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Abstract

Supervised neural approaches are hindered
by their dependence on large, meticulously
annotated datasets, a requirement that is
particularly cumbersome for sequential
tasks. The quality of annotations tends
to deteriorate with the transition from
expert-based to crowd-sourced labeling. To
address these challenges, we present CAMEL
(Confidence-based Acquisition Model for
Efficient self-supervised active Learning), a
pool-based active learning framework tailored
to sequential multi-output problems. CAMEL
possesses two core features: (1) it requires
expert annotators to label only a fraction
of a chosen sequence, and (2) it facilitates
self-supervision for the remainder of the
sequence. By deploying a label correction
mechanism, CAMEL can also be utilized
for data cleaning. We evaluate CAMEL
on two sequential tasks, with a special
emphasis on dialogue belief tracking, a task
plagued by the constraints of limited and
noisy datasets. Our experiments demonstrate
that CAMEL significantly outperforms the
baselines in terms of efficiency. Furthermore,
the data corrections suggested by our method
contribute to an overall improvement in the
quality of the resulting datasets.1

1 Introduction

Supervised training of deep neural networks re-
quires large amounts of accurately annotated data
(Russakovsky et al., 2015; Szegedy et al., 2017; Li
et al., 2020b). A particularly challenging scenario
arises when training for sequential multi-output
tasks. In this case, the neural network is required
to generate multiple predictions simultaneously,
one for each output category, at every time
step throughout an input sequence. Consequently,

1The code is available under https://gitlab
.cs.uni-duesseldorf.de/general/dsml/camell
.git.

the labeling effort increases rapidly, becoming
impractical as the demand for precise and con-
sistent labeling across each time step and output
category intensifies. Therefore, a heavy depen-
dence on human-generated labels poses significant
limitations on the scalability of such systems.

A prominent example of a sequential
multi-output label task for which this bottleneck
is evident is dialogue belief tracking. A dialogue
belief tracker is one of the core components of a
dialogue system, tasked with inferring the goal
of the user at every turn (Young et al., 2007).
Current state-of-the-art trackers are based on
deep neural network models (Lin et al., 2021;
van Niekerk et al., 2021; Heck et al., 2022).
These models outperform traditional Bayesian
network-based belief trackers (Young et al., 2010;
Thomson and Young, 2010). However, neural
belief trackers are greatly hindered by the lack of
adequate training data. Real-world conversations,
even those pertaining to a specific task-oriented
domain, are extremely diverse. They encompass
a broad spectrum of user objectives, natural
language variations, and the overall dynamic
nature of human conversation. While there are
many sources for dialogue data, such as logs of
call centers or virtual personal assistants, labeled
dialogue data is scarce and several orders of
magnitude smaller than, say, data for speech
recognition (Panayotov et al., 2015) or translation
(Bojar et al., 2017). Although zero-shot trackers
do not require large amounts of labeled data, they
typically underperform compared to supervised
models that are trained on accurately labeled
datasets (Heck et al., 2023).

One of the largest available labeled datasets
for task-oriented dialogues is MultiWOZ, which
is a multi-domain dialogue dataset annotated
via crowdsourced annotators. The challenges in
achieving consistent and precise human annota-
tions are apparent in all versions of MultiWOZ
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(Budzianowski et al., 2018; Eric et al., 2020; Zang
et al., 2020; Han et al., 2021; Ye et al., 2022).
Despite manual corrections in the most recent edi-
tion, model performance has plateaued, not due to
limitations in the models, but as a result of data
inconsistencies (Li et al., 2020a).

Addressing the omnipresent issue of unreliable
labels, as evident in the MultiWOZ dataset, is a
common problem that affects the quality and reli-
ability of supervised learning systems. In order to
mitigate these issues and enhance the robustness of
model training, we propose a novel methodology.

In this work, we present CAMEL, a pool-based
semi-supervised active learning approach for se-
quential multi-output tasks. Given an underlying
supervised learning model that can estimate con-
fidence in its predictions, CAMEL substantially
reduces the required labeling effort. CAMEL
comprises:

• A selection component that selects a subset
of time-steps and output categories to be
labeled in input sequences by experts rather
than whole sequences, as is normally the
case.

• A self-supervision component that uses
self-generated labels for the remaining
time-steps and output categories within
selected input sequences.

• A label validation component which exam-
ines the reliability of the human-provided
labels.

We first apply CAMEL within an idealized set-
ting for machine translation, a generative language
modeling task. CAMEL achieves impressive re-
sults, matching the performance of a model trained
on the full dataset while utilizing less than 60%
of the expert-provided labels. Subsequently, we
apply CAMEL to the dialogue belief tracking
task. Notably, we achieve 95% of a tracker’s
full-training dataset performance using merely
16% of the expert-provided labels. Additionally,
we propose an adaptation of the meta-post-hoc
model approach (Shen et al., 2023), tailored
for cost-efficient active learning. We demon-
strate that CAMEL, utilizing uncertainty estimates
from this cost-effective method, exhibits similar
performance compared to using uncertainty esti-
mates from a significantly more computationally
expensive ensemble of models.

On top of this framework, we develop a
method for automatically detecting and correct-
ing inaccuracies of human labels in datasets. We
illustrate that these corrections boost performance
of distinct tracking models, overcoming the limita-
tions imposed by labeling inconsistencies. Having
demonstrated its efficacy in machine transla-
tion and dialogue belief tracking, our framework
holds potential for broad applicability across var-
ious sequential multi-output tasks, such as object
tracking, pose detection, and language modeling.

2 Related Work

2.1 Active Learning

Active learning is a machine learning framework
that pinpoints scenarios in data that lack rep-
resentation and interactively queries a designated
annotator for labels (Cohn et al., 1996). The frame-
work uses an acquisition function to identify the
most beneficial data points for querying. Such a
function estimates how performance can improve
following the labeling of data. Functions of this
kind often rely on various factors, such as pre-
diction uncertainty (Houlsby et al., 2011), data
space coverage (Sener and Savarese, 2018), vari-
ance reduction (Johansson et al., 2007), or topic
popularity (Iovine et al., 2022).

Active learning approaches can be categorized
into stream-based and pool-based (Settles, 2009).
Stream-based setups are usually employed when
data creation and labeling occur simultaneously.
In contrast, pool-based approaches separate these
steps, operating under the assumption that an
unlabeled data pool is available.

