with the letter C, and conteXt features,
that we denote with the letter X.

4.1 Content Features

Content features are computed by analyzing the content of the conversations. We use as input the textual
information resulting from the semi-automatic transcription of the calls. Note that we do not make use of
any conversational acoustic information. While the analysis of the acoustic signal may reveal additional
cues useful for noteworthiness detection, it lies out of the scope of this work.

In order to extract features from the transcript, we first pre-proces the datasets (split in turns, lemma-
tized, PoS tagged). Also, we extract and classify Named Entities (NEs).?> We extract 42 content-based
features which include both variations of features previously used in the meeting summarization litera-
ture and novel features particularly adapted to our task. However, in contrast to related work on meeting
summarization, we do not extract content features based on lexical similarity to the entire call or to
the main topic of the call, under the intuition that the notion of noteworthiness depends on the user’s
needs rather than on the main topic of the conversation. In addition and for robusteness purposes, we
decided not to rely on long distance dependency information (e.g. argument predicate relations) or deep
syntactical parsing, which are sensitive to the quality of the transcription.

The resulting features are grouped into three main classes: Turn-Based (C-T), Dynamic (C-D), and
Conversational (C-C). We compare them with a pure bag-of-words (BoW) representation. Table 3a
provides a summary of all the content-based features used in our system. Where applicable, we experi-

3 All pre-processing was performed using the Freeling Language Processing tools (Padro et al., 2010).
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ment with two vector representations: binary and frequency-based. We will refer to these two different
encoding schemes as Bin for the binary case, and Freq for the frequency case.

\ CONTENT FEATURES \

C-BoW (Bag of Words)

BoW [ BoW for all words (except hapax)
C-T (Turn-based)

Presence (or frequency) of NEs (Person, Location, Organization,
Numbers, Dates, Misc.)
TLN | Turn length in # words normalized
PoS PoS distribution
TF Max and Mean term frequency
IDF Max and Mean inverse document frequency
C-D (Dynamic)
Rep Repetition between t and t-1,t+1,t-2,t+2
Int Presence (or total amount) of Int. pro./adj. in t-1
Q Presence (or total amount) of question in t-1
C-C (Conversational)
Dur Duration of the call (# turns and # words)
Cent | Conversation centrality
Spk Speaker
Dom | Speaker dominance

NE

(a) Content Feature

\ CONTEXT FEATURES
X-C (Call-based)

X-C-T Time of the call

X-C-Loc | Location of the call

X-C-Day | Day of the call

X-C-Obj | Objective of the call

X-U (User-based)

X-U-G Gender
X-U-A Age

X-U-I Income
X-U-E Education
X-U-Ms Marital Status

(b) Context Feature

Table 3: Content (a) and Context (b) based features.

4.1.1 Turn-Based Content features (C-T)

Turn-based content features take into account information related to individual turns. We distinguish
lexical and non-lexical C-T.

Lexical content features: Lexical C-T features capture the lexical properties of a turn. We include
NEs, such as Locations, Organizations, Persons, Miscs and Numbers, Dates, and temporal expressions.
For each turn ¢, we detect the presence of any NE as well as the presence of individual classes of NEs.
For each of these class of entities, we extract both a binary and a frequency feature vector. In the
text summarization literature, the appearance of particular lexical phrases (e.g. fo summarize) has been
exploited to predict relevant sentences (Gupta and Lehal, 2010). In our study, attention has been given
to the presence of temporal expressions under the intuition that temporal cues are good indicators of
upcoming pieces of information (e.g. The meeting is tomorrow). We exploit temporal expressions, such
as today, tomorrow, etc.

Non-lexical content features: capture characteristics of the turn which do not involve lexical infor-
mation, namely: turn length, Part-of-Speech (PoS) distributions and Tf-Idf descriptive statistics at the
turn level.

In meeting summarization, the average length of a turn has been found to be a good feature to automat-
ically create a summary of a meeting (Xie et al., 2008). In our dataset, preliminary analyses revealed that
annotated turns tend to be longer in average. Hence, we include the turn length in the non-lexical content
feature set. The turn length is given by the number of tokens per turn normalized over the average turn

“Note that, here and in the remainder of the paper, we report the English translations of the Spanish originals.
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length (punctuation excluded). To further gauge discourse characteristics, we detect the distribution of
PoS at the turn level: i.e. for each turn, the frequency of nouns, pronouns, adjectives, adverbs, interjec-
tions, verbs, prepositions and conjunctions is calculated. Finally, we compute the term frequency (Tf)
and inverse document frequency (Idf) measures. In (Xie et al., 2008), authors report that Idf is among
the most discriminative features in sentence selection for text summarization. We compute maximum
and mean Tf and Idf values for each turn.

4.1.2 Dynamic content features (C-D)

Dynamic content features are designed to capture the semantic relationships between each turn and its
precedent and subsequent turns. In particular we refer to relations such as lexical and topical cohesion,
question-answer relationship, and the appearance of general cues that may anticipate relevant bits of
information in the subsequent turn. We consider: /) the lexical and topical cohesion among consecutive
turns (Repetitions); 2) the appearance of general cues that may anticipate relevant bits of information
in the subsequent turn (Interrogative Pronouns); 3) the question-answer relationship among consecutive
turns (Question).

Repetitions: words repeated by different speakers in consecutive turns. Participants of a conversation
tend to align at several linguistic and paralinguistic levels in order to ease communication and increase
mutual understanding (Pickering and Ferreira, 2008). This phenomenon has been investigated in terms
of prosody, lexicon and syntax (Levitan and Hirschberg, 2011; Brennan, 1996; Bonin et al., 2013; Brani-
gan et al., 2010). From a lexical point of view, the alignment mechanism, often referred to as priming, is
realized by means of word repetitions among speakers. Many studies have investigated this phenomenon
assessing correlation between priming and mutual understanding or dialogue success (Vogel, 2013; Re-
itter and Moore, 2007).

We exploit the priming phenomenon to detect concepts in the conversation that are considered impor-
tant by both participants, relying on the fact that repeated words convey concepts that participants want
to make sure they have been successfully communicated to their interlocutor. Given a dataset D, a turn
in D,t € D,and t — i and t + ¢ turns in the context of ¢, we calculate the amount of repeated lemmas
between ¢ and t —1, and ¢ and ¢+ for 1< ¢ < 2. In order to consider semantically meaningful repetitions,
we take into account only content words (nouns, adjectives, adverbs, verbs) when they activate one of the
C-T features described above. Being A the set of annotated turns, we noticed a significant difference in
the amount of repeated lemmas between ¢,t — i for ¢t € A rather than for ¢ ¢ A. Find below an example
of consecutive turns with repetitions:

Turn Utterance

t-1: Starting at half past four.
t: Starting at half past four, vyes.

Interrogative pronouns and questions: We also exploit indicators of an upcoming giving infor-
mation act. As shown in Sec 3.2, 47% of the annotations were marked as giving information, which
may have been triggered by a request of information in the precedent turn. Hence, in order to capture
these cases, we identify linguistic elements that indicate a request of information in ¢ — 1 (questions and
interrogative pronouns/adjectives).

4.1.3 Conversational flow features (C-C)

They are designed to model information about the conversation’s flow and speakers’ interaction.

Centrality of the turn: Distance of a turn from the center of the conversation. This feature is inspired
by the sentence location features used in text summarization (Chen et al., 2002). Chen et al. assign
different weights to sentences in the first, middle and final part of a paragraph, in order to favor sentences
that are in the central part of the paragraph as they are considered to be more informative for a summary.
In our corpus, we noticed the tendency of users to annotate turns that are in the central portion of the
conversation. Typically the first and the last quarters of the phone conversations are dedicated to social
talk. Hence, we introduce a temporal feature, referred to as conversation centrality, that captures the
distance of a turn from the center of the conversation. This distance is measured in terms of number of
words, excluding punctuation.
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Speaker: Who is uttering the turn (caller vs callee).

Conversation duration: Length of the conversation in number of turns and in number of words. The
number of turns captures the dynamics of a dialogue (few longer turn vs a more dynamic exchange),
while the number of words captures the overall duration.

Speaker dominance: We consider whether the speaker is the dominant speaker of the conversation,
defining dominance in terms of amount of productions during the call. This is calculated by comparing
the number of turns of speaker a vs speaker b, normalized over the total amount of turns per call.

4.1.4 Bag-of-Words (BoW)

Finally, we explore the performance of a naive bag-of-words scheme to represent the content at the turn
level. Given the large vocabulary size of our corpus (10, 144 tokens) and the sparsity organic to bag-of-
word representations, we decided to use a trivial dimensionality reduction strategy filtering out the terms
that appear only once in the corpus. We decided not to apply a stop-list of functional words for further
reducing the feature space. This decision was based on the higher discrimintative power we observed
when comparing classification accuracy with and without them. We discarded the use of more aggressive
feature selection approaches (e.g. mutual information) to allow for a fair comparison of accuracy with
the rest of feature representations described in the paper. In total, our BoW representation had 5, 048
dimensions in the G dataset, and 3, 219 dimensions in the A dataset.

4.2 Context Features

Context features are introduced under the assumption that noteworthy information may depend on the
characteristics of the user and on the situation in which the call takes place. For example, people may
not need to annotate pieces of information that are part of their daily lives. Whereas while taking an
appointment, it is plausible the need to annotate the name of the doctor, in a social call with a friend, the
name of the friend is part of the background knowledge of the user. Therefore, while from a content (and
an NLP) point of view both names are Person NEs and carry the same amount of information, from the
point of view of the user they might have different weight (no need of taking note vs need of taking note).
Also, the current situation or location of the user may influence the necessity of taking notes: a user in a
supermarket will not need to annotate to buy milk, (s)he will rather take it directly from the shelf. A user
driving to the supermarket will need to keep in his/her mind the need to buy milk for later recall.

In line with this, we noted in Section 2 that pure NLP approaches applied to automatically detecting
noteworthy information in meetings are able to achieve an F-score of only 0.14. This low F-score under-
lines the complexity of the task and the limitations of a pure content-based approach. Contextual cues
may be used to increase the discriminative power of the classification model.

Since we consider the specific scenario of cellphone conversations, we can exploit contextual informa-
tion derived from the use of the mobile network, such as geo-location, and temporal information. Other
contextual features that we use, gathered during the pre-study questionaire, are organically much more
challenging to infer. We still decided to consider these as a way to assess the potential of several types of
contextual information with respect to the discriminative power of the classifier. We distinguish among
Call-based (X-C) and User-based (X-U) contextual features. A schematic overview of these features is
given in Table 3b.

4.2.1 Call-Based Features (X-C)

Call-based features are meant to capture contextual information at the call level. In particular, X-C
features include information about where, when and for what reason a call is made, under the intuition
that calls made, for example, during working hours may have different noteworthy information than calls
made in the weekend. We distinguish six location categories: home, work place, while commuting,
while exercising, while shopping, other. The location of the calls was provided by participants through
the post-call questionnaire. However location information is typically available from the mobile network.
In terms of temporal features, we consider the actual time of the call (over 24 hours). In addition, we
classify the time in two classes: working vs non working hours, and the day in also two classes: weekday
vs weekend. Finally, we also consider the objective of the call as described in Section 3. Note that,

31



although this information is not directly accessible from mobile data collected during the call, previous
literature on conversation classification supports the feasibility of inferring this information from the
content of the conversation (Koco et al., 2012).

4.2.2 User-Based Features (X-U)

Finally, we introduce a set of features that feed the model with information about the user. We exploit
information that could be provided by users upon registration to such a note-taking service. We capture
age, gender, educational level, income and marital status. Gender is represented as a binary feature, while
age is categorized in 5 groups: below 20 years old, between 20 and 30, between 30 and 40, between 40
and 50 and above 50. The education status is represented by the following categories: Primary education,
Secondary education, Bachelor degree or a Postgraduate education (Master or PhD). Yearly income is
categorized by: up to 10k, 20k, 30k, 40k and more than 40k. Finally, marital status is categorized as:
single, in a couple (married, with a stable partner), other.

S5 Experiments

The goal of our system is to automatically identify information annotated by users in terms of its potential
need for future recall. We frame this problem as a binary classification task (noteworthy or not) at the
turn level. This task presents two main challenges. First, our dataset is extremely unbalanced, with less
than 3% of the corpus labeled as relevant by the participants. Second, the subjectivity of the task leads
to high variability of annotation behaviours, (see Sec. 3.2). In this section we describe the experimental
setting that we used to empirically evaluate the performance of different features sets and present the
results obtained using the ground truth data collected (Section 3) to provide classification performance
scores. In order to fully investigate the predictive performance of the different feature sets, we conducted
our experiments using both the entire corpus G, which includes all the selected conversations, and its
subset .4, which considers only the calls with at least one annotation. Both sets are described in Sec. 3.
We experimented using both encoding schemes described in Section 4: binary based (Bin) and frequency
based (Freq).

We used Support Vector Machines (SVMs) with RBF kernel, as this classification approach yielded
the most consistent results throughout all the evaluated configurations. We used the same random split of
training and test sets for all the experiments, accounting for 70% and 30% of the dataset respectively. We
tune the hyperparameter C of the SVM model using a 3-fold cross-validation approach on the training
data only, where we chose F-score as the quality metric to optimize. Given the nature of our task, recall
is preferred to precision from a user-centric perspective: it is preferable to avoid missing any relevant
information than to include some non-relevant fragments. For this reason, we also report precision and
recall values.

5.1 Classification Results

This section presents the results obtained in our binary classification task (turns being noteworthy or not).
We study the performance of different combinations of features and present the results obtained using
only content information (C), and the combination of content and context information (CX).

5.1.1 Content features

We present a comparison of the different content feature sets using the naming scheme of Sec.4. We
considered four classification scenarios: C-T only, C-D only, the combination of C-T and C-D (C-TD),
and the combination of C-T, C-D and C-C (C-TDC). The results of these feature sets are shown in
Tables 4a and 4b for the G and A collections, respectively.

As shown in Table 4a, the maximum F-score for the G dataset is achieved for the combination of
all content features included the BoW. The low score (F' = 0.18) is a direct consequence of the low
precision obtained (P = 0.11). For the A dataset (Table 4b) we observe a better F-score (F' = 0.296),
still obtained by the combination of all content features, with a much higher precision (P = 0.18) due to
the significant amount of noise removed by considering only annotated calls. Note that in both the G and
the A datasets the C-TDC feature set outperforms the pure BoW approach (F' = 0.158 vs. F' = 0.14
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Features | Precision | Recall [ F-score | | Features | Precision | Recall | F-score

Encoding Bin Freq Bin Freq Bin Freq Encoding Bin Freq Bin Freq Bin Freq
BoW 0.081 0.083 | 0.730 | 0.720 | 0.150 0.150 BoW 0.14 0.14 0.54 0.54 0.22 0.22
C-T 0.087 | 0.088 | 0.53 0.32 0.15 0.139 C-T 0.135 | 0.147 0.56 0.555 | 0218 | 0.23
C-D 0.03 0.26 0.26 0.12 0.15 0.05 C-D 0.149 | 0.11 0.24 0.15 0.18 0.12
C-TD 0.087 | 0.09 0.754 | 0.33 0.1505 | 0.1419 C-TD 0.143 | 0.143 0.506 | 0.546 | 0.223 | 0.227
C-TDC 0.09 0.093 | 0.58 0.37 0.158 0.149 C-TDC 0.165 | 0.159 0.626 | 0.693 | 0254 | 0.267
C-TDC+BoW | 0.11 0.11 0.52 0.51 0.18 0.18 C-TDC+BoW | 0.188 | 0.1659 | 0.57 0.568 | 0.283 | 0.296
(a) Results for the G dataset. (b) Results for the A dataset.

Table 4: Classification performance of Content features, Bow and their combination.

for G and F' = 0.267 vs. F' = 0.22 for A), using a fraction (about 1%) of the number of BoW features,
which leads to a considerably simpler model. On the other hand, the combination of C-TDC and BoW
features improves the results up to /' = 0.18 for G (P = 0.11, R = 0.52) and F' = 0.296 (P = 0.20,
R = 0.57) for the A subset. This result highlights how the lexical representation comprised by the Bow
provides the model with orthogonal information to the one provided by the C-TDC features set.

To the best of our knowledge no previous work has been done in noteworthy detection from telephone
conversations. For this reason, we report as a reference the results of the more similar prior art to our
work, (Banerjee and Rudnicky, 2008), where the authors implement an SVM classifier for the detection
of noteworthy information in meetings.> Although aware of the different nature of the dataset, these
results are reported to get a sense of the potentiality of the system. The best performance of our model
on the A dataset improves in 15% the F-score of F' = 0.14 reported in (Banerjee and Rudnicky, 2008).

5.1.2 Combining Content and Context Features

In this section we report the performance of the model trained using both content and context features.
For simplicity, in the remainder of this section we refer to the entire set of content features, (C-TDC)
as C, to the entire set of context features as X, and to their combination as CX. When we test adding
BoW features the +BoW naming is used. The results are shown in Table 5 and Figure 1. We observe
that the fusion of content and context features (CX and CX+BoW) provides a noticeable overall increase
in the F-score for both datasets. This increase is particularly high for the G dataset, where the F-score
gets increased by almost a factor of 2, from F' = 0.18 to F' = 0.28. On the A dataset, the combination
of content and context features improves the F-score from F' = 0.29 to F' = 0.32, given by a better
precision (P = 0.24 vs P = 0.18) with similar recall.

[ Features | Precision [ Recall | F-score | [ Peatures | Precision | Recall | F-score
Rep. B F B F B F Rep. B F B F B F
C+BoW 0.11 0.11 0.52 0.51 0.18 0.18 C+BoW 0.188 0.1659 0.57 0.568 0.283 0.296
X 0.068 0.068 0.665 0.665 0.124 0.124 X 0.087 0.087 0.56 0.56 0.15 0.15
CX 0.169 0.20 0.38 0.286 0.2354 0.2394 CX 0.2075 0.212 0.5866 0.595 0.3066 0.3130
CX+BoW 0.189 0.1919 0.524 0.5022 0.288 0.277 CX+BoW 0.223 0.2455 0.573 0.426 0.3212 0.3116
(a) Results for the G dataset. (b) Results for the A dataset.

Table 5: Classification performance using the combination of context and context-based features
0.3~

0.0- .I .I . .

C+BOW X CX+BUW C+BOW >< CX+BUW C+BoW X CX+ BUW C+BOW X C><+BOW

(a) Results for the G dataset. (b) Results for the A dataset.

F-score

o
F—score

Figure 1: Classification performance using Content, Context features and their combination

This result gives empirical evidence that these two sets of features convey complementary information

3In their experimental settings all the meetings have at least one annotation as in our A scenario.
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that is relevant for the task at hand. That is, the same words can carry different relevance depending on
the contextual information of the conversation.

Note that the BoW features add discriminative information in the G scenario, but have a minimal
effect in the less noisy A scenario where the combination of content and context features, without BoW,
provides already an F-score of F' = 0.31.

An interesting remark about this combined model is that the difference in performance between the
G and the A dataset is vastly reduced. While in the pure content model the difference in F-score value
between both datasets was 0.10, in the combined model this difference is just 0.03. This result shows
that the combination of content and context features boosts considerably the results in the more noisy
and realistic dataset G, while its effect is weaker in the cleaner dataset.

5.2 Qualitative Analysis

In order to better understand the failure cases in our system, we carried out a qualitative analysis of both
false positives, i.e. turns annotated by the system but not by the user, and false negatives, i.e. turns
annotated by the user but not by the system. Table 6 illustrates a few representative examples. Note how
the proposed system does not perform well when detecting a request for information as something worth
annotating (e.g. What are you doing?). We noticed that in these cases, the model tended to annotate turns
where the information was actually provided (e.g.That is the package has arrived). We can hypothesize
that users annotate the request for information to give context to the a-priori more relevant information,
i.e. the answer to the question. However, in some cases, participants did not annotate the answer as
relevant. This counter-intuitive observation reflects the subjectivity and variability of the task.

False Positive | False Negative

1 am leaving soon, I start at 3 o’clock or [..] | How are you? Can you hear me?
Let’s see if we can tell him. What are you doing?

That is, the package has arrived. Did you buy beautiful things for me?

Table 6: Examples of false positive and false negative turns.

5.3 Comparative Analysis and Discussion

To the best of our knowledge there are no previous works of similar nature to the study presented in this
paper. Yet, it is important to give a sense of the merits and limitations of the proposed approach in the
context of the state-of-the-art. For this reason, we compare our results with (Banerjee and Rudnicky,
2009), which is the most similar prior art to our work. In (Banerjee and Rudnicky, 2009), Barnejee et
al. perform a Wizard-of-Oz experiment and report a performance of the human annotator of P = 0.35
precision, R = 0.42 recall, leading to an F-score of F' = (0.38. This result highlights the difficulty of
the task, even for a human annotator. When comparing our proposed system with this Wizard-of-Oz
experiment, we obtain an F-score of F' = (.32 against the human annotator’s F-score of F' = 0.38,
with a significantly higher recall (0.57 vs 0.42) yet lower precision (0.245 vs 0.35). Given this human-
based prediction performance, the proposed approach represents a good first step towards realizing an
intelligent annotation system for mobile phone conversations.

6 Conclusions and Future Work

In this paper we have proposed and empirically evaluated a machine learning-based approach to auto-
matically detect noteworthy information in spontaneous mobile phone conversations. The subjectivity of
this task leads to a challenging classification problem even for human assessors. Our approach adopts a
hybrid strategy that exploits the content and the context of the conversation. We have shown that infor-
mation about the context of the conversation improves the predictive performance of the system over a
pure content based approach.

In the future, we plan to extend the model by including acoustic features which could improve the
performance by adding orthogonal information to the current model. To tackle the subjectivity of the task
we also intend to investigate the performance of personalization techniques, creating individual models
per user. Finally, we plan to conduct a study to evaluate our system from a user-centric perspective.
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Abstract

We present a hierarchical topical segmenter for free text. Hierarchical Affinity Propagation for
Segmentation (HAPS) is derived from a clustering algorithm Affinity Propagation. Given a doc-
ument, HAPS builds a topical tree. The nodes at the top level correspond to the most prominent
shifts of topic in the document. Nodes at lower levels correspond to finer topical fluctuations.
For each segment in the tree, HAPS identifies a segment centre — a sentence or a paragraph which
best describes its contents. We evaluate the segmenter on a subset of a novel manually segmented
by several annotators, and on a dataset of Wikipedia articles. The results suggest that hierarchical
segmentations produced by HAPS are better than those obtained by iteratively running several
one-level segmenters. An additional advantage of HAPS is that it does not require the “gold
standard” number of segments in advance.

1 Introduction

When an NLP application works with a document, it may benefit from knowing something about this
document’s high-level structure. Text summarization (Haghighi and Vanderwende, 2009), question an-
swering (Oh et al., 2007) and information retrieval (Ponte and Croft, 1998) are some of the examples
of such applications. Topical segmentation is a lightweight form of such structural analysis: given a
sequence of sentences or paragraphs, split it into a sequence of topical segments, each characterized by
a certain degree of topical unity. This is particularly useful for texts with little structure imposed by the
author, such as speech transcripts, meeting notes or literature.

The past decade has witnessed significant progress in the area of text segmentation. Most of the topical
segmenters (Malioutov and Barzilay, 2006; Eisenstein and Barzilay, 2008; Kazantseva and Szpakowicz,
2011; Misra et al., 2011; Du et al., 2013) can only produce single-level segmentation, a worthy endeavour
in and of itself. Yet, to view the structure of a document linearly, as a sequence of segments, is in certain
discord with most theories of discourse structure, where it is more customary to consider documents as
trees (Mann and Thompson, 1988; Marcu, 2000; Hernault et al., 2010; Feng and Hirst, 2012) or graphs
(Wolf and Gibson, 2006). Regardless of the theory, we hypothesize that it may be useful to have an idea
about fluctuations of topic in documents beyond the coarsest level. It is the contribution of this work that
we develop such a hierarchical segmenter, implement it and do our best to evaluate it.

The segmenter described here is HAPS — Hierarchical Affinity Propagation for Segmentation. It is
closely based on a graphical model for hierarchical clustering called Hierarchical Affinity Propagation
(Givoni et al., 2011). It is a similarity-based segmenter. It takes as input a matrix of similarities between
atomic units of text in the sequence to be segmented (sentences or paragraphs), the desired number of
levels in the topical tree and a preference value for each data point and each level. This value captures
a priori belief about how likely it is that this data point is a segment centre at that level. The preference
values also control the granularity of segmentation: how many segments are to be identified at each level.
The output is a topical tree. For each segment at every level, HAPS also finds a segment centre, a data
point which best describes the segment.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/
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The objective function maximized by the segmenter is net similarity — the sum of similarities between
all segment centres and their children for all levels of the tree. This function is similar to the objective
function of the well-known k-means algorithm, except that here it is computed hierarchically.

It is not easy to evaluate HAPS. We are not aware of comparable hierarchical segmenters other than
that in (Eisenstein, 2009) which, unfortunately, is no longer publicly available. Therefore we compared
the trees built by HAPS to the results of running iteratively two state-of-the-art flat segmenters. The
results are compared on two datasets. A set of Wikipedia articles was automatically compiled by Carroll
(2010). The other set, created to evaluate HAPS, consists of nine chapters from the novel Moonstone by
Wilkie Collins. Each chapter was annotated for hierarchical structure by 3-6 people.

The evaluation is based on two metrics, windowDiff (Pevzner and Hearst, 2002) and evalHDS (Car-
roll, 2010). Both metrics are less then ideal. They do not give a complete picture of the quality of
topical segmentations, but the preliminary results suggest that running a global model for hierarchical
segmentation produces better results then iteratively running flat segmenters. Compared to the baseline
segmenters, HAPS has an important practical advantage. It does not require the number of segments as
an input; this requirement is customary for most flat segmenters.

We also made a rough attempt to evaluate the quality of the segment centres identified by HAPS. Using
20 chapters from several novels of Jane Austen, we compared the centres identified for each chapter
against summaries produces by a recent automatic summarizer CohSum (Smith et al., 2012). The basis
of comparison was the ROUGE metric (Lin, 2004). While far from conclusive, the results suggest that
segment centres identified by HAPS are rather comparable with the summaries produced by an automatic
summarizer.

A Java implementation of HAPS and the corpus of hierarchical segmentations for nine chapters of
Moonstone are publicly available. We consider these to be the main contributions of this research.

2 Related work

Most work on topical text segmentation has been done for single-level segmentation. Contemporary
approaches usually rely on the idea that topic shifts can be identified by finding shifts in the vocabulary
(Youmans, 1991). We can distinguish between local and global models for topical text segmentation.
Local algorithms have a limited view of the document. For example, TextTiling (Hearst, 1997) operates
by sliding a window through the input sequence and computing similarity between adjacent units. By
identifying “valleys” in similarities, TextTiling identifies topic shifts. More recently, Marathe (2010)
used lexical chains and Blei and Moreno (2001) used Hidden Markov Models. Such methods are usually
very fast, but can be thrown off by small digressions in the text.

Among global algorithms, we can distinguish generative probabilistic models and similarity-based
models. Eisenstein and Barzilay (2008) model a document as a sequence of segments generated by latent
topic variables. Misra et al. (2011) and Du et al. (2013) have similar models. Malioutov and Barzilay
(2006) and (Kazantseva and Szpakowicz, 2011) use similarity-based representations. Both algorithms
take as input a matrix of similarities between sentences of the input document; the former uses graph
cuts to find cohesive segments, while the latter modifies a clustering algorithm to perform segmentation.

Research on hierarchical segmentation has been more scarce. Yaari (1997) produced hierarchical
segmentation by agglomerative clustering. Eisenstein (2009) used a Bayesian model to create topical
trees, but the system is regrettably no longer publicly available. Song et al. (2011) develop an algorithm
for hierarchical segmentation which iteratively splits a document in two at a place where cohesion links
are the weakest. A second pass transforms a deep binary tree into a shallow and broad structure.

Any flat segmenter can certainly be used iteratively to create trees of segments by subdividing each
segment, but this may be problematic. Topical segmenters are not perfect, so running them iteratively is
likely to compound the error. Most segmenters also require the number of segments as an input. This
estimate is feasible for flat segmentation. To know in advance the number of segments and sub-segments
at each level is not a realistic requirement when building a tree.

This work describes a hierarchical model of text segmentation. It takes a global view of the document
and of the topical hierarchy. Each iteration attempts to find the best assignment of segments for the
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whole tree. It does not need to know the exact number of segments. Instead, it takes a more abstract
parameter, preference values, to specify the granularity of segmentation at each level. For each segment
it also outputs a segment centre, a unit of text which best captures the contents of the segment.

3 Creating a corpus of hierarchical segmentations

Before embarking on the task of building a hierarchical segmenter, we wanted to study how people
perform such a task. We also needed a benchmark corpus which could be used to evaluate the quality of
segmentations produced by HAPS.

To this end, we annotated nine chapters of the novel Moonstone for hierarchical structure. We settled
on these data because it is a subset of a publicly available dataset for flat segmentation (Kazantseva
and Szpakowicz, 2012). In our study, each chapter was annotated by 3-6 people (4.8 on average). The
annotators, undergraduate students of English, were paid $50 dollars each.

Procedure. The instructions asked the annotator to read the chapter and split it into top-level segments
according to where there is a perceptible shift of topic. She had to provide a one-sentence description of
what the segment is about. The procedure had to be repeated for each segment all the way down to the
level of individual paragraphs. Effectively, the annotators were building a detailed hierarchical outline
for each chapter.

Metrics. Two different metrics helped estimate the quality of our hierarchical dataset: windowDiff
(Pevzner and Hearst, 2002) and S (Fournier and Inkpen, 2012).

windowDIiff is computed by sliding a window across the input sequence and checking, for each window
position, whether the number of reference breaks is the same as the number of breaks in the hypothetical
segmentation. The number of erroneous windows is then normalized by the total number of windows. In
Equation 1, IV is the length of the input sequence and £ is the size of the sliding window.

N—k
windowDiff = ﬁ Z (lref — hyp| # 0) (1)
=1

windowDIff is designed to compare sequences of segments, not trees. That is why we compute it for
each level between each pair of annotators who worked on the same chapter. It should be noted that
windowDiffis a penalty metric: higher values indicate less agreement (windowDiff= 0 corresponds to
two identical segmentations).

The S metric allows us to compare trees and take into account situations when the segmenter places a
boundary at a correct position but at a wrong level. S is an edit-distance metric. It computes the number
of operations necessary to turn one segmentation into another. There are three types of editing operations:
add/delete, transpose and substitute (change the level in the tree). The sum is normalized by the number
of possible boundaries in the sequence. S has an unfortunate downside of being too optimistic, but it
allows the breakdown of error types and it explicitly compares trees.

Unlike windowDiff, S is a similarity metric: higher values correspond to more similar segmentations.
The value of S between two identical segmentations is 1.

1 — |boundary_distance(bsq, bsp, n)|
pb(D)

Here boundary_distance(bsq, bsy, n) is the total number of edit operations needed to turn a segmen-
tation bs, into bsp, n is the threshold defining the maximum distance of transpositions. pb(D) is the
maximum possible number of edits. Segmentations bs, and bs, are represented as strings of sets of
boundary positions. For example bs, = ({2}, {1,2}, {1,2}) corresponds to a hierarchical segmentation of
a three-unit sequence in the following manner: a segment boundary at level 1 after the first unit, segment
boundaries at levels 1 and 2 after the second unit and the third unit.

Corpus Analysis. On average, the annotators took 3.5 hours to complete the task (o = 1.6). The
average depth of the tree is 3.00 levels (o = 0.65), suggesting that the annotators prefer shallow but broad
structures. Table 1 reports the average breadth of the tree at different levels. In the Table and further

S(bsq, bsp,n) =

2
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in this paper we refer to the bottom level of the tree (i.e., the leaves of the tree or the most fine-grained
level of segmentation) as level 1. In Table 1, level 4 refers to the top level of the tree (the coarsest
segmentations). The values were computed using only the breaks explicitly specified by the annotators
(i.e., we did not assume that a break at a coarse level implies a break at a more detailed level).

The average breadth of the trees at the bottom (level 1) is lower than that at level 2, indicating that only
a small percentage of the entire tree was annotated more than three levels deep. The table also shows the
average values of windowDiff computed for each possible pair of annotators. The values worsen toward
the bottom of the tree, suggesting that the annotators agree more about top-level segments and less and
less about finer fluctuations of topic.

We hypothesize that these shallow broad structures are due to the fact that it is difficult for people to
create deep recursive structures in their mental representations. We do not, however, have any hard data
to support this hypothesis. Many of the annotators specifically commented on the difficulty of the task. 9
out of 23 people included comments ranging from notes about specific places to general comments about
their lack of confidence. 4 annotators found several (specific) passages they had trouble with.

The average value of pairwise S is 0.79. We have noted earlier that the S metric tends to be optimistic
(that is due to its normalization factor) but it provides a breakdown of disagreements between the anno-
tators. According to S, 46.14% of disagreements are errors of omission (some of the annotators did not
include segment breaks where others did), 47.56% are disagreements about the level of segmentation
(the annotators placed boundaries in the same place but at different levels) and only 6.31% are errors
of transposition (the annotators do not agree about the exact placement but place boundaries within 1
position of each other). This distribution is more interesting than the overall value of S. Among other
things, it shows why it is so important to take into account adjacent levels when evaluating topical trees.

4 The HAPS algorithm'
4.1 Factor graphs

The HAPS segmenter is based on factor graphs, a unifying formalism for such graphical models as
Markov or Bayesian networks. A factor graph is a bi-partite graph with two types of nodes, factor or
function nodes and variable nodes. Each factor node is connected to those variable nodes which are
its arguments. Running the well-known Max-Sum algorithm (Bishop, 2006) on a factor graph finds a
configuration of variables which maximizes the sum of all component functions. This is a message-
passing algorithm. All variable nodes send messages to their factor neighbours (functions in which those
nodes are variables) and all factor nodes send messages to their variable neighbours (their arguments).
A message 1, ¢ sent from a variable node x to a function node f is computed as a sum of all incoming
messages to z, except the message from the recipient function f:

Haomf = D Hfa @)
FEN@\S

N(x) is the set of all function nodes which are x’s neighbours. Intuitively, the message reflects evi-
dence about the distribution of z from all functions which have x as an argument, except the function
corresponding to the receiving node f. A message fiy(,, ), sent from the factor node f (z,...) to the

'The derivation of the HAPS algorithm, quite involved, is unlikely to interest many readers. We only present the bare
minimum of facts about the algorithm, the framework of factor graphs and the derivation of HAPS from the underlying model
of Affinity Propagation. A detailed account appears in (Kazantseva, 2014).

Table 1: Average breadth of manually created topical trees and windowDiff value across different levels

Level | Average breadth | windowDiff
4 (top) 6.53 0.35
3 17.55 0.46
2 17.63 0.47
1 (bottom) 8.80 0.50
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(a) Fragment of the factor graph for levels [ — 1 and [ sent in the HAPS model

Figure 1: Factor graph for HAPS — Hierarchical Affinity Propagation for Segmentation

variable node z is computed as a maximum of the value of f(z) plus all messages incoming to f(z,...)
other than the message from the recipient node x:

[f—g = MaAX (f(x1y. .. zm) + Z ,U/:E/—>f) (@)
N(fH)\z 2 EN(f)\a

N(f) is the set of all variable nodes which are f’s neighbours. The message reflects the evidence about
the distribution of « from function f and its neighbours other than .

4.2 Hierarchical Affinity Propagation for Segmentation

This work aims to build trees of topical segments. Each segment is characterized by a centre which best
describes its content. The objective function is net similarity, the sum of similarities between all centres
and the data points which they exemplify. The complete sequence of data points is to be segmented at
each level of the tree, subject to the following constraint: centres at each level [, [ > 1, must be a subset
of the centres from the previous level [ — 1. Figure 1a shows a fragment of the factor graph describing
HAPS corresponding to levels [ and [ — 1. The tree has L levels, from the root (! = L) down to the leaves
(I = 1). The superscripts of factor and variable nodes denote the level.

At each level, there are N2 variable nodes c! ; and N variable nodes eé (IV is the number of data points
in the sequence to segment). A variable’s value is O or 1: cﬁ ; = 1 < the data point 7 at level [ belongs to
the segment centred around data point j; eé- = 1 & there is a segment centred around j at level /.

Four types of factor nodes in Figure la are I, E/, C' and S. The I factors ensure that each data point
is assigned to exactly one segment and that segment centres at level [ are a subset of those from level
[ — 1. The E nodes ensure that segments are centred around the segment centres in solid blocks (rather
than unordered clusters). The values of I and E are 0 for valid configurations and -oco otherwise. The .S
factors capture similarities between data points. Sfj = sim(3, j) if cﬁj =1; Sfj = 0if céj = 0.2 The C
factors handle preferences in an analogous manner. Running the Max-Sum algorithm on the factor graph
in Figure 1a maximizes the net similarity between all segment centres and their children at all levels:

. lm}a{xl } S({c,lij}, {eé}) :ZS,;,j(céj) + Z[f(c,l“, . ,cﬁN,eé_l) + ZE;(CZU, .. .,cﬁvj,eé-) + ZCé(eé) 5)
Cij 51€j 5,1 il 4,1 g\l

The value sim(i, §) is specified in the input matrix.
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Figure 1b shows a close-up view of the messages that must be sent to find the optimizing configuration
of variables. Messages 3, 1, p do not need to be sent explicitly: their values are subsumed by other types
of messages. We only need to compute explicitly and send four types of messages: «, p, ¢ and 7.

Algorithm 1 shows the pseudo-code for the HAPS algorithm.? Intuitively, different parts of the update
messages in Algorithm 1 correspond to likelihood ratios between two hypotheses: whether a data point ¢
is or is not part of a segment centred around another data point 5 at a given level [. For example, here is
the availability (o) message sent from a potential segment centre j to itself at level [:

-1 e
! ! ! J ! N I
ol = pj + ¢ +ax(y_pyy) + miax( > o) (6)
k=s k=j+1

Here pé- incorporates the information about the preference value for the data point j at the level (. gbé-

brings in the information from the coarser level of the tree. The summand maxgzl( fg;i qu j) encodes
the likelihood that there is a segment starting before j given the values of responsibility messages for all
data points ¢ such that ¢ < 5 — hence the information from a more detailed level of the tree as well as
the similarities between all data points ¢ (¢ < j) and j. The summand maxé\f:j(zzz i1 pij) does the
same for the tail-end of the segment (all data points ¢ such that ¢ > 7).

Complexity analysis. The HAPS model contains N2 ¢} ; nodes at each level. In practice, however, the
matrix of similarities STM does not need to be fully specified. It is customary to compute this matrix
with a large sliding window; the size should be at least twice the anticipated average length. On each
iteration, we need to send L*M*N messages « and p, resulting in the complexity O(L*M*N). Here L is
the number of levels, NV is the number of data points in the sequence and M (M < N) is the size of the
sliding window used for computing similarities. The computation of p and o messages is independent
for each row and column respectively, so the algorithm would be easy to parallelize.

Parameter settings. An important advantage of HAPS is that it does not require the number of
segments in advance. Instead, the user needs to set the preference values for each level. However, HAPS
is fairly resistant to changes in preferences and this generic parameter is a convenient knob for fine-tuning
the desired granularity of segmentation, as opposed to specifying the exact number of segments at each
level of the tree. In this work we set preferences uniformly, but it is possible to incorporate additional
knowledge through more discriminative settings.

In all our experiments, preference values are set uniformly for each level of the tree, so effectively
all data points are equally likely to be chosen as segment centres at each level. As a starting point,
the preference value for the most detailed level of the tree should be about approximately equal to the
median similarity value (as specified in the input matrix). A near-zero preference value tends to result in
a medium number of segments and is thus suitable to the middle levels of the tree. A negative preference
value results in a small number of segments and is appropriate for identifying the most pronounced
segment breaks.

S Experimental evaluation

In order to evaluate the quality of topical trees produced by HAPS, we ran the system on two datasets.
We compared the results obtained by HAPS against topical trees obtained by iteratively running two
high-performance single-level segmenters.

Datasets. We used the Moonstone corpus described in Section 2, and the Wikipedia dataset com-
piled by Carroll (2010). Created automatically from metadata on Web pages, the dataset consists of 66
Wikipedia entries on various topics; the annotations and the results concern sentences. In the Moonstone
corpus we work with paragraphs. To simplify evaluation and interpretation, we produced three-tier trees.
This is in line with the average depths of manual annotations in the Moonstone data.

31t is not possible to include a detailed derivation of the new update messages in the space allowed here. The interested reader
can find these details in (Kazantseva, 2014). The derivation follows the same logic as (Givoni et al., 2011) and (Kazantseva and
Szpakowicz, 2011).
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Algorithm 1 Hierarchical Affinity Propagation for Segmentation

I: input: 1) L pairwise similarity matrices {SIMl(i,j)}(iyj)e{lp_’N}z; 2) L preferences p! (one per
level ) indicating a priori likelihood of point ¢ being a segment centre at level [

2: initialization: Vi, j : o;; = 0 (set all availabilities to 0)

3: repeat

4:  iteratively update p, o, ¢ and T messages

5

Vi, 1 qbﬁ_l = max|[0, a;; — Til;g((sék + Oéik)]

6:
min(0,7/) — max(s} + afy) ifi=j
Y slj + minmax(0, —7f) — ol - %?(SZC +aly)] ifi#
7:
g1 N e
J o .
P+ 0 +max(y_py;) + max( Y ply) if i = j
k—s k=it
-1 7 N e
] e ] ] ! Lol
iji<i = mm[ﬁ?&fZ Phj T D Pyt max > Piy) 05+ 6,
h=s k=it1 =i
.. 1 i = I J = l e .
Vi, gl gy = r?_alepkj + Join Z Pk; ifi <j
T k=s O k=it1
-1 i1 N
o ! ! ! Ll
min[(riax Y gl + Y ply +max Y pl) +p; + 65,
k=s k=j T k=it+1
i1 i—1 N e
: ! !
min Y phy+max Y ol
{ k=et1 k=it1
8:
g1 N e
. l . J
Vil = 0 G) ol (Y pky) + max( Y i)
k=s k=j+1

9: until convergence
10: compute optimal configuration: V%, j 4 is in the segment centred around j iff p;; + a;; > 0
11: output: segment centres and segment boundaries

Baselines. Regrettably, we are not aware of another publicly available hierarchical segmenter. That is
why we used as baselines two recent flat segmenters: MCSeg (Malioutov and Barzilay, 2006) and BSeg
(Eisenstein and Barzilay, 2008). Both were first run to produce top-level segmentations. Each segment
thus computed was a new input document for segmentation. We repeated the procedure twice to obtain
three-tiered trees. MCSeg cannot be run without knowing the number of segments in advance. Therefore,
on each iteration, we had to specify the correct number of segments in the reference segmentation. BSeg
does not need the exact number of segments, so we had two settings: with and without knowing the
number of segments.

Evaluation metrics. We did our best to obtain a realistic picture of the results, but each metric has
its shortcomings. We compared topical trees using windowDiff and evalHDS (Carroll, 2010). Both
metrics are penalties: the higher the values, the worse the hypothetical segmentation. evalHDS computes
windowDiff for each level of the tree in isolation and weighs the errors according to their prominence in
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the tree. We computed evalHDS using the publicly available Python implementation (Carroll, 2010).*

When computing windowDiff, we treated each level of the tree as a separate segmentation and com-
pared each hypothetical level against a corresponding level in the reference segmentation.

To ensure that evaluations are well-defined at all levels, we propagated the more pronounced reference
breaks to lower levels (in both annotations and in the results). In effect, the whole sequence is segmented
at each level — otherwise windowDiff would not be not well-defined. Conceptually this means that if
there is a topical shift of noticeable magnitude (e.g., at the top level), there must be at least a shift of less
pronounced magnitude (e.g., at an intermediate level).

The Moonstone dataset has on average 4.8 annotations per chapter. It is not obvious how to combine
these multiple annotations. We evaluated separately each hypothetical segmentation against each avail-
able gold standard. We report the averages across all annotators — for both evalHDS and windowDiff —
per level.