Active learning has been frequently employed
in tasks such as image classification (Houlsby
et al., 2011; Gal et al., 2017) and machine trans-
lation (Vashistha et al., 2022; Liu et al., 2018). A
noteworthy example in machine translation is the
work of Hu and Neubig (2021), which enhances
efficiency by applying active learning to datasets
enriched with frequently used phrases. While this
strategy does reduce the overall effort required
for labeling, it inherently limits the scope of the
annotator’s work to phrases only. As a result,
this method may not support the annotation of
longer texts, where understanding the context and
nuances of full sentences is crucial.

At the same time, active learning is less
prevalent in dialogue belief tracking, with Xie
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et al. (2018) being a notable exception. Their
framework involves querying labels for complete
sequences (dialogues) and bases selection on a
single output category, neglecting any potential
correlation between categories. Furthermore, this
approach does not account for annotation quality
problems.

One work that addresses the issue of annota-
tion quality within an active learning framework
is Su et al. (2018). In that work, stream-based
active learning is deployed for the purpose of
learning whether a dialogue is successful. The
user-provided labels are validated using a la-
bel confidence score. This innovative learning
strategy is however not directly applicable to se-
quential multi-output tasks, as it does not deal
with the sequential nature of the problem.

2.2 Semi-Supervised Learning

Semi-Supervised Learning (SSL) makes use
of both labeled and unlabeled data to im-
prove learning efficiency and model perfor-
mance. While SSL traditionally encompasses
various approaches, including encoder-decoder
architectures, alternative methods incorporate
self-labeling or self-supervision to enhance model
training with minimal human intervention.

In SSL, a ‘‘pre-trained’’ model typically un-
dergoes an initial phase of unsupervised learning,
leveraging large volumes of unlabeled data to
learn representations. Subsequently, the model
is fine-tuned for specific tasks using labeled
data. This fine-tuning process, especially preva-
lent in state-of-the-art transformer-based models
like RoBERTa (Liu et al., 2019), is integral to
semi-supervised learning strategies, serving as an
illustration of their practical utility (van Niekerk
et al., 2021; Su et al., 2022; Heck et al., 2022).

Moreover, SSL can utilize self-training tech-
niques, such as Pseudo Labeling and Noisy
Student Training, where a ‘‘teacher’’ model gen-
erates pseudo labels for unlabeled data, which are
then used to train a ‘‘student’’ model. In this it-
erative process, the student assumes the teacher
role. This semi-supervised training can improve
performance without necessitating extra labels.

The Pseudo-Label method proposed by Lee
(2013) is a straightforward and effective SSL
technique where the model’s confident predictions
on unlabeled data are treated as ground truth labels.

This method has been widely adopted due to its
simplicity and effectiveness in various domains.

Recent advances in SSL have focused on
methods such as FixMatch (Sohn et al., 2020),
which simplifies the semi-supervised learning
pipeline by combining consistency regularisation
and pseudo-labeling. FixMatch leverages weakly
augmented data to predict pseudo labels, and
strongly augmented data to enforce consistency.

Additionally, Xie et al. (2020) propose the
Noisy Student method, which extends the teacher-
student framework by adding noise to the stu-
dent model, thereby improving its robustness and
performance. Further, Kumar et al. (2020) ex-
plore the concept of gradual domain adaptation
through self-training, where a model is iteratively
trained on data that gradually shifts from the
source to the target domain. This approach has
been shown to effectively handle large distribu-
tion shifts by leveraging intermediate domains to
improve generalisation.

In summary, the incorporation of self-
supervision and iterative training frameworks
in SSL has proven to be highly effective,
driving advancements in model performance with
minimal labeled data. These methods not only
enhance the learning process but also reduce the
reliance on extensive labeled datasets, making
SSL a crucial area of research in modern machine
learning.

2.3 Label Validation

The process of manually correcting labels is very
tedious and expensive. As a result, many works
focus on learning from imperfect labels, using
loss functions and/or model architectures adapted
for label noise (Reed et al., 2015; Xiao et al.,
2015; Sukhbaatar et al., 2015). Still, these meth-
ods have been unable to match the performance
of models trained on datasets that include manu-
ally corrected labels. However, the alternative of
automated label validation or correction is often
overlooked by such works. It has been shown that
learning from automatically corrected labels, e.g.,
based on confidence scores, performs better than
learning from noisy labels alone (Liu et al., 2017;
Jiao et al., 2019). The major drawback of these
approaches is that they frequently rely on over-
confident predictions of neural network models to
correct labels, which can further bias the model.
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3 CAMEL: Confidence-based
Acquisition Model for Efficient
Self-supervised Active Learning

In this section, we introduce our pool-based active
learning approach, named CAMEL, to address se-
quential multi-output classification problems. Let
us consider a classification problem with input
features x, and output y. According to Read
et al. (2015), such a problem can be cast as a
multi-output classification problem if the output
consists of multiple label categories that need to be
predicted simultaneously. Specifically, for a prob-
lem with M categories, the output is represented
as y = 〈y1, y2, . . . , yM 〉, where each ym,m ∈
[1,M ] can be binary or multivariate. Further-
more, this problem is characterized as a sequential
classification problem if the output is dependent
on a sequence of prior inputs. For a sequence
with T time-steps, the input-output pairs can be
represented as 〈(x1,y1), (x2,y2), . . . , (xT ,yT )〉,
whereyt = 〈y1t , y2t , . . . , yMt 〉 represents the output
labels at time step t ∈ [1, T ].

In a conventional setting, for an unlabeled
data sequence Xi = 〈x1, . . . ,xTi〉, an annota-
tor would typically be required to provide labels,
ymt , for each label category m at every time step
t, which is considerably expensive.

3.1 Requirements

CAMEL, as a confidence-based active learning
framework, utilizes confidence estimates to de-
termine data points to be queried for labeling.
The framework relies on the model’s ability to
gauge the certainty of each prediction. Specifi-
cally, for every time-step t in a sequence, for
each category m in a multi-output setting, and
for each possible value v ∈ Vm that m can take,
the model calculates the predictive probability,
πm
t (v) = p (ymt = v). These probabilities, col-

lected into a distribution πm
t = [πm

t (v)]∀v∈Vm ,
form the predictive distribution that CAMEL uses
for active learning decisions.

The calibration of these confidence estimates
is also critical. Calibration refers to the alignment
between the model’s estimated confidence and the
empirical likelihood of its predictions (Desai and
Durrett, 2020). Should the model’s confidence
estimates be poorly calibrated, it may select in-
stances that are not informative, resulting in an
inefficient allocation of the annotation budget and
potentially suboptimal performance.