Preprocessing. The representations used by HAPS and the MCSeg are very similar. Both systems
compute a matrix of similarities between atomic units of the document (sentences or paragraphs). Each
unit was represented as a bag of words. The vectors were further weighted by the #f.idf value of the term
and also smoothed in the same manner as in (Malioutov and Barzilay, 2006). We computed cosine simi-
larity between vectors corresponding to each sentence or paragraph. We used tenfold cross-validation on
the Wikipedia dataset and fourfold cross-validation on the smaller Moonstone data.

The quality of the segment centres. In addition to finding topical shifts, HAPS identifies segment
centres — sentences or paragraphs which best capture what each segment is about. In order to get a rough
estimate of the quality of the centres, we extracted paragraphs identified as segment centres at the second
(middle) level of HAPS trees. These pseudo-summaries were then compared to summaries created by
an automatic summarizer CohSum. We used ROUGE-1 and ROUGE-L metrics (Lin, 2004) as a basis
for comparison. CohSum identifies the most salient sentences in a document by running a variant of the
TextRank algorithm (Mihalcea and Tarau, 2004) on the entire document. In addition to using lexical
similarity, the summarizer takes into account coreference links between sentences. We ran CohSum at
10% compression rate.

The summarization experiment was performed on the Moonstone corpus. We also collected 20 chap-
ters from several other XIX century novels and used it in a separate experiment. The ROUGE package
requires manually written summaries to compare with the automatically created ones. We obtained the
summaries from the SparkNotes website.)

6 Results and discussion

Table 2 shows the results of comparing HAPS with two baseline segmenters using windowDIiff and
evalHDS. HAPS was run without knowing the number of segments. MCSeg required that the exact
number be specified. BSeg was tested with and without that parameter. Therefore, rows 3 and 4 in
Table 2 correspond to baselines considerably more informed than HAPS. This is especially true of the
bottom levels where sometimes knowing the exact number of segments unambiguously determines the
only possible segmentation.

The results suggest that HAPS performs well on the Moonstone data even when compared to more
informed baselines. This applies to both metrics, windowDiff and evalHDS. BSeg performs slightly
better at the bottom levels of the tree when it has the information about the exact number of segments.
We hypothesize that the advantage may be due to this additional information, especially when segmenting
already small segments at level 1 into a predefined number of segments. Another explanation may be
that when using windowDiff as the evaluation metric, HAPS was fine-tuned so as to maximize the value
of windowDiff at the top level, effectively disregarding lower levels of segmentation.

*“When working with the Moonstone dataset, we realized that the software produces very low values, almost too good to be
true. That is because the bottommost annotations are very fine-grained. Sometimes each paragraph corresponds to a separate
segment. This causes problems for the software. So, when we report evalHDS values for the Moonstone dataset, we only
consider two top levels of the tree, disregarding the leaves. We also remove the “too good to be true” outliers, though the “bad”
tail is left intact. We applied the same procedure to all three segmenters, only for the Moonstone dataset.

Shttp://www.sparknotes.com/
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Level Moonstone Wikipedia Moonstone Wikipedia
windowDiff windowDiff evalHDS evalHDS
3 (top) 0.337 (£ 0.060) 0.421 (£ 0.060) 0.353 0.450
HAPS 2 (middle) 0.422 (£ 0.060) 0.447 (£ 0.070) (£ 0.072) (£ 0.015)
1 (bottom) 0.556 (£ 0.070) 0.617 (£ 0.080)

. . 3 (top) 0.375 0.440 (£ 0.075) 0.377 0.444
MinCutSeg-iter. | 5 (middle) 0.541 0.424 (£ 0.064) | (&0.002) (£ 0.002)
segm. known 1 (bottom) 0.601 0.471 (£ 0.057)

BavesSea-iter 3 (top) 0.353 (£ 0.071) 0.391 (£ 0.070) 0.367 0.370

Y giter. 2 (middle) 0.406 (£ 0.053) 0.344 (4+ 0.033) (£ 0.089) (£0.019)
segm. known 1 (bottom) 0.504 (£ 0.064) 0.354 (£ 0.033)

BavesSeo-iter 3 (top) 0.600 (£ 0.071) 0.637 (£ 0.070) 0.453 0.437

y g-er. 2 (middle) 0.447 (£ 0.053) 0.877 (£ 0.033) (£ 0.089) (£ 0.022)
segm. unknown 1 (bottom) 0.545 (£ 0.064) 0.952 (£ 0.033)

Table 2: Evaluation of HAPS and iterative versions of APS, MCSeg and BSeg using windowDIff per level
(mean windowDiff and standard deviation for cross-validation)

Moonstone corpus Austen corpus
ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L
Segment centres 0.341 0.321 0.291 0.301
(0.312, 0.370) (0.298, 0.346) (0.272,0.311) (0.293, 0.330)
CohSum 0.294 0.269 0.305 0.307
summaries (0.243,0.334) (0.226, 0.306) (0.290, 0.320) (0.287, 0.327)

Table 3: HAPS segment centres compared to CohSum summaries: ROUGE scores and 95% confidence
intervals

All segmenters perform worse on the Wikipedia dataset. Using that scale, informed BSeg performs the
best, but it is interesting to note a significant drop in performance when the number of segments is not
specified.

Overall, HAPS appears to perform better than, or comparably to, the more informed baselines, and
much better than the baseline not given information about the number of segments.

We also made a preliminary attempt to evaluate the quality of segment centres by comparing them to
the summaries created by the CohSum summarizer. In addition to working with the Moonstone corpus,
we collected a corpus of 20 chapters from various novels by Jane Austen.

Table 3 shows the results. They are not conclusive because there is no evidence that ROUGE scores
correlate with the quality of automatically created summaries for literature. According to the scores in
Table 3, however, the summaries created by CohSum cannot be distinguished from simple summaries
composed of segment centres identified by HAPS. We interpret this as a sign that the centres identified
by HAPS are approximately as informative as those created by an automatic summarizer.

7 A brief conclusion

This paper presented HAPS, a hierarchical segmenter for free text. Given an input document, HAPS
creates a topical tree and identifies a segment centre for each segment. One of the advantages of HAPS
is that it does not require the exact number of segments in advance. Instead, it estimates the number
of segments given information on generic preferences with regard to segmentation granularity. We also
created a corpus of hierarchical segmentations which has been annotated by 3-6 people per chapter.

A Java implementation of HAPS and the Moonstone corpus are publicly available.®
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Abstract

The intersection of psychology and computational linguistics is capable of providing novel au-
tomated insight into the language of everyday cognition through analysis of micro-blogs. While
Twitter is often seen as banal or focused only on the who, what, when or where tweets can ac-
tually serve as a source for learning about the language people use to express complex cogntive
states and their cultural identity. In this contribution we introduce a novel model which cap-
tures latent cultural dimensions through an individual’s expressions of intentionality. We then
show how these latent cultures can be used to create a culturally-sensitive model which provides
enahnced detection of signals of intentionality in tweets. Finally, we demonstrate how these
models reveal interesting cross-cultural differences in the goals and motivations of individuals
from different cultures.

1 Introduction

Social media platforms have enabled new forms of discourse and have also provided enormous quantities of data
on these communications. For instance, the popular microblogging service Twitter provides an exceptionally use-
ful source of user-generated content which has attracted considerable interest from researchers in computational
linguistics (Ritter et al., 2009; Gimpel et al., 2011). Most of the language processing on tweets has involved
the identification of sentiment (Davidov et al., 2010), summarization (Sharifi et al., 2010), conversational mod-
els of Dialogue acts (Ritter et al., 2009), or lexical and semantic processing. In this effort we expand on these
previous approaches and show how individuals express their cultural identity through expressions revealing their
intentionality towards events and provide a way of capturing this information.

We define intentionality as the amount of effort an individual is willing to expend to achieve a goal(Ajzen, 1991).
Goals represent future states or events which an individual wishes to happen. Accordingly, intentions are goals
for which an individuals is willing to expend at least some minimal amount of effort to bring about. While people
express goals throughout the day, intentions are the goals that they are willing to follow through with. Identifying
when a goal is actually an intention requires the successful recognition of many distinct cognitive factors that can
be revealed through the individual’s use of language.

There is a long history of studies that have worked towards identifying a set of factors that underly an individual’s
intentions (Ajzen and Fishbein, 1977; Ajzen, 1991; Malle and Knobe, 1997; Sloman et al., 2012) of which, the
setting of goals is one important factor. These studies have concentrated on identifying the factors that affect an
individual’s motivation. The studies have also identified a set of factors that people use to gauge the intentionality
of other individuals. However, these factors have always been manually identified by an expert from an individual’s
speech or writing. It is not clear that these features can actually be detected automatically in language.

Intentions have also been considered in computational linguistics. In their seminal work entitled, “Attention,
Intentions, and the Structure of Discourse” (Grosz and Sidner, 1986), Grosz and Sidner point out the fundamental
role of intentions and their effect on the theory and processing of discourse structure. They even define a set of in-
tentions that can be held by individuals that are relevant to discourse theory. In contrast, we focus on understanding
intentions outside of the discourse. In addition, we work with a more general definition of intentions taken from
psychology, defining intentionality as the amount of effort an individual is willing to expend to achieve a goal.

Culture refers to the set of beliefs, norms, and customs shared by a group of people. Beliefs and culture are
inseparably tied to intentions and language (Ajzen and Fishbein, 1977; Tomasello et al., 2005). Culture affects an
author’s proclivity to have a particular intention, for example Hofstede’s dimension of power distance (Hofstede,
1980) would suggest that individuals from high power-distance cultures have a lower likelihood of performing

This work is licenced under a Creative Commons Attribution 4.0 International license. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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actions with the intention of overriding the actions of an individual of higher status. Culture can also affect the
way in which individuals reason about other agents’ intentions and the set of actions that are used to realize an
individual’s intentions. While considerable work has looked at the link between cultures and intentions, here we
show how a latent representation of an individual’s culture derived from their intentions can be utilized to explore
the intersection between culture and intentions using the vast amount of written expressions present on Twitter.

In this contribution, instead of focusing on the discourse meaning of intentions, we look at how personal in-
tentions can be understood through Twitter posts by focusing on the language of those posts contain. We briefly
discuss previous work showing how it is possible to capture language that reveal cognitive factors of intentionality
which could be used to capture broader intentions. Critically, we then augment the models of the cognitive factors
of intentionality by accounting for the culture of the authors on Twitter. Twitter contains an immense number of
authors covering a variety of different cultures definable at different levels, for example women, college-students,
or fitness buffs.

We have evaluated the models on a very large set of over 7.5 million tweets which cover a sampling of Twitter
from early 2011 to the middle of 2013. Our sample includes just over 900,000 authors. We found very promising
results for identifying the factors of intentionality, but by considering culture we were able to provide a significant
improvement of those results. We have shown that cognitive factors of intentionality, including goals, control and
skill, and rewards can be recognized through the use of simple language models. Similarly, our cultural models
were based on traditional techniques for latent variable modeling through principal component analysis enabling
an understanding of the cultural distribution of intentions.

The remainder of the paper is organized as follows. We first present the cognitive factors of intentionality that
we have used for this contribution. We then present a new cultural model of authors on Twitter and compare it to
existing approaches in the literature. We then present a series of models which capture the cultural variation of the
cognitive factors of intentionality. Finally, we present a look at some of the cultural differences identified through
our approach.

2 Factors of Intentionality

While there are numerous factors that affect an individual’s intentionality (Ajzen, 1991; Malle and Knobe, 1997;
Sloman et al., 2012), in this contribution we focus on investigating the most historically central factors: goals,
perceptions of control, and rewards. Below we provide brief examples of the three factors before detailing our
approach for identification of latent cultures.

2.1 Factor 1: Goals

The first factor that we consider is evidence that an individual has a goal. Goals are expressions of a desire for
a change of state or rewards which could require an action on the part of the individual. The setting of goals for
both action and inaction have been linked to many different motivational and long-term outcomes (Albarracin et
al., 2011; Locke, 1968). Examples of goals are

(1) I want to finish my paper
(2) I want to be famous

The first example of a goal expresses an intention to perform an action which could result in a positive reward
for the individual, however it doees not mention the reward. In contrast, the second example expresses a clear
expectation for a reward (fame), but does not describe the actions that will lead to that reward. Does the individual
want to be President or the next Kardashian? Additionally, in contrast to explicit goals stated by an individual,
goals can also be inferred by other people based on an analysis of actions (perceived intended events) carried out
by the individual. For example, it is presumed that an individual has a goal to win the lottery when they buy a
lottery ticket, or that the occupants of a car full of beach toys is headed to or from a beach. Goals represent the
factor that has seen the most recent attention in terms of the creation of automatic methods for their recognition
(Chen et al., 2013; Banerjee et al., 2012).

2.2 Factor 2: Perception of Control

Intentions are revealed not just through goals, but also through words expressing skill or a level of control. Individ-
uals that feel that they have more control over a situation will expend more effort on their actions (Ajzen, 1991).
Individuals are also perceived by others as having greater intentionality for actions that they have control over or
exhibit skill at. We considered multiple ways in which an individual can express their perceived control over an
event, subdividing this factor into three sub-factors. The first sub-factor captures expressions which indicate skill.

(3) Just helped some guy push his gas-less car to the garage #iamwoman #hearmeroar
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Table 1: Example Hash Tags and Tweets.

Cognitive Factor Sample Tags Sample Tweets

F1: Goal #goalinlife, #mywish “3 more days of studying”

F2: Control #dowhatisay, #kissmyfeet “I defy the law of gravity”

F2: Skill #madskillz, #iamapro “you are flat out amazing to watch”
F2: Lack of Control #oops, #cantstop “cannot believe I said that”

F3: Negative Reward Self #fml, #crap “I just locked the keys in my car”

F3: Negative Reward Other | #worstdriverever, #awkward “It does make me cringe”

F3: Positive Reward Self #whyismile, #victoryismine “my cats make me smile”

F3: Positive Reward Other #ff, #thatsbadass “Solar panels on the white house”

The second sub-factor captures expressions of control.
(4) I’'m in control here!

The third sub-factor captures expressions of lack-of-control.
(5) i’'m a little nervous for tomorrow

While several linguistic theories exist that could be utilized to create systems detecting control, such as agency
(Dowty, 1991), there is no prominent work on automatically identifying control directly in an individual’s expres-
sions.

2.3 Factor 3: Reception of Rewards

Intentions can also be inferred when an individual receives a reward.
(6) I'm so proud of what I did
(7) Your work sucks!

Rewards can be positive (increasing the likelihood of the action being repeated, Example 6) or negative (decreasing
the likelihood of the action in the future, Example 7). In addition, rewards can come from the individual (self-
directed rewards, Example 6) or from other individuals (other-directed rewards, Example 7). This establishes
four sub-factors for rewards. Knowing that an individual received a reward increases the likelihood that they
had effortful participation in the event. In addition, evidence of negative rewards are strongly inferential for
intentionality (Knobe, 2003). Interpretations of rewards are very culturally sensitive. For example, a comment
such as “That is disgusting” would have a good chance of being interpreted as a positive reward when it was made
as a comment to a user-generated contribution on the website DeviantArt.com. Additionally, the effect of rewards
on motivation is not always clear-cut. Experts seek out and are actually motivated by criticism (Finkelstein and
Fishbach, 2012).

2.4 Linking Hashtags and Factors of Intentionality

The factors and sub-factors described above capture expressions which can be used to infer an individual’s inten-
tionality towards a future action. In Tomlinson et al. (2014) we showed that it is possible to link particular hashtags
used by people on Twitter to these cognitive factors. Our approach utilized two annotators. The first annotator,
through trial and error, identified a large number of potential candidate tags for each sub-factor. The annotator then
rated each hashtag for how well tweets containing that hashtag exhibited each sub-factor (on a scale of 1-5). The
second annotator then separately rated each tag which scored a 4 or 5. The two annotators had an agreement rate
of 87%. 178 tags in all were agreed to be a 4 or 5 by both annotators and considered representative of the particular
sub-factor. Examples of the hashtags utilized and tweets with those tags are shown in Table 1. The tweets have
been modified slightly to preserve anonymity.

3 Identification of Latent Cultures

In the preceding section we discussed examples of goals, control, and rewards, and discussed how hashtags are
used on Twitter to mark a tweet expressing one of these factors. Some of these examples require cultural knowledge
in order to correctly interpret. In this section we present the latent model of culture that is used for learning the
cultural specific expressions of the factors of intentionality.
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3.1 SVD-Model of Culture

A considerable amount of work has demonstrated how particular social characteristics of individuals can be iden-
tified on Twitter, such as gender, age, and political orientation (Zamal et al., 2012; Pennacchiotti and Popescu,
2011). While superb results can be obtained for identifying these characteristics of authors using a complex set of
features, this approach does not neccesarily allow for generalization to other data sets. Therefore we settled on an
approach utilizing a specially trained latent variable model. Instead of utilizing Latent-Dirichlet Allocation (LDA,
Blei, Ng, and Jordan, 2003 ) as Pennacchiotti and Popescu we utilized a spectral analysis based on singular-value
decomposition (SVD). This approach has been shown to be generally superior to LDA on the domain of topic
modeling (Chen et al., 2011), but has not been tested for cultural modeling.

3.1.1 Data

We randomly sampled 1.6 million tweets from a Twitter dataset that had been generated by retrieving tweets that
carried at least one of the hashtags linked to a cognitive factor of intentionality (and other posts by that author). In
addition, we restricted the set to authors for which we had at least 20 posts in our dataset. For this dataset, all of
the markup was left in the tweet (e.g. hashtags, urls, etc.).

3.1.2 Model

From our dataset we created a set of documents, D = {a1, az,...,as}. Where each a; represents the entire col-
lection of tweets for a single author that contain mentions of goals, skill/control, or rewards. This set of documents
contains N words and hashtags. We then create a matrix, X € RN-A_ where each author represents a row in the
matrix and the columns are the number of times that the corresponding word or hashtag was used by that author.
Then we perform a singular value decomposition of the matrix to solve

X =vscT )]

Where S is a k « k matrix whose off-diagonal entries equal 0 and the on-diagonal entries are the & singular values
for the matrix X . For our approach we set k equal to 100. V' represents a mapping of the words into our reduced
space R™*, and C R** contains a weighting for each author with respect to the k** latent cultural dimension. The
cultural model can be used to identify the culture of an unseen author through the creation of a projection matrix,
P.

P=vs! @

This matrix projects the tweets that make up the author into our latent cultural space C. This allows us to map each
author in our complete data set into our latent space which can then be used for training and testing. The latent
cultural space can be used to characterize the culture of an author as a distribution over the dimensions. Below we
evaluate our latent cultures on the shared dataset provided by Zamal et al. 2012.

3.2 Evaluating the Latent Cultures

Culture is a system of shared beliefs and actions. Culture is often shared between individuals based on social
similarity, this can be within a language, nation, gender, age-group or other social distinction. Thus, being able to
identify an individual’s culture should facilitate detection of socio-demographic information. To test this we looked
at using the latent cultural dimensions to predict socio-demographics on Twitter. We looked at the systems ability
to identify gender (male vs. female), age (young vs. old), and political orientation (Democrat vs. Republican) of
individuals based on their exhibition of particular latent cultural dimensions. In this model we first represented
an individual’s tweets as a distribution over the latent dimensions. We then utilized two different statistical ap-
proaches to find associations between particular dimensions and the relevant socio-demographic information. For
a comparison, we tested our SVD-culture model against a similarly trained LDA model and a model based on
n-grams.

3.2.1 Data

We utilized the publicly available dataset from Zamal, Liu, and Ruths (2012). The dataset consisted of Twitter
user names and associated meta-data identifying their gender (Male or Female), age (two classes, young and old),
and political orientation (Liberal or Conservative). Unfortunately, many of the identified tweets were no longer
available from the Twitter API, but we successfully retrieved 2.6 million tweets from authors identified in the
dataset with 310 users identified for gender, 320 identified for their age, and 380 for their political affiliation. The
tweets in our dataset are substantially different from the original dataset because of the time over which they were
collected. Zamal, et al.’s tweets were from 2012 and before, whereas our tweets covered much of 2013. This
suggests that comparisons of the raw numbers should be made with caution, particularly in the political area.
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Table 2: Results for identifying user demographics based on latent cultural dimensions compared to linguistic style
and an ensemble method utilized by Zamal et al (2012).

Zamal et al. | N-Grams | LDA | SVD
N F F F F
Gender 310 .80 57 1 .70
Age 320 75 .63 .66 .67
Political Orientation | 380 .89 73 .66 .68

3.2.2 Modeling & Results

To provide a comprehensive view of the strengths and weakness of our approach we compared several models for
their ability to correctly predict the cultural demographics of individuals on Twitter. We first established a base-line
model which was an n-gram language model created from the language used by each individual in their tweets.
This model learned to identify the cultural demographics based on the frequency with which individual’s in that
demographic used sequences of words, called n-grams. This approach is consistently ranked as one of the single
best approaches to authorship identification and performs well on a large variety of datasets.

We also tested the SVD-Culture model introduced above on this dataset. For this experiment, we trained a
logistic-regression based classifier to identify the demographic information of an author based on the vector created
by projecting that author into our latent space.

Finally, to look for a difference in the performance between an SVD-based latent representation and one based
on LDA (Pennacchiotti and Popescu, 2011), we also trained and tested an LDA-based Culture model. The model
was trained on the same data as the SVD-based model and utilized the same number of dimensions.

All of the models were tested and trained utilizing 10-fold cross validation. It is very important to point out
that the data sets used to generate the underlying latent representational models did not include any of the tweets
from the data used for the 10-fold cross validation. That data was only utilized for the supervision of the logistic
regression.

The results of the base model, the SVD model, the LDA model, and the original results presented by Zamal
et al. (2012) are shown in Table 2. The latent models are clearly superior to the language model, on average
outperforming it by a significant margin of 4%. As expected, the SVD-based model does outperform the LDA
model on average, though it is only by 1%, on average.

The strength of this approach is in its simplicity. The latent cultural dimensions have been learned on a wholly
different dataset than that used for testing, this supports good generalization performance. While the latent SVD-
cultural model does not reach the performance of the system created by Zamal et al. (2012). Zamal et al.’s results
were obtained using a plethora of different feature types, which were specifically trained to solve each individual
problem. As pointed out in Cohen and Ruths (2013) this causes some issues on transfer to a novel dataset, because
the selected features were not representative of differences between liberals and conservatives in the second dataset.
In contrast, we suggest that the latent cultural model learns a more general representation utilizing only the set of
features provided by the underlying latent cultural models, which were not trained on any of the data in the test
set. Additionally, the latent SVD model is easy to implement and train.

Importantly, these results indicate that the latent cultural dimensions capture similarities in the ways in which
individuals of similar socio-demographics express themselves on Twitter. The model is able to easily identify the
gender, age, and political affiliation of individuals based on their tweets. In the next section we show how we can
utilize these latent cultural dimensions to facilitate learning of expressions conveying factors of intentionality.

4 Cultural Sensitive Identification of Cognitive Factors of Intentionality in Language

Recognizing language that expresses factors of intentionality is complicated because of the wide variety of ways
in which they can be expressed as shown in the examples in the previous section. While some work has explored
automatic goal recognition, most recently by (Chen et al., 2013) and (Banerjee et al., 2012), little work has been
done automatically characterizing the other factors, though work in detecting social implicatures in language is
similar (Bracewell et al., 2012b). We first present a general framework for learning to model the content of tweets
that express a given factor from our cognitive model, we then show how this approach can be enhanced with the
addition of latent cultural dimensions.

4.1 Culture Agnostic Model

Here we introduce the General Model that serves as the basis for the culture specific models. It is so named
because it applies to all cultures. We utilized an n-gram based language model to identify the factors in tweets.
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We first constructed a vocabulary of all n-grams between 2 and 4 words in length. Each tweet, j, which is labeled
with a hashtag linked to a sub-factor f, is represented as a vector, X7. Entries in X7 correspond to the number
of occurrences in the tweet of the i'” n-gram from the vocabulary. We examined two different mathematical
approaches to modeling the cognitive factors to gain a better understanding of the problem.

The first approach utilized a Naive-Bayes based classifier (NB) where

o(F — fx) — PE =) pXIF =)

3)
p(X)
The second approach utilized an L2-loss logistic regression model (L2):
(F = f1X,W) = - @)
= ’ 1+ exp(wy + Yo wiX;)
In which the weights, W, are learned by maximizing Equation (4)
> log p(y? | X7 W) — o [WIJ3 ®)
J

where m represents a balanced training set created by randomly sampling the training tweets that are tied to
sub-factor f and an equal number of tweets that express one of the other factors. For solving the maximization
problem we utilized the LibLinear package (Fan et al., 2008).

4.2 Culture Sensitive Models

We compared two different methods for integrating the culture information from the SVD-based culture model
into the models for identifying the cognitive factors of intentionality. Both models assume that the authors have
been partitioned into a set of cultures, L, but differ in their modeling of the link between language and cognitive
factors.

In order to identify the cultures of the authors we utilize a clustering of the latent dimensions produced by the
SVD model, a spectral clustering (Kannan et al., 2004). We utilized a simple hierarchical clustering that capitalizes
on the y largest singular values. We create a set of hierarchical clusters based on a median split of each of the first
y columns in our latent space. When y = 1 we have two clusters where the authors have been split based on the
median value of the first latent dimension, with y = 2 each cluster is then independently split by the author’s value
along the second latent dimension, giving four clusters, and so on.

4.2.1 Culture-Specific Model

Our first method, which we call the culture specific model uses a separate model of each factor for each latent
culture, [ € L. We first identify a tweet x, as belonging to a given culture, /. We then determine whether or not the
language it contains expresses a particular cognitive factor based on

p(F = flzi, Ly) (6)

To learn the function we utilize a linear classifier, Logistic-Regression with an L2 regularization term, and limit
the training data to authors that belong to the particular culture.

4.2.2 Joint-Culture Model

Our second model, which we call the joint culture model utilizes an ensemble based approach. For each tweet, x,
we calculate both a culture specific view of the language in the tween p(F' = f|x;, L;) and a culture agnostic view
p(F = f|x;), taking the classification is that is most confident. This joint approach utilizes the culture-agnostic
model to smooth deficiencies caused by insufficient culture-specific data.

4.2.3 Number of Cultures

We explored settings of y = {2,3,4,5} latent dimensions which equates to {2, 4, 8,16, 32} latent cultures. Au-
thors are first split according into their cultural group and then tweets from each culture are broken into a training
and testing set. Because of the amount of data we utilized only a 5-fold cross validation procedure. In addition,
we also tested a random culture model that randomly assigned authors to cultures instead of utilizing the spectral
clustering. When creating these random cultures we balanced the number of authors in each random culture with
the corresponding spectral cultures.
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Table 3: Accuracies for modeling each sub-factor of intentionality. L2 represents results obtained using an L2-
regularized linear regression, NB represents naive-Bayes, #Cultures signifies the number of latent cultural dimen-
sions used for clustering.

General L2 - Culture Specific L2 -Joint Culture
#Cultures NB-O | L2-0 | 2 3 4 5 2 3 4 5 NB-5
F1:Goals 79.8 | 809 | 81.1 | 80.9 | 79.8 | 78.8 | 82.1 | 82.2 | 82.1 | 82.0 | 79.1
F2:Control 70.1 | 755 | 755 | 753 | 744 | 713.8 | 76.4 | 764 | 76.4 | 764 | 72.3
F2:Lack of Control | 69.1 | 73.7 | 752 | 749 | 74.1 | 729 | 75.9 | 75.7 | 75.8 | 75.6 | 71.6
F2:Skill 732 | 762 | 77.6 | 77.0 | 764 | 755 | 78.2 | 782 | 78.1 | 78.1 | 75.3

F3:Positive Other 783 | 829 | 843 | 84.1 | 83.7 | 834 | 84.5 | 844 | 844 | 845 | 819
F3:Positive Self 66.0 | 69.1 | 70.6 | 703 | 694 | 68.7 | 71.3 | 71.3 | 71.3 | 71.4 | 68.4
F3:Negative Other | 68.7 | 72.3 | 73.6 | 73.4 | 72.5 | 71.6 | 74.1 | 740 | 74.1 | 74.0 | 70.8
F3:Negative Self 69.3 | 724 | 73.6 | 733 | 719 | 71.3 | 744 | 743 | 73.9 | 73.7 | 71.1

4.3 Data

Testing was done on a large number of tweets (7.5 million) that contained tweets from individuals that used any
of the representative hashtags. In our collection hashtags exhibiting the sub-factor of control contained the largest
number with approximately 575,000 tweets, while we only collected 110,000 tweets which were marked with a
hashtags indicating positive rewards for the actions of other individuals. For training and testing purposes we
removed all URLs, hashtags, and @users from the tweets. We then discarded tweets that were less than two words
long. This approach is conservative, because we removed the classifier’s ability to directly learn co-occurring
hashtags, however we wanted to ensure that we would minimize deficient solutions and maximize the ability of
the models to transfer from Twitter to other genres of text.

4.4 Results and Discussion

The accuracy of the classifiers for identifying each sub-factor are shown in Table 3. The accuracies reflect the
classifiers ability to separate tweets that have a hashtag representing the given sub-factor from those that do not.
The results suggest that all of the models are adequately capturing the differences between the cognitive factors.
On average, the logistic regression based classifier achieves a 3.5 percent advantage in accuracy over the Naive-
Bayes model, showing a clear advantage for the improved feature selection of the L2-loss logistic regression. Both
models required a similar amount of time to train and test.

To conserve space Table 3 shows only the results for the 5-dimension Joint Culture Naive-Bayes model. The
results for the Naive-Bayes model match the pattern exhibited by the logistic-regression Joint Culture model,
except that the Naive-Bayes Joint-Culture model increases steadily as more groups are added with a maximum
performance with 5 latent dimensions. With 5 latent dimension the gap between the two ML approaches shrinks
to 2.8 percent (73.2 to 76.0).

On average the Joint Culture model shows a 1.8 percent improvement (74.3 to 76.1) over the culture neutral
model for the L2-Logistic Regression, while it is a larger 2.2 percent for the Naive Bayes based approach (71.2 to
73.4). A comparison of the error reduction shows that the cultural integration is very promising. While the L2-loss
logistic regression provides an 11 percent error reduction over the Naive-Bayes, the joint culture model achieves a
comparable 7-9 percent reduction in error over the L2-loss regression and the Naive-Bayes model.

The improvements are strongest for positive self directed reward factor, skill factor, and lack of control factor.
Interestingly, the models also exhibited considerable variation in accuracies across the different cultures, for exam-
ple utilizing 3 dimensions positive rewards for others in one culture is recognized at 92 percent (this group contains
43,556 tweets), while for another culture of approximately the same size it is only recognized at 77 percent. Un-
fortunately, when moving to 4 dimension our clustering algorithm splits the group at 92 percent into two groups
where the factor can only be recognized with an average of 88 percent accuracy. This suggests that more complex
clusterings strategies within the latent space would be beneficial.

While not shown in the table for space reasons, we also tested the joint culture model utilizing a random assign-
ment of authors to cultures, instead of relying on the assignment produced by the SVD-model. As expected the
random model performed, on average, at approximately the same level as the general model, 74.6% compared to
74.5% respectively. Though the random culture model exhibited considerable variation in relation to the real joint
culture model across the different factors. This evidence reinforces the idea that the latent cultures are coherent
and that individuals within those cultures express the factors of intentionality in similar ways.
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Table 4: Example cultures and the tags that are commonly associated with that factor.

Cultural Label Cognitive Factor Common Tags
Alterantive Medicine Health | Positive Rewards Self #almond, #radish, #curd
Geek Interest Positive Rewards Self #theobroma, #freefiction, #nanotech
Teenagers Positive Rewards Self #bored, #me, #cute
Urban Hip/Hop Positive Rewards Self | #bosslife, #teamfastfollow, #indiecharts
Martial Fitness Goals #healthynews, #fitnessimages, #fitso
Hip/Hop Goals #soundcloud, #support, #dl
General Religion Goals #singer, #jesus, #judas

Inspections of tweets where the cognitive factors have been discovered suggest that many times the hashtags
are used sarcastically. Anecdotally, we also examined a list of the top hashtags associated with instances labeled
by our approach and found good generalization to novel hashtags. We looked at a list of the hashtags based on
the average confidence of the labels being applied to the tweets containing those tags, we found many reasonable
candidate tags. For example, tweets containing the hashtags #day1 and #day2 were among the most likely to be
labeled as exhibiting a goal even though neither were identified by our annotators initially. These two tags are used
by individuals on the first and second day of pursuing a goal.

The results presented in this section suggest that breaking down the authors by culture before learning models
linking the hashtags marking expressions of the cognitive factors of intentionality to language provides a significant
benefit. It also hints at some interesting differences between the groups. In the next section we briefly explore some
of those differences.

5 Investigating Cultural Differences in the Language of Intentionality

We investigated the cultural discriminations made by the model by looking at the hashtags that were the most
popular for each culture. Two annotators provided labels for each of the cultures based on the most frequent
hashtags for that culture. We found that some of the cultures could easily be labeled based on their differential
use of topical hashtags. Many of the latent cultures reflected notions of distinctions between cultural (or sub-
cultural) groups, such as along political orientation or socio-demographics (urban, hipster, university students,
single mothers, and political activist). In addition to the latent cultures that weighed on group identity, some of the
other clusters captured more topical information, such as being fitness oriented or discussions focused around sex.

The cultural distinctions allowed us to quantify the differences in the event and intentionality associations across
the cultures and differences in expressions indicating cognitive factors of intentionality. For instance, activists and
urban individuals were most likely to produce tweets expressing control over situations. There were also groups,
such as the camaraderie group where individuals typically set goals that will benefit a group in some way as well as
the individual. In most of these cases, the author is the member of a team or some other group that will be engaging
in a cooperative or competitive activity. Some authors from this cultural group express goals of providing direct
or moral support to specific teams or groups of which they are not members. Others have goals of attending group
events or gatherings with no particular membership. In most cases, goals in this culture are associated with positive
rewards or defeating an opponent.

Table 4 shows the most probable tags by cognitive factor for some of the more interesting groups. These lists
were generated by first eliminating all tags from the culture that were not predictive of the culture. To do this, we
generated an estimate of the mean and variance for each hashtag in our dataset across all of the different cultures.
We then eliminated all tags where the probability of the tag given the culture was not significantly different than
its estimate given the general population. This has the effect of removing that hashtags that signaled the cognitive
factors because they had a fairly general distribution across the cultures.

6 Conclusion

In this paper we presented a novel approach for identifying factors of intentionality in tweets. Further, we showed
how a latent cultural model could be used to enhance those identifications through an improved understanding of
how these factors are expressed across the various cultures. The latent cultural dimensions identified by the model
correspond well with real cultural demographic information.

This work presents several exciting possibilities, while Twitter is notoriously difficult for traditional natural
language processing work because it doesn’t follow established syntactic and semantic conventions, models learned
over Twitter data are able to transfer to other types of social media, such as user-generated content sites (Tomlinson
et al., 2014a). Hashtags provide a very interesting form of distant annotation that could reduce the amount of time
and effort required to create models which capture a nuanced understanding of social or psychological pragmatics,
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such as social acts (Bender et al., 2011; Bracewell et al., 2012a), thus making the exploration of a richer language
understanding more tractable.

Lastly, we have also shown that the models provide an ability to look at differences between cultures in the how
and when of their expressions of factors relating to intentionality. People express lots of goals, but what affects
when they actually intent them. These models should be able to provide a novel view on the pulse of a city (Rios
and Lin, 2013) or citizens’ cognitive responses to events (Dodds et al., 2011). We can use these techniques to
identify what events make people establish new goals or instill feelings of a loss of control?
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Abstract

This study aims at retrieving tweets with an implicit topic, which cannot be identified by the
current query-matching system employed by Twitter. Such tweets are relevant to a given query
but do not explicitly contain the term. When these tweets are combined with a relevant tweet
containing the overt keyword, the “serialized” tweets can be integrated into the same discourse
context. To this end, features like reply relation, authorship, temporal proximity, continuation
markers, and discourse markers were used to build models for detecting serialization. According
to our experiments, each one of the suggested serializing methods achieves higher means of
average precision rates than baselines such as the query matching model and the tf-idf weighting
model, which indicates that considering an individual tweet within a discourse context is helpful
in judging its relevance to a given topic.

1 Introduction

1.1 Limits of the Twitter Query-Matching Search

Twitter search was not a very crucial thing in the past (Stone, 2009a), at least for users in its early
stages who read and wrote tweets only within their curated timelines real-time (Dorsey, 2007; Stone,
2009b; Stone, 2009¢). Users’ personal interests became one of the motivations to explore a large body
of tweets only after commercial, political and academic demands, but it triggered the current extension
of the Twitter search service. The domain of Twitter search was widened, for example, from tweets in
the recent week to older ones (Burstein, 2013), and from accounts that have a specific term in their name
or username to those that are relevant to that particular subject (Stone, 2007; Stone, 2008; Twitter, 2011;
Kozak, Novermber 19, 2013). However, the standard Twitter search mechanism is based only on the
presence of query terms.

Even though the Twitter Search API provides many operators, the current query matching search does
not guarantee retrieving a complete list of all relevant tweets.'? The 140-character limit sometimes forces
a tweet not to contain a term, not because of its lack of relevance to the topic represented by the term,
but due to one of the following:

Reduction the query term is written in an abbreviated form or in form of Internet slang,

Expansion the query term is in external text that can be expanded through other services such as Twit-
Longer (http://twitlonger.com) and twtkr (http://twtkr.olleh.com), while the
part exceeding 140 characters is shown only as a link on twitter.com, or

Serialization the query term is contained as an antecedent in some previous tweet.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

'“ITThe Search API is focused on relevance and not completeness”” 2 October 2013. Using the Twitter Search APL
https://dev.twitter.com/docs/using-search

2¢[The Search API is not meant to be an exhaustive source of Tweets.” 7 March 2013. GET search/tweets https:
//dev.twitter.com/docs/api/l.1/get/search/tweets

58

Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers,
pages 58-68, Dublin, Ireland, August 23-29 2014.



If these cases are frequent enough, the current query matching search in Twitter will get a low recall rate.
Considering that tweets are usually used to obtain as various views on a topic as possible, in addition to
accurate and reliable information about it, this setback would block attempts to collect diverse opinions
in Twitter.

These three different cases require different approaches. First, reduction, one of the most significant
characteristics of Twitter data in natural language processing, can be solved by building a dictionary
of Internet slang terms or learning them. Second, in case of expansion tweets are always accompanied
with short URLs (http://tl.gd for TwitLonger and http://dw.am for twtkr) and the full text
is reachable through them. In these two cases, tweets correspond one-on-one with documents, whether
reduced internally or expanded externally. This study will focus on the third case, serialization, where
several tweets may be interpreted as a single document.

1.2 Serialization of Tweets: An Overlooked Aspect of Twitter

Though little reported before, serialization of tweets is frequently observed in Korean data.®> Influential
users like famous journalists, columnists and critics as well as ordinary users often publish multiple
tweets over a short period of time instead of using other media such as blogs or web magazines. Types of
tweets published in this way by Korean users include reports, reviews, and analysis on political or social
affairs, news articles, books, films and dramas. The content users intend to express is longer than a tweet
but shorter than a typical blog post. Examples from our dataset will be introduced in Section 3.

This study aims at retrieving tweets on a topic, which cannot be found by the current query-matching
system. Such tweets are relevant to a given query but do not contain the necessary words. Under the
hypothesis that a considerable number of these tweets not containing the query term are serialized with
one containing it overtly, and that serialized segments are integrated into the same discourse context, we
built a model that allows us, when given a tweet that includes a query or a mentioned topic, to find the
other tweets serialized with it and count them as relevant to the topic. We primarily focused on Korean
Twitter data, but we believe that the methods developed here are also applicable to other languages with
similar phenomena.

2 Previous Studies

Our study is based on the observation that a tweet in a “serialization” does not necessarily correspond
to a full document. In fact, it has already been reported (Hong and Davison, 2010; Weng et al., 2010;
Mehrotra et al., 2013) that a single tweet is too short to be treated as an individual document, especially
considering that word co-occurrence in a tweet is hardly found. Studies proved that performance of
Latent Dirichlet Allocation (LDA) models for Twitter topic discovery can be improved by aggregating
tweets into a document. In these studies, a “document ” consists either of all tweets under the same
authorship (Hong and Davison, 2010; Weng et al., 2010), all tweets published in a particular period, or
all tweets sharing a hashtag (Mehrotra et al., 2013). These criteria are useful for finding topics, into
which tweets can be classified, but our purpose requires a different degree of “documentness.” Our
study deals with a fixed topic and is interested in whether or not only tweets relevant to the topic can
be pooled. All tweets merged into the same document as constructed in the previous studies are not
necessarily coherent or related to the same topic because it is not usually expected that ordinary users
devote their Twitter accounts to a single topic. In this study, we will develop more detailed criteria for
the aggregation of tweets by combining authorship with time intervals and adopting features such as
sentiment consistency and discourse markers.

A method of using discourse markers for microblog data was proposed by Mukherjee and Bhat-
tacharyya (2012). They noted that a dependency parser, on which opinion analyses using discourse
information (Somasundaran, 2010) are usually based, is inadequate for small microblog data, and in-
stead used a “lightweight” discourse analysis, considering the existence of a discourse marker on each
tweet. The list of discourse markers used in their study was based on the list of conjunctions repre-
senting discourse relations presented by Wolf et al. (2004). This method was successful for sentiment

*Some Korean users sarcastically call this a “saga” of tweets.
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analysis on Twitter data assuming that the relevance of each tweet to a certain topic was already known.
We will take a similar approach of using discourse markers, but with a different assumption and for a
different purpose. In our study, we treat unknown topic relevance of tweets with missing query terms by
aggregating them with a topic-marked tweet using discourse markers.

3 Features

3.1 Properties of Tweet Serialization

Multiple tweets are likely to be consistent with a topic if they form a discourse as in the following
situations, with examples of tweets in Korean translated into English. In each tweet, topic words are in
boldface.

Conversation This is the most typical case.

Ul: Wow the neighborhood theater is packed; will Snowpiercer hit ten million?

U2: @U1 My parents and my boss are all gonna watch, and they watch only one film a year. This
is the measure for ten million.

Comment after retweet Users retweet and comment.

U3 RT @U4: Today’s quote. “It is stupid to concentrate on symbolic meaning in Wang Kar Wai’s
Happy Together. That would be like trying to find political messages and signs in Snow-
piercer” — Jung Sung-Il

U3 Master Jung’s sarcasm........ Pig

On-the-spot addition Because a published tweet cannot be edited, users can elaborate or correct it only
by writing a new tweet or deleting the existing tweet.

US Is Curtis the epitome of Director Bong’s™ sinserity
US Sincerity, shit

True (intentional) serialization Some users begin to write tweets with a text of more than 140 charac-
ters in mind. They arrive at the length limit and continue to write in a new tweet.

U6 (1) Watched Snowpiercer. It was more interesting than I thought. It felt more like black comedy
than SF. On another note, I was surprised by several oddities, making the film feel more like a
Korean film with foreign actors in it rather than Director Bong’s Hollywood debut.

U6 (2) In many ways the film was “nineties”... like watching The City of Lost Children all over
again... and the trip from the tail-car to the first car, though I expected some kind of level-up
for each car,

U6 (3) the world connected car to car was not an organic world (a sideways pyramid?) but worlds
too separate car by car, and the front-car people were so lifeless that I was surprised. The scale
of the “charge” after 17 years felt shrunken.

If this is a characteristic feature of Korean Twitter data, this may be due to reasons such as personal
writing style, the writing system of the Korean language, and Korean Web platforms. First, it may be
simply because these users prefer formal language and are reluctant to use short informal expressions
even in Web writing. Second, it is possibly because CJK writing systems including Hangul, the Korean
alphabet, have more information per character than the Roman alphabet (Neubig and Duh, 2013). Since
a 140-character text in Hangul has generally more information than that in the Roman alphabet, a Korean
(or Japanese) user can more readily tweet about content which an English (or other European) language
user would consider too long to write about on Twitter. Third, for many Korean users Twitter is the most
available medium for publishing their opinions online, as a number of standard blogs have been replaced

*Director of the film Snowpiercer
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by microblogs. Some users divide a long public text into multiple length-limited tweets simply because
they do not have a blog to write in.

While Internet slang and abbreviations are common in tweets, “Serializers” tend to use 1) fully-
spelled forms (unlike “reducers”), 2) usually without hashtags and emoticons, 3) which are all visible on
twitter.com itself (unlike “expanders”), so it is not guaranteed that all serialized tweets will contain
the topic word, as in the examples above. This implies that some tweet segments in a single discourse
may not be retrieved even if the discourse is relevant to a given query. Search results may include a
partial document for which it is difficult the full version of which is difficult to find.

3.2 Extralinguistic Criteria

Two tweets are more likely to be a part of a larger document consisting of a series of tweets if
Reply-relation one of them is a reply to the other,
Temporal proximity they are published immediately one after the other, or

Continuation markers they share such markers as numbers, arrows >> and continuation marker ‘(con-
tinued).’

Figure 1 shows examples of each case.
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# View conversation

Figure 1: Serialized tweets with numbers, an arrow, or a continuation marker ‘(continued)’

3.3 Linguistic Clues

Semantic similarity to the query In order to determine the relatedness of two documents, the similarity
between their term distributions is mainly considered. Based on this idea, one of our baseline
methods will represent each tweet as a bag-of-words vector and retrieve a tweet containing no
query term if its tf-idf weighted vector has a high cosine similarity with at least one vector from a
tweet containing a query term.

Discourse markers Users may add a discourse marker when writing a new sentence in a new tweet. If
a tweet begins with a marker that indicates continuation of a discourse, it is likely to be a part of a
larger document. A sentiment analysis in Twitter by Mukherjee and Bhattacharyya (2012) adopted
discourse relations from Wolf et al. (2004). In this paper, we use linguistic characteristics described
by Kang (1999) in order to classify Korean texts, listing their English translations in Table 1. The
discourse marker feature refers to whether or not any marker on the list occurs in the first N words
(set N = 5) of the tweet.

4 Experiments

4.1 Data

We collected 173,271 tweets posted or retweeted by 105 Korean users, including film critics, film stu-
dents, and amateur cinephiles from 27 July to 26 September 2013. Out of the 105 users, 17 users who
had mentioned the film Snowpiercer’ most often were singled out. In addition, the highest overall oc-
currence of the keyword was found to be between 1 to 15 August, probably due the film’s release on 31

“http://www.imdb.com/title/tt1706620/
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Demonstratives this, that, it, here, there

Proverbs be so, do so
Discourse well, now
Conj-Reasoning because, so, therfore, thus, hence

Conj-Conditional | then, as long as, in the case, under
Conj-Coordinate | and, nor

Conj-Adversative | but, yet, however, still, by contrast
Conj-Discourse meanwhile, anyway, by the way

Table 1: List of selected Korean discourse markers used for classifying text types in Kang (1999), trans-
lated into English

July in South Korea. Then we kept all 8,543 tweets posted by those 17 users from the period between 1
to 15 August 2013, in order to construct a labeled data set. This set includes 189 tweets that explicitly
contain the word Snowpiercer. Each tweet in the filtered set was labeled as related or not related to the
movie by three annotators who were Twitter users already following most of the above 17 users and thus
aware of the context of most tweets, and a tweet was considered relevant if two or more of the annota-
tors agreed. Inter-annotator agreement was evaluated by using Fleiss’s kappa statistic flei:71, which was
k = 0.749 (p ~ 0). Table 2 shows the annotation results.

Related Notrelated | Total

Explicit 173 15 188
Not explicit 207 8,148 | 8,355
Total 380 8,163 | 8,543

Table 2: The number of annotated tweets classified by explicitness and relatedness

Table 2 shows that 8163/8543 = 95.55% of the tweets in the dataset are not relevant to the movie
Snowpiercer. Additional topics are induced from 7-9 manually collected seed words among the 200
most frequently occurring nouns in the dataset, in which each tweet text was POS-tagged by the Korean
morphological and POS tagger Hannanum®. Induced topics and their seed words are listed in Table 3.

Topic | Seed words
Movie | Movie, Snowpiercer, director, The Terror Live, actor, stage, audience, film, theater
Literature | Story, book, writing, author, novel, character, work
Gender/relationship | Men, women, female, marriage, male, wife, lover
Politics | Politics, state, Park Geun-hye, government, president, party, Ahn Cheol-soo

Table 3: Four topics from manually collected seed words

As described in 3.1, it should be noted again that hashtags are not always useful for finding information
in Korean tweets, particularly in this dataset. Among the seed words above, only Snowpiercer was ever
used as a hashtag, and happened only three times (twice in English and once in Korean). Only nine
types of hashtags occurred more than twice in the full dataset (they are presented in Table 4 with their
respective frequencies). This predicts that hashtag-based tweet aggregation would not be very useful to
find tweets relevant to Snowpiercer or one of the four induced topics.

Table 5 shows the number of tweets containing seed words for each topic, where a tweet is allowed to
belong to more than one topic. Since only 1853/8543 = 21.69% of the tweets explicitly contain a topic
or seed word, it is not plausible that each of the remaining 80% tweets belongs to one of the four topics.
Many of the tweets may be related to a topic which was of a too small portion to be induced, or to no
topic at all. So, instead of classifying all of the tweets into the given topics, the experiment seeks to
retrieve any tweet that is relevant to a certain topic, which allows each tweet to belong to more than one
topic at once. In every experiment we regarded tweets that contain a topic or seed word as relevant to the
topic, and restricted the test set to those tweets which did not contain them.

*http://sourceforge.net/projects/hannanum/
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#make_people_cry_with_a_story_of_two_words 13
#lgtwins

#quote

#changing_zero(_to_fatty_makes_things_totally_depressing

#EBSbookcafe

#today_i_feel

#blow_the_whistle_on_chun_doo-hwan

#chosundotcom

#the _name_of_your_bias_followed_by_the_name_of_the_food_you_just_ate_feels_nice

—_
LWWWhkRAL,aAAIO

Table 4: Korean hashtags occurring more than twice in the dataset, translated into English

Movie Literature Gender Politics | Total
716 452 379 306 | 1853

Table 5: Number of tweets including at least one of the seed words for each induced topic

4.2 Measures

For all models, the authors judged the relevance of each of the retrieved tweets for induced topics until ten
relevant tweets were retrieved. In the Snowpiercer case, precision scores were calculated for all recall
scores. We built a ranking retrieval system for each model and evaluated its performance by average
precision. For models including a randomizing process, we used the mean of average precisions over
1,000 replicated samples. Precision was computed at every percentile of recall levels for Snowpiercer
case and after each retrieved relevant tweet (up to top 10) for induced topics. In sum, the performance of
a model m was defined in two ways as

1 looo
AP = — AP ;
meanAP@percent(m) 1000 ;é; @percent(m;)
and
1 looo

meanAPQ10(m) := Z APQ@10(m;)
i=1

1000
, where m has 1,000 replicates my, - - - m1gog Whose measures are

100

Z prec@;%(m;)

AP@percent(m;) := —
100 £

and
10

APQ@10(m;) = % Z prec@k%(m;).
k=1

When m is a tf-idf model, which has a unique ranking without replication, average precision was used.

4.3 Baselines

Query matching method The most obvious baseline method for this study is the current Twitter search
system that treats topic words and seed words as queries and finds documents, or tweets, that are
relevant to the topic. Since only tweets not containing the query terms remained in the test set, there
are no tweets matching them. As the set of retrieved tweets is empty, relevance rank is randomly
assigned to each tweet of the test set.

Tf-idf weighting method One may predict that a tweet is likely to be relevant to a topic if it shows a
similar word distribution to some explicitly relevant tweets. Under this assumption, we represented
each tweet as a tf-idf weighted vector (Salton and Buckley, 1988) after removing all punctuation
marks and user-mention markers (@username). Stopwords were not removed and tf-idf values
were length-normalized. Relevance of each tweet in the test set was defined as the maximum of its
cosine-similarities with all tweets containing a query term.
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4.4 Tweet Serialization

Examples of Tweet Serialization in Section 3 indicate clues between related tweets other than distribu-
tional similarity. When 1) a tweet is a reply to another one, 2) two tweets are written one after another
by the same user, 3) one tweet following another includes some discourse marker, or 4) two tweets share
a marker, such as numbers, they can be considered to be serialized into a single document rather than
being two separate ones. Tweets serialized together are treated as a single document, and if this docu-
ment contains a a tweet with a query term, then all tweets lacking it but belonging to the same the same
document are retrieved. All retrieved tweets are first ranked in random order, followed by the others also
in random order.
We suggest four criteria for Tweet Serialization:

Reply Two tweets are serialized if one is a reply to the other.

Continuation markers Two tweets are serialized if they are written successively by the same user and
share a marker, such as a number or a phrase “(cont.)”

Discourse markers Two tweets are serialized if they are written successively by the same user, the latter
contains one of the discourse markers listed in Table 1 in its first 5 words, and neither of them is a
reply to another user.

Time Two tweets are serialized if they are written successively by the same user within a given interval
and neither of them is a reply to another user. The upper boundary for intervals is set in one of the
following ways:

Constant 30 or 60 seconds

User-specific Users may show different densities in their tweets, depending on their tweeting en-
vironment. Distribution of time intervals between successive tweets over users is presented
in Table 6. The smallest 5% and 15% quantiles were selected, corresponding to 30 and 60
seconds respectively.

Quantile Ul U2 U3 U4 U5 U6 u7 U8 U9 | U110 | UIl | U2 | UI13 | U4 | UI5 | Ul6 | U17

0% 3 19 2 1 1 5 10 3 2 3 9 3 2 3 3 2 16
5% 20 42 18 16 13 30 21 18 13 8 43 23 18 15 13 12 110
10% 33 45 25 35 20 43 38 38 28 13 71 35 28 35 21 21 130
15% 47 52 33 57 30 56 67 57 40 23 89 51 37 61 27 40 161
20% 62 67 41 79 41 73 92 74 53 31 111 65 50 84 33 58 197

25% 81 86 55 100 55 92 145 95 69 43 138 84 68 105 38 77 275
50% | 237 | 298 164 | 322 | 151 242 1060 | 297 167 159 297 317 178 258 90 266 725

Table 6: Time intervals (in seconds) by cumulative percentile between consecutive pairs of tweets for
each user

For all criteria, Tweet Serialization is transitive, that is, if ¢; and ¢; are serialized and t; and ?;, are
serialized, then ¢; and t; are serialized. Table 7 shows the distribution of serialization sizes (number
of serialized tweets) over criteria. Time value of 60 seconds serializes most tweets, as many as (8543-
6464)/8543=24.33%, while continuation markers serialize only (8543-8511)/8543 = .37%. Assuming all
serializations are correct, the relevance of retrieved documents is judged.

4.5 Results

The average precision values of all models are summarized in Table 8 (means calculated over recall
levels) and Figure 2 (means calculated over 1,000 replications). In both Tables 8 and 9, differences
between the tf-idf weighting model and each of the Serialization methods were statistically significant
according to ¢-test. Figure 2 compares the results of the serialization methods, among which continuation
marker model has the highest precision over 0.8 at the 1% recall level, and Time with 15% quantile has the
average precision score showing the slowest decrease. Even though for all serialization methods average
precision values converge to zero as recall levels increase, each of the method gets higher precision rates
than baselines until some part of relevant tweets are retrieved.
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Size || Repl. | Disc. || Cohe. | T:30s | T:60s | T:5% | T:15%
1| 8137 | 8169 8511 | 7314 | 6464 | 7845 6849
2 88 166 6 465 664 298 610
3 34 14 2 76 149 31 109
4 9 0 0 6 40 1 19
5 3 0 1 5 12 1 8
6 5 0 0 1 6 0 2
7 3 0 0 0 3 0 0
8 1 0 0 2 2 0 1
9 2 0 1 0 0 0 0

10 0 0 0 0 0 0 0
11 0 0 0 0 1 0 1

Table 7: Distribution of serialization size (number of serialized tweets) under each criterion
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Figure 2: Means of average precision rates of all methods for the topic Snowpiercer

Recall Baselines: Repl. | Disc. | Cont. Time difference threshold
level < | Match  tf-idf rela. | mark. | mark. | 30sec  60sec 5% 15%
5% | .0342 0518 || 3019 | .1266 | 2313 | 5158 4178 .6804 4720
10% | .0309 .0588 || .1798 | .0801 | .1324 | .3916 .3459 .4050 .3976
25% | .0284  .0695 || .0920 | .0494 | .0702 | .1824 .1665 .1847 .1894
50% | .0273  .0685 || .0602 | .0382 | .0486 | .1062 .0986 .1070 .1103
100% | .0268 .0556 || .0434 | .0322 | .0375 | .0666 .0628 .0669 .0687

Table 8: Means of average precision rates (at recall level up to 5%, 50%, and 100%) on various se-
rialization criteria for the topic Snowpiercer (Results in boldface represent the best results among the
methods.)

Serialization methods also perform better than the tf-idf baseline for induced topics, as shown in Figure
3 and Table 9. In particular, Reply and Discourse markers, which were far from the best for Snowpiercer,
serve well for other topics such as Movie in general, Politics, and Gender/Relationships.

The precision of Reply for the topic Movie is exceptionally high, partly because the data were initially
collected from users who were interested in films. Reply relation is dependent on the choice of the data,
in that it is determined by interaction between users, not by a single user’s tweets. If data are collected
from users friendly with each other, Reply will serialize many tweets. On the contrary, if data contains
some users while leaving out their friends, replies to these friends are not serialized by Reply criteria.

Discourse markers give a precision of higher than 50% for the topic Politics, which is likely to be
discussed in more formal expressions using various conjunctions.
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Figure 3: Means of average precision rates of all methods for the induced topics

Baselines: Repl. | Disc. | Cont. Time difference threshold
Match  tf-idf rela. | mark. | mark. | 30sec  60sec 5% 15%
Mov. | .0134 1139 || .8855 | .3925 | .1791 | .3787 .3123 4161 .3435

Lit. 0026 .0759 || .1804 | .0171 | .1293 | .2005 .1287 .1719 .1601
Gen. | .0048 .1287 || .0653 | .2424 | .0050 | .1092 .2476 .0187 .2297
Pol. | .0090 .2176 || .2135 | .5762 | .0625 | .5072 4453 5234 4948

Table 9: Means of Average Precision rates at cutoff & = 10 of baselines and different serialization
criteria for induced topics (Results in boldface represent the most accurate results of the topic among the
methods.)

In the topics Literature and Gender/Relationships, average precision scores are at most 25%, which
possibly results from the fact that the seed words for these topics consist of general terms only, while
those of the other two topics include proper nouns such as movie titles or politicians’ names. This is
less a problem of the topic itself but rather one of data selection, which focused on users tweeting about
films, and so the set of seed words will vary according to differences in data collection.

5 Conclusion

In this paper, we found that tweets with an implicit topic can be found more effectively by considering
whether or not they are serialized with some tweet containing the overt keyword. Our experiments show
that Tweet Serialization can be detected using various criteria such as reply relations between users,
presence of discourse or continuation markers, and temporal proximity under the same authorship. Our
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original purpose was to find as various opinions on a given topic as possible, but we expect the methods
used here will be helpful for other tasks, including topic discovery and sentiment analysis, by setting
more exact document boundaries in microblog data. The method we proposed is for Korean Twitter
data, where tweet serialization is observed frequently, particularly among influential users, but it is also
applicable to other languages with similar phenomena.

In future work, we will investigate methods for the evaluation of the results of Tweet Serialization
and combine tf-idf methods with Tweet Serialization criteria. Furthermore, we aim at verifying the
applicability of the results of this study with regard to more various users and more topics.

References

Paul Burstein. February 7, 2013. Older Tweets in search results. The Official Twitter Blog. https://blog.
twitter.com/2013/now-showing-older—tweets—in-search-results.

Jack Dorsey. September 25, 2007. Tracking Twitter. The Official Twitter Blog. https://blog.twitter.
com/2007/tracking-twitter.

Joseph L. Fleiss. 1971. Measuring nominal scale agreement among many raters. Psychological Bulletin. 76(5):
378-382.

Liangjie Hong and Brian D. Davison. 2010. Empirical study of topic modeling in Twitter. SOMA 2010: The
Proceedings of the First Workshop on Social Media Analytics. 80-88.

Beom-mo Kang. 1999. Hankukeui theksuthu cangluwa ene thukseng [Text genres and linguistic characteristics in
Korean]. Korea University Press, Seoul, Korea.

Esteban Kozak. November 19, 2013. New ways to search on Twitter. The Official Twitter Blog. https:
//blog.twitter.com/2013/new-ways—to-search-on-twitter.

Subhabrata Mukherjee and Pushpak Bhattacharyya. 2012. Sentiment analysis in Twitter with lightweight dis-
course analysis. COLING 2012: The 24th International Conference on Computational Linguistics, Proceedings
of the Conference: Technical Papers. 1847-1864.

Rishabh Mehrotra, Scoot Sanner, Wray Buntine and Lexing Xie. 2013. Improving LDA topic models for mi-
croblogs via tweet pooling and automatic labeling. SIGIR ’13; The 36th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 889—892.

Graham Neubig and Kevin Duh. 2013. How much is said in a Tweet? A multilingual, information-theoretic
perspective. AAAI Spring Symposium: Analyzing Microtext, Volume SS-13-01 of AAAI Technical Report.

Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in automatic text retrieval. Information
Processing & Management. 24(5): 513-523.

Swapna Somasundaran. 2010. Discourse-level Relations for Opinion Analysis. Ph.D Thesis, University of Pitts-
burgh.

Biz Stone. August 22, 2007. Searching Twitter. The Official Twitter Blog. https://blog.twitter.com/
2007/searching-twitter.

Biz Stone. December 23, 2008. Finding Nemo — Or, name search is back! The Official Twitter Blog. https:
//blog.twitter.com/2008/finding-nemo%E2%80%94or—-name-search-back.

Biz Stone. February 18, 2009. Testing a more integrated search experience. The Official Twitter Blog. https:
//blog.twitter.com/2009/testing-more-integrated-search—-experience.

Biz Stone. April 03, 2009. The discovery engine is coming. The Official Twitter Blog. https://blog.
twitter.com/2009/discovery—-engine-coming.

Biz Stone. April 30, 2009. Twitter search for everyone! The Official Twitter Blog. https://blog.twitter.
com/2009/twitter—-search—everyone.

Twitter. April 4, 2011. Discover new accounts and search like a pro. The Official Twitter Blog. https:
//blog.twitter.com/2011/discover—-new—accounts—and-search-pro.

67



Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. 2010. TwitterRank: Finding topic-sensitive influential
twitterers. WSDM ’10: Proceedings of the Third ACM International Conference on Web Search and Data
Mining. 261-270.

Florian Wolf, Edward Gibson and Timothy Desmet. 2004. Discourse coherence and pronoun resolution. Lan-
guage and Cognitive Processes, 19(6): 665-675.

68



Deep Convolutional Neural Networks for
Sentiment Analysis of Short Texts

Cicero Nogueira dos Santos Maira Gatti
Brazilian Research Lab Brazilian Research Lab
IBM Research IBM Research
cicerons@br.ibm.com mairacg@br.ibm.com
Abstract

Sentiment analysis of short texts such as single sentences and Twitter messages is challenging
because of the limited contextual information that they normally contain. Effectively solving this
task requires strategies that combine the small text content with prior knowledge and use more
than just bag-of-words. In this work we propose a new deep convolutional neural network that ex-
ploits from character- to sentence-level information to perform sentiment analysis of short texts.
We apply our approach for two corpora of two different domains: the Stanford Sentiment Tree-
bank (SSTb), which contains sentences from movie reviews; and the Stanford Twitter Sentiment
corpus (STS), which contains Twitter messages. For the SSTb corpus, our approach achieves
state-of-the-art results for single sentence sentiment prediction in both binary positive/negative
classification, with 85.7% accuracy, and fine-grained classification, with 48.3% accuracy. For the
STS corpus, our approach achieves a sentiment prediction accuracy of 86.4%.

1 Introduction

The advent of online social networks has produced a crescent interest on the task of sentiment analysis for
short text messages (Go et al., 2009; Barbosa and Feng, 2010; Nakov et al., 2013). However, sentiment
analysis of short texts such as single sentences and and microblogging posts, like Twitter messages, is
challenging because of the limited amount of contextual data in this type of text. Effectively solving this
task requires strategies that go beyond bag-of-words and extract information from the sentence/message
in a more disciplined way. Additionally, to fill the gap of contextual information in a scalable manner, it
is more suitable to use methods that can exploit prior knowledge from large sets of unlabeled texts.

In this work we propose a deep convolutional neural network that exploits from character- to sentence-
level information to perform sentiment analysis of short texts. The proposed network, named Character
to Sentence Convolutional Neural Network (CharSCNN), uses two convolutional layers to extract rele-
vant features from words and sentences of any size. The proposed network can easily explore the richness
of word embeddings produced by unsupervised pre-training (Mikolov et al., 2013). We perform experi-
ments that show the effectiveness of CharSCNN for sentiment analysis of texts from two domains: movie
review sentences; and Twitter messages (tweets). CharSCNN achieves state-of-the-art results for the two
domains. Additionally, in our experiments we provide information about the usefulness of unsupervised
pre-training; the contribution of character-level features; and the effectiveness of sentence-level features
to detect negation.

This work is organized as follows. In Section 2, we describe the proposed the Neural Network archi-
tecture. In Section 3, we discuss some related work. Section 4 details our experimental setup and results.
Finally, in Section 5 we present our final remarks.

2 Neural Network Architecture
Given a sentence, CharSCNN computes a score for each sentiment label 7 € T. In order to score
a sentence, the network takes as input the sequence of words in the sentence, and passes it through

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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a sequence of layers where features with increasing levels of complexity are extracted. The network
extracts features from the character-level up to the sentence-level. The main novelty in our network
architecture is the inclusion of two convolutional layers, which allows it to handle words and sentences
of any size.

2.1 Initial Representation Levels

The first layer of the network transforms words into real-valued feature vectors (embeddings) that cap-
ture morphological, syntactic and semantic information about the words. We use a fixed-sized word
vocabulary V"¢, and we consider that words are composed of characters from a fixed-sized character
vocabulary V", Given a sentence consisting of N words {w1,ws, ..., wx}, every word w, is con-
verted into a vector u,, = [r*"%; "], which is composed of two sub-vectors: the word-level embedding
rwrd ¢ R1"™ and the character-level embedding V" ¢ R of w,,. While word-level embeddings are
meant to capture syntactic and semantic information, character-level embeddings capture morphological
and shape information.

2.1.1 Word-Level Embeddings

Word-level embeddings are encoded by column vectors in an embedding matrix W € RA"™ X[V
wrd . . .

Each column Wiw’”d € R¥" corresponds to the word-level embedding of the i-th word in the vocabulary.

We transform a word w into its word-level embedding " by using the matrix-vector product:

rwrd _ erd,Uw (1)

where v* is a vector of size }V“””d| which has value 1 at index w and zero in all other positions. The
matrix W is a parameter to be learned, and the size of the word-level embedding d“"? is a hyper-
parameter to be chosen by the user.

2.1.2 Character-Level Embeddings

Robust methods to extract morphological and shape information from words must take into consideration
all characters of the word and select which features are more important for the task at hand. For instance,
in the task of sentiment analysis of Twitter data, important information can appear in different parts
of a hash tag (e.g., “#SoSad”, “#ILikelt”) and many informative adverbs end with the suffix “ly” (e.g.
“beautifully”, “perfectly” and “badly”’). We tackle this problem using the same strategy proposed in
(dos Santos and Zadrozny, 2014), which is based on a convolutional approach (Waibel et al., 1989). As
depicted in Fig. 1, the convolutional approach produces local features around each character of the word
and then combines them using a max operation to create a fixed-sized character-level embedding of the
word.

Given a word w composed of M characters {c1, ca, ..., cpr }, we first transform each character ¢y, into
a character embedding 7¢/". Character embeddings are encoded by column vectors in the embedding
matrix W € RI" IV Given a character c, its embedding r"" is obtained by the matrix-vector
product:

70ch1" — Wchrvc (2)

where v€ is a vector of size !Vd”"‘ which has value 1 at index c and zero in all other positions. The input
for the convolutional layer is the sequence of character embeddings {rfm, rghT, ey rﬂT .

The convolutional layer applies a matrix-vector operation to each window of size k" of successive
windows in the sequence {r‘f’”, rgh", - TJC\/}]LT}. Let us define the vector z,, € RIk" a5 the con-
catenation of the character embedding m, its (k°*" — 1)/2 left neighbors, and its (k°*" — 1)/2 right

neighbors!:
5 = Tchr rchr T
m mf(kchril)/27 Tty er(kc’“"fl)/Q

"We use a special padding character for the characters with indices outside of the word boundaries.
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Figure 1: Convolutional approach to character-level feature extraction.

The convolutional layer computes the j-th element of the vector 7" € R, which is the character-level
embedding of w, as follows:

3)

[rt; = max [WO%, +1°]

l<m<M J

where W0 € Reluxd" k"™ ¢ the weight matrix of the convolutional layer. The same matrix is used to

extract local features around each character window of the given word. Using the max over all character

windows of the word, we extract a “global” fixed-sized feature vector for the word.

Matrices W and W9, and vector b° are parameters to be learned. The size of the character vector

d°", the number of convolutional units ¢/? (which corresponds to the size of the character-level embed-
ding of a word), and the size of the character context window k" are hyper-parameters.

2.2 Sentence-Level Representation and Scoring

Given a sentence = with N words {wi,ws, ..., wy}, which have been converted to joint word-level
and character-level embedding {u1, ug, ..., un}, the next step in CharSCNN consists in extracting a
sentence-level representation r:¢"*. Methods to extract a sentence-wide feature set most deal with two
main problems: sentences have different sizes; and important information can appear at any position in
the sentence. We tackle these problems by using a convolutional layer to compute the sentence-wide
feature vector ¢!, This second convolutional layer in our neural network architecture works in a very
similar way to the one used to extract character-level features for words. This layer produces local
features around each word in the sentence and then combines them using a max operation to create a
fixed-sized feature vector for the sentence.

The second convolutional layer applies a matrix-vector operation to each window of size k" of
successive windows in the sequence {uj,ug,...,un}. Let us define the vector z, € RV +eld)kwrd oo
the concatenation of a sequence of k"% embeddings, centralized in the n-th word?:

T
Zp = (un_(kwrd_l)/Q, ceey un+(kwrd_1)/2>

>We use a special padding token for the words with indices outside of the sentence boundaries.
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The convolutional layer computes the j-th element of the vector 75 ¢ R as follows:

t] . 1 1
[Tsen ]j — 1I<I},L8%XN [W Zn + b ]j

4

where W1 € RelwX (@™ +eli)k*™ i the weight matrix of the convolutional layer. The same matrix is
used to extract local features around each word window of the given sentence. Using the max over
all word windows of the sentence, we extract a “global” fixed-sized feature vector for the sentence.
Matrix W and vector b' are parameters to be learned. The number of convolutional units ¢l (which
corresponds to the size of the sentence-level feature vector), and the size of the word context window
k¥ are hyper-parameters to be chosen by the user.

Finally, the vector r3¢™, the “global’ feature vector of sentence z, is processed by two usual neural
network layers, which extract one more level of representation and compute a score for each sentiment
label 7 € T':

s(x) = W2h(W2rsemt 4+ p?) 4-b° (5)

where matrices W2 € RMuxclu and W3 € RITI*Pu and vectors b2 € R and b3 € RI7| are parameters
to be learned. The transfer function A(.) is the hyperbolic tangent. The number of hidden units hl,, is a
hyper-parameter to be chosen by the user.

2.3 Network Training

Our network is trained by minimizing a negative likelihood over the training set D. Given a sentence z,
the network with parameter set # computes a score sg(z), for each sentiment label 7 € T'. In order to
transform these scores into a conditional probability distribution of labels given the sentence and the set
of network parameters 6, we apply a softmax operation over the scores of all tags 7 € T

639 (Z)T

Z e50(T)i (6)

VieT

p(rlz,0) =

Taking the log, we arrive at the following conditional log-probability:

log p (7]z,0) = sp(x); — log (Z 689(£)i> o

vieT

We use stochastic gradient descent (SGD) to minimize the negative log-likelihood with respect to 6:

0 > —logp(ylz,0) ®)

(z,y)eD

where (z,y) corresponds to a sentence in the training corpus D and y represents its respective label.

The backpropagation algorithm is a natural choice to efficiently compute gradients of network archi-
tectures such as the one proposed in this work (Lecun et al., 1998; Collobert, 2011). In order to perform
our experiments, we implement the proposed CharSCNN architecture using the Theano library (Bergstra
et al., 2010). Theano is a versatile Python library that allows the efficient definition, optimization, and
evaluation of mathematical expressions involving multi-dimensional arrays. We use Theano’s automatic
differentiation capabilities in order to implement the backpropagation algorithm.

3 Related Work

There are a few works on neural network architectures for sentiment analysis. In (Socher et al., 2011),
the authors proposed a semi-supervised approach based on recursive autoencoders for predicting senti-
ment distributions. The method learns vector space representation for multi-word phrases and exploits
the recursive nature of sentences. In (Socher et al., 2012), it is proposed a matrix-vector recursive neu-
ral network model for semantic compositionality, which has the ability to learn compositional vector

72



representations for phrases and sentences of arbitrary length. The vector captures the inherent meaning
of the constituent, while the matrix captures how the meaning of neighboring words and phrases are
changed. In (Socher et al., 2013b) the authors propose the Recursive Neural Tensor Network (RNTN)
architecture, which represents a phrase through word vectors and a parse tree and then compute vectors
for higher nodes in the tree using the same tensor-based composition function. Our approach differ from
these previous works because it uses a feed-forward neural network instead of a recursive one. Moreover,
it does not need any input about the syntactic structure of the sentence.

Regarding convolutional networks for NLP tasks, in (Collobert et al., 2011), the authors use a convo-
lutional network for the semantic role labeling task with the goal avoiding excessive task-specific feature
engineering. In (Collobert, 2011), the authors use a similar network architecture for syntactic parsing.
CharSCNN is related to these works because they also apply convolutional layers to extract sentence-
level features. The main difference in our neural network architecture is the addition of one convolutional
layer to extract character features.

In terms of using intra-word information in neural network architectures for NLP tasks, Alexandrescu
et al. (2006) present a factored neural language model where each word is represented as a vector of
features such as stems, morphological tags and cases and a single embedding matrix is used to look
up all of these features. In (Luong et al., 2013), the authors use a recursive neural network (RNN) to
explicitly model the morphological structures of words and learn morphologically-aware embeddings.
Lazaridou et al. (Lazaridou et al., 2013) use compositional distributional semantic models, originally
designed to learn meanings of phrases, to derive representations for complex words, in which the base
unit is the morpheme. In (Chrupala, 2013), the author proposes a simple recurrent network (SRN) to learn
continuous vector representations for sequences of characters, and use them as features in a conditional
random field classifier to solve a character level text segmentation and labeling task. The main advantage
of our approach to extract character-level features is it flexibility. The convolutional layer allows the
extraction of relevant features from any part of the word and do not need handcrafted inputs like stems
and morpheme lists (dos Santos and Zadrozny, 2014).

4 Experimental Setup and Results

4.1 Sentiment Analysis Datasets

We apply CharSCNN for two different corpora from two different domains: movie reviews and Twitter
posts. The movie review dataset used is the recently proposed Stanford Sentiment Treebank (SSTb)
(Socher et al., 2013b), which includes fine grained sentiment labels for 215,154 phrases in the parse
trees of 11,855 sentences. In our experiments we focus in sentiment prediction of complete sentences.
However, we show the impact of training with sentences and phrases instead of only sentences.

The second labeled corpus we use is the Stanford Twitter Sentiment corpus (STS) introduced by
(2009). The original training set contains 1.6 million tweets that were automatically labeled as posi-
tive/negative using emoticons as noisy labels. The test set was manually annotated by Go et al. (2009).
In our experiments, to speedup the training process we use only a sample of the training data consisting
of 80K (5%) randomly selected tweets. We also construct a development set by randomly selecting 16K
tweets from Go et al.’s training set. In Table 1, we present additional details about the two corpora.

Dataset | Set # sentences/tweets # classes
Train 8544 5

SSTb Dev 1101 5
Test 2210 5
Train 80K 2

STS Dev 16K 2
Test 498 3

Table 1: Sentiment Analysis datasets.
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4.2 Unsupervised Learning of Word-Level Embeddings

Word-level embeddings play a very important role in the CharSCNN architecture. They are meant to
capture syntactic and semantic information, which are very important to sentiment analysis. Recent
work has shown that large improvements in terms of model accuracy can be obtained by performing
unsupervised pre-training of word embeddings (Collobert et al., 2011; Luong et al., 2013; Zheng et
al., 2013; Socher et al., 2013a). In our experiments, we perform unsupervised learning of word-level
embeddings using the word2vec tool?, which implements the continuous bag-of-words and skip-gram
architectures for computing vector representations of words (Mikolov et al., 2013).

We use the December 2013 snapshot of the English Wikipedia corpus as a source of unlabeled data.
The Wikipedia corpus has been processed using the following steps: (1) removal of paragraphs that are
not in English; (2) substitution of non-western characters for a special character; (3) tokenization of the
text using the tokenizer available with the Stanford POS Tagger (Manning, 2011); (4) and removal of
sentences that are less than 20 characters long (including white spaces) or have less than 5 tokens. Like
in (Collobert et al., 2011) and (Luong et al., 2013), we lowercase all words and substitute each numerical
digit by a 0 (e.g., 1967 becomes 0000). The resulting clean corpus contains about 1.75 billion tokens.

When running the word2vec tool, we set that a word must occur at least 10 times in order to be included
in the vocabulary, which resulted in a vocabulary of 870,214 entries. To train our word-level embeddings
we use word2vec’s skip-gram method with a context window of size 9. The training time for the English
corpus is around 1h10min using 12 threads in a Intel® Xeon® E5-2643 3.30GHz machine.

In our experiments, we do not perform unsupervised pre-training of character-level embeddings, which
are initialized by randomly sampling each value from an uniform distribution: U (—r,r), where r =

6
———————. There are 94 different characters in the SSTb corpus and 453 different characters in
|Vchr’ + dchr
the STS corpus. Since the two character vocabularies are relatively small, it has been possible to learn

reliable character-level embeddings using the labeled training corpora. The raw (not lowercased) words
are used to construct the character vocabularies, which allows the network to capture relevant information
about capitalization.

4.3 Model Setup

We use the development sets to tune the neural network hyper-parameters. Many different combinations
of hyper-parameters can give similarly good results. We spent more time tuning the learning rate than
tuning other parameters, since it is the hyper-parameter that has the largest impact in the prediction
performance. The only two parameters with different values for the two datasets are the learning rate
and the number of units in the convolutional layer that extract sentence features. This provides some
indication on the robustness of our approach to multiple domains. For both datasets, the number of
training epochs varies between five and ten. In Table 2, we show the selected hyper-parameter values for
the two labeled datasets.

Parameter | Parameter Name SSTh | STS
dwrd Word-Level Embeddings dimension 30 30
fwrd Word Context window 5 5
dehr Char. Embeddings dimension 5 5
kchr Char. Context window 3 3
clg Char. Convolution Units 10 50
cll Word Convolution Units 300 | 300
hl, Hidden Units 300 | 300
A Learning Rate 0.02 | 0.01

Table 2: Neural Network Hyper-Parameters

3https://code.google.com/p/word2vec/
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In order to assess the effectiveness of the proposed character-level representation of words, we com-
pare the proposed architecture CharSCNN with an architecture that uses only word embeddings. In
our experiments, SCNN represents a network which is fed with word representations only, i.e, for each
word w, its embedding is u,, = 7*"%. For SCNN, we use the same NN hyper-parameters values (when
applicable) shown in Table 2.

4.4 Results for SSTb Corpus

In Table 3, we present the result of CharSCNN and SCNN for different versions of the SSTb corpus. Note
that SSTb corpus is a sentiment treebank, hence it contains sentiment annotations for all phrases in all
sentences in the corpus. In our experiments, we check whether using examples that are single phrases, in
addition to complete sentences, can provide useful information for training the proposed NN. However,
in our experiments the test set always includes only complete sentences. In Table 3, the column Phrases
indicates whether all phrases (yes) or only complete sentences (no) in the corpus are used for training.
The Fine-Grained column contains prediction results for the case where 5 sentiment classes (labels) are
used (very negative, negative, neutral, positive, very positive). The Positive/Negative column presents
prediction results for the case of binary classification of sentences, i.e, the neutral class is removed, the
two negative classes are merged as well as the two positive classes.

Model Phrases Fine-Grained Positive/Negative
CharSCNN yes 48.3 85.7
SCNN yes 48.3 85.5
CharSCNN no 43.5 82.3
SCNN no 43.5 82.0
RNTN (Socher et al., 2013b) yes 45.7 85.4
MV-RNN (Socher et al., 2013b) yes 44 .4 82.9
RNN (Socher et al., 2013b) yes 43.2 82.4
NB (Socher et al., 2013b) yes 41.0 81.8
SVM (Socher et al., 2013b) yes 40.7 79.4

Table 3: Accuracy of different models for fine grained (5-class) and binary predictions using SSTb.

In Table 3, we can note that CharSCN and SCNN have very similar results in both fine-grained and bi-
nary sentiment prediction. These results suggest that the character-level information is not much helpful
for sentiment prediction in the SSTb corpus. Regarding the use of phrases in the training set, we can note
that, even not explicitly using the syntactic tree information when performing prediction, CharSCNN
and SCNN benefit from the presence of phrases as training examples. This result is aligned with Socher
et al.’s (2013b) suggestion that information of sentiment labeled phrases improves the accuracy of other
classification algorithms such as support vector machines (SVM) and naive Bayes (NB). We believe
that using phrases as training examples allows the classifier to learn more complex phenomena, since
sentiment labeled phrases give the information of how words (phrases) combine to form the sentiment
of phrases (sentences). However, it is necessary to perform more detailed experiments to confirm this
conjecture.

Regarding the fine-grained sentiment prediction, our approach provides an absolute accuracy improve-
ment of 2.6 over the RNTN approach proposed by (Socher et al., 2013b), which is the previous best
reported result for SSTb. CharSCN, SCNN and Socher et al.’s RNTN have similar accuracy performance
for binary sentiment prediction. Compared to RNTN, our method has the advantage of not needing the
output of a syntactic parser when performing sentiment prediction. For comparison reasons, in Table
3 we also report Socher et al.’s (2013b) results for sentiment classifiers trained with recursive neural
networks (RNN), matrix-vector RNN (MV-RNN), NB, and SVM algorithms.

Initializing word-embeddings using unsupervised pre-training gives an absolute accuracy increase of
around 1.5 when compared to randomly initializing the vectors. The Theano based implementation of
CharSCNN takes around 10 min. to complete one training epoch for the SSTb corpus with all phrases
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and five classes. In our experiments, we use 4 threads in a Intel® Xeon® E5-2643 3.30GHz machine.

4.5 Results for STS Corpus

In Table 4, we present the results of CharSCNN and SCNN for sentiment prediction using the STS cor-
pus. As expected, character-level information has a greater impact for Twitter data. Using unsupervised
pre-training, CharSCNN provides an absolute accuracy improvement of 1.2 over SCNN. Additionally,
initializing word-embeddings using unsupervised pre-training gives an absolute accuracy increase of
around 4.5 when compared to randomly initializing the word-embeddings.

In Table 4, we also compare CharSCNN performance with other approaches proposed in the literature.
In (Speriosu et al., 2011), a label propagation (LProp) approach is proposed, while Go et al. (2009)
use maximum entropy (MaxEnt), NB and SVM-based classifiers. CharSCNN outperforms the previous
approaches in terms of prediction accuracy. As far as we know, 86.4 is the best prediction accuracy
reported so far for the STS corpus.

Model Accuracy Accuracy (random
(unsup. pre-training) | word embeddings)

CharSCNN 86.4 81.9

SCNN 85.2 82.2

LProp (Speriosu et al., 2011) 84.7

MaxEnt (Go et al., 2009) 83.0

NB (Go et al., 2009) 82.7

SVM (Go et al., 2009) 82.2

Table 4: Accuracy of different models for binary predictions (positive/negative) using STS Corpus.

4.6 Sentence-level features

In figures 2 and 3 we present the behavior of CharSCNN regarding the sentence-level features extracted
for two cases of negation, which are correctly predicted by CharSCNN. We choose these cases because
negation is an important issue in sentiment analysis. Moreover, the same sentences are also used as
illustrative examples in (Socher et al., 2013b). Note that in the convolutional layer, 300 features are first
extracted for each word. Then the max operator selects the 300 features which have the largest values
among the words to construct the sentence-level feature set r*¢**. Figure 2 shows a positive sentence
(left) and its negation. We can observe that in both versions of the sentence, the extracted features
concentrate mainly around the main topic, “film”, and the part of the phrase that indicates sentiment
(“liked” and “did ’nt like”). Note in the left chart that the word “liked” has a big impact in the set of
extracted features. On the other hand, in the right chart, we can see that the impact of the word “like” is
reduced because of the negation “did 'nt”, which is responsible for a large part of the extracted features.

In Figure 3 a similar behavior can be observed. While the very negative expression “incredibly dull”
is responsible for 69% of the features extracted from the sentence in the left, its negation “definitely
not dull”, which is somewhat more positive, is responsible for 77% of the features extracted from the
sentence in the chart at right . These examples indicate CharSCNN’s robustness to handle negation, as
well as its ability to capture information that is important to sentiment prediction.

5 Conclusions

In this work we present a new deep neural network architecture that jointly uses character-level, word-
level and sentence-level representations to perform sentiment analysis. The main contributions of the
paper are: (1) the idea of using convolutional neural networks to extract from character- to sentence-
level features; (2) the demonstration that a feed-forward neural network architecture can be as effective
as RNTN (Socher et al., 2013a) for sentiment analysis of sentences; (3) the definition of new state-of-
the-art results for SSTb and STS corpora.
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Figure 2: Number of local features selected at each word when forming the sentence-level representation.
In this example, we have a positive sentence (left) and its negation (right).
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Figure 3: Number of local features selected at each word when forming the sentence-level representation.
In this example, we have a negative sentence (left) and its negation (right).

As future work, we would like to analyze in more detail the role of character-level representations
for sentiment analysis of tweets. Additionally, we would like to check the impact of performing the
unsupervised pre-training step using texts from the specific domain at hand.
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Abstract

This paper addresses implicit opinions expressed via inference over explicit sentiments and
events that positively/negatively affect entities (goodFor/badFor, gfbf events). We incorporate
the inferences developed by implicature rules into an optimization framework, to jointly improve
sentiment detection toward entities and disambiguate components of gfbf events. The framework
simultaneously beats the baselines by more than 10 points in F-measure on sentiment detection
and more than 7 points in accuracy on gfbf polarity disambiguation.

1 Introduction

Previous work in NLP on sentiment analysis has mainly focused on explicit sentiments. However, as
noted in (Deng and Wiebe, 2014), many opinions are expressed implicitly, as shown by this example:

Ex(1) The reform would lower health care costs, which would be a tremendous positive change across the entire
health-care system.

There is an explicit positive sentiment toward the event of “reform lower costs”. However, in expressing
this sentiment, the writer also implies he is negative toward the “costs”, since he’s happy to see the costs
being decreased. Moreover, the writer may be positive toward “reform” since it contributes to the “lower”
event. Such inferences may be seen as opinion-oriented implicatures (i.e., defeasible inferences)!.

We develop a set of rules for inferring and detecting implicit sentiments from explicit sentiments and
events such as “lower” (Wiebe and Deng, 2014). In (Deng et al., 2013), we investigate such events,
defining a badFor (bf) event to be an event that negatively affects the theme and a goodFor (gf) event to
be an event that positively affects the theme of the event.” Here, “lower” is a bf event. According to their
annotation scheme, goodFor/badFor (gfbf) events have NP agents and themes (though the agent may be
implicit), and the polarity of a gf event may be changed to bf by a reverser (and vice versa).