3.2 Active Learning Approach
The approach we propose starts with an initial
learning model, which is trained using a small
labeled seed dataset and iteratively progresses
through four stages: data selection, labeling, label
validation, and semi-supervised learning. These
iterations continue until either a pre-defined per-
formance threshold is achieved or the dataset is
fully labeled. The schematic representation of this
approach is illustrated in Figure 1.

Stage 1: Data Selection In each cycle, we se-
lect a subset of Nsel sequences from the unlabeled
pool of size Nunlb. Selection is based on the
model’s prediction confidence, pmt (which will
be specified in Equation 1). Instances in which the
model displays low confidence (confidence below
a threshold αsel) are selected. More precisely, an
input sequence is selected if the model shows high
uncertainty for at least one time-step t and label
category m instance ymt . The αsel threshold is set
such that Nsel sequences are selected for labeling.

Stage 2: Labeling In the input sequences
selected in Stage 1, the learning model
self-labels the time-steps and categories,
v̂mt = argmaxv∈Vm(πm

t (v)), where its confi-
dence is above the threshold αsel. Concurrently,
expert annotators are responsible for labeling the
remaining time-steps and categories. These labels
are denoted by ṽmt .

Stage 3: Label Validation This is an optional
step, and the variant of CAMEL that contains
this stage we call Confidence-based Acquisition
Model for Efficient Self-supervised Active Learn-
ing with Label Validation (CAMELL). We can
consider the labels, ṽmt , with label confidence,
p̃mt , below a threshold αval to be potentially in-
correct. This label confidence is not assigned by
the annotators themselves but is computed by the
learning model. To safeguard the model from be-
ing trained with these potentially erroneous labels,
we purposely exclude them (i.e., these labels are
masked in the dataset). The αval threshold can be
set using a development set.

Stage 4: Semi-supervised Learning At each
iteration of the active learning approach, the expert
provided labels that passed validation (Stage 3)
and the self-determined labels from Stage 2 are
added to the labeled pool, resulting in Nlab +Nsel

data sequences. Based on these, the learning model
is retrained.
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Figure 1: CAMEL comprises four stages. Stage 1 involves data selection, choosing instances for labeling where
the model shows uncertainty (confidence below the αsel threshold), as indicated by pink arrows. In Stage 2,
annotators label the selected instances while the model self-labels the remaining ones (dashed green arrows).
Stage 3 (optional) validates labels using a label confidence estimate, incorporating only labels exceeding the αval
threshold and the self-labeled data into the dataset (black arrows). Finally, Stage 4 involves retraining the model
for the next cycle.

3.3 Confidence Estimation

To accurately estimate the prediction confidence
required in Stage 1 as well as the label confidence
in Stage 3, we propose a confidence estimation
model for each stage. These models are designed
to encapsulate the learning model’s confidence by
considering both its total and knowledge-based
uncertainties. Total uncertainty captures all un-
certainty in the model’s prediction, irrespective
of the source. Conversely, knowledge uncertainty
in a model originates from its incomplete under-
standing, which occurs due to a lack of relevant
data during training, or the inherent complexity of
the problem (Gal, 2016).

Both the prediction and label confidence estima-
tion models share the same objective: to estimate
the probability that the value vmt for a specific
label category m at time-step t is correct. To pro-
vide the training data for these models, we assume
that the labels in the labeled pool are correct,
as they have already been validated. Further-
more, we retrain these models whenever more data
is labeled.

Both models share the same general structure:

hm
t = EncIntra-Cat(z

m
t )

ht = EncInter-Cat([z
j
t ]
M
j=1)

pmt = Conf(hm
t ,ht),

(1)

Figure 2: Category-specific uncertainty measures: (a)
displays prediction uncertainty, including prediction
probability and total and knowledge uncertainty; (b)
depicts label uncertainty, including label probability
and total and knowledge uncertainty from both learning
and noisy models.

where zm
t = [πm

t (vmt ), T (πm
t ),K(πm

t )] is a set
of uncertainty measures for category m. As il-
lustrated in Figure 2, these measures consist of
the predictive probability specific to πm

t (vmt ),
along with measures of total uncertainty, T (πm

t ),
and knowledge uncertainty, K(πm

t ), associated
with the predictive distribution πm

t (See Sections
4.4.1 and 4.5.1 for concrete implementations).
The intra-category encoder is tasked with extract-
ing important category specific features, hm

t , from
these uncertainties. Important features across cat-
egories, ht, are extracted by the inter-category
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encoder.2 The inter-category encoder allows the
model to take advantage of any correlations be-
tween categories, which was not done by Xie
et al. (2018). Both the inter- and intra-category
encoders consist of linear fully connected layers.
The confidence estimation component generates
a confidence score, pmt , reflecting the accuracy
of a given category’s value. This component is
composed of a linear feature transformation layer,
followed by a prediction layer with a Sigmoid
activation function.

The design choices for the confidence esti-
mation models were motivated by a desire to
capture both intra- and inter-category uncertainty
for reliable confidence estimation. We observed
that excluding inter-category features degraded
performance, emphasizing the importance of
incorporating them.

3.3.1 Prediction Confidence Estimation

The objective of the prediction confidence estima-
tion model is to assess whether the value predicted
by the learning model, v̂mt , is the ‘‘true’’ value,
based on the prediction confidence score pmt . This
model, also known as the confidence-based acqui-
sition model, is used as the selection criterion in
Stage 1.

3.3.2 Label Confidence Estimation

The objective of the label confidence estimation
model is to determine whether an annotator’s
label, ṽmt , is the ‘‘true’’ value, with this decision
being based on the label confidence score p̃mt .
In Su et al. (2018), the confidence score of the
learning model is directly used for both purposes.
We believe this is a suboptimal strategy, because
the model has not been exposed to instances of
‘‘incorrect’’ labels. To address this, we generate
a noisy dataset featuring ‘‘incorrect’’ labels for
training purposes.

Further, we extend z̃m
t to include uncertainty

measures drawn from both a noisy model, trained
on the corresponding noisy dataset, and the orig-
inal learning model (as depicted in Figure 2b).
Given that the noisy model is conditioned to accept
the ‘‘incorrect’’ labels as correct, the discrepancy
in uncertainty between the noisy model and the

2During label confidence estimation, for categories not
selected for labeling, self-labels are used to complete the
inter-category features.

learning model enhances the label confidence es-
timator’s ability to identify potentially incorrect
labels.