The ultimate goal of this work is to utilize gfbf information to improve detection of the writer’s senti-
ments toward entities mentioned in the text. However, this requires resolving several ambiguities: (Q1)
Given a document, which spans are gfbf events? (Q2) Given a gfbf text span, what is its polarity, gf
or bf? (Q3) Is the polarity of a gfbf event being reversed? (Q4) Which NP in the sentence is the agent
and which is the theme? (Q5) What are the writer’s sentiments toward the agent and theme, positive
or negative? Fortunately, the implicature rules in (Deng and Wiebe, 2014) define dependencies among
these ambiguities. As in Ex(1), the sentiments toward the agent and theme, the sentiment toward the gfbf
event (positive or negative), and the polarity of the gfbf event (gf or bf) are all interdependent. Thus,
rather than having to take a pipeline approach, we are able to develop an optimization framework which
exploits these interdependencies to jointly resolve the ambiguities.

Specifically, we develop local detectors to analyze the four individual components of gfbf events,
(Q2)-(Q5) above. Then, we propose an Integer Linear Programming (ILP) framework to conduct global

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

ISpeciﬁcally, we focus on generalized conversational implicature (Grice, 1967; Grice, 1989).

>Compared to (Deng et al., 2013), we change the term “object” to “theme” as the later is more appropriate for this task.
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inference, where the gfbf events and their components are variables and the interdependencies defined by
the implicature rules are encoded as constraints over relevant variables in the framework. The reason we
do not address (Q1) is that the gold standard we use for evaluation contains sentiment annotations only
toward the agents and themes of gfbf events. We are only able to evaluate true hits of gfbf events. Thus,
the input to the system is the set of the text spans marked as gfbf events in the corpus. The results show
that, compared to the local detectors, the ILP framework improves sentiment detection by more than 10
points in F-measure and disambiguating gfbf polarity by more than 7 points in the accuracy, without any
loss in accuracy for other two components.

2 Related Work

Most work in sentiment analysis focuses on classifying explicit sentiments and extracting explicit opinion
expressions, holders and targets (Wiebe et al., 2005; Johansson and Moschitti, 2013; Yang and Cardie,
2013). There is some work investigating features that directly indicate implicit sentiments (Zhang and
Liu, 2011; Feng et al., 2013). In contrast, we focus on how we can bridge between explicit and implicit
sentiments via inference. To infer the implicit sentiments related to gfbf events, some work mines various
syntactic patterns (Choi and Cardie, 2008), proposes linguistic templates (Zhang and Liu, 2011; Anand
and Reschke, 2010; Reschke and Anand, 2011), or generates a lexicon of patient polarity verbs (Goyal
et al., 2013). Different from their work, which do not cover all cases relevant to gfbf events, (Deng and
Wiebe, 2014) defines a generalized set of implicature rules and proposes a graph-based model to achieve
sentiment propagation between the agents and themes of gfbf events. However, that system requires
all of the gfbf information (Q1)-(Q4) to be input from the manual annotations; the only ambiguity it
resolves is sentiments toward entities. In contrast, the method in this paper tackles four ambiguities
simultaneously. Further, as we will see below in Section 6, the improvement over the local detectors by
the current method is greater than that by the previous method, even though it operates over the noisy
output of local components automatically.

Different from pipeline architectures, where each step is computed independently, joint inference has
often achieved better results. Roth and Yih (2004) formulate the task of information extraction using
Integer Linear Programming (ILP). Since then, ILP has been widely used in various tasks in NLP, in-
cluding semantic role labeling (Punyakanok et al., 2004; Punyakanok et al., 2008; Das et al., 2012),
joint extraction of opinion entities and relations (Choi et al., 2006; Yang and Cardie, 2013), co-reference
resolution (Denis and Baldridge, 2007), and summarization (Martins and Smith, 2009). The most similar
ILP model to ours is (Somasundaran and Wiebe, 2009), which improves opinion polarity classification
using discourse constraints in an ILP model. However, their work addresses discourse relations among
explicit opinions in different sentences.

3 GoodFor/BadFor Event and Implicature

This work addresses sentiments toward, in general, states and events which positively or negatively
affect entities. Deng et al. (2013) (hereafter DCW) identify a clear case that occurs frequently in opinion
sentences, namely the gfbf events mentioned above. As defined in DCW, a gf event is an event that
positively affects the theme of the event and a bf event is an event that negatively affects the theme.
According to the annotation schema, gfbf events have NP agents and themes (though the agent may be
implicit). In the sentence “President Obama passed the bill”, the agent of the gf “passed” is “President
Obama” and the theme is “the bill”. In the sentence “The bill was denied”, the agent of the bf “was
denied” is implicit. The polarity of a gf event may be changed to bf by a reverser (and vice versa). For
example, in “The reform will not worsen the economy,” “not” is a reverser and it reverses the polarity
from bf to gf.>

The constraints we encode in the ILP framework described below are based on implicature rules in
(Deng and Wiebe, 2014). Table 1 gives two rule schemas, each of which defines four specific rules. In

3DCW also introduce retainers. We don’t analyze retainers in this work since they do not affect the polarity of gfbfs, and
only 2.5% of gfbfs have retainers in the corpus.
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s(gfbf) | gfbf | — | s(agent) | s(theme) s(gfbf) | gfbf | — | s(agent) | s(theme)
1 | positive | gf | — | positive | positive positive | bf | — | positive | negative
2 | negative | gf | — | negative | negative negative | bf | — | negative | positive

Table 1: Rule Schema 1 & Rule Schema 3 (Deng and Wiebe, 2014)

the table, s(a;) =  means that the writer’s sentiment toward « is 3, where « is a gfbf event, or the agent
or theme of a gfbf event, and [ is either positive or negative. P — Q means to infer Q from P.

Applying the rules to Ex(1): the writer expresses a positive sentiment (“positive”) toward a bf event
(“lower”), thus matching Case 3 in Table 1. We infer that the writer is positive toward the agent (“re-
form”) and negative toward the theme (“costs”). Two other rule schemas (not shown) make the same
inferences as Rule Schemas 1 and 3 but in the opposite direction. As we can see, if two entities partic-
ipate in a gf event, the writer has the same sentiment toward the agent and theme, while if two entities
participate in a bf event, the writer has opposite sentiments toward them. Later we use this observation
in our experiments.

4 Global Optimization Framework

Optimization is performed over two sets of variables. The first set is GFBF, containing a variable for
each gfbf event in the document. The other set is Entity, containing a variable for each agent or theme
candidate. Each variable k£ in GFBF has its corresponding agent and theme variables, ¢ and j, in Entity.
The three form a triple unit, (i, k, j). The set Triple consists of each (i, k, j), recording the correspon-
dence between variables in GFBF and Entity. The goal of the framework is to assign optimal labels to
variables in Entity and GFBF. We first introduce how we recognize candidates for agents and themes,
then introduce the optimization framework, and then define local scores that are input to the framework.

4.1 Local Agents and Theme Candidates Detector

We extract two agent candidates and two theme candidates for each gfbf event (one each will ultimately
be chosen by the ILP model).* We use syntax, and the output of the SENNA (Collobert et al., 2011)
semantic role labeling tool. SENNA labels the AO (subject), Al (object), and A2 (indirect object) spans
for each predicate, if possible. To extract the semantic agent candidate: If SENNA labels a span as AO
of the gfbf event, we consider it as the semantic agent; if there is no AO but Al is labeled, we consider
Al; if there is no AO or Al but A2 is labeled, we consider A2. To extract the syntactic agent candidate,
we find the nearest noun in front of the gfbf span, and then extract any other word that depends on the
noun according to the dependency parse. Similarly, to extract the semantic theme candidate, we consider
Al, A2, A0 in order. To extract the syntactic theme candidate, the same procedure is conducted as for
the syntactic agent, but the nearest noun should be after the gfbf. If there is no A0, A1 or A2, then there
is only one agent candidate, implicit and only one theme candidate, null. We treat a null theme as an
incorrect span in the later evaluations. If the two agent (theme) candidate spans are the same, there is
only one candidate.

4.2 Integer Linear Programming Framework

We use Integer Linear Programming (ILP) to assign labels to variables. Variables in Entity will be
assigned positive or negative, representing the writer’s sentiments toward them. We may have two candi-
date agents for a gfbf and that we will choose between them. Thus, only one agent is assigned a positive
or negative label; the other is considered to be an incorrect agent of the gfbf (similarly for the theme can-
didates). Each variable in GFBF will be assigned the label gf or bf. Optionally, it may also be assigned
the label reversed. Label gf or bf is the polarity of the gfbf event; reversed is assigned if the polarity is
reversed (e.g., for “not harmed”, the labels are bf and reversed).
The objective function of the ILP is:

“This framework is able to handle any number of candidates. The methods we tried using more candidates did not perform
as well - the gain in recall was offset by larger losses in precision.

81



min ( — 1% Z Z picuic> + Z Eikj + Z Oikj (1)

UL g frUlpfee- . )
gf H1vf i€EGFBFUEntity c€L; (i,k,j)ETriple (i,k,j)ETriple

subject to
uic € {0,1},Vi,c &ikj, 0irj € {0,1},Y(i, k, §) € Triple 2)

where L; is the set of labels given to Vi € GFBF U Entity. If i € GFBF, L; is {gf, bf, reversed} ({gf,
bf, r}, for short). If i € Entity, L; is {positive, negative} ({pos, neg}, for short). wu;. is a binary in-
dicator representing whether the label c is assigned to the variable . When an indicator variable is 1,
the corresponding label is selected. p;. is the score given by local detectors, introduced in the following
sections. Variables &;;; and d;;; are binary slack variables that correspond to the gfbf implicature con-
straints of (i, k, 7). When a given slack variable is 1, the corresponding triple violates the implicature
constraints. Minimizing the objective function could achieve two goals at the same time. The first part
(=1 %>, >, picuic) tries to select a set of labels that maximize the scores given by the local detectors.
The second part (3, ; Sinj + > ik j dik;) aims at minimizing the cases where gfbf implicature constraints
are violated. Here we do not force each triple to obey the implicature constraints, but to minimize the
violating cases. For each variable, we have defined constraints:

> uke=1,Yk € GFBF 3)
c€Lgppr
> > we=1VkeGFBF (4 > > we=1,Yk€ GFBF (5)
i€Entity  c€ELEpntity JjEEntity, cELEntity
(i,k,j)E€Triple (i,k,j)ETriple

where Lgppp in Equation (3) is a subset of Lgrpr, consisting of {gf, bf}. Equation (3) means a
gfbf must be either gf or bf. But it is free to choose whether it is being reversed. Recall that we have two
agent candidates (al,a2) for a gfbf. Thus we have four agent indicators in Equation (4): %41 pos, Ual,negs
Ua2,pos aNd Ug2 neg. Equation (4) ensures that three of them are 0 and one of them is 1. For instance,
Uq1,pos assigned 1 means that candidate al is selected to be the agent span and pos is selected to be its
polarity. In this way, the framework disambiguates the agent span and sentiment polarity simultaneously.
(Similar comments apply for the theme candidates in Equation (5).)

According to the implicature rules in Table 1 in Section 3, the writer has the same sentiment toward
entities in a gf relation. Thus, for each triple unit (i, k, j), the gf constraints are applied via the following:

| Z Ui, pos — Z Uj,pos| + ‘Uk,gf — uk,r‘ <=1+ {ikj,Vk‘ € GFBF 6)
1,(4,k,5) 7y (4,k.3)

| D times— D Uinegl + lukgr —un,

i,(4,k,5) 3, (i,k,5)

<=1+ &y, ¥k € GFBF %)

We use ]uk,g = uy,r| to represent whether this triple is gf. In Equation (6), if this value is 1, then the
triple should follow the gf constraints. In that case, {;;; = 0 means that the triple doesn’t violate the
gf constraints, and | >, wj pos — ) y uj pos| must be 0. Further, in this case, ) ; u; pos and ) | ; Ujpos are
constrained to be of the same value (both 1 or 0) — that is, entities ¢ and 7 must be both positive or both
not positive. However, if §;;; = 1, Equation (6) does not constrain the values of the variables at all. If
|uk,gf — k| is O, representing that the triple is not gf, then Equation (6) does not constrain the values
of the variables. Similar comments apply to Equation (7).
In contrast, the writer has opposite sentiments toward entities in a bf relation.

3" tipos + Y Wpos — 1|+ |uk b — ure| <=1+ dinj,Vk € GFBF (8)
1,(4,k,3) 3:(1,k,35)

| > timeg+ D Ujmeg — U+ [ukps — ukr| <=1+ dik;, Vb € GFBF )
i, (i,k,5) FRCLND

We use |uy ;= uy,»| to represent whether this triple is bf. In Equation (8), if a triple is bf and the
constraints are not violated, then | >, u; pos + ), ; Wjpos — 1| must be 0. Further, in this case, ) ; % pos
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Ugr | upp | ur | ugr —up| | Jupy — uy| ugr | upy | ur | Jugs —up| | Jupy — uy|
Al 1 1010 1 0 0 | 10 0 1
B| 0 | 1 |1 1 0 T | 0 |1 0 1

Table 2: Truth table of being reversed or not (k is omitted)

and ) ; Uj,pos are constrained to be of the opposite value — that is, if entity ¢ is positive then entity j must
not be positive. Similar comments apply to Equation (9).

Note that above we use |uy, g —u, | and |ug pf —ug | to represent whether a triple is gf or bf. In Table
2, we show that they always take opposite values and that they are consistent with the actual polarities.
In Table 2, Case A means the triple is gf and Case B means the triple is bf but it is reversed. In both
cases, |ugr — u,| = 1, indicating that the triple should follow the gf constraints. Similarly for Case C
and Case D to follow the bf constraints.

4.3 Local GoodFor/BadFor Score: py. 4, Pk

We utilize a sense-level gfbf lexicon by (Choi et al., 2014). In total there are 6,622 gf senses and 3,290
bf senses. The gf lexicon covers 64% of the gf words in the corpus and the bf lexicon covers 42% of the
bf words. We then look up the gfbf span k in the gfbf lexicon. If £ only appears in the gf lexicon, then
Pk,gf = 1 —eand pypr = €. Here e = 0.0001, to prevent there being any 0 scores in our computation.
If & only appears in the bf lexicon, then py s = 1 — € and p; 4y = €. If k appears in both the gf and bf
lexicon, and there are a senses in the gf lexicon and b senses in the bf lexicon, then py ,r = a/(a + b)
and ppr = b/(a + b). If k is not in either lexicon, then py o5 = pips = €. If there is more than one
word in the gfbf span, we take the maximum score.

4.4 Local Reversed Score: py, ;.

As introduced in Section 3, a reverser changes the polarity of a gfbf. First, we build reverser lexicons
from Wilson’s shifter lexicon (2008), namely the entries labeled as genshifter, negation, and shifineg.
We create two lexicons: one with the verbs and the other with the non-verb entries, excluding nouns,
adjectives, and adverbs, since most non-verb reversers are prepositions or subordinating conjunctions.
There are 219 reversers in the entire corpus; 134 (61.19%) are instances of words in one of the two
lexicons. Based on the lexicon, we categorize reversers into three classes. Examples are shown below.

Ex(2) They will not be able to water down your coverage.
Ex(3) ... how a massive new bureaucracy will cut costs without hurting the old and the helpless.
Ex(4) The new law includes new rules to prevent insurance companies from overcharging patients.

Negation: An instance in this category is “not” in Ex(2). If any word in the gfbf span has a neg
dependency relation according to the Stanford dependency parser, then we consider the gfbf to be negated
(i.e., reversed). In this case the path between the negator and the gfbf is labeled neg and the length of the
path is one.

Other Non-Verb: This category consists of words such as “without” in Ex(3) (others are “never” and
“few”, etc). These words lower the extent of the gfbf event. We look in the sentence for instances of
words in the non-verb reverser lexicon, which are not tagged as noun, verb, adj, or adv. For any found,
we examine the path in the dependency parse between the potential reverser and the gfbf span. If the
path has at least one of advmod, pcomp, cc, xcomp, nsubj, neg and the length of the path is less than four
(learnt from development set), the event is considered to be reversed.

Verb: In Ex(4), the verb “prevent” stops the gfbf event “overcharging” from happening. We call such
words Verb reverser (others are “prohibit” and “ban”, etc). We look in the sentence for instances of words
in the verb reverser lexicon. For any that appear before the gfbf span in the sentence, if the path has at
least one of xcomp, pcomp, obj and the length of the path is less than four, then the event is reversed.
For the triple (companies, overcharging, patients) in Ex(4), though it is reversed by “prevent”, the agent
of the reverser, which is “law”, is different from the agent of the gfbf, which is “companies”, so the bf
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within the “overcharging” event is not reversed.” Though we extract the Verb reversers to evaluate the
performance of recognizing a reverser, in the optimization framework, gfbf events with Verb reversers
are not considered to be reversed, since almost all Verb reversers introduce new agents.

Different from other scores, py - could be negative. According to the heuristics above, the probability
of a gfbf event being reversed decreases as the length of the path increases. We define py , so it is
inversely proportional to the length of the path. Further, to make sense of a gfbf triple (agent, gfbf,
theme), where, e.g., the local detectors label it (pos, bf, pos), the framework is choosing the smaller
one from (a) —1 * py, * uy, (it has a reverser) versus (b) 1 x §;; (it is an exception to the rules). The
framework assigns uy, = 0 and &; = 1if —1 % py, > 1. It assigns u,, = 1 and &y; = 0 if
—1%* p, <= 1. For gfbf events which have Negation or Other Non-verb reversers, since we use the
length four as a threshold in the heuristics above, we define py, , = é — %, so that —1 x pg , = 5_ é > 1

4
if d > 4. For gfbf events for which no reverser word appears in the sentence, or those which only have
Verb reversers, p , = —1 * % (80 —1 * pg, > 1), so that the framework chooses case (b) (choosing the

gfbf event to be not reversed).

4.5 Local Sentiment Score: p; ;0s, Di neg

In the corpus of DCW, only the writer’s sentiments toward the agents and the themes of gfbf events are
annotated. Thus, since there are many false negatives of sentiments toward entities, the corpus does
not support training a classifier. Therefore, we adopt the same local sentiment detector from (Deng
and Wiebe, 2014), using available resources to detect writer’s sentiments toward all agent and theme
candidates.® The sentiment scores range from 0.5 to 1.

5 Co-reference In the Framework

So far the constraints in the framework are within a gfbf triple. Consider the following example:

Ex(5) The reform will decrease the healthcare costs and improve the medical qualify as expected.

The two gfbfs, “decrease” and “improve” have the same agent, “reform™. Thus, if there is more than
one gfbf in a sentence, and the path between the two gfbfs in dependency parse contains only conj or
xcomp, and there is no other noun between the latter gfbf and the conjunction, we assume the two agents
are the same and the sentiments toward them should be the same. Thus, for any ¢,j € Entity, if 1, j
co-refer’, or they are the same agent as described above, Coref(i,j) = 1 (otherwise 0). We add two
more constraints, similar to the gf constraints in Equations (6) and (7), as shown in Equation (10) and
(11). where v;; is a slack variable, e(3) is the set of agent/theme candidates linked to the same gfbf as 4
is. If Coref(i,j) = 0, Equations (10) and (11) do not constrain the variables. The objective function in
Equation (12) is updated to incorporate these new constraints.

| Zui,pos — Zuj,p05| + Coref(i,j) <=1+ v4;,Vi,j € Entity (10)
e(i) e(5)

| Zuiyneg - Zuj,neg| + Coref(i,j) <=1+ v, Vi, j € Entity (11)
e(d) e(4)

min ( —1x Z Z picuic) + Z Cikj + Z Oikj + Z Vij (12)

Ylgf ks i€GFBFUEntity ceL; (i,k,§) ETriple (i,k,j) €Triple i,j€ Entity
6 Experiment and Performance

In this section we introduce the data we use, the baseline methods, the evaluations and the results. In
addition, we give examples illustrating how opinion inference may improve performances.

SDCW defines here is a triple chain: (law, prevent (companies, overcharging, patients)). The reverser is changing the
polarity between “law” and “patients”, but it does not change the polarity between “companies” and “patients”.

*We use Opinion Extractor (Johansson and Moschitti, 2013) , opinionFinder (Wilson et al., 2005), MPQA subjectivity
lexicon (Wilson et al., 2005), General Inquirer (Stone et al., 1966) and a connotation lexicon (Feng et al., 2013), to detect
writer’s sentiments toward all agent and theme candidates, and all gfbf events. We adopt Rule 1 and Rule 3 to infer from the
sentiment toward event to the sentiment toward theme. Then we conduct a majority voting based on the results.

"We use the co-reference resolution system from (Stoyanov et al., 2010).
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6.1 Experiment Data

We use the “Affordable Care Act” corpus of DCW, consisting of 134 online editorials and blogs. In total,
there are 1,762 annotated triples, out of which 692 are gf or retainers and 1,070 are bf or reversers. From
the writer’s perspective, 1,495 noun phrases are annotated positive, 1,114 noun phrases are negative
and the remaining 8 are neutral. This indicates that there are many opinions in the corpus. Out of 134
documents in the corpus, 3 do not have any annotation. 6 are used as a development set to develop the
heuristics in Sections 4 and 5. We use the remaining 125 for the experiments.

6.2 Baseline Methods and Evaluation Metrics

We compare the output of the global optimization framework with the outputs of baseline systems built
from the local detectors in Section 4. For the gfbf polarity and reverser ambiguities, the local detectors
directly provide a disambiguation result. For the agent/theme span and sentiment ambiguities, the local
sentiment detector assigns positive and negative scores to each candidate. The framework chooses among
the combined options. Thus, for comparison, we build a baseline system that combines the outputs of
the local agent/theme candidate detector and the local sentiment detector.

Recall from Section 4, a variable k¥ € GFBF has two agent candidates, al and a2 € Entity. Together
there are four binary indicator variables: 41 pos, Ual,negs Ua2,pos AN Ug2 neg. Among these indicator
variables whose corresponding local scores (€.8., Pa1,pos 18 the score of w41 pos) are larger than 0.5,
the baseline system (denoted Local) chooses the one with the largest local sentiment score. If there is
a tie, it prefers the variable representing the semantic candidate. If there is still a tie, it chooses the
variable representing the majority polarity (positive). If all the local scores of the four variables are
0.5 (neutral), Local fails to recognize any sentiment for that entity, so it assigns O to all the indicator
variables. Local+coref takes the maximum local score of the entities if they co-ref, and assigns each
entity the maximum score before disambiguation.

Another baseline, Majority, always chooses the semantic candidate and the majority polarity.

To evaluate the performance in detecting sentiment, we use precision, recall, and F-measure. We do
not take into account any agent or theme manually annotated as neutral (there are only 8).

__ ##(auto=gold & gold!=neutral)
- #auto!=neutral

=gol 1d!= 1 2%P*R
Accuracy = R = #(auto=gold & gold!=neutral) Fo (13)

P
##gold!=neutral P+R

In the equations, auto is the system’s output and gold is the gold-standard label from annotations. Since
we don’t take into account any neutral agent or theme, #gold!/=neutral equals to all nodes in the exper-
iment set. Thus accuracy is equal to recall. We only report recall here. Here we have two definitions
of auto=gold: (1) Strict evaluation means that, by saying auto=gold, the agent/theme must have the
same polarity and must be the same NP as the gold standard, and (2) Relaxed evaluation means the
agent/theme has the same polarity as the gold standard, regardless whether the span is correct or not.

Note that according to DCW, an implicit agent isn’t annotated with any sentiment. Thus, for an
implicit agent in gold, if auto outputs the span “implicit”’, we treat it as a correct span with correct
polarity, regardless what sentiment auto gives to it. If auto outputs any span other than “implicit”, we
treat it as a wrong span with wrong polarity, regardless of its sentiment as well. For the theme span, if
auto outputs a “null” theme candidate, we treat it as a wrong span but we evaluate its sentiment according
to gold.

To evaluate extracting candidate span, we use accuracy. The baseline for this task always chooses the
semantic candidate. To evaluate gfbf polarity and reverser, we also use accuracy.

Note that although we evaluate the performance in different tasks separately, the framework resolves
all the ambiguities at the same time.

6.3 Results

We report the performance results for (A) sentiment detection in Table 3, on two sets. One is the subset
containing the agents and themes where auto has the correct spans with gold. The other is the set of
all agents and themes. As shown in Table 3, ILP significantly improves performance, approximately
10-20 points on F-measure over different baselines. Though Local has a competitive precision with
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correct span subset whole set, strict eval whole set, relaxed eval

P R F P R F P R F
ILP 0.6421 | 0.6421 | 0.6421 | 0.4401 | 0.4401 | 0.4401 | 0.5939 | 0.5939 | 0.5939
Local 0.6409 | 0.3332 | 0.4384 | 0.4956 | 0.2891 | 0.3652 | 0.5983 | 0.3490 | 0.4408

ILP+coref 0.6945 | 0.6945 | 0.6945 | 0.4660 | 0.4660 | 0.4660 | 0.6471 | 0.6471 | 0.6471
Local+coref | 0.6575 | 0.3631 | 0.4678 | 0.5025 | 0.3103 | 0.3836 | 0.6210 | 0.3834 | 0.4741

Nl WIN -

Majority 0.5792 | 0.5792 | 0.5792 | 0.3862 | 0.3862 | 0.3862 | 0.5462 | 0.5462 | 0.5462

Table 3: Performances of sentiment detection

ILP, it has a much lower recall. That means the local sentiment detector cannot recognize implicit
sentiments toward most entities. But ILP is able to recognize more entities correctly. By adding coref,
performance improves for both ILP and Local. In comparison to (Deng and Wiebe, 2014), our current
method improves more in F-measure (2.43 points more) over local sentiment detector than the earlier
work, even though the earlier work takes the manual annotations of all the gfbf information as input.

In terms of the other tasks: For (B) agent/theme span, the baseline achieves 66.67% in accuracy, com-
pared to 68.54% and 67.10% for ILP and ILP+coref, respectively. For (C) gfbf polarity, the baseline
has an accuracy of 70.68%, whereas ILP achieves 77.25% and ILP+coref achieves 77.47%, respectively,
both 7 points higher. This improvement is interesting because it represents cases in which the optimiza-
tion framework is able to infer the correct polarity even though the gfbf span is not recognized by the
local detector (i.e., the span isn’t in the gfbf lexicon). For (D) reverser, the baseline is 88.07% in accu-
racy. ILP and ILP+coref are competitive with the baseline: 89% and 88.07% respectively. Note that both
our local detector and /LP surpass the majority class (not reversed) which has an accuracy of 86.60%.

Following (Akkaya et al., 2009), since ILP is unsupervised without multiple runs, we adopt McNe-
mar’s test to measure statistical significance of our improvements (Dietterich, 1998). In Table 3, the
improvements in recalls of Line 1 over 2, Line 3 over 4, and Lines 1&3 over 5 are statistically significant
at the p < .001 level. The improvements of Line 3 over 1 are statistically significant at the p < .005
level. For accuracy of gfbf polarity, the improvement is significant at the p < .001 level.

6.4 Examples

This sections gives simplified examples to illustrate how the framework can improve over the local
detectors. The explicit sentiment clues referred to in this section are from MPQA lexicon.

Ex(6) The reform would curb skyrocketing costs in the long run.

The local sentiment detector assigns “costs” negative due to the single sentiment clue, “skyrocketing”.
Since the agent and theme are in a bf triple, and the writer is negative toward that theme, we can infer
the writer is positive toward the agent. This illustrates how we improve recall on sentiments.

Ex(7) The supposedly costly reform will curb skyrocketing costs in the long run.

In Ex(7), agent “reform” is labeled negative because “costly” is a negative clue in the lexicon. (“sup-
posedly” is not in it.) However, in Ex(7), it is actually positive. The agent’s negative score is 0.6, and
its positive score is 0.5 due to the absence of a positive clue. Since the theme is negative too, by the bf
constraints, we expect to see a positive agent. If we were to assign negative to the agent, the objective
function would have -0.6 subjectivity score and +1 in violation penalty, together giving +0.4. If we as-
sign positive, the subjectivity score is -0.5, and there is no violation, resulting in a total score of -0.5.
Thus, the framework correctly chooses the positive label. This shows how we can improve precision on
sentiments.

Ex(8) The great reform will curb skyrocketing costs in the long run.

In this case, the agent is positive and the theme is negative. If the gfbf word “curb” is not in the lexicon,
we could still infer its polarity. Given that the entities in the triple have different sentiments, to not violate
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the implicature rules, the framework will assign it bf, or assign it gf along with reversed. However, there
is no reverser word in the sentence, so the reversed score p, = —% The framework will assign the
reverser indicator u,, = 0, in order to avoid a gain in the objective function by —1 * p, * w,. Thus
the framework assigns the label bf to “curb”. This is how the framework can improve the accuracy of

recognizing gfbf polarity.

7 Conclusion

The ultimate goal of this work is to utilize gfbf information to improve detection of the writer’s
sentiments toward entities mentioned in the text. Using an unsupervised optimization framework that
incorporates gfbf implicature rules as constraints, our method improves over local sentiment recognition
by almost 20 points in F-measure and over all sentiment baselines by over 10 points in F-measure. The
global optimization framework jointly infers the polarity of gfbf events, whether or not they are reversed,
which candidate NPs are the agent and theme, and the writer’s sentiments toward them. In addition
to beating the baselines for sentiment detection, the framework significantly improves the accuracy of
gfbf polarity disambiguation. This work not only automatically utilizes gfbf information to improve
sentiment detection, it also proposes a framework for jointly solving various ambiguities related to gfbf
events.
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like to thank the anonymous reviewers for their helpful feedback.
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Abstract

Community question answering (CQA) has become an important service due to the popularity of
CQA archives on the web. A distinctive feature is that CQA services usually organize questions
into a hierarchy of natural categories. In this paper, we focus on the problem of question re-
trieval and propose a novel approach, called group non-negative matrix factorization with natural
categories (GNMFNC). This is achieved by learning the category-specific topics for each cate-
gory as well as shared topics across all categories via a group non-negative matrix factorization
framework. We derive an efficient algorithm for learning the factorization, analyze its complex-
ity, and provide proof of convergence. Experiments are carried out on a real world CQA data set
from Yahoo! Answers. The results show that our proposed approach significantly outperforms
various baseline methods and achieves the state-of-the-art performance for question retrieval.

1 Introduction

Community question answering (CQA) such as Yahoo! Answers' and Quora?, has become an important
service due to the popularity of CQA archives on the web. To make use of the large-scale questions and
their answers, it is critical to have functionality of helping users to retrieve previous answers (Duan et
al., 2008). Typically, such functionality is achieved by first retrieving the historical questions that best
match a user’s queried question, and then using answers of these returned questions to answer the queried
question. This is what we called question retrieval in this paper.

The major challenge for question retrieval, as for most information retrieval tasks, is the lexical gap
between the queried questions and the historical questions in the archives. For example, if a queried ques-
tion contains the word “company” but a relevant historical question instead contains the word “firm”, then
there is a mismatch and the historical question may not be easily distinguished from an irrelevant one.
To solve the lexical gap problem, most researchers focused on translation-based approaches since the
relationships between words (or phrases) can be explicitly modeled through word-to-word (or phrases)
translation probabilities (Jeon et al., 2005; Riezler et al., 2007; Xue et al., 2008; Lee et al., 2008; Bern-
hard and Gurevych, 2009; Zhou et al., 2011; Singh, 2012). However, these existing methods model the
relevance ranking without considering the category-specific and shared topics with natural categories, it
is not clear whether this information is useful for question retrieval.

A distinctive feature of question-answer pairs in CQA is that CQA services usually organize questions
into a hierarchy of natural categories. For example, Yahoo! Answers contains a hierarchy of 26 categories
at the first level and more than 1262 subcategories at the leaf level. When a user asks a question, the user
is typically required to choose a category label for the question from a predefined hierarchy. Questions in
the predefined hierarchy usually share certain generic topics while questions in different categories have
their specific topics. For example, questions in categories “Arts & Humanities” and “Beauty & Style”
may share the generic topic of “dance” but they also have the category-specific topics of “poem” and
“wearing”, respectively.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http:// creativecommons.org/licenses/by/4.0/
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Inspired by the above observation, we propose a novel approach, called group non-negative matrix
factorization with natural categories (GNMFNC). GNMFNC assumes that there exists a set of category-
specific topics for each of the category, and there also exists a set of shared topics for all of the categories.
Each question in CQA is specified by its category label, category-specific topics, as well as shared topics.
In this way, the large-scale question retrieval problem can be decomposed into small-scale subproblems.

In GNMENC, questions in each category are represented as a term-question matrix. The term-question
matrix is then approximated as the product of two matrices: one matrix represents the category-specific
topics as well as the shared topics, and the other matrix denotes the question representation based on
topics. An objective function is defined to measure the goodness of prediction of the data with the
model. Optimization of the objective function leads to the automatic discovery of topics as well as
the topic representation of questions. Finally, we calculate the relevance ranking between the queried
questions and the historical questions in the latent topic space.

Past studies by (Cao et al., 2009; Cao et al., 2010; Ming et al., 2010; Cai et al., 2011; Ji et al., 2012;
Zhou et al., 2013) confirmed a significant retrieval improvement by adding the natural categories into
various existing retrieval models. However, all these previous work regarded natural categories indi-
vidually without considering the relationships among them. On the contrary, this paper can effectively
capture the relationships between the shared aspects and the category-specific individual aspects with
natural categories via a group non-negative matrix factorization framework. Also, our work models the
relevance ranking in the latent topic space rather than using the existing retrieval models. To date, no at-
tempts have been made regarding group non-negative matrix factorization in studies of question retrieval,
which remains an under-explored area.

The remainder of this paper is organized as follows. Section 2 describes our proposed group non-
negative matrix factorization with natural categories for question retrieval. Section 3 presents the exper-
imental results. In Section 4, we conclude with ideas for future research.

2  Group Non-negative Matrix Factorization with Natural Categories

2.1 Problem Formulation

In CQA, all questions are usually organized into a hierarchy of categories. When a user asks a question,
the user is typically required to choose a category label for the question from a predefined hierarchy of
categories. Hence, each question in CQA has a category label. Suppose that we are given a question col-
lection D in CQA archive with size N, containing terms from a vocabulary V with size M. A question
d is represented as a vector d € RM where each entry denotes the weight of the corresponding term,
for example tf-idf is used in this paper. Let C' = {c1, ¢, -+ ,cp} denote the set of categories (subcat-
egories) of question collection D, where P is the number of categories (subcategories). The question
collection D is organized into P groups according to their category labels and can be represented as
D ={D;,Dy,--- ,Dp}. D, = {dgp)7 e ,d%’g} € RM*N» 5 the term-question matrix corresponding
to category cp, in which each row stands for a term and each column stands for a question. N, is the
number of questions in category c, such that 25:1 N, =N.

Let U;, =[U,, U, € RMx(Ks+Kp) pe the term-topic matrix corresponding to category cp, Where K
is the number of shared topics, K, is the number of category-specific topics corresponding to category
¢p» and p € [1, P). Term-topic matrix U, can be represented as U, = [u{”, - ,u%] € RM*Ks in

which each column corresponds to a shared topic. While the term-topic matrix U, can be represented

as U, = [ugp ), e ,u(lg))] € RM*Kp  The total number of topics in the question collection D is K =

Ks+ PK,. Let V), = [Vgp), e ,Vg\];z] € RKs+Kp)xNp be the topic-question matrix corresponding to
category ¢,, in which each column denotes the question representation in the topic space. We also denote
Vg = [Hg7 Wg] where H, € RE*N> and W, € RE»*N> correspond to the coefficients of shared
topics U and category-specific topics U, respectively.

Thus, given a question collection D = {D1, Dy, -- ,Dp} together with the category labels C' =
{c1,c2,- -+ ,cp}, our proposed GNMFNC amounts to modeling the question collection D with P group
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simultaneously, arriving at the following objective function:

03 (M, - w. v, L+ mw. v} v

p=1

where )\, 2 ||D,| 7% R(Us, Up) is a regularization term used to penalize the “similarity” between the
shared topics and category-specific topics through Uy and U,

In this paper, we aim to ensure that matrix Uy captures only shared topics and matrix U,, captures
only the category-specific topics. For example, if matrices U, and U, are mutually orthogonal, we have
UfUp = 0. To impose this constraint, we attempt to minimize the sum-of-squares of entries of the
matrix ULU,, (e.g., ||[UTU,||% which uniformly optimizes each entry of U2 U,). With this choice, the
regularization term of R(U,, U,) is given by

P P
R, U = Yo [UTO |1 Y Aol @
p=1 1=1,l#p

where «;, and (3 are the regularization parameters, Vp € [1, P|, VI € [1, P].
Learning the objective function in equation (1) involves the following optimization problem:

min £:O+O'1HUZ].A171KS ;+0'2HU;1;1A171KFH§;,+O'3HVP]_NP71KS+KPH; 3)

i
U,,U,,Vp>0

where o1, 03 and o3 are the shrinkage regularization parameters. Based on the shrinkage methodology,
we can approximately satisfy the normalization constraints for each column of [Uy, U, and Vg by
guaranteeing the optimization converges to a stationary point.

2.2 Learning Algorithm

We present the solution to the GNMFNC optimization problem in equation (3) as the following theorem.
The theoretical aspects of the optimization are presented in the next subsection.

Theorem 2.1. Updating Uy, U, and V, using equations (4)~(6) corresponds to category c, will mono-
tonically decrease the objective function in equation (3) until convergence.

[>F  \D,HT]
[>F  A[U., U, V,HT + 0, U, UL U, |

p=1

U; — U;so

@

(A, D, W7 ]
[AP[UéV UV, W' + U UTU, + 253:1,17&;; ﬁlUleTUp]

U, U,o ®)

[)\pDZ; [Us, UP]]
(A VEI[U., U7 (UL, U,

V,—V,o0 (6)

where operator o is element-wise product and H is element-wise division.

Based on Theorem 2.1, we note that multiplicative update rules given by equations (4)~(6) are ob-
tained by extending the updates of standard NMF (Lee and Seung, 2001). A number of techniques can
be used here to optimize the objective function in equation (3), such as alternating least squares (Kim
and Park, 2008), the active set method (Kim and Park, 2008), and the projected gradients approach (Lin,
2007). Nonetheless, the multiplicative updates derived in this paper have reasonably fast convergence
behavior as shown empirically in the experiments.

2.3 Theoretical Analysis

In this subsection, we give the theoretical analysis of the optimization, convergence and computational
complexity.
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Without loss of generality, we only show the optimization of U and formulate the Lagrange function
with constraints as follows:

L(U,) = O+ 01||[UT1y — 1g, |7 + Tr(¥,UT) (7)

where Tr(+) denotes the trace of a matrix, ¥, € R¥s*Xs is the Lagrange multiplier for the nonnegative
constraint Uy > 0.
The partial derivative of £(U;) w.r.t. Ug is

P P
VU L(U,) = =2> ADHT +2) A [U,, U, V,H
p=1 p=1
P
+23 0, U, UL U, + 201U, — 201 + ¥,
p=1

®)

Using the Karush-Kuhn-Tucker (KKT) (Boyd and Vandenberghe, 2004) condition ¥ o U, = 0, we
obtain

- 21];:1 AprHZ + Z;]::l Ap[Us, UP]VPHZI;

L(U)oU, =
VU, L(Us) o Us {+Z§1aPUPUZUS+01U301

}0U5:0 9

After normalization of Uy, the terms o1 U and o7 are in fact equal. They can be safely ignored from
the above formula without influencing convergence. This leads to the updating rule for Uy in equation
(4). Following the similar derivations as shown above, we can obtain the updating rules for the rest
variables U, and V, in GNMFNC optimization, as shown in equations (5) and (6).

2.3.1 Convergence Analysis

In this subsection, we prove the convergence of multiplicative updates given by equations (4)~(6). We
first introduce the definition of auxiliary function as follows.

Definition 2.1. F (X, X') is an auxiliary function for L(X) if L(X) < F(X,X') and equality holds if
and only if L(X) = F(X, X).

Lemma 2.1. (Lee and Seung, 2001) If F is an auxiliary function for L, L is non-increasing under the
update

XD = arg m)én F(X,X®)

Proof. By Definition 2.1, £(X+D)) < F(X#H) X1) < 7(X® X®)) = £(X®) O
Theorem 2.2. Let L(Ugtﬂ)) denote the sum of all terms in L that contain Ung), the following function
is an auxiliary function for ﬁ(UgH))

FUE,UD) = £U0) + (U~ UP) g £UL) + LU —UO2PUE) a0

S [0 MUY UV, W + 0, U, UF UL + 0 UL
>, 05

ij

P(U) =

where 75 E(Ugt)) is the first-order derivative of E(Ugt)) with respect to U". Theorem 2.2 can be

proved similarly to (Lee and Seung, 2001) by validating ﬁ(UgtH)) < F (Ugtﬂ), Ugt)), E(Ugtﬂ)) =
]-'(Ugtﬂ), Ugtﬂ)), and the Hessian matrix 7/ </ ¢+1) }'(Ugtﬂ), Ugt)) > 0. Due to limited space, we
omit the details of the validation.
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[ I addition [ multiplication [ division [ overall |

GNMFNC: U, [[ P(BMN,K, + MN,K, + MK?) | PBMN,K, + MN,K, + MK2) | MK, O(PMNyKmaz)
GNMFNC: U, SMN,K, + MN,K, + PM*K’ SMN,K, + MN,K, + PM’K' | MK, O(PMRK'")
GNMENC: V,, 3MN, K’ 3MN,K' N, K’ O(MN,K")

Table 1: Computational operation counts for each iteration in GNMFNC.

Based on Theorem 2.2, we can fix Ugt) and minimize F (Ugtﬂ), Ugt)) with respect to Ugﬂ). When
setting \/ ¢+ F (Ugtﬂ), Ugt)) = 0, we get the following updating rule

[25:1 )‘PDPHZ; + Ul}

Uy U
[25:1 Ap [U(St>’ U]V, Wi+ O‘pUPUZ;Ug) + UlUg”]

S S

(1)

which is consistent with the updating rule derived from the KKT conditions aforementioned.

By Lemma 2.1 and Theorem 2.2, we have ﬁ(UgO)) = f(UgO), Ugo)) > f(Ugl), Ugo)) >
]—"(Ugl), Ugl)) = E(Ugl)) > o> E(Uglm)), where Iter is the number of iterations. Therefore,
U, is monotonically decreasing. Since the objective function £ is lower bounded by 0, the correctness
and convergence of Theorem 2.1 is validated.

2.3.2 Computational Complexity

In this subsection, we discuss the time computational complexity of the proposed algorithm GNMFNC.
Besides expressing the complexity of the algorithm using big O notation, we also count the number of
arithmetic operations to provide more details about running time. We show the results in Table 1, where
Kiar = max{K,, K,}, K' = K, + K, and R = max{M, N, }.

Suppose the multiplicative updates stop after Iter iterations, the time cost of multiplicative updates
then becomes O(Iter x PMRK'). We set Iter = 100 empirically in rest of the paper. Therefore, the
overall running time of GNMFNC is linear with respect to the size of word vocabulary, the number of
questions and categories.

2.4 Relevance Ranking

The motivation of incorporating matrix factorization into relevance ranking is to learn the word rela-
tionships and reduce the “lexical gap” (Zhou et al., 2013a). To do so, given a queried question ¢ with
category label ¢, from Yahoo! Answers, we first represent it in the latent topic space as v,

vy = argmin ||q — [Uy, Up)v|f3 (12)
v>0

where vector q is the tf-idf representation of queried question ¢ in the term space.
For each historical question d (indexed by r) in question collection D, with representation vy = r-th
column of V, we compute its similarity with queried question v, as following

< Vg,Vqg >

~ivallz - lIvall2

Stopic(Q7 d) (13)

The latent topic space score Stopic(q,d) is combined with the conventional term matching score
Sterm(q, d) for final relevance ranking. There are several ways to conduct the combination. Linear
combination is a simple and effective way. The final relevance ranking score s(q, d) is:

5(Q7 d) = 'VStopic(CL d) + (1 - ’Y)Sterm(% d) (14)
where v € [0, 1] is the parameter which controls the relative importance of the latent topic space score

and term matching score. s¢erm (g, d) can be calculated with any of the conventional relevance models
such as BM25 (Robertson et al., 1994) and LM (Zhai and Lafferty, 2001).
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3 Experiments

3.1 Data Set and Evaluation Metrics

We collect the data set from Yahoo! Answers and use the getByCategory function provided in Yahoo!
Answers API® to obtain CQA threads from the Yahoo! site. More specifically, we utilize the resolved
questions and the resulting question repository that we use for question retrieval contains 2,288,607 ques-
tions. Each resolved question consists of four parts: “question title”, “question description”, “question
answers” and “question category”. We only use the “question title” and “question category” parts, which
have been widely used in the literature for question retrieval (Cao et al., 2009; Cao et al., 2010). There
are 26 first-level categories in the predefined natural hierarchy, i.e., each historical question is categorized
into one of the 26 categories. The categories include “Arts & Humanities”, “Beauty & Style”, “Business
& Finance”, etc.

In order to evaluate our approach, we randomly select 2,000 questions as queried questions from the
above data collection to construct the validation/test sets, and the remaining data collection as training
set. Note that we select the queried questions in proportion to the number of questions and categories
against the whole distribution to have a better control over a possible imbalance. To obtain the ground-
truth, we employ the Vector Space Model (VSM) (Salton et al., 1975) to retrieve the top 10 results and
obtain manual judgements. The top 10 results don’t include the queried question itself. Given a returned
result by VSM, an annotator is asked to label it with “relevant” or “irrelevant”. If a returned result
is considered semantically equivalent to the queried question, the annotator will label it as “relevant”;
otherwise, the annotator will label it as “irrelevant”. Two annotators are involved in the annotation
process. If a conflict happens, a third person will make judgement for the final result. In the process
of manually judging questions, the annotators are presented only the questions. As a result, there are in
total 20,000 judged question pairs. We randomly split the 2,000 queried questions into validation/test
sets, each has 1,000/1,000 queried questions. We use the validation set for parameter tuning and the test
set for evaluation.

Evaluation Metrics: We evaluate the performance of question retrieval using the following metrics:
Mean Average Precision (MAP) and Precision@N (P@N). MAP rewards methods that return relevant
questions early and also rewards correct ranking of the results. P@N reports the fraction of the top-N
questions retrieved that are relevant. We perform a significant test, i.e., a ¢-test with a default significant
level of 0.05.

There are several parameters used in the paper, we tune these parameters on the validation set.
Specifically, we set the number of category-specific topics per category and the number of shared
topics in GNMFNC as (K, K,) = {(5,2),(10,4),(20,8), (40,16), (80,32)}, resulting in K =
{57,114, 228,456,912} total number of topics. (Note that the total number of topics in GNMFNC
is K + 26 x K, where 26 is the number of categories in the first-level predefined natural hierarchy?).
Finally, we set (K, Kp) = (20, 8) and K = 228 empirically as this setting yields the best performance.

For regularization parameters «, and (3, it is difficult to directly tune on the validation set, we present
an alternative way by adding a common factor a to look at the objective function of optimization problem
in equation (3) on the training data. In other words, we set o, = ﬁm and 0; = ﬁ Therefore, we
tune the parameters o, and 3; by alternatively adjusting the common factor a via grid search. As a result,
we set a = 100, resulting in o, = ; = 0.625 in the following experiments. The trade-off parameter -y
in the linear combination is set from O to 1 in steps of 0.1 for all methods. We set v = 0.6 empirically.
For shrinkage regularization parameters, we empirically set 01 = 09 = 03 = 1.

3.2 Question Retrieval Results

In this experiment, we present the experimental results for question retrieval on the test data set. Specif-
ically, for our proposed GNMFNC, we combine the latent topic matching scores with the term matching
scores given by BM25 and LM, denoted as “BM25+GNMFNC” and “LM+GNMFNC”. Table 2 shows

3http://developer.yahoo.com/answers
“Here we do not use the leaf categories because we find that it is not possible to run GNMFENC with such large number of
topics on the current machines, and we will leave it for future work.
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Table 2: Comparison with different methods  Table 3: Comparison of matrix factoriza-

for question retrieval. tions for question retrieval.

C# ] Methods [ MAP | P@10 | [ # | Methods [ MAP | P@I0 |
1 BM25 0.243 0.225 1 BM25 0.243 0.225
2 LM 0.286 0.232 2 BM25+NMF 0.325 0.235
3 (Jeon et al., 2005) 0.327 0.235 3 BM25+CNMF 0.344 0.239
4 (Xue et al., 2008) 0.341 0.238 4 BM25+GNMF 0.361 0.242
5 (Zhou et al., 2011) 0.365 0.243 5 BM25+GNMFNC 0.369 0.248
6 (Singh, 2012) 0.354 0.240 6 LM 0.286 0.232
7 (Cao et al., 2010) 0.358 0.242 7 LM+NMF 0.337 0.237
8 (Cai et al., 2011) 0.331 0.236 8 LM+CNMF 0.352 0.240
9 BM25+GNMFNC 0.369 0.248 9 LM+GNMF 0.365 0.243
10 LM+GNMFNC 0.374 0.251 10 LM+GNMENC 0.374 0.251

the main retrieval performances under the evaluation metrics MAP, P@1 and P@10. Row 1 and row
2 are the baseline systems, which model the relevance ranking using BM25 (Robertson et al., 1994)
and language model (LM) (Zhai and Lafferty, 2001) in the term space. Row 3 is word-based transla-
tion model (Jeon et al., 2005), and row 4 is word-based translation language model (TRLM) (Xue et
al., 2008). Row 5 is phrase-based translation model (Zhou et al., 2011), and row 6 is the entity-based
translation model (Singh, 2012). Row 7 to row 11 explore the natural categories for question retrieval.
In row 7, Cao et al. (2010) employed the natural categories to compute the local and global relevance
with different model combination, here we use the combination VSM + TRLM for comparison because
this combination obtains the superior performance than others. In row 8, Cai et al. (2011) proposed a
category-enhanced TRLM for question retrieval. There are some clear trends in the results of Table 2:

(1) BM25+GNMFNC and LM+GNMENC perform significantly better than BM25 and LM respec-
tively (Z-test, p-value < 0.05, row 1 vs. row 9; row 2 vs. row 10), indicating the effective of GNMFNC.

(2) BM25+GNMFNC and LM+GNMFNC perform better than translation methods, some improve-
ments are statistical significant (¢-test, p-value < 0.05, row 3 and row 4 vs. row 9 and row 10). The
reason may be that GNMFNC models the relevance ranking in the latent topic space, which can also
effectively solve the the lexical gap problem.

(3) Capturing the shared aspects and the category-specific individual aspects with natural categories
in the group modeling framework can significantly improve the performance of question retrieval (¢-test,
p-value < 0.05, row 7 and row 8 vs. row 9 and row 10).

(4) Natural categories are useful and effectiveness for question retrieval, no matter in the group mod-
eling framework or existing retrieval models (row 3~ row 6 vs. row 7~row 10).

3.3 Comparison of Matrix Factorizations

We note that our proposed GNMFNC is related to non-negative matrix factorization (NMF) (Lee and
Seung, 2001) and its variants, we introduce three baselines. The first baseline is NMF, which is trained
on the whole training data. The second baseline is CNMF, which is trained on each category without
considering the shared topics. The third baseline is GNMF (Lee and Choi, 2009; Wang et al., 2012),
which is similar to our GNMFNC but there are no constraints on the category-specific topics to prevent
them from capturing the information from the shared topics.

NMF and GNMF are trained on the training data with the same parameter settings in section 4.1 for
fair comparison. For CNMF, we also train the model on the training data with the same parameter settings
in section 4.1, except parameter K, as there exists no shared topics in CNMF.

Table 3 shows the question retrieval performance of NMF families on the test set, obtained with the
best parameter settings determined by the validation set. From the results, we draw the following obser-
vations:

(1) All of these methods can significantly improve the performance in comparison to the baseline
BM25 and LM (t-test, p-value < 0.05).

(2) GNMF and GNMENC perform significantly better than NMF and CNMF respectively (¢-test, p-
value < 0.05), indicating the effectiveness of group matrix factorization framework, especially the use
of shared topics.

95



o

o
1N
'S
w

1N
~
N
@

I
'S
®

0.426

o

»

N
T

0.424

‘
O
OOOO °

1

»

)
T

0422

Objective function value
o o
PO
» (&)
o
'
N
J22

I

i

@
T

Converged objective function value
o o
X &
(=) ©
.

2]

\

\

1

S

)
T

041, ——————

1
~
ey

o

20 40 60 80 100
Iteration number

Figure 1: Convergence curve of GNMFNC. Figure 2: Objective function value vs. factor a.

(3) GNMENC performs significantly better than GNMF (¢-test, p-value < 0.05, row 4 vs. row 5; row
9 vs. row 10), indicating the effectiveness of the regularization term on the category-specific topics to
prevent them from capturing the information from the shared topics.

From the experimental results reported above, we can conclude that our proposed GNMFNC is useful
for question retrieval with high accuracies. To the best of our knowledge, it is the first time to investigate
the group matrix factorization for question retrieval.

3.4 Convergence Behavior

In subsection 2.3.1, we have shown that the multiplicative updates given by equations (4)~(6) are con-
vergent. Here, we empirically show the convergence behavior of GNMFNC.

Figure 1 shows the convergence curve of GNMFNC on the training data set. From the figure, y-axis is
the value of objective function and x-axis denotes the iteration number. We can see that the multiplicative
updates for GNMFNC converge very fast, usually within 80 iterations.

3.5 Regularization Parameters Selection

One success of this paper is to use regularized constrains on the category-specific topics to prevent them
from capturing the information from the shared topics. It is necessary to give an in-depth analysis of
the regularization parameters used in the paper. Consider the regularization term used in equation (2),
each element in UsTUp and UI:,FUI has a value between 0 and 1 as each column of Uy, U, and U; is
normalized. Therefore, it is appropriate to normalize the term having |[UZ'U,||% by K K, since there
are K, x K, elements in UL 'U,,. Similarly, |[U7'U, |3, is normalized by K; K. Note that K; = K, and
I # p. As discussed in subsection 4.1, we present an alternative way by adding a common factor a and
set a = ﬁ& and 3 = ﬁ The common factor a is used to adjust a trade-off between the matrix
factorization errors and the mutual orthogonality, which cannot directly tune on the validation set. Thus,
we look at the objective function of optimization problem in equation (3) on the training data and find
the optimum value for a.

Figure 2 shows the objective function value vs. common factor a, where y-axis denotes the converged
objective function value, and x-axis denotes Log;,a . We can see that the optimum value of a is 100.
Therefore, the common factor a can be fixed at 100 for our data set used in the paper, resulting in
a, = [ = 0.625. Note that the optimum value of (K, K),) are set as (20, 8) in subsection 4.1. Due to
limited space, we do not give an in-depth analysis for other parameters.

4 Conclusion and Future Work

In this paper, we propose a novel approach, called group non-negative matrix factorization with natural
categories (GNMFNC). The proposed method is achieved by learning the category-specific topics for
each category as well as shared topics across all categories via a group non-negative matrix factorization
framework. We derive an efficient algorithm for learning the factorization, analyze its complexity, and

96



provide proof of convergence. Experiments show that our proposed approach significantly outperforms
various baseline methods and achieves state-of-the-art performance for question retrieval.

There are some ways in which this research could be continued. First, the optimization of GNMFNC
can be decomposed into many sub-optimization problems, a natural avenue for future research is to
reduce the running time by executing the optimization in a distributed computing environment (e.g.,
MapReduce (Dean et al., 2004)). Second, another combination approach will be used to incorporate the
latent topic match score as a feature in a learning to rank model, e.g., LambdaRank (Burges et al., 2007).
Third, we will try to investigate the use of the proposed approach for other kinds of data sets with larger
categories, such as categorized documents from ODP project.’
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Abstract

Most web search results clustering (SRC) strategies have predominantly studied the definition of
adapted representation spaces to the detriment of new clustering techniques to improve perfor-
mance. In this paper, we define SRC as a multi-objective optimization (MOO) problem to take
advantage of most recent works in clustering. In particular, we define two objective functions
(compactness and separability), which are simultaneously optimized using a MOO-based simu-
lated annealing technique called AMOSA. The proposed algorithm is able to automatically detect
the number of clusters for any query and outperforms all state-of-the-art text-based solutions in
terms of Fg-measure and Fys-measure over two gold standard data sets.

1 Introduction

Web search results clustering (SRC), also known as post-retrieval clustering or ephemeral clustering has
received much attention for the past twenty years for easing up user’s effort in web browsing. The key
idea behind SRC systems is to return some meaningful labeled clusters from a set of web documents (or
web snippets) retrieved from a search engine for a given query.

Recently, SRC strategies have been focusing on the introduction of external (exogenous) knowledge to
better capture semantics between documents (Scaiella et al., 2012; Marco and Navigli, 2013). Although
this research direction has evidenced competitive results, the proposed clustering techniques are based
on a single cluster quality measure, which must reflect alone the goodness of a given partitioning. These
techniques are usually referred to as single objective optimizations (SOO).

In this paper, we hypothesize that improved clustering can be achieved by defining different objective
functions over well-known data representations. As such, our study aims to focus on new clustering
issues for SRC instead of defining new representation spaces.

Recent studies (Maulik et al., 2011) have shown that clustering can be defined as a multi-objective
optimization (MOO) problem. Within the context of SRC, we propose to define two objective functions
(compactness and separability), which are simultaneously optimized using a MOO-based simulated an-
nealing technique called AMOSA (Bandyopadhyay et al., 2008).

In order to draw conclusive remarks, we present an exhaustive evaluation where our MOO algorithm
(MOO-clus) is compared to the most competitive text-based (endogenous) SRC algorithms: STC (Zamir
and Etzioni, 1998), LINGO (Osinski and Weiss, 2005), OPTIMSRC (Carpineto and Romano, 2010) and
GK-means (Moreno et al., 2013). Experiments are run over two different gold standard data sets (ODP-
239 and MORESQUE) for two clustering evaluation metrics (Fg-measure and Fys-measure). Results
show that MOO-clus outperforms all text-based solutions and approaches performances of knowledge
driven strategies (Scaiella et al., 2012). In this paper, our main contributions are:

e The first! attempt to solve SRC by defining multiple objective functions,

e A new MOO clustering algorithm for SRC, which automatically determines the number of clusters,

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/.
' As far as we know.
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e An exhaustive evaluation of SRC algorithms with recent data sets and evaluation metrics over the
most competitive state-of-the-art text-based SRC algorithms.

2 Related Work

2.1 SRC Algorithms

One of the most cited SRC solutions is the Suffix Tree Clustering (STC) algorithm proposed by (Zamir
and Etzioni, 1998). They propose a monothetic clustering technique, which merges base clusters with
high string overlap based on web snippets represented as compact tries. Their evaluation shows improve-
ments over agglomerative hierarchical clustering, K-Means, Buckshot, Fractionation and Single-Pass
algorithms, and is still a hard baseline to beat (Moreno and Dias, 2014).

Later, (Osinski and Weiss, 2005) proposed a polythetic solution called LINGO based on the same
string representation as of (Zamir and Etzioni, 1998). They first extract frequent phrases based on suffix-
arrays and match group descriptions with topics obtained with latent semantic analysis. Documents are
then assigned straightforwardly to their corresponding groups. Their evaluation does not allow conclu-
sive remarks but they propose an open source implementation, which is an important contribution.

More recently, (Carpineto and Romano, 2010) showed that the characteristics of the outputs returned
by SRC algorithms suggest the adoption of a meta clustering approach. The underlying idea is that dif-
ferent SOO solutions lead to complementary results that must be combined. So, they introduce a novel
criterion to measure the concordance of two partitions of objects into different clusters based on the infor-
mation content associated to the series of decisions made by the partitions on single pairs of objects. The
results of OPTIMSRC demonstrate that meta clustering is superior over individual clustering techniques.

The latest work, exclusively based on endogenous information (i.e. web snippets returned by the
search engine), is proposed by (Moreno et al., 2013). They adapt the K-means algorithm to a third-order
similarity measure and propose a stopping criterion to automatically determine the “optimal” number of
clusters. Experiments are run over two gold standard data sets, ODP-239 (Carpineto and Romano, 2010)
and MORESQUE (Navigli and Crisafulli, 2010), and show improved results over all state-of-the-art
text-based SRC techniques so far.

A great deal of works have also proposed to include exogenous information to solve the SRC problem.
One important work is proposed by (Scaiella et al., 2012) who use Wikipedia articles to build a bipartite
graph and apply spectral clustering over it to discover relevant clusters. More recently, (Marco and
Navigli, 2013) proposed to include word sense induction based on the Web1T corpus (Brants and Franz,
20006) to improve SRC. In this paper, we exclusively focus on endogenous solutions.

2.2 MOO-based Clustering

Many works have been proposed where the problem of clustering is posed as one of multi-objective op-
timization (Deb, 2009; Maulik et al., 2011). One important work is proposed by (Handl and Knowles,
2007) who define a multi-objective clustering technique with automatic K-determination called MOCK.
Their algorithm outperforms several standard single-objective clustering algorithms (K -means, agglom-
erative hierarchical clustering and ensemble clustering) on artificial data sets.

In parallel, a multi-objective evolutionary algorithm for fuzzy clustering is proposed by (Bandyopad-
hyay et al., 2007) for clustering gene expressions. Here, two objectives are simultaneously optimized.
The first one is the objective function optimized in the fuzzy C'-means algorithm (Bezdek, 1981) and the
other one is the Xie-Beni index (Xie and Beni, 1991).

Later, (Mukhopadhyay and Maulik, 2009) proposed a novel approach that combines the multi-
objective fuzzy clustering method of (Bandyopadhyay et al., 2007) with a Support Vector Machines
(SVM) classifier. Performance results are provided for remote sensing data.

As far as we know, within text applications, (Morik et al., 2012) is the first work, which formulates
text clustering a multi-objective optimization problem. In particular, they express desired properties
of frequent termset clustering in terms of multiple conflicting objective functions. The optimization is
solved by a genetic algorithm and the result is a set of Pareto-optimal solutions. Note that this effort is
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defined for large text colllections with high dimensional data, which is contradictory to the specific task
of SRC (Carpineto et al., 2009)?.

2.3 Our Motivation

Recent works have focused on the introduction of external (exogenous) knowledge to solve the SRC
task. However, this research direction higly depends on existing resources, which are not available for a
great deal of languages. Moreover, (Carpineto and Romano, 2010) has suggested an interesting research
direction, which has still remained unexplored. Indeed, (Carpineto and Romano, 2010) showed that meta
clustering leads to improved results in the context of text-based (endogenous) SRC. This suggests that
better clustering can be obtained by combining different SOO solutions. However, their algorithm is
casted to a SOO problem of the concordance between the clustering combination and a meta partition.
As a consequence, we hypothesize that improved performances can be obtained by defining the SRC
task as a MOO clustering problem. For that purpose, we (1) take advantage of the recent advances in the
field of multi-objective clustering (Saha and Bandyopadhyay, 2010), (2) define new objective functions
in a non euclidean space and (3) adapt a MOO-based simulated annealing technique called AMOSA
(Bandyopadhyay et al., 2008) to take into account third-order similarity metrics (Moreno et al., 2013).

3 Clustering as a MOO Problem
3.1 Formal Definition of MOO Clustering

Multi-objective optimization can be formally stated as finding the vector T* = [2%,23,...,2%]T of
decision variables that simultaneously optimize M objective function values { f1(Z), f2(Z), ..., fu (%)}
while satisfying user-defined constraints, if any.

An important concept in MOO is that of domination. Within the context of a maximization prob-
lem, a solution 7; is said to dominate z; if Vk € 1,2,..., M, fiu(z;) > fr(Z;) and Ik €
1,2,..., M, such that f,(z;) > fi(7Z5).

Among a set of solutions R, the non-dominated set of solutions R’ are those that are not dominated by
any member of the set R and is called the globally Pareto-optimal set or Pareto front. In general, a MOO
algorithm outputs a set of solutions not dominated by any solution encountered by it. These notions can
be illustrated by considering an optimization problem with two objective functions (f; and fo) with six
different solutions, as shown in Figure 1. Here target is to maximize both objective functions f; and fo.

f1(maximize)

N Pareto Front

ES

AN

o

[I—

f2(maximize)

Figure 1: Example of dominance and Pareto optimal front.

In this example, solutions 3, 4 and 5 dominate all the other three solutions 1, 2 and 6. Solutions 3, 4
and 5 are nondominating to each other. Because 3 is better than 4 w.r.t. function f1, but 4 is better than
3 w.rt. fo. Similarly 4 is better than 5 w.r.t. f; but 5 is better than 4 w.r.t. f,. The same happens for
solutions 3 and 5. So, the Pareto front is made of solutions 3, 4 and 5.

Within the specific context of clustering, two objective functions are usually defined, which must be
optimized simultaneously. These functions are based on two intrinsic properties of the data space and
are defined as follows.

2SRC is usually referred to as text clustering in the “small”: i.e. small list of short text documents.
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Compactness: This objective function measures the proximity among the various elements of a given
cluster and must be maximized.

Separability: This objective function measures the similarity between two cluster centroids and must
be minimized.

3.2 AMOSA Optimization Strategy

Clustering is viewed as a search problem, where optimal partitions satisfying the given set of objective
functions must be discovered. As such, an optimization strategy must be defined. Here, we propose to
use archived multi-objective simulated annealing (AMOSA) proposed by (Bandyopadhyay et al., 2008).
AMOSA incorporates the concept of an archive where the non-dominated solutions seen so far are stored.

Two limits are kept on the size of the archive: a hard limit denoted by HL and a soft limit denoted by
SL. Given y > 1, the algorithm begins with the initialization of a number (v x SL) of solutions each of
which representing a state in the search space. Thereafter, the non-dominated solutions are determined
and stored in the archive.

Then, one point is randomly selected from the archive. This is taken as the current point, or the initial
solution, at temperature I' = T,,,4,.. The current point is perturbed/mutated to generate a new solution
named new-pt and its objective functions are computed. The domination status of the new-pt is checked
w.r.t. the current point and the solutions in the archive. Based on domination status, different cases may
arise: (i) accept the new-pt, (ii) accept the current-pt or (iii) accept a solution from the archive. In case
of overflow of the archive, its size is reduced to HL.

The process is repeated ifer times for each temperature that is annealed with a cooling rate of o (<1)
till the minimum temperature 7,,,;,, is attained. The process thereafter stops and the archive contains the
final non-dominated solutions i.e. the Pareto front.

4 SRC as MOO Problem: MOO-clus

4.1 Archive Initialization

As we follow an endogenous approach, only the information returned by a search engine is used. In
particular, we only deal with web snippets and each one is represented as a word feature vector. So, our
solution called MOO-clus starts its execution after initializing the archive with some random solutions
as archive members. Here, a particular solution refers to a complete assignment of web snippets (or data
points) in several clusters. So, the first step is to represent a solution compatible with AMOSA, which
represents each individual solution as a string. In order to encode the clustering problem in the form of
a string, a center-based representation is used. Note that the use of a string representation facilitates the
definition of individuals and mutation functions (Bandyopadhyay et al., 2008).

Let us assume that the archive member 7 represents the centroids of K clusters and the number of
tokens in a centroid is p>, then the archive member (or string) has length [; where [; = px K. To initialize
the number of centroids K; encoded in the string ¢, a random value between 2 and K., is chosen and
each K cluster centroid is initialized by randomly generated tokens from the global vocabulary.

4.2 Assignment of Web Snippets

As for any classical clustering algorithms, web snippets (or data points) must be assigned to their respec-
tive clusters. In MOO-clus, this assignment is computed as in (Moreno et al., 2013), to take advantage
of recent advances in similarity measures. For two word feature vectors d; and d;, their similarity is
evaluated by the similarity of their constituents as defined in Equation 1.

lldi | 115 2
1 : . P (w1, ws)
S(d;,dj) = ———— SCP(w!,w), with SCP(wi,wy) = ’ (1)
5B = ] 2 2 s Plwn) x Puw)
3 A centroid is represented by a p word feature vector (wj, w?, w3, . . ., wh).
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Here, wj (resp. w?) corresponds to the token at the rth (resp. bth) position of the word feature vector d;
(resp. d;). ||d;| and ||d;|| respectively denote the total number of tokens in word feature vectors d; and
dj. SCP(wyj, wé’) is the Symmetric Conditional Probability (da Silva et al., 1999) where P(.,.) is the
joint probability of two tokens (w; and ws) appearing in the same word feature vector and P(.) is the
marginal probability of any token appearing in a word feature vector.

Note that each cluster centroid is a word feature vector of varying number of tokens. Thus, Equation 2
is used to assign any data point (web snippet) d; to a cluster ¢ whose centroid has the maximum similarity
value to d;.

t = argmazy—1,. xS(d;j, Mx,) 2

K denotes the total number of clusters, d; is the 4t web snippet, my, is the centroid of the kth
cluster 7, and S(d;, mr,) denotes similarity measurement between the point d; and cluster centroid
my, defined in Equation 1.

4.3 Definition of Objective Functions

A string 7 represents a set of centroids to which web snippets can be assigned as seen in Section 4.2. As a
consequence, each string 7 corresponds to a candidate partition of the data space. Now, in order to verify
the domination of different solutions over other ones, objective functions must be defined. Compactness
and separability are usually used in MOO clustering solutions. Here, compactness can be defined as the
informational density of each cluster. This can be straightforwardly formulated as in Equation 3.

K

Compactness = Z Z S(di, mx,,) 3)

k=1d;emy,

Note that if tokens in a particular cluster are very similar to the cluster centroid then the corresponding
Compactness value would be maximized. Here our target is to form good clusters whose compactness
in terms of similarity should be maximum.

The second objective function is cluster separability, which measures the dissimilarity between two
cluster centroids. Indeed, the purpose of any clustering algorithm is to obtain compact similar typed
clusters, which are dissimilar to each other. Here, we define separability as the minimization of the
summation of similarities between each pair of cluster centroids. This is defined in Equation 4, where
My, and m, are the centroids of clusters m; and m,, respectively.

K K
Separability = Z Z S(Mmag,, Mxr,) “
k=1 o=k-+1

Finally, for a particular string, the following objectives { Compactness } are maximized

using the search capability of AMOSA.

1
» Separability

4.4 Search Operators

In MOO-clus, AMOSA is used as the optimization strategy. For that purpose, three different types of
mutation operations have been defined to suit the framework.

Mutation 1: This mutation operation is used to update the cluster center representation. Each token of
cluster centroid is replaced by one token from the global vocabulary according to highest SCP similarity.
This is applied individually to all tokens of a particular centroid if it is selected for mutation.

Mutation 2: This mutation operation is used to reduce the size of the string by 1. We randomly select a
cluster centroid and thereafter all the tokens of this centroid are deleted from the string.

Mutation 3: This mutation is for increasing the size of string by 1 i.e. one new centroid is inserted in
the string. For that purpose, we randomly choose p number of tokens from the global vocabulary and
add it to the string.
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Let be a string < w; wy w3 wy ws we > representing three cluster centroids (wy, w2), (w3, w4) and
(ws, we)*. For mutation 1, let position 2 be selected randomly. Each token of the word vector (ws, w;)
will be changed by some token from the global vocabulary using SCP. Then, after change, the string
will look like < wq wo wy* wi’ ws we >. If mutation 2 is selected, a centroid will be removed from
the string. Let centroid 3 be selected for deletion. The new string will look like < wy wo w3 wq >.
In case of mutation 3, a new centroid will be added to the string. A new cluster centroid is generated
choosing p=2 number of tokens from the global vocabulary. Let the randomly generated new clus-
ter centroid to be added to the string be (wy,wsg). After inclusion of this centroid, the string will be
< w1 wo w3 wy W5 W wy wg >. In our experiments, we have associated equal probability to each of
these mutation operations. Thus, each mutation is applied in 33% cases of the cases.

S Experimental Setup

5.1 Datasets

The main gold standards used for the evaluation of SRC algorithms are ODP-239 and MORESQUE”.
In ODP-239 (Carpineto and Romano, 2010), each document is represented by a title and a web snip-
pet and the subtopics are chosen from the top levels of DMOZ®. On the other hand, the subtopics in
MORESQUE (Navigli and Crisafulli, 2010) follow a more natural distribution as they are defined based
on the disambiguation pages of Wikipedia. As such, the subtopics cover most of the query-related senses.
However, not all queries are Wikipedia related or ambiguous (e.g. “Olympic Games”, which Wikipedia
entry is not ambiguous, although there are many events related to this topic). As a consequence, it is
clear that different results can be obtained from one data set to another. A quick summary of both data
sets is presented in Table 1.

# of # of Subtopics # of
Dataset queries | Avg/Min/Max | Snippets
ODP-239 239 10/10/10 25580
MORESQUE 114 6.7/2/38 11402

Table 1: SRC gold standard data sets.

5.2 Evaluation Metrics

A successful SRC system must evidence high quality level clustering. Each query subtopic should ideally
be represented by a unique cluster containing all the relevant web pages inside. However, determining a
unique and complete metric to evaluate the performance of a clustering algorithm is still an open problem
(Amig6 et al., 2013).

In this paper, we propose to use the Fjs-measure (Amigo6 et al., 2009) to explore the Pareto front.
In particular, Fys has been defined to evaluate cluster homogeneity, completeness, rag-bag and size-vs-
quantity constraints. Fys is a function of Precisions (Py3) and Recallys (Ry3). All metrics are defined
in Equation 5

2% P3 x Rys 1 S
o= i TN 2 Z (o R“’:Ng;

Z (dj,di) (5
djem

l

where T; is i cluster, 7} is the gold standard of the category i, and ¢*(.,.) and g(.,.) are defined as
follows:

wir oo ) 1edl: di e mf Ndj € ] N 1edl: di emAd; €m
(di, d5) 7{ 0 otherwise and g(d;, d;) = 0 otherwise

4with p=2.
> AMBIENT has received less attention since the creation of ODP-239.
Shttp://www.dmoz.org [Last access: 14/03/2014].
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Most SRC studies have also used the Fig-measure (£3), which is defined in Equation 6.

(B2+1)«PxR TP TP
Fg="r_2"" =——— R=_———— (6)
32xP+R TP+ FP TP+ FN
where
K K K
oYY Y )= Y Y (g ) N =Y Y (- gldnd)
i=ldjeny d; € 7} i=ld;€m; d; € m; i=ldjeny d; € ny
L#j U j b#3

6 Results and Discussion

In this evaluation, we used the open source framework GATE (Cunningham et al., 2013) without stop-
word removal for web snippet tokenization’. We executed MOO-clus over ODP-239 and MORESQUE.
The parameters of MOO-clus are: Ty, = 0.01, Thpee = 100, « = 0.85, HL = 10, SL = 20 and
iter = 15. Note that, they have been determined after conducting a thorough sensitivity study. A first
set of experiments have been conducted for different p values of tokens present in the centroid, namely
in the range 2 to 5 in order to understand the behavior of MOO-clus w.r.t. centroid size®. Note that the
partition with maximum F}s is choosen for each size of p°. Overall results are shown in Table 2.

MORESQUE ODP-239
MOO-clus MOO-clus
2 3 4 5 2 3 P! 3

F,° 10477 1 0491 | 0.497 | 0.502 | 0.478 | 0.481 | 0.484 | 0.481
Fy | 0.661 | 0.666 | 0.675 | 0.658 | 0.379 | 0.379 | 0.384 | 0.381
F> | 0.750 | 0.768 | 0.764 | 0.742 | 0.534 | 0.536 | 0.537 | 0.535
F5 | 0.831 | 0.862 | 0.846 | 0.820 | 0.717 | 0.720 | 0.716 | 0.715

Table 2: Evaluation results of MOO-clus over MORESQUE and ODP239 data sets.

Results show that for MORESQUE, MOO-clus obtains the highest Fys value for p=5. In particular,
performance increases for higher values of p. For ODP-239, best results are reported for p=4, but evi-
dence less sensitivity to the number of words in the centroids. Indeed, a marginal difference is obtained
between all runs. In terms of 3, the same behaviour is obtained for ODP-239. But, for MORESQUE,
best results are provided for smaller values of p, namely p=3.

Two important comments must be pointed at. In the first place, Fys shows a steady behaviour compared
to g when the data set changes. The conclusions drawn in (Amigo et al., 2009) reporting the superiority
of Fys over Fg seem to be verified for the specific case of SRC. In the second place, MOO-clus evidences
a marginal sensitivity to different p values. Indeed, for ODP-239, changing p between 2 and 5 words has
a negligible impact on Fys. The figures show a different behaviour for MORESQUE but this can easily
be explained. In MORESQUIE, less queries are provided for test and the number of reference clusters
varies between 2 and 38, with a majority of queries containing very few clusters (the average cluster size
is 6.7). As such, small clustering errors may result in high deviations in the evaluation metrics. So, p
can be seen as a non influent parameter for clustering purposes. In fact, increasing the value of p may
exclusively allow a more descriptive power for cluster labeling.

We also compared MOO-clus to the current state-of-the-art text-based (endogenous) SRC algorithms:
STC (Zamir and Etzioni, 1998), LINGO (Osinski and Weiss, 2005), OPTIMSRC (Carpineto and Ro-
mano, 2010), Bisecting Incremental K -means (BIK), G K-means (Moreno et al., 2013) and the combi-
nation STC-LINGO (Moreno and Dias, 2014). The results are illustrated in Table 3 where we provide
values for all the metrics for open source implementations and reported values in the literature for the

"Note that keeping stop words is a challenging task as most methodologies withdraw these elements as they are hard to
handle. This decision is supported by the fact that we aim to produce as much as possible language-independent solutions.

8Note that to ease the user effort in searching for information, the cluster label must be small and expressive. Typical
configurations range between 3 to 5 to include multiword expressions.

QFB metrics are calculated over the partition with highest F33 value.
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other experiments i.e. OPTIMSRC, G K-means and STC-LINGO. In particular, the Min (resp. Max)
column refers to the worst (resp. best) performance when varying p, the size of the centroid.

The results of Table 3 clearly show the performance improvements of our proposed methodology over
existing text-based techniques for both data sets and most evaluation metrics. For ODP-239, MOO-clus
attains the highest values with respect to F, F», F5 and Fy3 metrics against all existing endogenous algo-
rithms. For MORESQUE, our algorithm reaches highest performance over all state-of-the-art algorithms
for F and Fj3 metrics but marginally fails for F5 and F5 against G K -means.

MOO-clus SO0 SRC Combination of SOO SRC
Min | Max | GK-means | STC | LINGO | BIK | OPTIMSRC | STC-LINGO

MORESQUE | F; | 0.658 | 0.675 0.665 0455 | 0326 | 0.317 N/A 0.561
F, | 0.742 | 0.768 0.770 0.392 | 0.260 | 0.269 N/A N/A

Fs | 0.820 | 0.862 0.872 0370 | 0.237 | 0.255 N/A N/A

F2 | 0477 | 0.502 0.482 0.460 | 0399 | 0.315 N/A 0.498

ODP-239 7 | 0.379 | 0.384 0.366 0.324 | 0273 | 0.200 0.313 0.362
F>, | 0534 | 0.537 0.416 0319 | 0.167 | 0.173 0.341 N/A

Fs | 0715 | 0.720 0.462 0322 | 0.153 | 0.165 0.380 N/A

F3 | 0478 | 0.484 0.452 0.403 | 0346 | 0.307 N/A 0.425

Table 3: Comparative results with respect to Fig and Fys metrics over the ODP-239 and MORESQUE
datasets obtained by different SRC techniques.

It is important to notice that OPTIMSRC and STC-LINGO can be viewed as a combination of different
SRC SOO solutions but still casted to a SOO solution. These previous results report interesting issues
for SRC and confort the idea that the combination of different objective functions may lead to enhanced
SRC algorithms. But, MOO-clus is capable to find better partitions than OPTIMSRC and STC-LINGO
for all data sets and all evaluation metrics as reported in Table 3.

It is important to notice that the MOO-clus provides a set of partitions with automatic definition of
the number of clusters. So, defining one unique solution is an important issue for SRC. So far, we have
provided results for the best partition evaluated by Fj;s. However, deeper analysis of all the partitions
on the Pareto front must be endeavoured. Results are reported for Fys only as all other metrics behave
correspondingly and are reported in Table 4.

MORESQUE ODP-239
2 3 4 5 2 3 4 5
Min | 0.428 | 0.464 | 0.464 | 0.462 | 0.396 | 0.401 | 0.403 | 0.408
Max | 0477 | 0.491 | 0.497 | 0.502 | 0.478 | 0.481 | 0.484 | 0.481
Avg. | 0.454 | 0479 | 0482 | 0.486 | 0.443 | 0.447 | 0.448 | 0.449

Table 4: Fys evaluation results of the Pareto front.

Figures show the validity of each individual solution of the Pareto front. In the worst case, MOO-clus
produces similar results compared to the hard baseline STC. On average, it reaches the results of GK -
means and the highest performance values can be found on the Pareto front. The correct identification
of the best partition is still an open issue and can be compared to the automatic selection of K clusters,
which is a hard task as shown in recent studies (Scaiella et al., 2012; Marco and Navigli, 2013).

7 Conclusions

In this paper, we proposed the first attempt' to define the SRC task as a multi-objective problem. For that
purpose, we defined two objective functions, which are simultaneously optimized through the archived
multi-objective simulated annealing framework called AMOSA. A correct definition of the task allowed
to take advantage of the most recent advances in terms of endogenous SRC algorithms as well as the most
powerful techniques for multi-objective clustering. The performance of MOO-clus has been evaluated
over two gold standard data sets, ODP-239 and MORESQUE for different evaluation metrics, F and Fjs.

10As far as we know.
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Results showed that our proposal steadily outperforms all existing state-of-the-art text-based endogenous
SRC algorithms and approaches recent knowledge-driven exogenous strategies (Scaiella et al., 2012),
which reach F;=0.413 for ODP-239'!.

As future works, we propose to use MOO clustering in a strict meta learning way, where any labeled-
based SOO solution is defined by specific Compactness and Separability functions. Another research
direction is the definition of the Dual representation proposed by (Moreno et al., 2014) as a MOO prob-
lem. Finally, new objective functions can be defined to measure the quality of the labels, which may
integrate meaningful multiword expressions or named entities.
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Abstract

Image retrieval models typically represent images as bags-of-terms, a representation that is well-
suited to matching images based on the presence or absence of terms. For some information
needs, such as searching for images of people performing actions, it may be useful to retain data
about how parts of an image relate to each other. If the underlying representation of an image
can distinguish between images where objects only co-occur from images where people are in-
teracting with objects, then it should be possible to improve retrieval performance. In this paper
we model the spatial relationships between image regions using Visual Dependency Represen-
tations, a structured image representation that makes it possible to distinguish between object
co-occurrence and interaction. In a query-by-example image retrieval experiment on data set
of people performing actions, we find an 8.8% relative increase in MAP and an 8.6% relative
increase in Precision@ 10 when images are represented using the Visual Dependency Represen-
tation compared to a bag-of-terms baseline.

1 Introduction

Every day millions of people search for images on the web, both professionally and for personal amuse-
ment. The majority of image searches are aimed at finding a particular named entity, such as Justin
Bieber or supernova, and a typical image retrieval system is well-suited to this type of information need
because it represents an image as a bag-of-terms drawn from data surrounding the image, such as text,
manual tags, and anchor text (Datta et al., 2008). It is not always possible to find useful terms in the sur-
rounding data; the last decade has seen advances in automatic methods for assigning terms to images that
have neither user-assigned tags, nor a textual description (Duygulu et al., 2002; Lavrenko et al., 2003;
Guillaumin and Mensink, 2009). These automatic methods learn to associate the presence and absence
of labels with the visual characteristics of an image, such as colour and texture distributions, shape, and
points of interest, and can automatically generate a bag of terms for an unlabelled image.

It is important to remember that not all information needs are entity-based: people also search for im-
ages reflecting a mood, such as people having fun at a party, or an action, such as using a computer. The
bag-of-terms representation is limited to matching images based on the presence or absence of terms,
and not the relation of the terms to each other. Figures 1(a) and (b) highlight the problem with using
unstructured representations for image retrieval: there is a person and a computer in both images but only
(a) depicts a person actually using the computer. To address this problem with unstructured represen-
tations we propose to represent the structure of an image using the Visual Dependency Representation
(Elliott and Keller, 2013). The Visual Dependency Representation is a directed labelled graph over the
regions of an image that captures the spatial relationships between regions. The representation is inspired
by evidence from the psychology literature that people are better at recognising and searching for objects
when the spatial relationships between the objects in the image are consistent with our expectations of
the world.(Biederman, 1972; Bar and Ullman, 1996). In an automatic image description task, Elliott

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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Figure 1: Three examples of images depicting a person and a computer, alongside a respective Visual
Dependency Representation for each image. The bag-of-terms representation can be observed in the
annotated regions of the Visual Dependency Representations. In (a) and (c) there is a person using a
laptop, whereas in (b) the man is actually using the trumpet. The gold-standard action annotation is
shown in the yellow bounding box.

and Keller (2013) showed that encoding the spatial relationships between objects in the Visual Depen-
dency Representation helped to generate significantly better descriptions than approaches based on the
spatial proximity of objects (Farhadi et al., 2010) or corpus-based models (Yang et al., 2011). In this
paper we study whether the Visual Dependency Representation of images can improve the performance
of query-by-example image retrieval models. The main finding is that encoding images using the Visual
Dependency Representation leads to significantly better retrieval accuracy compared to a bag-of-terms
baseline, and that the improvements are most pronounced for transitive verbs.

2 Related Work

2.1 Representing Images

A central problem in image retrieval is how to abstractly represent images (Datta et al., 2008). A bag-
of-terms representation of an image is created by grouping visual features, such as color, shape (Shi
and Malik, 2000), texture, and interest points (Lowe, 1999), in a vector or as a probability distribution
over the features. Image retrieval can then be performed by trying to find the best matchings of terms
across an image collection. Spatial Pyramid Matching is an approach to constructing low-level image
representations that capture the relationships between features at differently sized partitions of the im-
age (Lazebnik et al., 2006). This approach has proven successful for scene categorisation tasks. An
alternative approach to representing images is to learn a mapping (Duygulu et al., 2002; Lavrenko et al.,
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2003; Guillaumin and Mensink, 2009) between the bags-of-terms and object tags. An image can then be
represented as a bag-of-terms and image retrieval is similar to text retrieval (Wu et al., 2012).

In this work, we represent an image as a directed acyclic graph over a set of labeled object region
annotations. This representation captures the important spatial relationships between the image regions
and makes it possible to distinguish between co-occurring regions and interacting regions.

2.2 Still-Image Action Recognition

One approach to recognizing actions is to learn appearance models for visual phrases and use these
models to predict actions (Sadeghi and Farhadi, 2011). A visual phrase is defined as the people and the
objects they interact with in an action. In this approach, a fixed number of visual phrase models are
trained using the deformable parts object detector (Felzenszwalb et al., 2010) and used to perform action
recognition.

An alternative approach is to model the relationships between objects in an image, and hence the
visible actions, as a Conditional Random Field (CRF), where each node in the field is an object and the
factors between nodes correspond to features that capture the relationships between the objects (Zitnick
et al., 2013). The factors between object nodes in the CRF include object occurrence, absolute position,
person attributes, and the relative location of pairs of objects. This model has been used to generate novel
images of people performing actions and to retrieve images of people performing actions.

Most recently, actions have been predicted in images by selecting the most likely verb and object pair
given a set of candidate objects detected in an image (Le et al., 2013a). The verb and object is selected
amongst those that maximize the distributional similarity of the pair in a large and diverse collection of
documents. This approach is most similar to ours but it relies on an external corpus and, depending on
the text collections used to train the distributional model, will compound the problem of co-occurrence
of objects instead of the relationships between the objects.

The work presented in this paper uses ground-truth annotation for region labels, an assumption similar
to (Zitnick et al., 2013), but requires no external data to make predictions of the relationships between
objects, unlike the approach of (Le et al., 2013a). The directed acyclic graph representation we propose
for images can be seen as a latent representation of the depicted action in the image, where the spatial
relationships between the regions capture the different types of actions.

3 Task and Baseline

In this paper we study the task of query-by-example image retrieval within the restricted domain of
images depicting actions. More specifically, given an image that depicts a given action, such as using a
computer, the aim of the retrieval model is to find all other images in the image collection that depict the
same action. We define an action as an event involving one or more entities in an image, e.g., a woman
running or boy using a computer, and assume all images have been manually annotated for objects. This
assumption means we can explore the utility of the Visual Dependency Representation without the noise
introduced by automatic computer vision methods. The data available to the retrieval models can be seen
in Figure 1, and Section 5 provides further details about the different sources of data The action label -
which is only used for evaluation - is shown in the labelled bounding box, and the Visual Dependency
Representation - not used by the baseline model - is shown as a tree at the bottom of the figure.