Noisy Dataset The creation of a noisy dataset
can be approached in two ways. One method is
to randomly replace a portion of labels. How-
ever, this approach may not yield a realistic noisy
dataset, considering human errors are rarely ran-
dom. A second approach, particularly when the
learning model is an ensemble, as is often the
case for uncertainty-endowed deep learning mod-
els (Gal and Ghahramani, 2016; Ashukha et al.,
2020), is to leverage individual ensemble mem-
bers to supply noisy labels (see Section 4.5.1 for
details related to an ensemble free approach). This
method may be more effective, given the individ-
ual members’ typical lower accuracy compared to
the ensemble as a whole.

In our proposed approach, we initially select
αnoise percent of the sequences from the training
data at random. For each category m, we choose
a random ensemble member to generate noisy la-
bels. This ensemble member creates labels at each
time step t by sampling from its predictive proba-
bility distribution. To avoid generating labels from
the clean dataset, the probabilities of these are set
to zero prior to sampling. The noisy dataset is re-
generated after each update of the learning model
using the updated ensemble members, enhancing
diversity of noisy labels.

3.4 Label Correction

We propose a label correction method that utilizes
the model that solves the task at hand, referred
to as the learning model, the label confidence
estimation model (Section 3.3.2), and the predic-
tion confidence estimation model (Section 3.3.1).
In order to correct a noisy dataset, this method
involves three steps: (1) detecting potentially er-
roneous labels, (2) determining which of these
labels can be accurately corrected by the learning
model, and (3) substituting the incorrect labels
with the learning model’s predictions. Detecting
potentially erroneous labels requires utilizing the
label confidence estimation model and setting the
hyperparameter αval, such that all labels ṽmt with
confidence below this threshold are considered po-
tentially incorrect. Then the prediction confidence
model is utilized to estimate the learning model’s
confidence of detected erroneous labels ṽmt . If this
confidence is greater than the one assigned by the
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label confidence estimation model, the labels are
substituted with the learning model’s predictions.

3.5 Efficient Confidence Estimation with
Post-hoc Uncertainty Learning

To obtain reliable estimates of the knowledge
and total uncertainties required in Section 3.3, an
ensemble-based approach is typically employed;
however, this method is computationally expen-
sive (Gal, 2016). This challenge is amplified in
active learning scenarios, where the model is fre-
quently updated. Shen et al. (2023) propose an
uncertainty estimation technique in which un-
certainties are generated by a post-hoc Dirichlet
meta-model, offering greater computational effi-
ciency than an ensemble of models. This method
enables the model to distinguish between knowl-
edge and data uncertainty, without needing several
instances of the learning model. The post-hoc
Dirichlet meta-model involves a two-stage train-
ing process. In the initial stage, a model with
the same architecture as the learning model is
trained to create a base model. In the second stage,
meta-features are employed to estimate the uncer-
tainties of the base model. These meta-features,
derived from various intermediate layers of the
base model, capture distinct levels of feature repre-
sentation, from low- to high-level representations.
Utilizing the diversity in these representations al-
lows for more nuanced uncertainty quantification
(Shen et al., 2023). To capture the uncertainty
of the base model, we utilize a meta-model.
This meta-model takes as input the intermediate
features from the base model and outputs the pa-
rameters of a Dirichlet distribution. This Dirichlet
distribution over the probability simplex, in turn,
describes the uncertainty present in the prediction.

More rigorously, given a base neural network
model that solves the task at hand, the set of
L features F = {f 1,f 2, . . . ,fL} is extracted
from different layers of this model for a given
input, where L refers to the number of layers of
the base model. These intermediate features can
include embeddings from various layers within a
neural network, such as the transformer layers in
a transformer model. Meta-features are computed
via small meta-feature extraction layers, gl.

In our case, these are fully connected layers
with a ReLU activation function that map the
intermediate features to meta-features of dimen-
sion dmeta, ml = gl(f l) for l = 1, . . . , L. These

meta-features are then combined and mapped to
the required prediction dimension through another
fully connected layer with ReLU activation.

3.5.1 Learning Objective
The post-hoc meta-model is trained using
Bayesian matching loss (Joo et al., 2020) with
the same training dataset as the base model.

The loss for the meta-model, denoted as Lmeta,
is defined as:

Lmeta

(
θ(meta);D

)
= Ep(x,y|D)

[
Ep(π|x,θ(meta)) [− logp (y | π)]

]
+λEp(x,y|D)

[
DKL

[
p

(
π|x, θ(meta)

) ∥∥∥p (π|β)]] .
In this expression, the first term represents the ex-
pected negative log-likelihood. The second term,
involving the Kullback-Leibler (KL) divergence,
quantifies the deviation of the model’s predic-
tive distribution from a Dirichlet prior. This
prior, p (π | β), represents our belief about the
uncertainty before observing the data.

We can show that an optimal state for this
model is reached when the output, α̂, equals the
sum of the prior concentration parameters and the
scaled one-hot encoded label, α̂ = β + 1

λy. This
mechanism enables the model to adjust its uncer-
tainty by integrating both prior knowledge and the
evidence gathered from observed data. However,
the reliance on constant prior concentration pa-
rameters, β, introduces a limitation. Specifically,
it encourages the model to generate similar uncer-
tainty estimates across all inputs, irrespective of
their complexity. This, however, leads to a model
that is under-confident for inputs it can correctly
predict and over-confident for inputs it cannot.
To address this problem, we introduce a distilla-
tion approach called Dynamic Priors within the
Bayesian matching loss framework. Dynamic Pri-
ors adapt at each active learning step by leveraging
previous model versions, thereby mitigating the
constant prior problem.

3.5.2 Dynamic Priors
Dynamic priors leverage the active learning setting
in which we operate. This setting allows the model
to access previous versions of the learning model,
which can then be used as priors. The underlying
hypothesis is that replacing the constant prior,
as described in Section 3.5.1, with a dynamic
prior—one that evolves at each active learning
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step—addresses the homogeneity issue discussed
above.

More concretely, the prior is predicted from the
Dirichlet distributions from the previous model
version. If no previous version is available, such
as at the beginning of the active learning process, a
small ensemble of models,

{
θ(1), θ(2), . . . , θ(E)

}
,

trained on a small seed-set from the active learn-
ing initialization phase, is used to obtain the initial
prior. It is important to emphasize that only the
initial prior is obtained using a small ensemble. In
all subsequent updates to the model, the predicted
Dirichlet distribution from a single model instance
is used as the prior. By parameterizing the Dirich-
let prior, p (π | β), with the previous model’s
outputs, our approach dynamically adjusts the
prior concentration parameters. This adjustment
not only mitigates the issue of constant priors but
also increases the model’s ability to produce more
accurate uncertainty estimates.