The main hypothesis explored in this paper is that the accuracy of an image retrieval model will
increase if the representation encodes information about the relationships between the objects in images.
This hypothesis is tested by encoding images as either an unstructured bag-of-terms representation or
as the structured Visual Dependency Representation. The Bag-of-Terms baseline represents the query
image and the image collection as an unstructured bags-of-terms vector. All of the models used to test
the main hypothesis use the cosine similarity function is to determine the similarity of the query image
to other images in the collection, and thus to generate a ranked list from the similarity values.
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4 Visual Dependency Representation

The Visual Dependency Representation (VDR) is a structured representation of an image that captures the
spatial relationships between pairs of image regions in a directed labelled graph. The Visual Dependency
Grammar defines eight possible spatial relationships between pairs of regions, as shown in Table 1.
The relationships in the grammar were designed to provide sufficient coverage of the types of spatial
relationships required to describe the data, and are mathematically defined in terms of pixel overlap,
distance between regions, and the angle between regions. The frame of reference for annotating spatial
relationships is the image itself and not the object in the image, and angles and distance measurements
are taken or estimated from the centroids of the regions. The VDR of an image is created by a trained
human annotator in a two-stage process:

1. The annotator draws and labels boundaries around the parts of the image they think contribute to
defining the action depicted in the image, and the context within which the action occurs;

2. The annotator draws labelled directed edges between the annotated regions that captures how the
relationships between the image convey the action. In Section 4.1, we will explain how to automate
the second stage of the process from a collection of labelled region annotations.

In addition to the annotated image regions, a VDR also contains a ROOT node, which acts as a place-
holder for the image. In the remainder of this section we describe how a gold-standard VDR is created
by a human annotator. The starting point for the VDR in Figure 1(a) is the following set of regions and

the ROOT node: Q

ROOT Lamp Picture Girl Laptop Bed

First, the regions are attached to each other based on how the relationship between the objects con-
tributes to the depicted action. In Figure 1(a), the Girl is using the Laptop, therefore a labelled directed
edge is created from the Girl region to the Laptop region. The spatial relationship is labelled as BESIDE.

%ﬂﬁmjwa

ROOT Lamp Picture Girl Laptop Bed

The Girl is also attached to the Bed because the bed supports her body. The spatial relation label is
ABOVE because it expresses the spatial relationship between the regions, not the semantic relationship
ON. ROOT is attached to the Girl without an edge label to symbolize that she is an actor in the image.

%E’hﬁ.r%

ROOT Lamp Picture Girl Laptop Bed
\ S\ i
above

Now the regions that are not concerned with the depicted action are first attached to each other if there
is a clear spatial relationship between them (for an example, see Figure 1(b), where the laptop is attached
to the table because it is sitting on the table), and then to the ROOT node to signify that they do not play
a part in the depicted action. In this example, neither the Lamp nor the Picture are related to the action
of using the computer, so they are attached to the ROOT node.
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; enin Z-plane.
X W v dominant. plane

Table 1: Visual Dependency Grammar defines eight relations between pairs of annotated regions. To
simplify explanation, all regions are circles, where X is the grey region and Y is the white region. All
relations are considered with respect to the centroid of a region and the angle between those centroids.
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This now forms a completed VDR for the image in Figure 1(a). This structured representation of
an image captures the prominent relationship between the girl, the laptop, and the bed. There is no
prominent relationship defined between the girl and either the lamp of the picture, in effect these regions
have been relegated to background objects. The central hypothesis underpinning the Visual Dependency
Representation is that images that contain similar VDR substructures are more likely to depict the same
action than images that only contain the same set of objects. For example, the VDR for Figure 1(a)
correctly captures the relationship between the people and the laptops, whereas this relationship is not
present in Figure 1(b), where the person is playing a trumpet.

4.1 Predicting Visual Dependency Representations

We follow the approach of Elliott and Keller (2013) and predict the VDR y of an image over a collection
of labelled region annotations x. This task is framed as a supervised learning problem, where the aim is
to construct a Maximum Spanning Tree from a fully-connected directed weighted graph over the labelled
regions (McDonald et al., 2005). Reducing the fully-connected graph to the Maximum Spanning Tree
removes the region—region edges that are not important in defining the prominent relationships between
the regions in an image. The score of the VDR y over the image regions is calculated as the sum of the
scores of the directed labelled edges:

score(x,y) = Z w - f(a,b) (1)

(a,b)ey
where the score of an edge between image regions a and b is calculated using a vector of weighted feature
functions f. The feature functions characterize the image regions and the edge between pairs of regions,
and include: the labels of the regions and the spatial relation annotated on the edge; the (normalized)
distance between the centroids of the regions; the angle formed between the annotated regions, which is
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mapped onto the set of spatial relations; the relative size of the region compared to the image; and the
distance of the region centroid from the center of the image.

The model is trained over ¢ instances of region-annotated images x; associated with human-created
VDR structures y;, Irqin = {Xi, yi}. The score of each edge a, b is calculated by applying the feature
functions to the data associated with that edge, and this is performed over each edge in a VDR to obtain
a score for a complete gold-standard structure. The parameters of the weight vector w are iteratively
adjusted to maximise the score of the gold-standard structures in the training data using the Margin
Infused Relaxation Algorithm (Crammer and Singer, 2002).

The test data contains 4 instances of region-annotated images with image regions xj, Iess = {Xj}.
The parsing model computes the highest scoring structure yj; for each instance in the test data by scoring
each possible directed edge between pairs of regions in xj. This process forms a fully-connected graph
over the image regions, from which the Maximum Spanning Tree is taken and returned as the predicted
VDR.

We evaluate the performance of this VDR prediction model by comparing how well it can recover
the manually created trees in the data set. This evaluation is performed on the development data in a
10-fold cross validation setting where each fold of the data is split 80%/10%/10%. Unlabelled directed
accuracy means the model correctly proposes an edge between a pair of regions in the correct direction;
Labelled directed accuracy means it additionally proposes the correct edge label. The baseline approach
is to assume no latent image structure and attach all image regions to the ROOT node of the VDR; this
achieves 51.6% labelled and unlabelled directed attachment accuracy. The accuracy of our automatic
approach to VDR prediction is 61.3% labelled and 68.8% unlabelled attachment accuracy.

4.2 Comparing Visual Dependency Representations

It remains to define how to compare the Visual Dependency Representation of a pair of images. The most
obvious approach is to use the labelled directed accuracy measurement used for the VDR prediction
evaluation in the previous section, but we did not find significant improvements in retrieval accuracy
using this method. We hypothesise that the lack of weight given to the edges between nodes in the Visual
Dependency Representation results in this comparison function not distinguishing between object—object
relationships that matter, such as PERSON beside BIKE, compared to ROOT — TREES. The former
is a potential person—object relationship that explains the depicted event, whereas the latter is only a
background object.

The approach we adopted in this paper is to compare Visual Dependency Representations of images
by decomposing the structure into a set of labelled and a unlabelled parent—child subtrees in a depth-first
traversal of the VDR. The decomposition process allows use to use the same similarity function as the
Bag-of-Terms baseline model, removing the confound of choosing different similarity functions. The
subtrees can be transformed into tokens and these tokens can be used as weighted terms in a vector
representation. An example of a labelled transformation is shown below:

Girl Bed — Girl_above_Bed

We now demonstrate the outcome of comparing images represented using either a vector that con-
catenates the decomposed transformed VDR and bag-of-terms, or a vector that contains only the bag-of-
terms. In this demonstration, each term has a #f-idf weight of 1. The first illustration (Similar) compares
images that depict the same underlying action: Figure 1 (a) and (c). The second illustration (Dissimilar)
compares images that depict different actions: Figure 1 (a) and (b).

Similar : cos(VDR,, VDR,.) = 0.56 > cos(Bag,, Bag.) = 0.52
Dissimilar : cos(VDRy, VDR,) = 0.201 < cos(Bagy, Bag,) = 0.4

It can be seen that when the images represent the same action, the decomposed VDR increases the
similarity of the pair of images compared to the bag-of-terms representation; and when images do not
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represent the same action, the decomposed VDR yields a lower similarity than the bag-of-terms repre-
sentation. These illustrations confirm that Visual Dependency Representations can be used to distinguish
the difference between presence or absence of objects, and the prominent relationships between objects.

5 Data

We use an existing dataset of VDR-annotated images to study whether modelling the structure of an
image can improve image retrieval in the domain of action depictions. The data set of Elliott and Keller
(2013) contains 341 images annotated with region annotations, three visual dependency representations
per image (making a total of 1,023 instances), and a ground-truth action label for each image. An
example of the annotations can be seen in Figure 1. The image collection is drawn from the PASCAL
Visual Object Classification Challenge 2011 action recognition taster and covers a set of 10 actions
(Everingham et al., 2011): riding a bike, riding a horse, reading, running, jumping, walking, playing an
instrument, using a computer, taking a photo, and talking on the phone.

Image Descriptions

Each image is associated with three human-written descriptions collected from untrained annotators
on Amazon Mechanical Turk. The descriptions do not form any part of the models presented in the
current paper; they were used in the automatic image description task of Elliott and Keller (2013). Each
description contains two sentences: the first sentence describes the action depicted in the image, and
the second sentence describes other objects not involved in the action. A two sentence description of
an image helps distinguish objects that are central to depicting the action from objects that may be
distractors.

Region Annotations

The images contain human-drawn labelled region annotations. The annotations were drawn using the
LabelMe toolkit, which allows for arbitrary labelled polygons to be created over an image (Russell
et al., 2008). The annotated regions were restricted to those present in at least one of three human-
written descriptions. To reduce the effects of label sparsity, frequently occurring equivalent labels were
conflated, i.e., man, child, and boy — person; bike, bicycle, motorbike — bike; this reduced the object
label vocabulary from 496 labels to 362 labels. The data set contains a total of 5,034 region annotations,
with a mean of 4.19 4+ 1.94 annotations per image.

Visual Dependency Representations

Recall that each image is associated with three descriptions, and that people were free to decide how to
describe the action and background of the image. The differences between how people describe images
leads to the creation of one Visual Dependency Representation per image—description pair in the data
set, resulting in a total of 1,023 instances. The process for creating a visual dependency representation
of an image is described in Section 4. The annotated dataset comprises a total of 5,748 spatial relations,
corresponding to a mean of 4.79 + 3.51 relations per image. Elliott and Keller (2013) report inter-
annotator agreement on a subset of the data at 84% agreement for labelled directed attachments and
95.1% for unlabelled directed attachments.

Action Labels

The original PASCAL action recognition dataset contains ground truth action class annotations for each
image. These annotations are in the form of labelled bounding boxes around the person performing the
action in the image. The action labels are only used as the gold-standard relevance judgements for the
query-by-example image retrieval experiments.

6 Experiments

In this section we present the results of a query-by-example image retrieval experiment to determine
the utility of the Visual Dependency Representation compared to a bag-of-terms representation. In this
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Figure 2: Average 11-point precision/recall curves show that the VDR-based retrieval models are con-
sistently better than the Bag-of-Terms model.

experiment, a single image (the query image) is used to rank the images in the test collection, where the
goal is to construct a ranking where the top images depict the same action as the query image.

6.1 Protocol

The image retrieval experiment is performed using 10-fold cross-validation in the following manner.
The 341 images in the dataset are randomly partitioned into 80%/10%/10% splits, resulting in 1011 test
queries!. For each query we compute average precision and Precision@ 10 of the ranked list, and use the
resulting values to test the statistical significance of the results.

The training set is used to train the VDR prediction model and to estimate inverse document frequency
statistics. During the training phase, the VDR-based models have access to region boundaries, region
labels and three manually-created VDRs for each training image. In the fest set, all models have access to
the region boundaries and labels for each image. Each image in the test set forms a query and the models
produce a ranked list of the remaining images in the test collection. Images are marked for relevance
as follows: a image at rank r is considered relevant if it has the same action label as the query image;
otherwise it is non-relevant. The dev set was used to experiment with different matching functions and
to optimise the feature functions used in the VDR prediction model.

6.2 Models

We compare the retrieval accuracy of three approaches: Bag-of-Terms uses an unstructured representa-
tion for each image. A #f-idf weight is assigned to each region label in an image, and the cosine measure
is used to calculate the similarity of images. This model allows us to compare the usefulness of a struc-
tured vs. unstructured image representation. Automatic VDR is a model using the VDR prediction
method from Section 4.1, and Manual VDR uses the gold-standard data described in Section 5. Both

"Recall there are three Visual Dependency Representations for each image. The partitions are the same as those used in the
VDR prediction experiment in Section 4.1
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MAP P@10
Manual VDR 0.514*T  0.454*
Automatic VDR 0.508*  0.451*
Bag-of-Terms 0.467 0.415

Table 2: Overall Mean Average Precision and Precision@ 10 images. The VDR-based models are sig-
nificantly better than the Bag-of-Terms model, supporting the hypothesis that modelling the structure
of an image using the Visual Dependency Representation is useful for image retrieval. x: significantly
different than Bag-of-Terms at p < 0.01; §: significantly different than Automatic VDR at p < 0.01.

of the VDR-based models have a tf-idf weight assigned to the transformed decomposed terms and the
cosine similarity measure is used to calculate the similarity of images.

6.3 Results

Figure 2(a) shows the interpolated precision/recall curve and Table 2 shows the Mean Average Precision
(MAP) and Precision at 10 retrieved images (P@10). The MAP of the Automatic VDR model increases
by 8.8% relative to the Bag-of-Terms model, and a relative improvement up to 10.1% would possible if
we had a better structure prediction model, as evidenced by Manual VDR. Furthermore, if we assume a
user will only view the top results returned by the retrieval model, then P@10 increases by 8.6% when we
model the structure of an image, relative to using an unstructured representation; a relative improvement
of up to 9.4% would be possible if we had a better image parser.

To determine whether the differences are statistically significant, we perform the Wilcoxon Signed
Ranks Test on the average precision and P@10 values over the 1011 queries in our cross-validation
data set. The results support the main hypothesis of this paper: structured image representations allow
us to find images depicting actions more accurately than the standard bag-of-terms representation. We
find significant differences in average precision and P@ 10 between the Bag-of-Terms baseline and both
Automatic VDR (p < 0.01) and Manual VDR (p < 0.01). This suggests that structure is very useful in
the query-by-example scenario. We find a significant difference in average precision between Automatic
VDR and Manual VDR (p < 0.01), but no difference in P@10 between Automatic VDR and Manual
VDR (p = 0.442).

6.4 Retrieval Performance by Type of Action and Verb

We now analyse whether image structure is useful when the action does not require a direct object. The
analysis presented here compares the Bag-of-Terms model against the Automatic VDR model because
there was no significant difference in P@10 between the Automatic and Manual VDR models. Table 3
shows the MAP and Precision@ 10 per type of action. Figure 3 shows the precision/recall curves for (a)
transitive verbs, (b) intransitive verbs, and (c) light verbs.

In Figure 3(a), it can be seen that the actions that can be classified as transitive verbs benefit from
exploiting the structure encoded in the Visual Dependency Representation. The only exception is for the
action fo read, which frequently behaves as an intransitive verb: the man reads on a train. The consistent
improvement in both the entirety of the ranked list and at the top of the ranked list can be seen in the
MAP and P@10 results in Table 3.

Figure 3(b) shows that there is a small increase in retrieval performance for intransitive verbs compared
to the transitive verbs. We conjecture this is because there are fewer objects to annotate in an image when
the verb does not require a direct object. The summary results for the intransitive verbs in Table 3 confirm
the small but insignificant increase in MAP and P@10.

Finally, the light verbs, shown in Figure 3(c), exhibit variable behaviour in retrieval performance. One
reason for this could be that if the light verb encodes information about the object, as in using a computer,
then the computer can be annotated in the image, and thus it acts as a transitive verb. Conversely, when

117



0.2l| == ride horse
e—e ride bike
+~—a read

0.0t

== use computer
e—a take photo

T 4

.0 01 02 03 04 05 06 07 08 09 10

(a)

0 01 02 03 04 05 06 07 08 09 10

(b)

0 01 02 03 04 05 06 07 08 09 10

(©

Figure 3: Precision/recall curves grouped by the type of verb. The solid lines represent the Automatic
VDR model; the dashed lines represent the Bag-of-Terms model; y-axis is Precision, and the x-axis is
Recall. (a) Images depicting transitive verbs benefit the most from the Visual Dependency Representation
and are easiest to retrieve. (b) Intransitive verbs are difficult to retrieve and there is is a negligible
improvement in performance when using Visual Dependency Representation. (c) Light verbs benefit
from the Visual Dependency Representation depending on the type of the object involved in the action.

MAP P@10
VDR Bag VDR Bag
Ride bike 0.721* 0.601 0.596* 0.513
Ride horse 0.833* 0.768 0.787* 0.726
Talk on phone 0.762* 0.679 0.666* 0.582
Play instrument 0.774* 0.705 0.634* 0.586
Read 0.483 0.454 0.498 0.475
Walk 0.198 0.186 0.184 0.174
Run 0.193 0.165 0.151 0.132
Jump 0.211 0.189 0.142 0.136
Use computer 0.814* 0.761 0.694* 0.648
Take photo 0.241 0.223 0.212 0.198

Table 3: Mean Average Precision and Precision@ 10 for each action in the data set, grouped into transitive
(top), intransitive (middle), and light (bottom) verbs. VDR is the Automatic VDR model and Bag is the
Bag-of-Terms model. It can be seen that the Automatic VDR retrieval model is consistently better than
the Bag-of-Terms model on both MAP and Precision@10. x: the Automatic VDR model is significantly
different than Bag-of-Terms at p < 0.01.
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the light verb conveys information about the outcome of the event, as in the action fake a photograph,
the outcome is rarely possible to annotate in an image, and so no improvements can be gained from
structured image representations.

6.5 Discussion

In our experiments we observed that all models can achieve high precision at very low levels of recall. We
found that this happens for testing images that are almost identical to the query image. For such images,
objects that are unrelated to the target action form an effective context, which allows this image to be
placed at the top of the ranking. However, near-identical images are relatively rare, and performance
degrades for higher levels of recall.

It is surprising that image retrieval using automatically predicted VDR model is statistically indistin-
guishable from the manually crafted VDR model, given the relatively low accuracy of our VDR predic-
tion model: 61.3% by the labelled dependency attachment accuracy measure. One possible explanation
could be that not all parts of the VDR structure are useful for retrieval purposes, and our VDR prediction
model does well on the useful ones. This observation also suggests that we are unlikely to achieve better
retrieval performance by continuing to improve the accuracy of VDR prediction. We believe a more
promising direction is refining the current formulation of the VDR, and exploring more sophisticated
ways to measure the similarity of two structured representations.

7 Conclusion

In this paper we argued that a limiting factor of retrieving images depicting actions is the unstructured
bag-of-terms representation typically used for images. In a bag-of-terms representation, images that
share similar sets of regions are deemed to be related even when the depicted actions are different. We
proposed that representing an image using the Visual Dependency Representation (VDR) can prevent
this type of misclassification in image retrieval. The VDR of an image captures the region-region re-
lationships that explain what is happening in an image, and it can be automatically predicted from a
region-annotated image.

In a query-by-example image retrieval task, we found that representing images as automatically pre-
dicted VDRs resulted in statistically significant 8.8% relative improvement in MAP and 8.6% relative
improvement in Precision@ 10 compared to a Bag-of-Terms model. There was a significant difference
in MAP when using manually or automatically predicted image structures, but no difference in the Pre-
cision@10, suggesting that the proposed automatic prediction model is accurate enough for retrieval
purposes. Future work will focus on using automatically generated visual input, such as the output of
the image tagger (Guillaumin and Mensink, 2009), or an automatic object detector (Felzenszwalb et al.,
2010), which will make it possible to tackle image ranking tasks (Hodosh et al., 2013). It would also be
interesting to explore alternative structure prediction methods, such as predicting the relationships using
a conditional random field (Zitnick et al., 2013), or by leveraging distributional lexical semantics (Le et
al., 2013b).
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Abstract

A significant portion of search engine queries mention business entities such as restaurants, cin-
emas, banks, and other places of interest. These queries are commonly known as “local search”
queries, because they represent an information need about a place, often a place local to the user.
A portion of these queries is not well served by the search engine because there is a mismatch be-
tween the query terms, and the terms representing the local business entity in the index. Business
entities are frequently represented by their name, the category of entity (whether it is a restaurant,
an airport, a grocery store, etc.) and other meta-data such as opening hours and price ranges. In
this paper, we propose a method for representing business entities with a term distribution gener-
ated from web data and from social media that more closely aligns with user search query terms.
We evaluate our system with the local search task of ranking businesses given a query, in both
the U.S. and in Brazil. We show that augmenting entities with salient terms from social media
and the Web improves precision at rank one for the U.S. by 18%, and for Brazil by 9% over a
competitive baseline. For precision at rank three, the improvement for the U.S. is 19%, and for
Brazil 15%.

1 Introduction

Search engine queries, particularly queries issued from mobile devices, often mention business entities
such as restaurants, cinemas, banks, and other places of interest. These “local search™ queries represent
an information need about a place. Often there is a mismatch between the query terms, and the terms
representing the local business entity in the index, making it difficult for the search engine to find results
that satisfy the user. Local data consists largely of listings of businesses, annotated with metadata. This
metadata includes the name of the location, category information (is the business a clothing retailer, or
a Thai restaurant, for example), address and phone number, opening hours, and indicators such as price
range, popularity, star ratings, etc. Figure 1 shows an example of the type of information available to
local search systems.

Some local search queries are known item searches, where the user knows the name of a business and
they seek other information about the place, such as the opening hours. Other local search queries are
category searches where the user does not know the name of a specific business but is using the Internet
in much the same way they might have used the Yellow Pages in pre-Internet days. An example of a
category search is “Thai restaurants in Denver”. There are also descriptive local queries such as “pizza
delivery” or “romantic brunch in Seattle”” where the user does not mention a category or a business name
directly, but for which there is a closed class of businesses that will satisfy the user’s need.

Descriptive queries such as “roasted chiles in Santa Fe” or “kid-friendly Caribbean resorts” pose a
significant challenge to local search systems, as the information in the local index does not typically
include terms that match the user’s query. That is, the system may know businesses in Santa Fe, but not
whether they sell roasted chiles.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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The French Laundry - Yountville, CA | Yelp

www.yelp.com » Restaurants » French -

Closed now Wed 5:30 PM to 9:30 PM

Figure 1: Example of the type of meta-data associated with a business entity, in this case a restaurant.

However, collectively people themselves know this type of information, and they frequently mention it
in social media. The discussion of a local business in social media, such as Twitter!, Flickr?, Facebook>
and Foursquare* may take the form of a simple check-in (“Drinking a Smog Rocket at @byronhamburg-
ers”) or a Facebook status caption to a photo (“Sea stars at the Seattle Aquarium”), or a Tweet (“the quad
& the blonde both were good! The choc flavored one wasn’t so much to my tastes...”’), among others.

A growing number of users of social media attach geographic coordinates to their status updates,
allowing the text of the updates to be associated to a location. Further, businesses use social networks as
a publicity platform to widen their customer base. Today, Twitter has more than 500 million users.?

In this paper we augment business entities with salient terms describing the business. We extract
the terms from Twitter, and from the Web. To determine which terms are salient, we compute the co-
occurrence of terms with mentions of the business name (and name variants), for tweets issued within
one kilometer of the business. Because some users are especially prolific on social media, and may
dominate the tweets issued in that location, we estimate the term co-occurrence statistics with the user
frequency of a term: the number of people using that term in a given location. We also extract salient
terms from the Web pages of the business entity, but in this case the user frequency is not meaningful, so
term co-occurrence is calculated with the term frequency.

We evaluate the term distributions describing a place in the context of local search for the U.S. and
Brazil. We construct a corpus of search engine queries with local intent, and evaluate the retrieval
of businesses in response to the queries. We compare several different strategies for augmenting the
representation of the business to a baseline system described in Colombo et al. (2013). Augmenting with
tweets improves precision at rank one for U.S. local search by 18%, and for Brazil by 9%. For precision
at rank three, the improvement for the U.S. is 19%, and for Brazil 15%.

The rest of the paper is organized as follows: Section 2 surveys the related work. Section 3 details how
salient terms are extracted from tweets and the Web. Section 4 illustrates the experimental setting and
the evaluation of the impact of salient terms on retrieval. Section 5 presents a discussion of the results
and Section 6 concludes the paper with remarks for future work.

lwww.twitter.com visited March 2014

2www . £1lickr . com visited March 2014
Swww. facebook . com visited March 2014
“www . foursquare . com visited March 2014

‘http://www.statisticbrain.com/twitter—statistics/ visited March 2014
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2 Related Work

Modeling business entities from multiple sources like the Web and social media remains an open prob-
lem. Most of the work in this domain focuses on modeling locations and regions more generally (O’Hare
and Murdock, 2013; Laere et al., 2012; Bennett et al., 2011), or on extracting mentions of business enti-
ties from text using NLP techniques (Rae et al., 2012). O’Hare and Murdock (2013) propose a statistical
language modeling approach to characterize locations in text, based on user frequency. They utilize the
geo-tagged public photos in Flickr. The primary difference between their work and ours is that they
estimate the user frequency distribution, whereas we employ the user frequency in calculating the term
co-occurrence. Also, the locations described in O’Hare and Murdock represent locations of one kilome-
ter distance. They do not attempt to characterize specific points of interest or businesses.

There has been significant effort to leverage image content to characterize locations, due to the avail-
ability of geotagged Flickr photos. Much of the work uses Flickr photos and tag sets, and focuses on
identifying the locations in photos. This is related, although not directly applicable, to work with Twitter.
Ahern et al. (2007) identify geographically related tags by finding dense areas using geodesic distances
between images. They rank the tags in these areas with ¢ f.idf. In their subsequent work Kennedy et
al. (2007) leverage tags that represent local events. Naaman et al. (2003) and Moxley et al. (2008) pro-
pose approaches for recommending tags to the user given a known location for an image. Some research
efforts leverage image content to characterize locations. Crandall et al. (2009) employs image content
and textual metadata to predict the location of a photograph at the city level and at the individual land-
mark level. Hays and Efros (2008) use visual features to predict geographic locations by nearest-neighbor
classification.

Colombo et al. (2013) provide the baseline system for this paper, and it is described in more detail in
Section 4.1. They use online reviews, comments and user tips about points of interest in location-based
services like Yelp, Google+, and Qype to build a tag-based representation of a point of interest. They
rank the tags by their ¢ f.idf score from a collection of location-based service related documents.

In terms of using geo-referenced information to represent locations, Rodrigues (2010) proposes to
extract points of interest automatically from the Web, for example from Yahoo, Manta and Yellow Pages.
He also infers points of interest based on geo-referenced content such as geo-tagged photos, blog posts
and news feeds. They cluster content from multiple sources while building a language model for each
cluster. Tags in each cluster are scored by ¢ f.idf. This work is similar in spirit to the work proposed in
this paper, although our work focuses more on obtaining the most unique and frequent tags associated
with points of interest in tweets.

Hegde et al. (2013) assign tags to points of interest based on user interest profiles in online social
networks and check-in logs of users at these places. They use probabilistic modeling to derive the
point of interest tags followed by hierarchical clustering of most probable tags to filter out semantically
irrelevant tags. Biancalana et al. (2013) use point of interest-related location-based service content to
extract key phrases that could serve as tags characterizing each point of interest. The extracted phrases
are weighted by user authority.

In terms of modeling locations from short microblog messages like tweets. Paradesi (2011) proposes
TwitterTagger, a system that geo-tags tweets and shows them to users based on their current physical
location. The tweets are geo-tagged by identifying the locations referenced in a tweet by part of speech
tagging and a database of locations. Eisenstein et al. (2010) and Kinsella et al. (2011) present methods to
identify the location of a user based on his or her tweets. Li et al. (2011) rank a set of candidate points of
interest using language and temporal models. Given a query tweet, they build a unigram language model
for each candidate point of interest and for the query tweet. Points of interest are then ranked by their
KL-divergences with the tweet language model. Unlike our work, both approaches identify a location in
tweets rather than modeling a certain location by the way it is mentioned in tweets.

3 Describing Businesses with Twitter and the Web

Salient terms are terms that uniquely characterize a place. As an overview, we extract terms from two
sources namely geo-tagged tweets and business-related webpages. We extract terms from geo-tagged
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tweets posted from locations within one kilometer of the business. We then identify the tweets about a
given business from among the nearby tweets, by looking for mentions of the business name (along with
naming variants). We compute the term co-occurrence between the business name, and the terms that
occur in tweets mentioning the business.

We also extract terms from webpages related to the business entity. We issue a query with the business
name to the Bing Search APL.® We compute the term co-occurrence between the business name, and the
terms that occur in these top three web pages resulting from Bing search.

There is no universal standard for representing locations. Some gazetteers are available for developers
that represent places according to a hierarchy (such as Geonames’ and Placemaker®). There is also
proprietary data gathered by companies such as Nokia, YellowPages and Yelp, which provide some
information about places like geo-location, address, and phone number. There are also open source data
like Freebase and DBpedia. Both proprietary and open source data use structured representations for
places.

There are three challenges with these representations. First, they do not provide a rich description of
the place, as they are primarily designed to help users locate the place, via the name, address and phone
number, or category (“restaurant” or “cinema,”’ for example). However, the categories may be broad and
in a language different from the language spoken by the user. Second, the coverage of points of interest
and businesses focuses mostly on well-known places. Businesses are not usually well-represented be-
cause they are often relatively ephemeral. Finally, the data may be stale. For example, a restaurant that
has closed, or moves location, should be flagged, and it may take time for the gazetteer to be updated.
Social media provides fresh information about businesses, especially as more businesses promote them-
selves via these channels. Modeling businesses with tweets could complement the available data with
fresh descriptions.

3.1 Text Pre-processing

We acquire geo-tagged tweets related to business entities in the United States and Brazil from the Twitter
firehose, from January 1, 2013 to May 31, 2013. We chose these countries because of their high usage
of Twitter, and to show that the approach is language agnostic. The tweets are primarily in English (in
the U.S.) and in Portuguese (in Brazil).

We pre-process the tweets by removing stop words, using the Natural Language Toolkit (NLTK) li-
brary® and non-alphabetic characters. For our baseline implementation following Colombo (2013), we
remove the non-English words using the English NLTK wordnet corpus. For removing non-Portuguese
words in the baseline, we use the Enchant specll checking library.'? In our proposed approach, we don’t
remove non-English and non-Portuguese words, but we rather remove twitter terms that did not appear in
the Bing query logs in December 2013. Further, we remove tweets automatically generated by check-in
services such as Foursquare by detecting the patterns “I’m at” and “mayor”. We remove shortened URLs
in the tweet text by detecting the pattern “http://t.co.” URLs are removed as they do not carry salient
terms. All text was lower-cased. All tweets are indexed in Solr,'! an open-source search engine which
allows for field search. The index carries the tweet text, geographic coordinates, time stamp, language,
country, retweet count, source, URL and user information.

3.2 Computing Salient Terms

The business entities were submitted to the Solr index as queries, to retrieve the tweets related to the
entity itself. We apply two sequential filters on the indexed tweets to obtain the relevant tweets. The
first filter limits the search to those tweets whose geographic coordinates are within one kilometer of the
business entity. This covers a wide range around the POI due to the small volume of geo-tagged tweets

Shttp://datamarket.azure.com/dataset/bing/search visited March 2014
"http://www.geonames.org visited March 2014
8http://developer.yahoo.com/boss/geo/ visited March 2014
“http://nltk.org/ visited March 2014
http://pythonhosted.org/pyenchant/ visited March 2014
"http://ucene.apache.org/solr/ visited March 2014
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in general. Enlarging the range to one kilometer retains a reasonable volume although it does introduce
more irrelevant tweets. The second filter eliminates irrelevant tweets by searching with the canonical
name of the business along with naming variants. The indexed tweets are searched by name, 70% of the
name, and the name fully concatenated with no spaces separating the multiple words, and with spaces
replaced with an underscore. The resulting set of tweets are those that are relevant to the business entity
since they have been posted within its vicinity and they mention the entity directly.

To extract the salient terms from Twitter, we compute the term co-occurrence of the entity name with
the set of terms co-occurring in the associated tweets. Term co-occurrence is traditionally computed as
the number of times term ¢ and term w appear in the same tweet C, divided by the number of times term
t appears in any tweet in the same one-kilometer vicinity, plus the number of times term w appears in
any tweet in the same one-kilometer vicinity:

counto(t, w)

(1

scorel(t, w) = countc (t) + counto(w)

Some users of twitter are extremely prolific, and may generate a lot of data in a small set of places.
Term frequency may produce an estimate of the term distribution biased toward a particular user or set
of users. To prevent a single prolific user from dominating the representation of a place, we estimate
the term co-occurrence with the user frequency. That is, the term counts are the number of people who
used a term in a place, rather than the number of times a term was applied. This has been shown to be
a more reliable estimate of term distributions in other work using social media to model places (O’Hare
and Murdock, 2013). Note that the baseline implementation is based on the term frequency, and uses
tf.idf rather than term co-occurrence.

We also enrich the business entities with terms from the web pages. We issue a query to Bing Search
API with the business name. We then extract salient terms from the content of the top three results. We
pre-process the text according to Section 3.1 to get the unigram terms. We filter out the terms that are
substrings of the business name, and single character terms. The terms are weighted according to the
term frequency (¢f) and the terms with tf > 0.001 are considered salient to the business entity. This
threshold has been selected empirically.

4 Experimental Setting

In our experiments we evaluated the effect of expanding the business entities with salient terms within
the context of local search. We examined whether adding tags such as “conchiglie” to the entity “French
Laundry” will improve the retrieval results for a query with local intent like “conchiglie Napa Valley”.
For this purpose, we sampled a set of 30,000 businesses from a proprietary database of business listings
in the United States and Brazil. We then chose 80 entities from the two countries to formulate the test
set of search queries as illustrated below.

4.1 Baseline Approach

Colombo et al. (2013) suggested a method for filtering the salient terms extracted from a set of documents
relevant to a place of interest. We used their method to filter the salient terms extracted from the geo-
tagged tweets selected and pre-processed as described above in Section 3.1. The terms remaining after
these filtration steps are weighted using ¢ f.idf, where a background corpus of all tweets relating to any
business within one kilometer of the entity in question is used to calculate the ¢df of each term. Finally,
we kept only the terms with a ¢ f.idf greater than a threshold of 0.04 as the baseline salient terms for the
business.

4.2 Building the Search Corpus

Our database of businesses contains metadata about each business including the name, phone number,
website, street address, city, country, geographic coordinates, and category information that are a subset
of a taxonomy of categories both in English and in the language of the country of the business. We
appended the extracted salient terms for each business as a field in our database. We removed twitter

125



terms that escaped initial filtering by removing any terms that did not appear in the Bing query logs in
December 2013. We also filtered out twitter terms that are included in the category taxonomy, as these
tags will not add value to the existing data, and are unlikely to improve retrieval over the naive baseline.

Some businesses are very popular, and are likely to generate more social media traffic. To make
sure that the system is as general as possible, and that we don’t build in an inherent bias toward popular
businesses (or national chains) we construct the search corpus to represent varying popularity levels. The
popularity of a business is quantified by the number of unique users tweeting about it. We stratify the
selection of the businesses from our database of 30000 businesses such that the search corpus contains
15,000 businesses from the U.S. and 15,000 businesses in Brazil, which are distributed across a range of
popularity scores. Finally we indexed the search corpus using Solr.

4.3 Generating Search Queries

We formulate search queries by selecting 40 businesses in each market with their attributes and salient
terms. We formulated query templates from the business name, location, category and terms selected by
three judges from associated tweets and Web pages. The information is detailed in Table 1. The query
templates are shown in Table 2, along with an illustrative example of each one.

Attribute | Description

Name business name and variants

Location city and country

Categories | categories provided by the database

Terms term selected by judges from Twitter and Web pages

Table 1: Information included in the baseline queries

Query Template Example
Name “French Laundry”
Name + Location “French Laundry in Yountville”
or
“French Laundry in California”
Name + Category “French Laundry Restaurant”
Name + Term “conchiglie French Laundry”
Term + location “conchiglie Yountville” or
“conchiglie California”
Category + location “Restaurants in Yountville” or
“Restaurants in California”

Table 2: Query templates with examples

Some of the automatically generated queries (such as “happy in california” and “week in Houston™)
don’t have a local intent because of uninformative terms (such as “good”, “happy”, or “week”) or because
of malformed substrings of names and categories. To filter out these uninformative queries we issued
the query to Bing Search API and kept only the queries that generated a direct answer. An example of
a direct answer is shown in Figure 1. The Bing Search API returns a direct answer when the query has
been classified as having local intent. We use the Bing API in this way as a black box, because building
a local intent classifier is a significant undertaking, and is beyond the scope of this paper. The resulting
test set consists of 1000 local queries representing 80 business entities in Brazil and the U.S., with an
equal distribution of each of the query templates in Table 2.

4.4 Evaluation

Our primary evaluation is of query expansion for the class of queries for which a business listing is a
relevant result. However, representing a business entity with a term distribution estimated from social

126



media has other applications as well. For this reason, we would like to know the quality of the expansion
terms, independent of any task. To this end, we asked three judges to pick all the relevant terms from
among an unordered set of extracted terms salient to a business, for 100 businesses in each country. We
divided the terms among the three judges equally and each term has been judged by only one judge. The
number of tags extracted from the web pages is an order of magnitude larger than the number of tags
extracted from Twitter for a given business. We consider the tag accuracy to be proportion of “good”
tags accounted for by a single data source. That is, for Twitter, it is the number of “good” Twitter tags,
divided by the total number of “good” tags, whereas the accuracy of the Web tags is the number of
“good” tags derived from the web, divided by the total number of “good” tags. Based on this assessment,
the accuracy of the Twitter tags for the U.S. data was 0.22, and the accuracy of the Web tags was 0.78.
For the data from Brazil, the accuracy of the Twitter terms was 0.15, and the accuracy of terms derived
from the Web was 0.85.

The effect of the expansion strategies on the retrieval of business entities. As Solr allows for field
search, we can limit the fields to the entity and its metadata, or the entity metadata and the twitter tags,
etc. Tables 3 and 4 show the results for various retrieval from fields representing document expansion
strategies on data from the U.S. and Brazil, respectively. The results are averaged over 500 queries (from
the query formulations described above) for each country. In Tables 3 and 4 we see that nearly 60% of
queries return the correct result at rank one, when the entity is represented only by its metadata. The
results reported in the other rows also include the entity metadata. (The baseline in Tables 3 and 4 is
described in Section 4.1.) Expanding the represnetation of the point of interest with terms from the Web
and from social media shows a clear benefit.

Mobile devices are becoming ubiquitous, and local search represents an important class of search on
mobile devices. Because the devices are small, real estate to show results is extremely limited. For this
reason, we choose to evaluate precision @ k, for k <= 3 for this task. To create a truth set, the top
three results were evaluated by judges to determine their relevance to the query. Each result is judged by
one assessor. Because precision at one is binary, we do not apply a statistical significance test. Percent
change is reported for precision at rank one, with respect to the baseline (row two). The fact that the
precision at rank three is lower than precision at rank one is an artifact of their being a single relevant
result in most cases.

P@1 | P@3 | % Change
inP@1
Entity metadata 0.595 | 0.353 | (oracle)
Baseline 0.627 | 0.358 | NA
Entity metadata + twitter tags 0.667 | 0.389 | +6.4%
Entity metadata + web terms 0.686 | 0.396 | +9.4%
Entity metadata + web terms + twitter tags || 0.738 | 0.425 | +18%

Table 3: Precision @ k for local search in the U.S.

P@1 | P@3 | % Change
in P@1
Entity metadata 0.618 | 0.436 | (oracle)
Baseline 0.643 | 0.460 | NA
Entity metadata + twitter tags 0.650 | 0.474 | +1%
Entity metadata + web terms 0.700 | 0.517 | +8.9%
Entity metadata + web terms + twitter tags || 0.708 | 0.533 | +10%

Table 4: Precision @ k for local search in the Brazil.
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5 Discussion

Since the set of queries consists of the entity name plus attributes from the index such as the location and
the category information, the resulting precision from search just on the entity metadata itself shows the
degree to which the bias in the data accounts for the results. That is, if you have the correct entity name,
location and category, just searching for a business with matching metadata gives a precision at rank one
of 0.595 (0.618 for Brazil). This is a naive baseline. The baseline results show that it is a competitive
baseline because it demonstrates that there is a benefit to expand the representation of a business entity
with text, beyond the naive baseline above it in the table.

The gains in precision suggest that the extracted salient terms with co-occurrence statistics and user
frequency from twitter and the web pages are of better quality than the terms extracted by the baseline in
Colombo et al. (2013) with term frequency only. This is attributed to the fact that co-occurrence statistics
and user frequency capture the terms that people frequently use when describing a place. Further, the
quality of the salient terms extracted from the web pages exceeds the quality of the twitter terms. This
is to be expected if the main search results for a business entity are reasonable, and the top three results
are relevant to the query. Social media is notoriously noisy, so it is not surprising that the web pages
produce more reliable expansion terms. Furthermore, comparing the terms expanded from the web, to
the terms expanded from Twitter, we see the relative improvement with respect to the baseline of the Web
expansion terms is greater than the Twitter expansion terms. The fact that both expanding from twitter
and the Web produces results better than either individually shows that the two term distributions cover
different slices of the vocabulary.

We experimented with the number of tweets required to improve the representation of the point of
interest. We focused on the portion of the test set with queries of the form term + location like “conchiglie
Yountville,” as those are the queries that are not answered with relevant results in the absence of the
proper salient terms. We found that 10 to 30 tweets mentioning the business were sufficient to improve
the retrieval results for these queries, and there was no benefit to increasing the number of tweets to 50
or 100. In the Brazil data, the results for four of the queries of the form term + location were degraded
when sampling terms from 10 tweets compared to more. However, the results were the same for 30, 50,
100 or more tweets, suggesting that there is no benefit to increasing the number of tweets beyond 30.
This suggests that a smaller number of tweets is better, in terms of extracting salient terms. One possible
reason for this is that adding more tweets increases the number of noise terms, relative to the number of
salient terms.

6 Conclusion and Future Work

In this paper, we present an effective representation of business entities with a term distribution generated
from web data and from social media that more closely aligns with user search query terms. We evaluate
our system with the local search task of ranking businesses given a query, in both the U.S. and in Brazil.
Our method uses co-occurrence statistics and user frequency to extract relevant salient terms. The results
demonstrate the effectiveness of this approach when compared with a competitive baseline that uses
term frequency to extract salient terms. Furthermore, we show that query expansion with salient terms
improves retrieval in the common task of retrieving a business listing in response to a user query.

We leave to future work applying query expansion from social media to larger collections of local
search queries, and other methods for formulating query templates based on the metadata available with
business listings.
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Abstract

Despite the overwhelming use of statistical language models in speech recognition, machine
translation, and several other domains, few high probability guarantees exist on their generaliza-
tion error. In this paper, we bound the test set perplexity of two popular language models — the
n-gram model and class-based n-grams — using PAC-Bayesian theorems for unsupervised learn-
ing. We extend the bound to sequence clustering, wherein classes represent longer context such
as phrases. The new bound is dominated by the maximum number of sequences represented by
each cluster, which is polynomial in the vocabulary size. We show that we can still encourage
small sample generalization by sparsifying the cluster assignment probabilities. We incorporate
our bound into an efficient HMM-based sequence clustering algorithm and validate the theory
with empirical results on the resource management corpus.

1 Introduction

The ability to predict unseen events from a few training examples is the holy grail of statistical language
modeling (SLM). Although the final test for any language model is its contribution to the performance of
a real system, task-independent metrics such as perplexity are popular for evaluating the general quality
of amodel. Standard algorithms therefore attempt to minimize perplexity on some previously unobserved
test set, assumed to be drawn from the same distribution as the training set. This begets the question of
how the test set perplexity is related to training set perplexity — every paper on SLM has an answer, with
varying levels of theoretical and empirical justification.