In order to represent the knowledge of the
ensemble using a Dirichlet distribution, the ensem-
ble’s aggregate predictive distribution, π̃(x) =
1
E

∑E
e=1 π

(e)(x), and the individual distributions,

π(e)(x) = p
(
y | x, θ(e)

)
, are utilized to com-

pute the prior concentration parameters, β(x).
Specifically, following Ryabinin et al. (2021), we
use Stirling’s approximation. β(x) is defined as
β0(x) · π̃(x), where β0(x) is defined as:

β0(x) =
K − 1

2
∑K

k=1 π̃k(x) · dk(x)
, with

dk(x) = log π̃k(x)−
1

E

∑E

e=1
log π

(e)
k (x).

In the context of active learning, this approach
allows our meta-model to incorporate new labels
from annotators while retaining the rich uncer-
tainty estimates derived from the ensemble. As
the learning progresses, the priors are continually
updated with predictions from the latest model,
ensuring that the uncertainty estimates remain
current.

Given the Dirichlet distribution Dir (α) pro-
duced by the post-hoc meta-model, the total and
knowledge uncertainties can be approximated as
follows:

T (π) = H
[
α

α0

]
,

K (π) = T (π) +
∑K

k=1

αk

α0
[ψ (α∗

k)− ψ (α∗
0)] .

Here π ∼ Dir (α), ψ(·) represents the digamma
function, α∗

i = αi + 1, and H[·] denotes the en-
tropy of a distribution. Further, to generate noisy
data, predictive distributions are sampled from
the Dirichlet distribution to simulate different
ensemble members.

Finally, it is important to emphasize the com-
putational efficiency of this approach. During
training, only the parameters of the meta-model,
which typically constitute less than 5% of the base
model’s size, are updated. Additionally, in the in-
ference phase, the meta-model incurs an additional
computational cost of approximately 15–20% of
the total inference cost, resulting in an overall
computationally efficient approach to uncertainty
estimation.

4 Experiments

4.1 Baselines

Random Selection randomly selects sequences
to be annotated. Random selection is often used
as a baseline for active learning approaches, as it
allows us to observe the impact of purely adding
more labeled data to our labeled pool without
strategically selecting sequences to be labeled.
Its advantage is that it maintains the full data
distribution with every selection, thus not creating
a bias (Dasgupta and Hsu, 2008).

Bayesian Active Learning by Disagreement
(BALD) is an uncertainty-based active learning
method which employs knowledge uncertainty as
the primary metric for selection (Houlsby et al.,
2011). This technique has established itself as a
strong baseline in various applications. For in-
stance, in image classification tasks (Gal et al.,
2017) and named entity recognition (Shen et al.,
2017), BALD has shown notable performance.
Its performance is further enhanced when used in
conjunction with ensemble models (Beluch et al.,
2018). Given its widespread adoption and proven
efficacy, we see BALD as an ideal baseline.

In our study, we examined two criteria for
making the selection decision: one based on the
cumulative uncertainty across all time-steps and
label categories, and another based on the aver-
age uncertainty across categories and time. Upon
evaluation, we observed that the latter criterion
yielded superior results, and therefore, adopted it
as our baseline, which we refer to as BALD.
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We further present an enhanced version of
BALD which consists of stages 1, 2, and 4 of
our approach as outlined in Section 3.2, uti-
lizing knowledge uncertainty as the prediction
confidence estimate. We call this BALD with
self-supervision, BALD+SS.3

4.2 Variants of CAMEL
We introduce the following variants to understand
the individual and collective contributions of our
proposed framework’s components.

CAML Confidence-based Acquisition Model
for active Learning, represents the foundational
layer of our framework, incorporating stages 1,
2a, and 4 described in Section 3.2. Crucially, it
excludes the self-labeling process (stage 2b), in
stage 2, thus relying solely on labels from the
annotators. This variant serves as a baseline to
evaluate the efficacy of our confidence estimation
model in an active learning context, without the in-
fluence of self-supervision. For brevity, we report
the CAML results for the translation experiments
only (similar trends were observed in the dialogue
belief tracking task).

CAMEL Confidence-based Acquisition Model
for Efficient self-supervised active Learning is
the complete approach, which also includes
the self-supervision component. This variant as-
sesses the value added by self-supervision to the
framework, while retaining stages 1, 2, and 4.

CAMELL Confidence-based Acquisition
Model for Efficient self-supervised active
Learning with Label validation is an extended
variation of our approach that includes a label
validation component, denoted as Stage 3 in
Section 3.2.

4.3 Variants of Label Correction
Live Label Correction involves simultaneous
labeling, validation, and correction of data. A
variant of CAMELL is employed, in which the
label is corrected at the validation stage using the
prediction of the learning model.

On-line Label Correction is a method that la-
bels and validates data simultaneously, with the
objective of minimising human effort in provid-
ing labels while concurrently validating them.

3Note that we are not able to combine BALD with
label validation as knowledge uncertainty does not provide
candidate level confidence scores.

CAMELL can be employed to flag the data points
requiring correction, as well as to apply correc-
tions to the flagged labels using the final model
after active learning has been performed.

Offline Label Correction is a technique used
to correct an already labeled corpus, with the ob-
jective of identifying potentially incorrect labels
and providing alternatives. To achieve this, in-
dividually trained components of CAMELL can
be utilized, specifically the prediction confidence
model (Section 3.3.1) and the label confidence
model (Section 3.3.2). The process consists of the
following steps:

1. Train learning model on labeled corpus.

2. Generate noisy dataset using this model,
leveraging ensemble members from Step 1.
If computational constraints prevent the use
of an ensemble, a noisy dataset can be gen-
erated from a single model using the strategy
described in Section 3.5.

3. Train learning model on noisy dataset.

4. Train prediction and label confidence
models.

5. Perform label correction.

Semi-offline Label Correction is a method
in which data is collected with the objective
of minimising human effort in providing labels,
with validation occurring subsequently. For this
purpose, CAMEL can be utilized alongside a sep-
arately trained label confidence model (Steps 2
and 3 from above), followed by Step 5.

4.4 Generative Language Modeling Task

For the generative language modeling task, we ex-
plore the application of our CAMEL framework
to the task of Neural Machine Translation (NMT).
NMT focuses on converting sequences of text
from a source language to a target language. Our
approach involves iterative annotation methods
similar to those used in automatic speech recog-
nition (Sperber et al., 2016), which incrementally
increase model precision.

Specifically, in our experiment, an annotator
corrects individual words within a translation,
thereby progressively enhancing the quality of the
subsequent output generated by the model. Con-
ventional annotation methods typically involve
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Figure 3: The model-based annotation process for semi-supervised annotation for NMT. The learning model
initiates the translation with the word ‘‘The’’, then confidence for the next token generation is below the threshold.
The expert annotation model is prompted and provides the next word, ‘‘drunks’’. The learning model resumes and
successfully generates the remainder of the translation: ‘‘interrupted the event’’.

providing fully corrected translations or qual-
ity ratings. While this iterative process diverges
from conventional methods of machine translation
annotation, it allows us to effectively demon-
strate the self-supervision mechanism within our
framework.

4.4.1 Implementation Details
We apply CAMEL to the task of machine trans-
lation, specifically using the T5 encoder-decoder
transformer model (t5-small) (Raffel et al.,
2020). We utilize an ensemble of 10 models in
order to produce a well-calibrated predictive dis-
tribution, which requires 2500 GPU hours to fully
train. Approximately 40% of this time is for train-
ing the ensemble, 50% for the annotation process,
and 10% for training the confidence estimator.

The ensemble model produces two types of
uncertainty within the translation process. The
first, termed total uncertainty, is measured by
the entropy across the ensemble’s predictive dis-
tribution. The second, knowledge uncertainty,
is measured by the mutual information shared
between the predictive distribution and the indi-
vidual ensemble models. These uncertainties are
crucial for evaluating the reliability of translations.
The mathematical formulations for calculating to-
tal (T ) and knowledge (K) uncertainties are as
follows:

T (π) = H
[
1

E

∑E

j=1
π(j)

]
,

K (π) =
1

E

∑E

e=1
DKL

[
π(e)

∥∥∥ 1

E

∑E

j=1
π(j)

]
,

where π(e) represents the predictive distribution
from the eth ensemble member.

The WMT17 DE-EN dataset, which consists of
German to English translations (Bojar et al., 2017),

is used for training, and METEOR (Banerjee and
Lavie, 2005), BLEU (Papineni et al., 2002), and
COMET (Rei et al., 2020) serve as evaluation
metrics.

As machine translation does not entail a
multi-output task, we employed a simplified
version of the confidence estimation model, in-
troduced in Section 3.3, consisting of only the
intra-category encoder. The latent dimension of
the encoder and feature transformation layer is 16.
The parameters are optimised using the standard
binary negative log likelihood loss (Cox, 1958).

It is crucial to address the inherent challenges
in sequential machine translation labeling: (1)
future sentence structure and labels can change
depending on the current label, and (2) for any
word position there exist multiple valid can-
didate words. This complexity necessitates the
use of a dynamic annotation approach, as static
dataset labels are insufficient for new data label-
ing. To avoid high translation annotation costs,
we propose a practical approach: using an expert
translation model, specifically the MBART-50
multilingual model (Tang et al., 2020), to simulate
a human annotator.

Our approach, depicted in Figure 3, is a
multi-stage procedure. Initially, the learning
model produces a translation for a selected source
language sentence. As it generates the transla-
tion, it simultaneously estimates its confidence
for the subsequent token. Should this confidence
fall below a set threshold αsel, the expert transla-
tion model steps in to supply the next word in the
translation. After the label is provided, the learning
model resumes the translation generation. For any
future token whose confidence drops below the
threshold, the expert translation model re-engages.
This process continues until a complete translation
for the source sentence is realised. The uncertainty
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Figure 4: METEOR score of the T5 translation model using different active learning approaches on the WMT17
DE-EN test set, as a function of (a) the number of word-level labels and (b) the number of complete translations,
with 95% confidence interval.

Figure 5: COMET score of the T5 translation model using different active learning approaches on the WMT17
DE-EN test set, as a function of (a) the number of word-level labels and (b) the number of complete translations,
with 95% confidence interval.

threshold, αsel, is strategically chosen to yield a
maximum of Nann word labels.

4.4.2 Results

We evaluated the performance of our proposed
CAMEL framework and baseline models using
METEOR (Banerjee and Lavie, 2005), BLEU
(Papineni et al., 2002), and COMET (Rei et al.,
2020) scores. While traditional metrics such as
METEOR and BLEU highlight similar trends
(with BLEU scores included in Appendix A,
Figure 8), COMET, a neural evaluation metric,
provides a more comprehensive understanding of
the translation quality beyond traditional metrics.
We establish that our proposed CAMEL frame-
work, enhanced with self-supervision, is signifi-
cantly more efficient requesting word-level labels
than baseline models like BALD, BALD+SS,
and random selection. This efficiency is evident in
Figures 4a and 5a, which showcases CAMEL’s

need for fewer word-level labels to achieve sim-
ilar performance. Although our primary focus
is on the number of word-level labels queried,
it is crucial to note that labeling overhead is
also accounted for. We measure this overhead
by the effort required to read and understand
the source language tokens, which we consider a
sufficient indicator.

A notable point to observe in Figure 4b is that
the introduction of self-supervision to CAMEL
does not significantly influence its performance
in terms of the number of complete translations
required, as evident by the comparison between
CAML (CAMEL without the self-supervised la-
beling component) and CAMEL. This implies
that self-supervision within CAMEL is applied
predominantly when the model’s predictions can
be considered reliable. In contrast, we observe that
BALD+SS, despite its label efficiency shown in
Figure 4a, performs poorly in terms of the number
of complete translations required, as demonstrated
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Confidence Estimator Dataset ECE (%) ↓

CE-T5 + CAML WMT17 DE-EN 26.74∗
CE-T5 + BALD WMT17 DE-EN 47.21

CE-SetSUMBT + CAML MultiWOZ 2.1 9.65∗
CE-SetSUMBT + BALD MultiWOZ 2.1 17.21

Table 1: Comparison of the expected cali-
bration error (ECE) of confidence estimation
approaches. ∗ indicates significant difference on
95% confidence interval.

in Figure 4b. This drop in performance may be
attributed to BALD+SS’s tendency to incorrectly
self-label complex examples. This trend is further
evidenced by CAML’s lower expected calibration
error (ECE), reported in Table 1. The COMET
results, presented in Figure 5, further attest to
CAMEL’s superiority. CAMEL not only excels in
reducing the number of word-level labels but also
outperforms other models in the number of com-
plete translations required. The non-overlapping
confidence intervals in the results indicates that
the improvements of CAMEL over other methods
are statistically significant.