The problem of data sparsity and generalization can be traced back to at least as early as Good (1953),
and possibly Laplace, who recognizes that the maximum likelihood (ML) estimate of event frequencies
(n-grams) cannot handle unseen events. Smoothing techniques such as the add-one estimator (Lidstone,
1920) and the Good-Turing estimator (Good, 1953) assign a non-zero probability to events that have
never been observed in the training set. Recently, Ohannessian and Dahleh (2012) strengthened the
theory by showing that Good-Turing estimation is consistent when the data generating process is heavy-
tailed. In the context of this paper, smoothing was perhaps the first attempt to bound generalization error,
in that it successfully guarantees a finite test set perplexity.

It is evident that smoothing of the n-gram estimate alone is not sufficient. Techniques that incorporate
lower and higher order n-grams, such as Katz (1987) smoothing, Jelinek-Mercer (1980) interpolation,
and Kneser-Ney (1995) smoothing, have become standard (Rosenfeld, 2000). Chen and Goodman (1999)
provide a thorough empirical comparison of smoothing methods and uncover useful relationships be-
tween the test set cross-entropy (log perplexity) and the size of the training set, model order, etc. A
Bayesian interpretation further explains why some of the techniques (don’t) work. Teh (2006) discusses
fundamental limitations of the Dirichlet process (Mackay and Peto, 1995) and proposes the hierarchi-
cal Pitman-Yor language model as a better way of generating the heavy-tailed (power law) distributions
exhibited in natural language.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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Instead of directly modeling a heavy-tailed distribution over words, class-based models address data
sparsity by estimating n-grams over clusters of words. Intuitively, clustering is a transformation of the
event space from the space of word n-grams, in which most events are rare, to the space of class n-grams,
which is more densely measured and therefore requires fewer training examples. Brown et al. (1992)
show that the clustering function that maximizes the training data likelihood must also maximize mu-
tual information between adjacent clusters; although several useful clustering algorithms are based on
this principle, no provable guarantees currently exist. Moreover, word transitions are never completely
captured by the underlying class transitions, and some tradeoff between accurate estimation of frequent
events (word n-grams) and generalization to unseen events (class n-grams) is desired — class-based mod-
els are therefore often interpolated with word n-grams using some of the previously described Bayesian
methods (Rosenfeld, 2000).

Our survey of SLM techniques and their treatment of generalization error has been rather brief and
certainly not comprehensive. We focus primarily on n-grams and related models since they have domi-
nated SLM over the last several decades (Rosenfeld, 2000), and therefore serve as a good starting point
for further analysis. The existing literature suggests that apart from empirical validation and intuition,
no provable guarantees exist on the generalization error of language models. Bayesian techniques work
well only to the extent the prior assumptions are valid; in this paper, we present theoretical guarantees
that hold irrespective of the correctness of the prior.

Model selection approaches such as the Akaike Information Criterion (AIC) (Akaike, 1973) and its
variants (Burnham and Anderson, 2002) quantify the tradeoff between complexity and goodness of fit. In
the context of a language model, it can be shown that test set cross entropy is approximately the training
set cross entropy plus the number of model parameters. Unfortunately, such bounds are loose and do
not provide significant algorithmic insight — at best, they recommend the smallest model that works well
on the training set. Chen (2009) obtained a very accurate relationship for exponential language models
by estimating the test set performance with linear regression. Although empirical, his approximation
leads to better models based on [; + [3 regularization. Exponential models are often motivated with
the minimum discrimination information (MDI) principle, which roughly states that of all distributions
satisfying a particular set of features, the exponential family is the centroid (minimizes distortion relative
to the farthest possible true distribution) (Rosenfeld, 1996). This does not bound the generalization error
in the manner we wish to, but it is nevertheless a useful property that complements Chen’s observations.

In this paper, we strive for the best of both worlds — we present PAC-Bayesian theory as a powerful tool
for deriving high probability guarantees as well as efficient and well-motivated algorithms. In the next
section, we state some useful PAC-Bayesian theorems. In Section 3, we present our main results. We
apply the PAC-Bayesian bounds to n-grams, class-based n-grams, and also sequence clustering, where
classes represent longer context such as phrases. We show that for sequence clustering, the bound is
dominated by the maximum number of sequences represented by each cluster, and consequently requires
many more training examples than a class-based model over words. We address this issue by sparsifying
the cluster assignment probabilities using the [, norm, 0 < o < 1, an effective proxy for the intractable
lp norm. In Section 4, we show how our bound can be incorporated into an HMM-based clustering
algorithm. In Section 5, we validate the theory presented in this paper with some empirical results on the
resource management corpus.

2 PAC-Bayesian Bounds

PAC-Bayesian theory is a useful framework for combining frequentist bounds with the notion of a prior.
Probably approximately correct (PAC) learning bounds the worst case generalization error of the best hy-
pothesis selected from a hypothesis space — and therefore treats all hypotheses uniformly (Valiant, 1984).
PAC-Bayesian bounds, however, place a prior over the hypothesis space while making no assumptions on
the data generating distribution (McAllester, 1998). Thus, PAC-Bayesian bounds can both 1) incorporate
prior information, and 2) provide frequentist guarantees on the expected performance. They have been
successfully applied to classification settings such as the support vector machine (SVM) (McAllester,
2003; Langford, 2005), yielding significantly tighter bounds. Seldin and Tishby (2010) extend the frame-
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work to include unsupervised learning tasks such as density estimation and clustering. Since statistical
language modeling at its core is a discrete density estimation problem, we focus on the bounds developed
by Seldin and Tishby (2010) and summarize key results in the following subsection.

2.1 Unsupervised Learning

Given a d-dimensional product space X! x ... x X(4) and a collection of N samples, S, independent
and identically distributed (i.i.d.) according to some unknown distribution p(z1, ..., z4) over the product
space, we want to estimate p(x1, ..., x4) with some model ¢(x1,...,xz4). In the case of clustering (e.g.
class-based models), we make the following assumption on ¢(z1, ..., x4) [Note: we make no assumptions
on the true distribution p(z1, ..., z4)]:

d

q(z1, ..., zq) = Z q(cl,...,cd)Hq(mi\Ci) (1)

C1,..-,Cq =1

where ¢; = h;(x;) for some clustering function h; : X () +— C(). We refer to them collectively as a
clustering function h, h = {h;}&_ s hence h: XM x ... x X 1 ¢ x .. x C(9), We assume that the
original space X M % ... x X4 has finite cardinality, with n; = |X (@) |, and likewise for the clustered
space CM) x ... x C¥, where m; = ]C(i)] is the number of clusters. We define a hypothesis space, H, to
be the space of all possible clustering functions h € H.

For h e H, we define the distributions py(c1,...,ca) = >, . p(T1,...,Ta) H?Zl 0(hi(x;) = ¢)
and pp(ct,..sca) = dop 4, D(T15 0 Ta) H‘le 0(h;i(x;) = ¢;), where p(x1,...,24) is the unknown
true distribution, and p(zq,...,z4) is the empirical (maximum likelihood) estimate. The delta func-
tion, d(arg), takes a value of 1 only when arg is true, and 0 otherwise. We can extend to
the original space with the model assumption in Equation (1). For example, pp(x1,...,x4) =
ch,--.,cd pu(ct, - Ca) H?ﬂ q(zilci).

The key difference between PAC learning and the PAC-Bayesian framework is the following notion
of a random predictor, which is a distribution Q(h), learnt over the hypothesis space H. Inference works
as follows: for a new sample (x1, ..., z4), we first draw a hypothesis h from H at random according to
the distribution Q(h). We then return g(z1, ..., z4) according to the model described by Equation (1)
and the clustering function h. The PAC-Bayesian framework therefore allows for a second level of aver-
aging over Q, and we can define the induced distributions: pg(ci, ...,cq) = >, Q(h)pn(ct, ..., cq) and
polct,...,cq) = >, Qh)Pr(ci, ..., ¢qg). Again, we can extend to the original space with pg(x1, ..., 4)
and pg(z1,...,z4) using the model assumption in Equation (1). Note that pg(x1, ..., 24) is unknown
since p(x1, ..., x4) is unknown; but the goal is to bound some notion of generalization error, such as the
KL-divergence KLL(po(z1, ..., zq)||po (1, ..., 24))-

The Change of Measure Inequality (CMI) (Seldin and Tishby, 2010) is central to almost every PAC-
Bayesian bound, so we briefly state it here. For any measurable function ¢(h) on H and for any distri-
butions Q(h) and P (h):

Egq[6(h)] < KL(QIIP) + InEp(, [¢#®)] .

where KIL(Q||P) = Eg(n) [ln %} is the KL-divergence between Q and P. The proof is fairly straight-

forward and is a direct consequence of rewriting ¢(h) as In (e¢(h) %%) .

Seldin and Tishby (2010) apply the CMI with ¢(h) = N - KL(pp(x1, ..., xq)||pr(z1, ..., z4)) and
simplify the KL-divergence term by recognizing that 1) {q(c;|z;)}¢_, defines a distribution over all
possible clusterings, and hence Q = {q(c;|z;)}%_,; and 2) a specific P, which they call the prior, can be
defined without making any assumptions on the true distribution p(z1, ..., z4). Note that P is not a prior
in the Bayesian sense: 1) it indicates preference on the structure of the hypothesis, not an assumption
on the data generating distribution, although the latter could be a consequence of the former; 2) the
bound holds regardless of P; and 3) the bound holds regardless of Q, which is not necessarily the Bayes
posterior.

132



The following prior on H makes no assumptions on p(z1, ..., z4). We present a simplified version of
the prior developed by Seldin and Tishby (2010):

Plh) > ! 3)

exp [25:1 m; Inn; + n; In mz}

The prior is based on a combinatorial argument. In order to select a clustering function h; for some
1, we first need to pick a cardinality profile (number of elements per cluster) for the m; clusters; there
are n; " such profiles, hence the first term in the sum. Next, given a cardinality profile, we need to
bound the number of ways in which each of the n; elements can be assigned to the clusters given their
sizes; there are at most m,"* possibilities, hence the second term in the sum. The CMI with ¢(h) =
N - KL(pp(z1, ..., zq)||pn(x1, ..., x4) ), our modified prior, and a few information theoretic results lead
to the following bound.

PAC-Bayesian Clustering: For any distribution p over Y1) x ... x X(9) and an i.i.d. sample S of size N
according to p, with probability at least 1—§, for all distributions of cluster functions Q = {q(c;|z;)}¢_,,
the following holds:

Z?:l N In m; + K1

KL(po(a1, - 24) [pol@1, 7)) < =

“4

where K1 = > mjlnn; + (M — 1)In(N + 1) + In 9L, and M = []%, m;. Although this
shows convergence, in applications such as language modeling, we are interested in directly bound-
ing the test set perplexity or cross-entropy. Seldin and Tishby (2010) smooth po(x1, ..., x4) to bound
Epr,....z) [~ M PQ(ar,....2,)] and provide the following useful result based on Equation (4).

Bound on Cross-Entropy: For any probability measure p over XYV x ... x X(@) and an i.i.d. sample S of
size N according to p, with probability 1 — ¢ for all distributions of cluster functions Q = {q(c;|z;) ¢ :

. R i1 T lnmz + K
Ep(th,zd)[— Inpo(z1,...,2q)] < —I(po(cty...,cq)) + In(M \/Z 1 1 + Ky (5

where po(x1,...,x4) is now the smoothed empirical estimate induced by Q, I(pgo(ci,...,cq)) =
Zgzl H(po(c;))—H(polei, ..., cq)) is the multi-information of the clustering, M and K are as defined
in Equation (4), and K> is an additional term, Ky > I(pg(c1, -.., ¢q)), and the bound is non-negative.

3 Language Models

Since language modeling is yet another density estimation problem in which we want to minimize the test
set perplexity, the bound in Equation (5) readily applies to both word n-grams and class-based n-grams.
Note that the bounds are on cross-entropy, which is log perplexity, but we use the two terms almost
interchangeably. We are now interested in estimating the unknown true distribution p(vy, ..., v,) over
the space V", where V) is some vocabulary consisting of V' = || words. The degenerate case d=1,
XM =Y is the case of word n-grams and results in a bound that is dominated by n; = |X(1)| = V™.
This suggests that the number of training samples, N, must be on the same order as V" for the bound
(and hence the estimate) to be meaningful.

It is also clear why class-based models are favored whenever they work. In this case, d = n, X =V
for all 1 < i < d, and the bound in Equation (5) reduces to something linear in V' (since Vi, n; =
|X@)| = V). Moreover, the clustering function is the same for all i — that is, word clusters do not depend
on the position in the n-gram. Assuming K word clusters, the number of training examples, N, only
needs to be on the order of K™ 4 nV, achieving effective small sample generalization especially when
K << V. In the following subsections, we extend the bound to sequences and present a unique approach
to regularize the bound.
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3.1 Sequence Clustering

We have discussed two extreme cases, namely d = 1 and d = n, that correspond to word n-grams and
class-based n-grams, respectively. In practice, they are often interpolated to retain the advantages of
both, as shown in the following model:

n

q(v1, .oy ) = aq(vi, ..., vn) + (1 — @) Z q(cl,...,cn)Hq(vi\Ci) 6)

Cl,.-+,Cn =1

for some 0 < a < 1. A Bayesian interpretation of the above model is to select between the n-gram
and the class-based model with probabilities o and 1 — «, respectively. In other words, for each n-
gram (v1, ..., v, ), we simply flip an a-biased coin to decide on one of the two models. In this paper,
we interpolate across the entire spectrum, 1 < d < n, instead of just the extreme cases — that is, we
capture clusters over not just words, but also sequences of words (phrases). Previous results by Deligne
and Bimbot (1995), Ries et al. (1996), and Justo and Torres (2007) indicate that clustering over phrases
is practically useful and leads to significant improvements.

Suppose our goal is to estimate the probability of a trigram, for example, “the cat sat.”
In the case of d = 1, we directly estimate the joint probability p(the,cat,sat). In the
standard class-based model, where d = 3, we estimate with the model p(the,cat,sat) =
> er.eanes P(C1, 25 c3)p(theler)p(cat|ea)p(sat|cs). The intermediate cases, such as d = 2 in this ex-
ample, are often neglected. The theory we subsequently develop interpolates over all four segmenta-
tions, including the missing ones: p(the, cat,sat) = > . . p(c1,c2)p(the cat|ci)p(sat|cz) as well as
p(the, cat, sat) = ZCMCQ p(c1, ca)p(the|cr)p(cat sat|cs).

In general, an n-gram has 27! possible segmentations, as illustrated in the previous example. Sup-
pose f € F is a particular segmentation from the space of all possible segmentations, and we explicitly
define it as the following mapping:

fovre xWx ox x@ (7)

where 1 < d < n and f is simply a segmentation that does not modify the joint distribution; that is,
p(v1, .oy ) = p(x1, ... xq). If £ is fixed a priori, we can immediately apply the bounds derived in
Equation (5) over the segmented space X'(1) x ... x X(?)_ This is the case where we decide on a model,
such as the standard class-based model (d = n), and simply use it.

An extension to the case of interpolated models is straightforward. We modify the hypothesis space
‘H to not only include all possible clusterings, but also all possible segmentations. The new random pre-
diction Q over ‘H works as follows: given an n-gram (v, ..., v, ), draw a segmentation f e F according
to the distribution 7 = (71, ..., Ton—1), where the segmentations are indexed by j = 1,...,2"" 1 (the
ordering does not matter), and 7; is the probability of drawing segmentation j; pick a clustering as in
the random classifier described in Equation (5) for the new segmented space; and estimate q(v1, ..., vy,)
according to the model described by the previous steps. The bound, in terms of 7, is given below.
PAC-Bayes Sequence Clustering: For any probability measure p over V", and an i.i.d. sample .S of
size N drawn according to p, with probability 1 — § for all distributions of segmentations 7 and for all
distributions of cluster functions Q:

2n71 d(_]) e . .
. . . i Vaild) lnm;(5) + Ki1(5
Epfunoml= o1, 0] < 3 [ () +ID(M(J))\/ 2o VIPI) + Tal0) ) o
j=1

8)
K3(j) = —1(pa(cr, - cagyy)) + Ka(j)

where Vj Vi, 1 < a;(j) < n, and V7, ngl) ai(j) = n, and V%) simply replaces n; in Equation (5)
for a given j. The term K>(j) is from Equation (5). Note that all terms such as m;(j), the number of
clusters corresponding to the space, their product M (5), and additional terms K (j), K2(j) now depend
on the segmentation j since X *) and d(j) depend on j.
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We can favor certain segmentations (e.g. those that require few training examples), but note that the
bound above is true regardless of the distribution over possible segmentations, 7. Also, the bound is
dominated by the exponent a;(j) and the constraint Z?Sl) a;(j) = n. Hence, the bound is polyno-
mial in V for all segmentations except the standard class-based setting where d(j) = n, in which case
Vi, ai(j) = 1. For example, if d(j) = n — 1 for some segmentation j, there exists some 7 such that
a;(j) = 2 and hence represents clusters of bigrams. If d(j) = n — 2, there exists some segmentation j,
and a space ¢ such that a;(j) = 3, and so on until d(j) = 1, and this is the case of word n-grams where

a1(j) = n.
3.2 Bound Minimization

Imposing the restriction Vj Vi, a;(j) = 1 is simple, and although it can guarantee the small-sample
benefits of a standard class-based model, it is not a useful strategy for incorporating the constraint. Since
ai(j) corresponds to the original space X' () for a given 7, restricting a;(j) would restrict X to an
a priort, fixed set of V' elements. To learn the best possible set of V' elements, however, we need to
minimize the effective size of X(V). For example, suppose we are estimating trigrams over V3 using the
following segmentation: X M =Yand x@ =V?_ie a bigram over clusters of words and clusters of
word bigrams. The unconstrained bound is dominated by X'(2). We can restrict the effective size of X'(?)
by assigning zero probability to the vast majority of its elements, by constraining the hypothesis space
to consider only cluster assignment functions q(z;|c;) in which ny << V2 of the elements have nonzero
probability. Thus, every word sequence in V¢ can be generated by the d = n segmentation, but every
other segmentation is constrained to generate at most a subset of V% with nonzero probability.

We achieve this by imposing the restriction on the random predictor Q. By Bayes rule, q(c;|z;) =
% and we can alternatively define Q as Q@ = {q(c;), q(z;), ¢(z;|c;) }&,. Our goal is to learn
a Q that minimizes the RHS of Equation (5), which includes maximizing the multi-information term,
as well as constraining n;. As expected, g(z;) controls the absolute size of X'®) and ¢(;|c;) controls
the effective size based on the clustering. The dominant term in all of our bounds is n; (or a;, with
n; = V%), which results from the second term in the prior defined in Equation (3), since it bounds the
number of ways in which the n; items can be assigned to the m; clusters. Alternatively, we can represent
this quantity with an upper bound, (3. [[¢(zilci)llo) Inm;i. We can write g(z;) = >, q(zilci)q(ci),
and n; = [lq(z;)|lo = [| 2., ¢(wilci)g(ci)llo; by the triangle inequality and scale invariance of the o
norm, this is less than or equal to » . [|g(zilc;)|[o- We therefore limit the upper bound, 3 . [lg(zile:) o,
by sparsifying q(x;|c;) for every cluster ;.

The Optimization Problem: Given some segmentation, we want to find a random predictor Q — a class-
based model over the fixed segmentation — such that the bound in Equation (5) is minimized, which is
given by the following optimization problem:

maxigmize I(po(ciy..ycq))

. &)
subjectto  |q(zile))|lo <V, VeieCDyi=1,....d

Since such optimization problems are known to be NP-complete, we use a computationally tractable
proxy. The standard practice is to use the /; norm instead of the [y norm; although non-convex, we resort
to the [, norm, 0 < « < 1, since ¢(z;|c;) is a probability vector with a fixed /; norm. We therefore solve
the following problem:

maximize I (po(ci,...,Cq))
© | (10)
subjectto  ||g(zilc))|la <V, VeieCDi=1,....d

We have shown that one way to regularize the bound for a non-trivial sequence clustering problem,
regardless of whether the segmentation is fixed or if we are interpolating across all segmentations, is
to sparsify the cluster assignment probabilities for every cluster. There are many ways to sparsify a
probability vector (Pilanci et al., 2012; Kyrillidis et al., 2013), and we select the [, norm, 0 < a <
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1, for its simplicity and success in other applications (Chartrand and Staneva, 2008). Our approach
guarantees manageable bounds on the test set cross-entropy for a general class of SLMs, without making
any assumptions on the true distribution p(v1, ..., vp).

The Bayesian Connection A Bayesian interpretation of our regularization provides additional insight
into other successful models, such as the hierarchical Pitman-Yor language model (HPYLM). In our
approach, we impose the restriction ||g(zi|c;)|la < V, 0 < a < 1, for every cluster ¢;. It can be
shown that this is equivalent to a sub-exponential prior on g(z;|c;) (Hastie et al., 2009). Since ¢(z;) =
> 4(wilci)q(c;) and we make the assumption that q(z;|c;) is sub-exponential for every c;, we are
consequently assuming that g(x;) is also sub-exponential. Although the PAC-Bayesian bounds hold
regardless of the true distribution, our regularization technique implicitly assumes that it is heavy-tailed.

The key to HPYLM’s success within the Bayesian setting is a better prior that matches the heavy-
tailed distribution of natural language (Teh, 2006) — the regularization approach developed in this paper
reassuringly corresponds to the assumption that the true distribution is heavy-tailed (sub-exponential).
On the other hand, it may be possible to derive provable guarantees for HPYLM within the context of
our clustering model. The main difference between HPYLM and the less successful Dirichlet process
(DP) is the Chinese restaurant process, which assigns new tables (clusters) to customers (samples) much
more aggressively in the former model than in the latter (Teh, 2006). HPYLM therefore has far fewer
customers (samples) per table (cluster) than DP, resulting in significantly sparser q(xz;|c;).

4 An Efficient HMM Algorithm

The hidden Markov model (HMM) is a popular tool for modeling sequences and has been used in several
speech and language clustering tasks (Rabiner, 1989; Smyth, 1997; Li and Biswas, 1999). Over its rich
history, several techniques, including regularization and sparsification of the HMM parameters, have
been developed (Bicego et al., 2007; Bharadwaj et al., 2013). The goal of this section is to show how our
bound easily fits into a well-established model such as the HMM.

We can rewrite the standard class-based model by making a Markov assumption on ¢(c, ..., ¢y ):

d
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where {z;}¢_, is some segmentation of (v1, ...,v,) € V". The HMM literature refers to ¢; as the hidden
state, q(z;|c;) as the observation probability, and g(c;|c;—1) as the state transition probability (Rabiner,

1989). If we consider each state of the HMM to be a cluster, then as before, q(c;|x;) = q(zilc;) Z((z))
is a distribution over all possible clustering functions. To solve the optimization problem described in
Equation (10), we need to maximize the multi-information 7(q(cy, ..., ¢,,)) while satisfying the constraint
llg(x;|ci)|la < V. We can rewrite the constrained optimization problem as an unconstrained problem
using a Lagrangian, and solve for g(x;|c;) with an [,, regularized version of the expectation maximization
(EM) algorithm, similar to Bharadwaj et al. (2013).

To maximize the multi-information term /(q(c1, ..., ¢4)) in Equation (10), we sparsify the state tran-
sition probabilities g(c;|c;—1). This provably works when we use [, regularization, 0 < a < 1 for
sparsifying g(c;|c;—1). The Renyi a-entropy of a random variable with some probability distribution
q is defined to be H,(q) = 7%; log ¢« and there are two useful results we use (Principe, 2010): 1)
lim,—1 Ho(q) = H(q), where H (q) is the Shannon entropy; and 2) H,(q) is non-increasing in «. Thus,
for o < 1, H,(q) is an upper bound on the Shannon entropy. Since [,, regularization minimizes the Renyi
a-entropy, which for 0 < v < 1 is an upper bound on the Shannon entropy, it effectively maximizes the

mutual information between ¢; and ¢;_1, given that I(Go(c;, ci—1)) = H(§o(ci)) — H(Go(cilci—1)).

Thus, we have shown that at least in the context of clustering, sparsifying both the observation prob-
abilities and the state transition probabilities of an HMM using the [, prior directly minimizes general-
ization error.
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Figure 1: Test set cross-entropy of HMM vs [, -regularized (sparse) HMM as a function of the number
of training sentences

5 Experiments

We test our approach on a subset of the resource management (RM) corpus (Price et al., 1993), which
consists of naval commands that span approximately V' = 1000 words. First, we show that [, regular-
ization works. Figure 1 shows the estimated test set cross-entropy of an unregularized HMM and of an
lo-regularized HMM as a function of the number of training sentences. We vary the training set size from
10 to 2000 sentences and test the models on 800 sentences; Figure 1 reports the average cross-entropy
on brackets of training sizes — 10-100, 110-200, and so on. The [, -regularized HMM requires additional
tunable parameters such as the value of a.. To simplify the search on a separate 300 sentence development
set, we make a (rather restrictive) assumption that « for both the transition and observation probabilities
is the same, and that « is independent of the size of the training set. Our solutions are therefore not opti-
mal, but adequate to demonstrate our claims. To ensure that the cross-entropy is bounded, we smooth all
estimates with add-one smoothing. For small training datasets, the unregularized HMM learns models
that assign near-zero likelihood to some of the test sentences; hence, we only present results for training
set sizes greater than 500 sentences.

Like many other model selection results, Figure 1 suggests that model sparsity is essential when train-
ing datasets are small. In this example, about 900 sentences are required for the unregularized HMM
to outperform the sparse HMM. In the context of the theory developed in earlier sections, it was shown
that test set cross-entropy is proportional to ¢, where NN is the number of training examples. In practical
settings, IV is fixed; hence, the only strategy for minimizing cross-entropy is to minimize n;. Figure 1
confirms that [,, regularization successfully sparsifies ¢(z;|c;), the observation probabilities of the HMM,
thereby minimizing n;.

We also compare how the test set cross-entropy improves as a function of the training set size for four
different models: 1) a baseline bigram model estimated over words; 2) a baseline class-based model
using Brown’s algorithm (Brown et al., 1992) with K = 20 clusters, learnt over the entire dataset so that
it is also representative of knowledge-based approaches in which the true clusters are known a priori;
3) l,-regularized HMM with 20 ergodic states; and 4) a special case of 3) in which the state transitions
are constrained to artificially form m; = 10 word clusters (10 states) and mgy = 5 clusters that represent
word bigrams (10 states, where the 5 clusters are modeled with 2 left-to-right states each); therefore, the
model represents an interpolation between the standard class-based model and word bigrams, but is of
the exact same complexity as 2) and 3).

Figure 2 shows the estimated test set cross-entropy for each of the four models. The values of «
used in our experiments are o« = 0.7 for the words only case and @ = 0.9 for sequences. It is clear
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Figure 2: Test set cross-entropy as a function of the number of training sentences for the four settings

from Figure 2 that [, regularization helps even in the case of a standard class-based model, the bound
for which is already linear in V. With fewer than 100 sentences, [, regularization can both learn the
clusters and estimate their transitions reasonably well, and surpasses Brown for training set sizes of
N > 800 sentences. Brown’s algorithm in 2) finds clusters such that pairwise mutual information
terms are maximized; in 3), we not only maximize the mutual information, but we also reduce the
effective V' by ensuring that each cluster (or state) specializes and represents as few words as possible.
As the number of training examples increases, estimates of class transitions indeed improve, but the
class-based assumption itself becomes too restrictive. In 4), which represents an interpolated model,
we see the tradeoff achieved by incorporating sequences: for small training sets, the model achieves
better generalization than word bigrams, but is worse than the class-based model; and for larger training
sets, the interpolated model learns better representations of high frequency events and outperforms the
class-based models represented by 2) and 3).

The value of « in 3) is 0.7, whereas « in 4) is 0.9; this seems counter-intuitive at first, but note that
a smaller « does not necessarily imply sparser observation probabilities; however, it implies a heavier
distribution in a Bayesian setting. A Bayesian interpretation therefore suggests that in 4), the model itself
is better equipped to cope with heavy tails, whereas a more aggressive « is required in 3).

6 Conclusion

By defining a random clustering model (a model in which there is a distribution over possible cluster
assignments, e.g. an HMM)), it is possible to specialize published PAC-Bayesian cross-entropy bounds
to the cases of n-gram and class-based n-gram estimation. A distribution over segmentations allows
derivation of a cross-entropy bound on sequence clustering algorithms, which can be made useful by
sparsifying the sequence cluster observation probabilities. An efficient [, regularization technique can
be used to maximize sparsity, thereby minimizing the test set cross-entropy.
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Abstract

The techniques of using neural networks to learn distributed word representations (i.e., word
embeddings) have been used to solve a variety of natural language processing tasks. The re-
cently proposed methods, such as CBOW and Skip-gram, have demonstrated their effectiveness
in learning word embeddings based on context information such that the obtained word embed-
dings can capture both semantic and syntactic relationships between words. However, it is quite
challenging to produce high-quality word representations for rare or unknown words due to their
insufficient context information. In this paper, we propose to leverage morphological knowledge
to address this problem. Particularly, we introduce the morphological knowledge as both ad-
ditional input representation and auxiliary supervision to the neural network framework. As a
result, beyond word representations, the proposed neural network model will produce morpheme
representations, which can be further employed to infer the representations of rare or unknown
words based on their morphological structure. Experiments on an analogical reasoning task and
several word similarity tasks have demonstrated the effectiveness of our method in producing
high-quality words embeddings compared with the state-of-the-art methods.

1 Introduction

Word representation is a key factor for many natural language processing (NLP) applications. In the
conventional solutions to the NLP tasks, discrete word representations are often adopted, such as the
1-of-v representations, where v is the size of the entire vocabulary and each word in the vocabulary
is represented as a long vector with only one non-zero element. However, using discrete word vectors
cannot indicate any relationships between different words, even though they may yield high semantic
or syntactic correlations. For example, while careful and carefully have quite similar semantics, their
corresponding 1-of-v representations trigger different indexes to be the hot values, and it is not explicit
that careful is much closer to carefully than other words using 1-of-v representations.

To deal with the problem, neural network models have been widely applied to obtain word repre-
sentations. In particular, they usually take the 1-of-v representations as the word input vectors in the
neural networks, and learn new distributed word representations in a low-dimensional continuous em-
bedding space. The principle of these models is that words that are highly correlated in terms of either
semantics or syntactics should be close to each other in the embedding space. Representative works in
this field include feed-forward neural network language model (NNLM) (Bengio et al., 2003), recurrent
neural network language model (RNNLM) (Mikolov et al., 2010), and the recently proposed continues
bag-of-words (CBOW) model and continues skip-gram (Skip-gram) model (Mikolov et al., 2013a).

However, there are still challenges for using neural network models to achieve high-quality word
embeddings. First, it is difficult to obtain word embeddings for emerging words as they are not included
in the vocabulary of the training data. Some previous studies (Mikolov, 2012) used one or more default
indexes to represent all the unknown words, but such solution will lose information for the new words.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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Second, the embeddings for rare words are often of low quality due to the insufficient context information
in the training data.

Fortunately, semantically or syntactically similar words often share some common morphemes such
as roots, affixes, and syllables. For example, probably and probability share the same root, i.e., probab,
as well as the same syllables, i.e., pro and ba. Therefore, morphological information can provide valu-
able knowledge to bridge the gap between rare or unknown words and well-known words in learning
word representations. In this paper, we propose a novel neural network architecture that can leverage
morphological knowledge to obtaining high-quality word embeddings. Specifically, we first segment the
words in the training data into morphemes, and then employ the 1-of-v representations of both the words
and their morphemes as the input to the neural network models. In addition, we propose to use mor-
phological information as auxiliary supervision. Particularly, in the output layer of the neural network
architecture, we predict both the words and their corresponding morphemes simultaneously. Moreover,
we introduce extra coefficients into the network to balance the weights between word embeddings and
morpheme embeddings. Therefore, in the back propagation stage, we will update the word embeddings,
the morpheme embeddings, and the balancing coefficients simultaneously.

Our proposed neural network model yields two major advantages: on one hand, it can leverage three
types of co-occurrence information, including co-occurrence between word and word (conventional),
co-occurrence between word and morpheme (newly added), and co-occurrence between morpheme and
morpheme (newly added); on the other hand, this new model allows to learn word embeddings and
morpheme embeddings simultaneously, so that it is convenient to build the representations for unknown
words from morpheme embeddings and enhance the representations for rare words. Experiments on
large-scale public datasets demonstrate that our proposed approach can help produce improved word
representations on an analogical reasoning task and several word similarity tasks compared with the
state-of-the-art methods.

The rest of the paper is organized as follows. We briefly review the related work on word embedding
using neural networks in Section 2. In Section 3, we describe the proposed methods to leverage mor-
phological knowledge in word embedding using neural network models. The experimental results are
reported in Section 4. The paper is concluded in Section 5.

2 Related Work

Neural Language Models (NLMs) (Bengio et al., 2003) have been applied in a number of NLP tasks (Col-
lobert and Weston, 2008) (Glorot et al., 2011) (Mikolov et al., 2013a) (Mikolov et al., 2013b) (Socher
et al., 2011) (Turney, 2013) (Turney and Pantel, 2010) (Weston et al., ) (Deng et al., 2013) (Collobert
et al., 2011) (Mnih and Hinton, 2008) (Turian et al., 2010). In general, they learn distributed word rep-
resentations in a continuous embedding space. For example, Mikolov et al. proposed the continuous
bag-of-words model (CBOW) and the continuous skip-gram model (Skip-gram) (Mikolov et al., 2013a).
Both of them assume that words co-occurring with the same context should be similar. Collobert et
al. (Collobert et al., 2011) fed their neural networks with extra features such as the capital letter feature
and the part-of-speech (POS) feature, but they still met the challenge of producing high-quality word
embeddings for rare words.

Besides using neural network, many different types of models were proposed for estimating continuous
representations of words, such as the well-known Latent Semantic Analysis (LSA) and Latent Dirichlet
Allocation (LDA). However, Mikolov et al. (Mikolov et al., 2013c) have shown that words learned by
neural networks are signicantly better than LSA for preserving linear regularities while LDA becomes
computationally expensive on large datasets.

There were a lot of previous attempts to include morphology in continuous models, especially in
the speech recognition field. Represent works include Letter n-gram (Sperr et al., 2013) and feature-
rich DNN-LMs (Mousa et al., 2013). The first work improves the letter-based word representation by
replacing the 1-of-v word input of restricted Boltzman machine with a vector indicating all n-grams of
order n and smaller that occur in the word. Additional information such as capitalization is added as well.
In the model of feature-rich DNN-LMes, the authors expand the inputs of the network to be a mixture of
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selected full words and morphemes together with their features such as morphological tags. Both of
these works intend to capture more morphological information so as to better generalize to unknown or
rare words and to lower the out-of-vocabulary rate.

There are some other related works that consider morphological knowledge when learning the word
embeddings, such as factored NLMs (Alexandrescu and Kirchhoff, 2006) and csmRNN (Luong et al.,
2013), both of which are designed to handle rare words. In factored NLMs, each word is viewed as a
vector of shape features (e.g., affixed, capitalization, hyphenation, and classes) and a word is predicted
based on several previous vectors of factors. Although they made use of the co-occurrence of morphemes
and words, the context information is lost after chopping the words and feeding the neural network with
morphemes. In our model, we also utilize the co-occurrence information between morphemes, which has
not been investigated before. In csmRNN, Luong et al proposed a hierarchical model considering the
knowledge of both morphological constitutionality and context. The hierarchical structure looks more
sophisticated, but the relatedness of words with morphological similarity are weaken by layers when
combining morphemes into words. In addition, the noise accumulated in the hierarchical structure in
building a word might be propagated to the context layer. In our model, the morphological and contextual
knowledge are combined in parallel, and their contributions to the input vector are decided by a pair of
learned tradeoff coefficients.

3 The Morpheme powered CBOW Models

In this section, we introduce the architecture of our proposed neural network model based on the CBOW
model. In CBOW (see Figure 1), a sliding window is employed on the train text stream to obtain the train-
ing samples. In each sliding window, the model aims to predict the central word using the surrounding
words as the input. Specifically, the input words are represented in the 1-of-v format. In the feed-forward
process, these input words are first mapped into the embedding space by the same weight matrix M, and
then the embedding vectors are summed up to a combined embedding vector. After that, the combined
embedding vector is mapped back to the 1-of-v space by another weight matrix M’, and the resulting
vector is used to predict the central word after conducting softmax on it. In the back-propagation process,
the prediction errors are propagated back to the network to update the two weight matrices. After the

1-of-V representation

W_g
w_q
SUM
M M’
Embedding Matrix Projection Matrix
Wo
Embedding Space Vocabulary Space
w1q (D-dimension) (V-dimension)
Wg

Vocabulary Space
(V-dimension)

Figure 1: The CBOW model.
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In our proposed model, we address the challenge of producing high-quality word embeddings for rare
words and unknown words by leveraging the three types of co-occurrence information between words
and morphemes.

On the input side, we segment the words into morphemes and put both the words and the morphemes
as input. That is, the vocabulary for the 1-of-v representation contains both words and morphemes.
As shown in Figure 2, the surrounding words in the sliding window are w_g, - -+ ,w_1,wy, -+ ,ws and
their corresponding morphemes are m_g 1, M _g 2, * -+, M_gt_ 3= " 5 M_11,M—12, ", M_1¢_;; M1 1,
M1, -, Mgy 30" 3 Mg 1, M2, -+, Mgy, Where 2s is the number of the surrounding words and ¢; is
the number of morphemes for w; (i = —s,---,—1,1,--- ,s). Note that ¢; depends on the formation of
w; so that it may vary from word to word. If a word is also a morpheme, there will be two embedding
vectors which are tagged differently. We use v, and vy, ; to represent the 1-of-v vectors of word w; and
morpheme m; ; respectively. On the input side, both the words and their morphemes are mapped into
the embedding space by the same weight matrix M, and then the weighted sum vy of the combination of
word embeddings and the combination of morpheme embeddings is calculate as below,

s s
V] = Py Z Vw; + Om - Z vam”

i=—S8 i=—s j=1

i#0 i#0
where ¢, and ¢,, are the tradeoff coefficients between the combination of word embeddings and the
combination of morpheme embeddings.

On the output side, we map the combined embedding vector vy back to the 1-of-v space by another
weight matrix M’ to do the prediction. We have four settings of the structure. In the first setting, we only
predict the central word wg, and we name the model under this setting as MorphemeCBOW. In the second
setting, we predict both the central word wq and its morphemes mq 1,m0.2, - - , Mo,¢,, and we name this
setting as MorphemeCBOW+. In the above two settings, the tradeoff weights ¢,, and ¢,, are fixed. If
we update the two weights in the learning process of MorphemeCBOW, we will get the third setting and
we name it as Morpheme CBOW*, while updating the two weights in MorphemeCBOW+ yields the forth
setting named MorphemeCBOW++ .

Take MorphemeCBOW+ as example, the objective is to maximize the following conditional co-
occurrence probability,

to

log(P(wo | {wi}, {mi;})) +1og(> Plmo | {wi}, {mi;})), (D

J=1

where {w;}, {m; ;} represent the bag of words and bag of morphemes separately. The conditional prob-
ability in the above formula is defined using the softmax function,

exp(uT - vy) exp(vlT, - vr)
P(wo | {wl}a {mld}) = Z w(() T ) ’ P(mo,j | {wl}v {mh]}) = Z (EJ/T )7 (2)
exp(v* -vr exp(v™ -vy
v'eVp v'eVp

where V) is the set of the output representations for the whole vocabulary; v’ is used to differentiate with

input representations; and v, , v;,,  represent the output embedding vectors of wg and my ; respectively.

wo? Mo, ;
Usually, the computation cost for Formula (2) is expensive since it is proportional to the vocabulary
size. In our model, we use negative sampling discussed in (Mikolov et al., 2013b) to speed up the
computation. Particularly, we random select k negative samples w1, ug, - - - , uy for each prediction target

(word or morpheme). By using this technique, Formula (1) can be equally written as,

to k
G(vr) = log U(vg; -vr) + Zlogo(vﬁw -vr) + Z By Py (u) [loga(—vg or)],
j=1 i=1

U FWo
u; #AVmo,
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where o denotes the logistic function, and P, (u) is the vocabulary distribution used to select the negative
samples. P, (u) is set as the 3/4rd power of the unigram distribution U (u)'. The negative samples should
not be the same as any of the prediction targets wo and mg ; (j = 1, - - , o). By using negative sampling,
the training time spent on summing up the whole vocabulary in Formula (2) is greatly reduced so that it
becomes linear with the number of the negative samples. Thus, we can calculate the gradient of G(vy)
as below,

9G(vr) 1T vy V1) | T O(viny,,; * V1)
7 (1 — . L~ W 77 1— . P L
dvy ( U(Uwo UI)) vy +];( O-(Umo,j UI)) vy
k
8(1)/T ’U[)
1T Uq
- ; [U(vui UI) vy ]
uiFWo
u; #AVmo,

In the back-propagation process, the weights in the matrices M and M’ are updated. When the training

nrocecs converoes we take the matrix M ac the learned word emhbheddinoc and mornheme emheddinoc
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Figure 2: The proposed neural network model.

4 Experimental Evaluation

In this section we test the effectiveness of our model in generating high-quality word embeddings. We
first introduce the experimental settings, and then we report the results on one analogical reasoning task
and several word similarity tasks.

4.1 Datasets

We used two datasets for training: enwiki9> and wiki2010°.
'"http://www.cs.bgu.ac.il/~yoavg/publications/negative-sampling.pdf
http://mattmahoney.ent/dc/enwik9.zip

*http://www.psych.ualberta.ca/-westburylab/downloads/westburylab.wikicorp.
download.html
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* The enwiki9 dataset contains about 123.4 million words. We used Matt Mahoney’s text pre-
processing script* to process the corpus. Thus, we removed all non-Roman characters and mapped
all digits to English words. In addition, words occurred less than 5 times in the training corpus were
discarded. We used the learned word embeddings from enwiki9 to test an analogical reasoning task
described in (Mikolov et al., 2013a).

* The wiki2010 dataset contains about 990 million words. The learned embeddings from this dataset
were used on word similarity tasks as it was convenient to compare with the csmRNN model (Luong
et al., 2013). We did the same data pre-processing as csmRNN did. That is, we removed all non-
Roman characters and mapped all digits to zero.

4.2 Settings

In the analogical reasoning task, we used the CBOW model as the baseline. In both CBOW and our
proposed model, we set the context window size to be 5, and generated three dimension sizes (100, 200,
and 300) of word embeddings. We used negative sampling (Mikolov et al., 2013b) in the output layer
and the number of negative samples is chosen as 3.

In the word similarity tasks, we used the csmRINN model as the baseline. The context window size of
our model was set to be 5. To make a fair comparison with the csmRNN model, we conducted the same
settings in our experiments as csmRNN. First, as csmRNN used the Morfessor (Creutz and Lagus, 2007)
method to segment words into morphemes, we also used Morfessor as one of our word segmentation
methods to avoid the influence caused by the segmentation methods. Second, as csmRNN used two
existing embeddings C&W? (Collobert et al., 2011) and HSMN® (Huang et al., 2012) to initialize the
training process, we also used the two embeddings as the initial weights of M in our experiments. Third,
we set the dimension of the embedding space to 50 as csmRNN did.

In our model, we employed three methods to segment a word into morphemes. The first method is
called Morfessor, which is a public tool implemented based on the minimum descriptions length algo-
rithm (Creutz and Lagus, 2007). The second method is called Root, which segments a word into roots
and affixes according to a predefined list in Longman Dictionaries. The third method is called Syllable,
which is implemented based on the hyphenation tool proposed by Liang (Liang, 1983). Besides, the ar-
chitecture of the proposed model can be specified into four types: MorphemeCBOW, Morpheme CBOW*,
MorphemeCBOW+, and MorphemeCBOW++. For the model Morpheme CBOW and Morpheme CBOW+
with fixed tradeoff coefficients, we set the weights ¢,, and ¢,, to be 0.8 and 0.2 respectively; while for
the other two models with updated tradeoff weights, the weights ¢,, and ¢,,, are initialized as 1. These
weight settings are chosen empirically.