Regardless of the methodology used, all models
require roughly the same number of complete
translations, as shown in Figures 4b and 5b. This
supports the widely accepted notion that exposure
to large datasets is vital for training robust natural
language processing (NLP) models.

Encouraged by these results, we adapt CAMEL
to address the dialogue belief tracking problem, a
task plagued by errors in the labels of available
datasets.

4.5 Dialogue Belief Tracking Task

In task-oriented dialogue, the dialogue ontology
O contains a set of M domain-slot pairs
{s1, s2, . . . , sM} and a set of plausible values Vsm

for each sm. The goal of the dialogue belief tracker
is to infer the user’s preference for each sm by
predicting a probability distribution over the plau-
sible values. Notably, each set of plausible values,
Vsm , includes the not mentioned value, indi-
cating that a specific domain-slot pair is not
part of the user’s goal. This allows for computing
the model’s confidence for slots not present in the
user’s preference.

To train a belief tracking model, we require the
dialogue state, which includes thevalue label for
each domain-slot, in every dialogue turn. The

dialogue state at turn t in dialogue i is represented
as Bi,t = {(sm, vs

m

i,t )}sm∈O, where vs
m

i,t denotes
the value for the domain-slot pair sm at turn
t in dialogue i. Consequently, we obtain a dataset
D = {(uusr

i,1:t,u
sys
i,1:t−1,Bi,t)

Ti
t=1}Ni=1, consisting of

N dialogues, each comprising Ti turns, where
user and system utterances at turn t in dialogue i
are denoted as uusr

i,t and usys
i,t , respectively.

To create a dataset D, annotators usually pro-
vide relevant values for the domain-slot pairs
they believe are present in the user’s utterance
at every turn t. Subsequently, a handcrafted
rule-based tracker considers the previous state
Bi,t−1, the semantic actions present in the system
utterance and the values provided by the annotator
to generate complete dialogue states for each turn
(Budzianowski et al., 2018). However, this ap-
proach has several drawbacks. Firstly, rule-based
trackers tend to be imprecise and necessitate re-
development for each new application, making it
less versatile. Secondly, it may not use the time
of human annotators efficiently, as the learning
model could potentially predict the state for a
substantial part of the dialogue accurately. Lastly,
there is the risk of human annotators inadvertently
overlooking slots in the user input, which could
result in incomplete data.

4.5.1 Learning Model
To apply CAMEL to the dialogue belief tracking
problem, we use the CE-SetSUMBT (Calibrated
Ensemble – SetSUMBT) model (van Niekerk
et al., 2021), a model which produces well-
calibrated uncertainty estimates, important for
CAMEL. The CE-SetSUMBT model consists of
10 ensemble members, requiring 1000 GPU hours
to fully train. Approximately 45% of this time
is utilized for training the ensemble, 45% for
training the noisy model, and 10% for training
the confidence estimators. In addition, we in-
tegrate the post-hoc uncertainty learning using a
Dirichlet meta-model approach (Shen et al., 2023),
described in Section 3.5, into SetSUMBT.

4.5.2 Datasets
In order to test our proposed approach, we utilize
the multi-domain task-oriented dialogue dataset
MultiWOZ 2.1 (Eric et al., 2020; Budzianowski
et al., 2018) and its manually corrected test set
provided in MultiWOZ 2.4 (Ye et al., 2022). In
our experiments, we regard MultiWOZ 2.1 as a
dataset with substantial label noise (Eric et al.,
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Figure 6: JGA of the CE-SetSUMBT model using different active learning approaches, on the MultiWOZ 2.1 test
set, as a function of (a) the number of labels and (b) the number of dialogues, with 95% conf. int.

2020; Zang et al., 2020; Ye et al., 2022), and the
test set of MultiWOZ 2.4 a dataset with accurate
labels.

4.5.3 Implementation Details

The latent dimension of the intra- and
inter-category encoders and feature transforma-
tion layer is 16. During training of the label
confidence estimation model (Section 3.3.2), to
avoid overfitting, we improve the calibration of
this model by deploying binary label smoothing
loss (Szegedy et al., 2016), temperature scaling
and noisy training using Gaussian noise (An,
1996).

For the seed dataset (Section 3) we randomly
select 5% of dialogues on which we train the initial
SetSUMBT model. The other dialogues in the
dataset are treated as the unlabeled pool. At each
update step another 5% of the data are selected to
be labeled. At each point where we require expert
labels, we take the original labels provided in the
dataset to simulate a human annotator.

4.5.4 Evaluation

As the main metric for our experiments, we
use joint goal accuracy (JGA) (Henderson et al.,
2014). We further include the joint goal expected
calibration error (ECE) (Guo et al., 2017; van
Niekerk etal., 2020), which measures the calibra-
tion of the model. In terms of measuring efficiency
of each method, we examine JGA as a function of
the number of expert provided labels. In order to
assess the quality of the corrected dataset, we mea-
sure the JGA of models trained on a noisy dataset,
with and without the proposed label correction.

4.5.5 Dialogue Diversity Baseline

We include an additional dialogue diversity
baseline, aiming to obtain labels for dialogues
geometrically dissimilar from those in the labeled
pool, thus ensuring data space coverage. This di-
versity strategy proposed by Xie et al. (2018)
assesses similarity based on vector embeddings of
the candidate dialogue versus labeled dialogues.
We adapt this approach by employing RoBERTa
model embeddings (Liu et al., 2019), fine-tuned
in an unsupervised fashion, on the MultiWOZ
dialogues.

4.5.6 Results

As shown in Figure 6a, our proposed CAMEL
framework requires significantly fewer labels to
reach performance levels comparable to those of
the baseline methods. This indicates that CAMEL
is more efficient in learning dialogue belief track-
ing than the baseline strategies. It is important
to note that all approaches requires the same
number of unlabeled dialogues (see Figure 6b).
It also highlights the role played by CAMEL’s
confidence estimates in guiding the active learn-
ing process. This conclusion is supported by the
lower calibration error of CAMEL’s confidence
estimates, as reported in Table 1.

Further, we observe in Figure 7a–7b that similar
results can be achieved using a computationally
efficient uncertainty estimation technique such as
the post-hoc Dirichlet meta model, described in
Section 3.5, applied to the SetSUMBT model.
It should be noted that the comparatively lower
joint goal accuracy of this model can be attributed
to its singular SetSUMBT model configuration.
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Figure 7: JGA of the Dirichlet Meta SetSUMBT model using different active learning approaches, on the
MultiWOZ 2.1 test set, as a function of (a) the number of labels and (b) the number of dialogues, with 95%
conf. int.