4.3 Evaluation Tasks

4.3.1 Analogical reasoning task

The analogical reasoning task was introduced by Mikolov et al (Mikolov et al., 2013a). All the questions
are in the form “a is to b is as c is to 77, denoted as a : b — ¢ : 7. The task consists of 19,544 questions
involving semantic analogies (e.g., England: London — China: Beijing) and syntactic analogies (e.g.,
amazing: amazingly — unfortunate: unfortunately). Suppose that the corresponding vectors are @, ?,
and ¢, we will answer the question by finding the word with the representation having the maximum
cosine similarity to vector ? —a + 7, ie,

max (b —Td+7¢
zeV,x#b,x#c

where V is the vocabulary. Only when the computed word is exactly the answer word in evaluation set
can the question be regarded as answered correctly.

*http://mattmahoney.net/dc/textdata.html

Shttp://ronan.collobert.com/senna/
*http://ai.stanford.edu/~ehhuang/
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4.3.2 Word similarity task

The word similarity task was tested on five evaluation sets: WS353 (Finkelstein et al., 2002),
SCWS* (Huang et al., 2012), MC (Miller and Charles, 1991), RG (Rubenstein and Goodenough, 1965)
and RW (Luong et al., 2013), which contain 353, 1,762, 30, 65 and 2,034 pairs of words respectively.
Table 1 shows some statistics about the datasets. Furthermore, the words in WS353, MC, RG are mostly
frequent words, while SCWS* and RW have much more rare words and unknown words (i.e., unseen
words in the training corpus) than the first three sets. The word distributions of these datasets are shown
in Figure 3, from which we can see that RW contains the largest number of rare and unknown words.
For the unknown words, we segmented them into morphemes, and calculated their word embeddings by
summing up their corresponding morpheme embeddings. Each word pair in these datasets is associated
with several human judgments on similarity and relatedness on a scale from O to 10 or O to 4. For ex-
ample, (cup, drink) received an average score of 7.25, while (cup, substance) received an average score
of 1.92. To evaluate the quality of the learned word embeddings, we computed Spearman’s p correlation
between the similarity scores calculated on the learned word embeddings and the human judgments.

80% ‘
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200 || I scws* i
"l me
[ IRrRG
0z H —|
o0% I JRw
50% .
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[s)] — —
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5 40% —
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0% - | -.
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Frequency Bins
Figure 3: Word distribution by frequency. Distinct words in each test dataset are grouped according
to frequencies. The figure shows the percentage of words in each bin.

Table 1: Statistics on the word similarity evaluation sets.

Dataset | Number of pairs | Number of words | Percentage of multi-segments words by Morfessor
WS353 353 437 28.15%
SCWS* 1726 1703 34.00%

RW 2034 2951 69.06%

4.4 Experimental Results

4.4.1 Results on analogical reasoning task

The experimental results on the analogical reasoning task are shown in Table 2, including semantic
accuracy, syntactic accuracy, and total accuracy of all competition settings. Semantic/syntactic accuracy
refers to the number of correct answers over the total number of all semantic/syntactic questions. From
the results, we have the following observations:

* In MorphemeCBOW, we used the surrounding words and their morphemes to predict the central
word. The total accuracies are all improved compared with baseline using the three word segmen-
tation methods across three different dimensions of the embedding space. Generally, the improve-
ments on semantic accuracies are less than those on syntactic accuracies. The reason is that the
morphological information favors more for the syntactic tasks than the semantic tasks. Further-
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more, the Root method achieved the best among the three segmentation methods, showing that the
roots and affixes from the dictionary can help produce a high-quality morpheme segmentation tool.

* In MorphemeCBOW¥*, we predicted the central word, and updated the tradeoff coefficients in
the learning process. We can see that the results are comparable or slightly better than Morphe-
meCBOW using the three word segmentation methods across three different dimensions of the
embedding space, showing that updating the tradeoff coefficients may further boost the model per-
formance under some specific settings.

* In MorphemeCBOW-+, we predicted both the central word and its morphemes. MorphemeCBOW+
can provide slightly better results compared with MorphemeCBOW and MorphemeCBOW*, indi-
cating that putting morphemes (especially roots) in the output layer can do extra help in generating
high-quality word embeddings.

* In MorphemeCBOW++, we predicted the central word and its morphemes, and updated the trade-
off coefficients in the learning process. The performance under all of the three word segmentation
methods got further improved compared with MorphemeCBOW+. 1t tells that the contributions
from words and morphemes are different to the analogical reasoning task. According to our obser-
vations, the weight for words is usually higher than that for morphemes.

* By comparing MorphemeCBOW with MorphemeCBOW* as well as MorphemeCBOW+ with Mor-
phemeCBOW++, we can observe that updating the weights of tradeoff coefficients seem to essen-
tially boost syntactic accuracy by trading off a bit of semantic accuracy. As introduced in Section
4.2, in the fixed weight model the ratio of weight of morphemes to the weight of word is 0.25; while
our experiment records show that the averaged ratio are 0.43 if the two weights are updated, mean-
ing that the weight of the combination of morphemes increases and the contribution of the original
word to the final combined embedding decreased. As a result, the syntactic accuracy which largely
reflected in the morphological structure of a word increased, but the semantic accuracy hurts a little.

4.4.2 Results on word similarity task

Experimental results on the word similarity tasks are shown in Table 37, where the labels of C&W + csm-
RNN and HSMN + csmRNN mean that using C&W and HSMN to initialize csmRNN model as what had
been introduced in the paper of Luong et al. In our experiments, the architecture of MorphemeCBOW *
performs the best, so we only show the results related to MorphemeCBOW¥* in the table. We have the
following observations from the results:

* On WS353, MC, RG, and SCWS*, MorphemeCBOW* performs consistently better than the csm-
RNN model, showing that our model can achieve better representations for common words.

7csmRNN embeddings are available on http://www-nlp.stanford.edu/~1lmthang/morphoNLM/, Perfor-
mances are tested based on the two embeddings.

Table 2: Performance of leveraging morphological information on the analogical reasoning task.

(a) Baseline (b) MorphemeCBOW (c) MorphemeCBOW*  (d) MorphemeCBOW+  (e) MorphemeCBOW++
b)imension‘ (%) ‘ CBOM ‘Morfessor Syllable Root‘ Worfessor Syllable Root‘ Wurfessor Syllable Roor‘ Worfessor Syllable Root
100 Total 26.49 31.99 31.28 3249 | 33.07 31.16 34.04/ | 33.26 31.12 32.77| | 38.86 34.42 35.78
Semantic| 17.51 19.44 18.76 21.77| | 15.20 15.68 17.87| | 22.82 20.80 22.79|| 21.12 22.58 22.43
Syntactic| 33.96 42.42 41.68 41.40| | 47.92 44.02 47.48|| 41.93 39.70 41.07|| 53.59 44.26 46.87

200 Total 30.50 34.04 3471 36.29 | 34.69 33.13 36.50/ | 38.28 39.32 39.53 | 40.32 41.79 43.29)
ISemantic| 19.71 19.10 19.13 22.45 11.53 1591 18.92 25.94 27.99 28.29 24.20 24.05 25.04]
Syntactic|  39.46 46.45 47.65 47.79]| 53.92 47.44 51.10( | 48.52 48.74 48.86| | 53.72 56.53 58.45

300 Total 29.04 31.27 3245 36.12{ | 31.21 32.16 35.63| | 38.01 39.56 39.70 | 37.65 41.64 41.96]
Semantic| 17.58 15.45 15.63 20.79 8.85 12.54 15.75|| 25.11 26.94 27.80| | 13.97 26.64 25.82
Syntactic| 38.56 44.41 46.44 48.86| | 49.79 48.47 52.14|| 48.72 50.05 49.58] | 57.32 54.10 55.36
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Table 3: Performance of leveraging morphological information on the word similarity task.

Model WS353 (%) | SCWS* (%) | MC(%) | RG(%) | RW(%)
C&W 49.73 48.45 5733 | 4822 | 2193
C&W + csmRNN 58.27 49.09 6022 | 5892 | 3177
C&W + MorphemeCBOW* 63.81 5330 7433 | 6122 | 31.14
HSMN 62.58 32.09 66.18 | 6451 | 1.97
HSMN + csmRNN 64.58 44.08 7188 | 65.15 | 2231
HSMN + MorphemeCBOW* | 65.19 53.40 81.62 | 6741 | 3213
MorphemeCBOW?* 63.45 5340 | 7740 | 6378 | 3288 |

* On RW, MorphemeCBOW* performs better than the csmRNN model when using the HSMN em-
beddings as the initialization. When using the C&W embeddings as the initialization, the perfor-
mance of MorphemeCBOW* is also comparable with that of csmRNN. In particular, if we do not
use any pre-trained embeddings to initialize our mode, it performed the best (32.88%), and it even
beats the best performance of csmRNN with initializations (31.77%)®. The initialization is very im-
portant to a neural network. Suitable initialization will help increase the embedding quality which
works like training with multi-epochs. However, as there are two matrix M and M’ in our network
structure, the initialization of both of them are more sensible. Furthermore, considering that the
recursive structure of csmRNN will bring higher computation complexity, we can conclude that our
model has excellent ability in learning the embeddings of rare words from pure scratch.

* The improvement on RW is more significant than those on the other four datasets. Considering that
RW contains more rare and unknown words (See Figure 3), we verified our idea that leveraging
morphological information will especially benefit the embedding of low-frequency words. More
specifically, without sufficient context information for the rare words in the training data, building
connections between words using morphemes will provide additional evidence for the model to
generate effective embeddings for these rare words; and, by combining the high-quality morpheme
embeddings to obtain the representations of the unknown words, the model does a good job in
dealing with the new emerging words.

5 Conclusions and Future Work

We proposed a novel neural network model to learn word representations from text. The model can lever-
age several types of morphological information to produce high-quality word embeddings, especially for
rare words and unknown words. Empirical experiments on an analogical reasoning task and several word
similarity tasks have shown that the proposed model can generate better word representations compared
with several state-of-the-art approaches.

For the future work, we plan to separate words and morphemes into several buckets according to their
frequencies. Different buckets will be associated with different coefficients, so that we can tune the
coefficients to approach even better word embeddings. We also plan to run our model on more training
corpus to obtain the embedding vectors for rare words, especially those new words invented out recently.
These emerging new words usually do not exist in standard training corpus such as Wikipedia, but exists
in some noisy data such as news articles and web pages. How well our model performs on these new
training corpus is an interesting question to explore.
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Abstract

Distributed word representations have been widely used and proven to be useful in quite a few
natural language processing and text mining tasks. Most of existing word embedding models aim
at generating only one embedding vector for each individual word, which, however, limits their
effectiveness because huge amounts of words are polysemous (such as bank and star). To address
this problem, it is necessary to build multi embedding vectors to represent different meanings of
a word respectively. Some recent studies attempted to train multi-prototype word embeddings
through clustering context window features of the word. However, due to a large number of
parameters to train, these methods yield limited scalability and are inefficient to be trained with
big data. In this paper, we introduce a much more efficient method for learning multi embedding
vectors for polysemous words. In particular, we first propose to model word polysemy from a
probabilistic perspective and integrate it with the highly efficient continuous Skip-Gram model.
Under this framework, we design an Expectation-Maximization algorithm to learn the word’s
multi embedding vectors. With much less parameters to train, our model can achieve comparable
or even better results on word-similarity tasks compared with conventional methods.

1 Introduction

Distributed word representations usually refer to low dimensional and dense real value vectors (a.k.a.
word embeddings) to represent words, which are assumed to convey semantic information contained in
words. With the exploding text data on the Web and fast development of deep neural network technolo-
gies, distributed word embeddings have been effectively trained and widely used in a lot of text mining
tasks (Bengio et al., 2003) (Morin and Bengio, 2005) (Mnih and Hinton, 2007) (Collobert et al., 2011)
(Mikolov et al., 2010) (Mikolov et al., 2013b).

While word embedding plays an increasingly important role in many tasks, most of word embedding
models, which assume one embedding vector for each individual word, suffer from a critical limitation
for modeling tremendous polysemous words (e.g. bank, left, doctor). Using the same embedding vec-
tor to represent the different meanings (we will call prototype of a word in the rest of the paper) of a
polysemous word is somehow unreasonable and sometimes it even hurts the model’s expression ability.

To address this problem, some recent efforts, such as (Reisinger and Mooney, 2010) (Huang et al.,
2012), have investigated how to obtain multi embedding vectors for the respective different prototypes
of a polysemous word. Specifically, these works usually take a two-step approach: they first train single
prototype word representations through a multi-layer neural network with the assumption that one word
only yields single word embedding; then, they identify multi word embeddings for each polysemous
word by clustering all its context window features, which are usually computed as the average of single
prototype embeddings of its neighboring words in the context window.

Compared with traditional single prototype model, these models have demonstrated significant im-
provements in many semantic natural language processing (NLP) tasks. However, they suffer from a

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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crucial restriction in terms of scalability when facing exploding training text corpus, mainly due to the
deep layers and huge amounts of parameters in the neural networks in these models. Moreover, the
performance of these multi-prototype models is quite sensitive to the clustering algorithm and requires
much effort in clustering implementation and parameter tuning. The lack of probabilistic explanation
also refrains clustering based methods from being applied to many text mining tasks, such as language
modeling.

To address these challenges, in this work, we propose a new probabilistic multi-prototype model and
integrate it into a highly efficient continuous Skip-Gram model, which was recently introduced in the
well-known Word2Vec toolkit (Mikolov et al., 2013b). Compared with conventional neural network
language models which usually set up a multi-layer neural network, Word2Vec merely leverages a three-
layer neural network to learn word embeddings, resulting in greatly decreased number of parameters and
largely increased scalability. However, similar to most of existing word embedding models, Word2Vec
also assumes one embedding for one word. We break this limitation by introducing a new probabilistic
framework which employs hidden variables to indicate which prototype each word belongs to in the con-
text. In this framework, the conditional probability of observing word wo conditioned on the presence
of neighboring word wy (i.e. P(wo|wy)) can be formulated as a mixture model, where mixtures corre-
sponds to wy’s different prototypes. This is a more natural way to define P(wo|wy), since it has taken the
polysemy of word wy into consideration. After defining the model, we design an efficient Expectation-
Maximization (EM) algorithm to learn various word embedding vectors corresponding to each of w;’s
prototypes. Evaluations on widely used word similarity tasks demonstrate that our algorithm produces
comparable or even better word embeddings compared with either clustering-based multi-prototype mod-
els or the original Skip-Gram model. Furthermore, as a unified way to obtain multi word embeddings,
our proposed method can effectively avoid the sensitivity to the clustering algorithm applied by previous
multi-prototype word embedding approach.

The following of the paper is organized as follows: we introduce related work in Section 2. Then,
Section 3 describes our new model and algorithm in details and conducts a comparison in terms of
complexity between our algorithm and the previous method. We present our experimental results in
Section 4. The paper is concluded in Section 5.

2 Related Work

Since the initial work (Bengio et al., 2003), there have been quite a lot of neural network based models
to obtain distributed word representations (Morin and Bengio, 2005) (Mnih and Hinton, 2007) (Mikolov
et al., 2010) (Collobert et al., 2011) (Mikolov et al., 2013b). Most of these models assume that one
word has only one embedding, except the work of Eric Huang (Huang et al., 2012), in which the authors
propose to leverage global context information and multi-prototype embeddings to achieve performance
gains in word similarity task. To obtain multi-prototype word embeddings, this work conducts clustering
on a word’s all context words’ features in the corpus. The features are the embedding vectors trained
previously via a three-layer neural network. Each cluster’s centroid is regarded as the embedding vector
for each prototype. Their reported experimental results verify the importance of considering multi-
prototype models.

Note that (Reisinger and Mooney, 2010) also proposes to deal with the word polysemy problem by
assigning to each prototype a real value vector. However their embedding vectors are obtained through
a tf-idf counting model, which is usually called as distributional representations (Turian et al., 2010),
rather than through a neural network. Therefore, we do not regard their paper as very related to our
work. The similar statement holds for other works on vector model for word meaning in context such as
(Erk and Padé, 2008) (Thater et al., 2011) (Reddy et al., 2011) (Van de Cruys et al., 2011).

Our model is mainly based on the recent proposed Word2Vec model, more concretely, the continuous
Skip-Gram model (Mikolov et al., 2013a) (Mikolov et al., 2013b). The continuous Skip-Gram model
specifies the probability of observing the context words conditioned on the central word w; in the win-
dow via a three-layer neural network. With less parameters to train (thus higher scalability), Word2Vec
discovers interesting analogical semantic relations between words like Japan - Tokyo = France - Paris.
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3 Model Description

In this section, we introduce our algorithm for learning multi-prototype embeddings in details. In partic-
ular, since our new model is based on the continuous Skip-Gram model, we first make a brief introduction
to the Skip-Gram model. Then, we present our new multi-prototype algorithm and how we integrate it
into the Skip-Gram model. After that, we propose an EM algorithm to conduct the training process. We
also conduct a comparison on the number of parameters between the new EM algorithm and the state-
of-the-art multi-prototype model proposed in (Huang et al., 2012), which can illustrate the efficiency
superior of our algorithm.

3.1 Multi-Prototype Skip-Gram Model

In contrast to the conventional ways of using context words to predict the next word or the central
word, the Skip-Gram model (Mikolov et al., 2013b) aims to leverage the central word to predict its
context words. Specifically, assuming that the central word is w; and one of its neighboring word is wo,
P(wo|wr) is modeled in the following way:

exp(VI'U,
P(wolur) = 2 Wmlho) M)
ZWEW exp(VWI UW)

where W denotes the dictionary consisting of all words, U,, € R and V,, € R? represent the d-dimensional
‘output’ and ‘input’ embedding vectors of word w, respectively. Note that all the parameters to be learned
are the input and output embedding vectors of all words, i.e. U = {U,|w € W} and V = {V,,|w € W}.
This corresponds to a three-layer neural network, in which U and V denote the two parameter matrices of
the neural network. Compared with the conventional neural networks employed in the literature which
yield at least four layers (including the look-up table layer), the Skip-Gram model greatly reduces the
number of parameters and thus gives rise to a significant improvement in terms of training efficiency.

Our proposed Multi-Prototype Skip-Gram model is similar to the original Skip-Gram model in that it
also aims to model P(wp|wy) and uses two matrices (the input and output embedding matrices) as the
parameters. The difference lies in that given word w;, the occurrence of word wy is described as a finite
mixture model, in which each mixture corresponds to a prototype of word w;. To be specific, suppose
that word w has N,, prototypes and it appears in its &,,-th prototype, i.e., h,, € {1,---,N,,} is the index of
w’s prototype. Then P(wo|wy) is expanded as:

Nwl

pwolwr) = Y P(wolhy, = i,w;)P(hy, = ilwr) (2)
i=1
Ny exp(UL V,, ;i
Y PO, i, 3)
i=1 ZWEW exp(Uw uni)

where V,,, ; € R refers to the embedding vector of w;’s i-th prototype. This equation states that P(wo|wy)
is a weighted average of the probabilities of observing wo conditioned on the appearance of w;’s every
prototype. The probability P(wo|h,, = i,w) takes the similar softmax form to equation (1) and the
weight is specified as a prior probability of word wy falls in its every prototype.

The general idea behind the Multi-Prototype Skip-Gram model is very intuitive: the surrounding words
under different prototypes of the same word are usually different. For example, when the word bank
refers to the side of a river, it is very possible to observe the corresponding context words such as
river, water, and slope; however, when bank falls into the meaning of the financial organization, the
surrounding word set is likely to be comprised of quite different words, such as money, account, and
investment.

The probability formulation in (3) brings much computation cost because of the linear dependency of
|W| in the denominator ¥,y exp(ULV,, ;). To address this issue, several efficient methods have been
proposed such as Hierarchical Softmax Tree (Morin and Bengio, 2005) (Mnih and Kavukcuoglu, 2013)
and Negative Sampling (Mnih and Kavukcuoglu, 2013) (Mikolov et al., 2013b). Taking Hierarchical
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Softmax Tree as an example, through a binary tree in which every word is a leaf node, word wy is
associated with a binary vector b(*0) € {—1,41}10 specifying a path from the root of the tree to leaf
wo, where L, is the length of vector b("o)  Then the conditional probability is described as

H/O
P(WO’hwl == i,WI HP( |WI7 w; — ) Hg( wo) U\z;ol wy,i ) 5 (4)

where ¢(x) = 1/(1+exp(—x)) is the sigmoid function, and U, ; specifies the d-dimensional parameter
vector associated with the ¢-th node in the path from the root to the leaf node wg. Substituting (4) into
(2) to replace the large softmax operator in (3) leads to a much more efficient probability form.

3.2 EM Algorithm

In this section, we describe the EM algorithm adopted to train the Multi-Prototype Skip-Gram model.
Without loss of generality, we will focus on obtaining multi embeddings for a specified word w € W
with N,, prototypes. Word w’s embedding vectors are denoted as V,, € R?*M+. Suppose there are M
word pairs for training: {(w,w), (w2, w),- -+, (wa,w)}, where all the inputs words (i.e., word w) are the
same, and the set of output words to be predicted are denoted as X = {wy,ws,--- ,wy}. That is, X are M
surrounding words of w in the training corpus.

For ease of reference and without loss of generality, we make some changes to the notations in Section
3.1. We will use &, as the index of w’s prototype in the pair (w,,w), m € {1,2,--- ,M}. Besides,
some new notations are introduced: P(h,, = i|wy) is simplified as 7;, and ¥, s, where m € {1,2,--- M},
ke {1,2,---N,}, are the hidden binary variables indicating whether the m-th presence of word w is in
its k-th prototype, i.e. ¥nx = 1p,—k, Where 1 is the indicator function. Other notations are the same as
before: V,,; € R? is the embedding vector for word w’s i-th prototype, Uy € R? is the embedding vector

for the ¢-th node on the path from the tree root to the leaf node representing word w, and b e{-1,1}
is the 7-th bit of the binary coding vector of word w along its corresponding path on the Hierarchical
Softmax Tree.

Then the parameter set we aim to learn is ® = {m;,---, 7y, ;U;V,,}. The hidden variable set is I' =
{Vmilme (1,2,--- M),k (1,2,---,N,,)}. Considering equation (2) and (4), we have the log likelihood

of X as below:
M N,

logP(X,T|©) = ) Z Yk (108 T + 10 P(Win |y = k, w) )
m=1k=
M Nw Mm

=Y Zymk logn?k+210g€ b Uy,.:Viok))-

m=1k=

(&)

With equation (5), the E-Step and M-Step are:

E-Step:

The conditional expectation of hidden variable ¥, x, denoted as $, ., is:
ﬂkP(Wm|hm = k, W)

Am. =P(Ymi = 11X,0) = ' 6
Tk = P(Ynsk = 1] ) YN TP (Wil = 1, W) ©

The Q function w.r.t. the parameters at the i-th iteration 8() is written as:

Ny M
0(0,0) =YY" fui (log m +1og P(Wy|hw = k, w))
k=1m=1 (7)
M N, Ly,
= L ¥ fnsllogm+ } logg(b (B UL, Vo).

m=1k=1 t=
M-Step:
7 can be updated by
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Yo ik
”":%, k=12 ,N,. 8)
We leave the detailed derivations for equation (6), (7), and (8) to the appendix of the paper. Then we

discuss how we obtain the update of the embedding parameters U, ; and V,, ;. Note that the optimization

problem is non-convex, and it is hard to compute the exact solution of 3Q -=0 and % =0. Therefore,

we use gradient ascent to optimize in the M-step. The gradients of Q function w.r.t. embedding vectors
are given by:

a N Wi Wi
Q =Y s (1= (UL Vi) Vi )
8met k=1
00 ¥ o (W) 11T
=Y i Y b (1= (0" UL Vi) ) U (10)
8‘/W¢k m=1 t=1

Iterating between E-Step and M-Step till the convergence of the value of function Q makes the EM
algorithm complete.

In order to enhance the scalability of our approach, we propose a fast computing method to boost
the implementation of the EM algorithm. Note that the most expensive computing operations in both
the E-Step and M-Step are the inner product of the input and output embedding vectors, as well as the
sigmoid function. However, if we take the Hierarchical Softmax Tree form as shown in Equation (4) to
model P(w,|hy, = i,w), and perform only one step gradient ascent in M-Step, the aforementioned two
expensive operations in M-Step will be avoided by leveraging the pre-computed results in the E-Step.
Specifically, since the gradient of the function f(x) = log¢(x) is given by f’(x) = 1 — ¢(x), the sigmoid
values computed in the E-Step to obtain P(wy,|h, = i,w) (i.e. the term g(bt(w’”)vam_tivk) in equation (5),
(9), and (10)) can be re-used to derive the gradients in the M-Step. '

However, such enhanced computation method cannot benefit the second order optimization methods
in the M-Step such as L-BFGS and Conjugate Gradient, since they usually rely on multiple iterations to
converge. In fact, we tried these two optimization methods in our experiments but they have brought no
improvement compared with simple one-step gradient ascent method.

3.3 Model Comparison

To show that our model is more scalable than the former multi-prototype model in (Huang et al., 2012)
(We denote it as EHModel in the rest of the paper), we conduct a comparison on the number of parameters
with respect to each of these two models in this subsection.

We use nempedding and nyingow to denote the numbers of all word embedding vectors and context win-
dow words, respectively. It is clear that n.mpeddings = Lwew Nw. EHModel aims to compute two scores,
i.e., the local score and the global score, both with hidden layer node activations. We denote the hidden
layer node number as h; and hg for these two scores. The parameter numbers are listed in Table 1.

Model EHModel Our Model
#parameters dnwordx + dnembeddings + (dnwindnw + l)hl + (Zd + l)hg dnwordx + dnembedd[ngs

Table 1: Comparison of parameter numbers of two models

Note that d in Table 1 denotes the embedding vector size. It can be observed that EHModel has
(dnyingow + 1) + (2d + 1)h, more parameters than our model, which is mainly because EHModel has
one more layer in the neural network and it considers global context. In previous study (Huang et al.,
2012), d, nyingow, hi, and hg are set to be 50, 10, 100, 100, respectively, which greatly increases the gap
of parameter numbers between the two models.
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4 Experiments

In this section, we will present our experimental settings and results. Particularly, we first describe the
data collection and the training configuration we used in the experiments; then, we conduct a qualitative
case study followed by quantitative evaluation results on a public word similarity task to demonstrate the
performance of our proposed model.

4.1 Experimental Setup

Dataset: To make a fair comparison with the state-of-the-art methods, we employ a publicly available
dataset, which is used in (Huang et al., 2012), to train word embeddings in our experiments. Particularly,
this training corpus is a snapshot of Wikipedia at April, 2010 (Shaoul, 2010), which contains about 990
million tokens. We removed the infrequent words from this corpus and kept a dictionary of about 1
million most frequent words. Similar to Word2Vec, we removed pure digit words such as 2014 as well
as about 100 stop words like how, for, and we.

Training Configuration: In order to boost the training speed, we take advantage of the Hierarchical
Softmax Tree structure. More concretely, we use the Huffman tree structure, as introduced in Word2 Vec,
to further increase the training speed. All the embedding size, including both word embedding vectors
and the Huffman tree node embedding vectors, are set to be 50, which is the same as the size used in
(Huang et al., 2012). To train word embedding, we set the context window size as 10, i.e., for a word w,
10 of the closest neighboring words to w are regarded as ws contexts. For the numbers of word prototypes,
i.e., N,, introduced in Section 3.2, we set the top 7 thousand frequent words as multi-prototype words by
experience, with all of them having 10 prototypes (i.e. N,, = 10).

During the training process, we used the same strategy to set the learning rate as what Word2Vec did.
Specifically, we set the initial learning rate to 0.025 and diminished the value linearly along with the
increasing number of training words. Our experimental results illustrate that this learning rate strategy
can lead to the best results for our algorithm.

For the hyper parameters of the EM algorithm, we set the batch size to 1, i.e. M =1 in Section 3.2,
since our experimental results reveal that smaller batch size can result in better experimental results. The
reason is explained as the following. Our optimization problem is highly non-convex. Smaller batch size
yields more frequent updates of parameters, and thus avoids trapping in local optima, while larger batch
size, associated with more infrequent parameter updating, may cause higher probability to encounter
local optima. In our experiments, we observe that only one iteration of E-Step and M-Step can reach the
embedding vectors with good enough performance on the word similarity task, whereas increasing the
iteration number just leads to slight performance improvement with much longer training time. Under
the above configuration, our model runs about three times faster than EHModel.

4.2 Case Study

This section gives some qualitative evaluations of our model by demonstrating how our model can ef-
fectively identify multi-prototype word embeddings on some specific cases. In Table 2, we list several
polysemous words. For each word, we pick some of their prototypes learned by our model, including
the prototype prior probability (i.e. 7; introduced in Section 3.2) and three of the most similar words
with each prototype, respectively. The similarity is calculated by the cosine similarity score between the
embedding vectors.

From the table we can observe some interesting results of the multi-prototype embedding vectors
produced by our model:

e For a polysemous word, its different embedding vectors represent its different semantic meanings.
For example, the first embedding vector of the word apple corresponds to its sense as a kind of fruit,
whereas the second one represents its meaning as an I'T company.

e The prior probability reflects the likelihood of the occurrence of various prototypes to some extent.
For example, the word cell is more likely to represent the meaning of the smallest part of living
structure (with probability 0.81), than to be used as the meaning of cellphone (with probability
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Word Prior Probability Most Similar Words
apple_1 0.82 strawberry, cherry, blueberry
apple_2 0.17 iphone, macintosh, microsoft
bank_1 0.15 river, canal, waterway
bank 2 0.6 citibank, jpmorgan, bancorp
bank_3 0.25 stock, exchange, banking

cell-1 0.09 phones, cellphones, mobile

cell .2 0.81 protein, tissues, lysis
cell_.3 0.01 locked, escape, handcuffed

Table 2: Most similar words with different prototypes of the same word

0.09) or prisoned (with probability 0.01). Note that the three prior probability scores of cell do not
sum to 1. The reason is that there are some other embeddings not presented in the table which are
found to have high similarities with the three embeddings. We do not present them due to the space
limitation.

e By setting the prototype number to a fairly large value (e.g. N,, = 10), the model tends to learn
more fine-grained separations of the word’s different meanings. For example, we can observe from
Table 2 that the second and the third prototypes of the word bank seem similar to each other as both
of them denote a financial concept. However, there are subtle differences between them: the second
prototype represents concrete banks, such as citibank and jpmorgan, whereas the third one denotes
what is done in the banks, since it is most similar to the words stock, exchange, and banking. We
believe that such a fine-grained separation will bring more expressiveness to the multi-prototype
word embeddings learned by our model.

4.3 Results on Word Similarity in Context Dataset

In this subsection, we give quantitative comparison of our method with conventional word embedding
models, including Word2Vec and EHModel (Huang et al., 2012).

The task we perform is the word similarity evaluation introduced in (Huang et al., 2012). Word simi-
larity tasks evaluate a model’s performance by calculating the Spearman’s rank correlation between the
ranking of ground truth similarity scores (given by human labeling) and the ranking based on the simi-
larity scores produced by the model. Traditional word similarity tasks such as WordSim353 (Finkelstein
et al., 2001) and RG (Rubenstein and Goodenough, 1965) are not suitable for evaluating multi-prototype
models since there is neither enough number of polysemous words in these datasets nor context infor-
mation to infer the prototype index. To address this issue, a new word similarity benchmark dataset
including context information was released in (Huang et al., 2012). Following (Luong et al., 2013), we
use SCWS to denote this dataset. Similar to WordSim353, SCWS contains some word pairs (concretely,
2003 pairs), together with human labeled similarity scores for these word pairs. What makes SCWS
different from WS353 is that the words in SCWS are contained in sentences, i.e., there are 2003 pairs of
sentences containing these words, while words in WS353 are not associated with sentences. Therefore,
the human labeled scores are based on the meanings of the words in the context. Given the presence
of the context, the word similarity scores, especially those scores depending on polysemous words, are
much more convincing for evaluating different models’ performance in our experiments.

Then, we propose a method to compute the similarity score for a pair of words {wy,w,} in the context
based on our model. Suppose that the context of a word w is defined as all its neighboring words in a

T + 1 sized window, where w is the central word in the window. We use Context; = {cl,c}, -+ ,c}} and
Contexty = {c},c3,+-+ ,c3} to separately denote the context of w; and w, where ¢! and ¢? are the -th
context word of w; and wy, respectively. According to Bayesian rule, we have that fori € {1,2,--- | N,,, }:

P(hy, = i|Context,wy) o< P(Contexty |hy,, = i,w1)P(hy, =ilw))
(1)

HP(c,1|hWl = i,w)P(hy, = i|lwy),

t=1
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where P(c}|h,, = i,w;) can be calculated by equation (4) and P(h,, = ilw) is the prior probability
we learned in the EM algorithm (equation (8)). The similar equation holds for word w, as well. Here
we make an assumption that the context words are independent with each other given the central word.
Furthermore, suppose that the most likely prototype index for w; given Context; is flwl, i.e., we de-
note fzwl = argmaxie{ljzv.‘.7NM,1}P(hwl = i|Context;,w;). Similarly, fsz is denoted as the corresponding
meaning for w,.

We calculate two similarity scores base on equation (11), i.e., MaxSim Score and WeightedSim Score:

MaxSim(wy,wy) = Cosine(leﬁw1 ,szﬁwz),

(12)

N, N,
WeightedSim(wy,wy) = Z Z P(hy, = i|Contexty,w1)P(h,, = j|Contexts,w2)Cosine(Viy, i, Vi, j)-
i=1 j=1
: (13)

In the above similarity scores, Cosine(x,y) denotes the cosine similarity score of vector x and y, and
Vi € R? is the embedding vector for the word w’s i-th prototype.

The detailed experimental results are listed in Table 3, where p refers to the Spearman’s rank cor-
relation. The higher value of p indicates the better performance. The performance score of EHModel
is borrowed from its original paper (Huang et al., 2012). For Word2Vec model, we use Hierarchical
Huffman Tree rather than Negative Sampling to do the acceleration. Our Model M uses the MaxSim
score in testing and our Model_W uses the WeightedSim score. All of these models are run on the same
aforementioned Wikipedia corpus, with the dimension of the embedding space to be 50.

From the table, we can observe that our Model ‘W (65.4%) outperforms the original Word2Vec model
(61.7%), and achieves almost the same performance with the state-of-the-art EHModel (65.7%). Among
the two similarity measures used in testing, the WeightedSim score performs better (65.4%) than the
MaxSim score (63.6%), indicating that the overall consideration of all prototype probabilities are more
effective.

Model p x 100
Word2Vec 61.7
EHModel 65.7
Model M 63.6
Model W 65.4

Table 3: Spearman’s rank correlations on SCWS dataset.

5 Conclusion

In this paper, we introduce a fast and probabilistic method to generate multiple embedding vectors for
polysemous words, based on the continuous Skip-Gram model. On one hand, our method addresses
the drawbacks of the original Word2Vec model by leveraging multi-prototype word embeddings; on the
other hand, our model yields much less complexity without performance loss compared with the former
clustering based multi-prototype algorithms. In addition, the probabilistic framework of our method
avoids the extra efforts to perform clustering besides training word embeddings.

For the future work, we plan to apply the proposed probabilistic framework to other neural network
language models. Moreover, we would like to apply the multi-prototype embeddings to more real world
text mining tasks, such as information retrieval and knowledge mining, with the expectation that the
multi-prototype embeddings produced by our model will benefit these tasks.
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6 Appendix

6.1 Derivations for the EM Algorithm

We give detailed derivations for the updating rules used in the EM algorithms in Section 3.2., i.e., the
derivations for equation (6), (7), and (8).
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According to the properties of conditional probability, we have

(Ymk = 17X|®)
Y P(Ymi = 1,X(©)
P( Y = 1|®)P(X‘7m,k = 17®)

?m,k - (Ymk 1|X ®)

= = (14)
Z&1P(Ym,i = 1|®)P(X|Ym,i = 17®)
TP (Wi |y = kyw)
YN TP (Wil = i w)
From equation (7), the Q function is calculated as:
0(6,6")) = E[log P(X,T(©)|0"]
Nw M LMm )
Wm
— Z Z E| }/mk]('*) ](logn'k+ Zlogg U}VW’N’,VW,;{))
k=1m=1 =1
Ny M Luy, L) T (15)
= Tink (log m + Zlogg "Uy Vi)
k=1m=1 =1
M Nw me
=Y Y Ins(logm+ Zlogg UL, Vik)-
m=1k=1

Then we give the derivations for 7’s updating rule, i.e., equation (8). Note that for parameters 7,
k={1,2,--- N, }, they need to satisfy the condition that Zivgl 7, = 1. From equation (7) (or equivalently
equation (15)), the loss with regard to 7 is:

M N,
Z ,klognkM(an—l), (16)

k=1

I Mg

=0, we obtain:

Mk

T o< Am,k- (17)

m=1

M 4
Z"n:l Ymk

Further considering the fact that ZkNil Z%:l Yk = M, we have m, = =155
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Abstract

We present a method that learns bilexical operators over distributional representations of words
and leverages supervised data for a linguistic relation. The learning algorithm exploits low-
rank bilinear forms and induces low-dimensional embeddings of the lexical space tailored for
the target linguistic relation. An advantage of imposing low-rank constraints is that prediction
is expressed as the inner-product between low-dimensional embeddings, which can have great
computational benefits. In experiments with multiple linguistic bilexical relations we show that
our method effectively learns using embeddings of a few dimensions.

1 Introduction

We address the task of learning functions that compute compatibility scores between pairs of lexical
items under some linguistic relation. We refer to these functions as bilexical operators. As an instance of
this problem, consider learning a model that predicts the probability that an adjective modifies a noun in
a sentence. In this case, we would like the bilexical operator to capture the fact that some adjectives are
more compatible with some nouns than others. For example, a bilexical operator should predict that the
adjective electronic has high probability of modifying the noun device but little probability of modifying
the noun case.

Bilexical operators can be useful for multiple NLP applications. For example, they can be used to
reduce ambiguity in a parsing task. Consider the following sentence extracted from a weblog: Vynil
can be applied to electronic devices and cases, wooden doors and furniture and walls. If we want to
predict the dependency structure of this sentence we need to make several decisions. In particular, the
parser would need to decide (1) Does electronic modify devices? (2) Does electronic modify cases? (3)
Does wooden modify doors? (4) Does wooden modify furniture? Now imagine that in the corpus used to
train the parser none of these nouns have been observed, then it is unlikely that these attachments can be
resolved correctly. However, if an accurate noun-adjective bilexical operator were available most of the
uncertainty could be resolved. This is because a good bilinear operator would give high probability to the
pairs electronic-device, wooden-door, wooden-furniture and low probability to the pair electronic-case.

The simplest way of inducing a bilexical operator is to learn it from a training corpus. That is, assuming
that we are given some data annotated with a linguistic relation between a modifier and a head (e.g.
adjective and noun) we can simply build a maximum likelihood estimator for Pr(m | h) by counting the
occurrences of modifiers and heads under the target relation. For example, we could consider learning
bilexical operators from sentences annotated with dependency structures. Clearly, this model can not
generalize to head words not present in the training data.

To mitigate this we could consider bilexical operators that can exploit lexical embeddings, such as
a distributional vector-space representation of words. In this case, we assume that for every word we
can compute an n-dimensional vector space representation ¢(w) — R™. This representation typically
captures distributional features of the context in which the lexical item can occur. The key point is that

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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we do not need a supervised corpus to compute the representation. All we need is a large textual corpus
to compute the relevant statistics. Once we have the representation we can exploit operations in the
induced vector space to define lexical compatibility operators. For example we could define a bilexical
operator as:

exp {{¢(m), ¢(h))}
> exp {(o(m), ¢(h))}

where (¢(z), ¢(y)) denotes the inner-product. Alternatively, given an initial high-dimensional distribu-
tional representation computed from a large textual corpus we could first induce a projection to a lower
k dimensional space by performing truncated singular value decomposition. The idea is that the lower
dimensional representation will be more efficient and it will better capture the relevant dimensions of the
distributional representation. The bilexical operator would then take the form of:

exp {(Uop(m), Up(h))}
> exp {{Ug(m'), Ug(h))}

Pr(m | h) = 1)

Pr(ml|h) = (2)

where U € R¥*™ is the projection matrix obtained via SVD. The advantage of this approach is that as
long as we can estimate the distribution of contexts of words we can compute the value of the bilexical
operator. However, this approach has a clear limitation: to design a bilinear operator for a target linguistic
relation we must design the appropriate distributional representation. Moreover, there is no clear way of
exploiting a supervised training corpus.

In this paper we combine both the supervised and distributional approaches and present a learning
algorithm for inducing bilexical operators from a combination of supervised and unsupervised training
data. The main idea is to define bilexical operators using bilinear forms over distributional representa-
tions: ¢(x) ' We(y), where W € R™ ™ is a matrix of parameters. We can then train our model on the
supervised training corpus via conditional maximum-likelihood estimation. To induce a low-dimensional
representation, we first observe that the implicit dimensionality of the bilinear form is given by the rank
of W. In practice controlling the rank of W can result in important computational savings in cases where
one evaluates a target word x against a large number of candidate words y: this is because we can project
the representations ¢(x) and ¢(y) down to the low-dimensional space where evaluating the function is
simply an inner-product. This setting is in fact usual, for example for lexical retrieval applications (e.g.
given a noun, sort all adjectives in the vocabulary according to their compatibility), or for parsing (where
one typically evaluates the compatibility between all pairs of words in a sentence).

Consequently with these ideas, we propose to regularize the maximume-likelihood estimation using
a nuclear norm regularizer that serves as a convex relaxation to the rank function. To minimize the
regularized objective we make use of an efficient iterative proximal method that involves computing the
gradient of the function and performing singular value decompositions.

We test the proposed algorithm on several linguistic relations and show that it can predict modifiers
for unknown words more accurately than the unsupervised approach. Furthermore, we compare different
types of regularizers for the bilexical operator W, and observe that indeed the low-rank regularizer results
in the most efficient technique at prediction time.

In summary, the main contributions of this paper are:

e We propose a supervised framework for learning bilexical operators over distributional representa-
tions, based on learning bilinear forms .

e We show that we can obtain low-dimensional compressions of the distributional representation by
imposing low-rank constraints to the bilinear form. Combined with supervision, this results in
lexical embeddings tailored for a specific bilexical task.

e In experiments, we show that our models generalize well to unseen word pairs, using only a few
dimensions, and outperforming standard unsupervised distributional approaches. We also present
an application to prepositional phrase attachment.
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2 Bilinear Models for Bilexical Predictions

2.1 Definitions

Let V be a vocabulary, and let x € V denote a word. Let H C V be a set of head words, and M C V be
a set of modifier words. In the noun-adjective relation example, H is the set of nouns and M is the set
of adjectives.

The task is as follows. We are given a training set of [ tuples D = {(m,h)',..., (m,h)'}, where
m € M and h € H and we want to learn a model of the conditional distribution Pr(m | h). We want
this model to perform well on all head-modifier pairs. In particular we will test the performance of the
model on heads that do not appear in D.

We assume that we are given access to a distributional representation function ¢ : ¥V — R", where
¢(x) is the n-dimensional representation of 2. Typically, this function is computed from an unsupervised
corpus. We use ¢(x)j; to refer to the i-th coordinate of the vector.

2.2 Bilinear Model

Our model makes use of the bilinear form W : R" x R® — R, where W & R™ ™ and evaluates as
#(m) "W ¢(h). We define the bilexical operator as:

TWo(h
Prm | h) = — 2 A00m) ,‘i( )} 3)
Y omrem exp {d(m/) TWe(h)}
Note that the above model is nothing more than a conditional log-linear model defined over n? fea-
tures f; j(m,h) = @(m);¢(h);) (this can be seen clearly when we write the bilinear form as

> ey 2oi—1 fi,j(m, h)W; ;. The reason why it is useful to regard W as a matrix will become evident in
the next section.

Before moving to the next section, let us note that the unsupervised SVD model in Eq. (2) is also a
bilinear model as defined here. This can be seen if we set W = UU ", which is a bilinear form of rank
k. The key difference is in the way W is learned using supervision.

3 Learning Low-rank Bilexical Operators

3.1 Low-rank Optimization

Given a training set D and a feature function ¢(z) we can do standard conditional max-likelihood opti-
mization and minimize the negative of the log-likelihood function, log Pr(D):

> o(m) Wolh) ~log > exp{o(m) Wo(h)} 0

(m,h)eD m'eM

We would like to control the complexity of the learned model by including some regularization penalty.
Moreover, like in the low-dimensional unsupervised approach