An ensemble of models consistently achieves an
accuracy that is 2 to 3 percentage points higher.

4.6 Label Correction

To assess the quality of the corrected labels gen-
erated by our proposed label correction method
(Section 3.4), we trained two distinct tracking
models, CE-SetSUMBT and TripPy (Heck et al.,
2020), using both the original MultiWOZ 2.1
dataset and various autocorrected datasets (live,
online, offline, and semi-offline). The evaluation
was conducted on both the noisy MultiWOZ 2.1
test set and the manually corrected MultiWOZ 2.4
test set. The selected tracking models represent
the two major non-generative approaches to dia-
logue state tracking: a pick-list-based approach
(SetSUMBT) and a span-prediction approach
(TripPy).

4.6.1 Results

In Table 2, we present the JGA of the
CE-SetSUMBT models on two test sets: the
(noisy) MultiWOZ 2.1 test set and the (manually
corrected) MultiWOZ 2.4 test set.4 Overall, re-
sults show the same trend both for CE-SetSUMBT
and TripPy: On the MultiWOZ 2.1 test set, the
models do not show statistically significant im-
provements, which is unsurprising given that the
MultiWOZ 2.1 test set contains errors and, there-
fore, cannot adequately assess the impact of label
correction. In contrast, on the MultiWOZ 2.4 test
set, we observe significant improvements for both
offline and online label correction methods for
both belief state trackers. This demonstrates that

4The MultiWOZ 2.4 validation set was never used during
training.

Model Label Corr. MultiWOZ 2.1 MultiWOZ 2.4Setup

CE-SetSUMBT

None 51.79 61.63
Live 32.48 37.32
Online 52.85 63.35
Offline 52.83 63.32∗
Semi-offline 52.69 63.12

TripPy

None 55.28 64.45
Online 56.17 66.13
Offline 56.11 66.02∗
Semi-offline 55.85 65.82

Table 2: Comparison of JGA of trackers trained
with and without label corrections. The label
corrections can be obtained using a SetSUMBT
model trained on the full MultiWOZ 2.1 dataset,
trained using CAMEL, or trained using CAMELL.
∗ indicates significant difference on 95% conf. int.

the datasets resulting from online and offline label
correction are of significantly higher quality.

The semi-offline method fails to produce sig-
nificant improvements. We hypothesise that the
model trained using CAMEL has already acquired
similar error patterns to those commonly made by
human annotators. The live label correction setup
results in a low-quality dataset, which we attribute
to the model’s inherent inability to correct data
selected through active learning. At this stage,
the model lacks the capability to make accurate
predictions for these instances.5

Although the label validation stage of CAMELL
does not yield a statistically significant improve-
ment in the active learning setting, it produces a
model that provides more reliable label correction
compared to the CAMEL approach without label
validation (see online vs. semi-offline correction

5This method is not examined for TripPy, as we do not
expect it to behave differently.
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Error Conversation MultiWOZ 2.1 Labels and
Type Corrections

I User: I would like to find a
place that serves moderately
priced Chinese food.

{Restaurant:
{Food: Chinese, (95%)
Price: Moderate, (94%)
Day: Tuesday, (11%)
Day: not mentioned}} (72%)

II User: I feel like going to a
nightclub.
System: Okay, the Soul Tree
Nightclub is a popular place.
Would you like the address
or phone number?
User: I will appreciate that.

{Attraction:
{Type: Night club, (94%)
Name: Soul Tree}, (53%)

Hotel:
{Name: Sou, (14%)
Name: not mentioned}} (34%)

III User: I need a train leaving
on Friday and I want to get
there by 21 : 30. Leaving
Broxbourne.

{Train:
{Dept.: Broxbourne, (94%)
Day: Friday, (95%)
Arrive by: 21:20, (1%)
Arrive by: 21:30}} (83%)

Table 3: Examples of three common types of
annotation errors in the MultiWOZ 2.1 dataset
detected and corrected by CAMELL, (I) halluci-
nated annotations, (II) multi-annotation and (III)
erroneous annotation. For each, we provide the
confidence scores of the labels and the correc-
tions proposed by the model. Incorrect labels
are marked in red and the proposed corrections
in blue.

in Table 2). While CAMELL does not generate
labels of higher quality than those produced by
the offline label correction approach, it facilitates
the creation of a clean dataset with fewer labels,
thereby reducing human effort.

An important take-away message is: if all labels
in the dataset are available and active learning
is not required, offline label correction can be
applied to enhance the dataset’s quality. However,
if labels are being collected through an active
learning process, an online label correction should
be applied rather than a semi-offline method, as the
label validation component enables the creation of
a final dataset of higher quality.

4.6.2 Qualitative Analysis

In our investigation of the improved datasets ob-
tained from offline label correction, we identified
three prevalent label errors, which our approach
successfully rectifies, as exemplified in Table 3.
(I) Hallucinated annotations, where the annotator
assigns labels not present in the dialogue con-
text, (II) Multi-annotation, the case of assigning
multiple labels to the same piece of informa-
tion, and (III) Erroneous annotation, the situation
where an incorrect label is assigned based on the
context. These instances underscore the efficacy
of our label validation model in minimising the
propagation of errors into the dataset.

5 Conclusion

We propose CAMEL, a novel active learning ap-
proach that integrates self-supervision, with the
goal of minimizing the reliance on labeled data in
addressing sequential multi-output labeling prob-
lems. Initially, we applied CAMEL to a generative
language modeling task in an idealized setting,
specifically focusing on machine translation. Sub-
sequently, in a more realistic setting focused
on the dialogue belief tracking task, we demon-
strated that our approach significantly outperforms
baseline methods in terms of robustness and
data efficiency.

Additionally, we introduce a methodology for
automated dataset correction. Our experiments
confirm that our label correction method enhances
the overall quality of a dataset. We demonstrate
that CAMELL (with label validation) is capable
of producing high-quality datasets with a frac-
tion of the human annotation required, through
online label correction, thereby highlighting the
importance of the label validation component for
this task.

Finally, it is important to note that while many
presented experiments used ensembles to establish
comparisons, we have also provided a mecha-
nism for confidence estimation and active learning
that does not utilize ensembles and thus is more
environmentally friendly.

We believe that this work has far-reaching im-
plications. Firstly, it underscores the indispensable
role of uncertainty estimation in learning models.
Secondly, the versatility of CAMEL opens up
possibilities for its application across diverse se-
quential multi-output labeling problems, such as
entity-relation extraction or weather forecasting.
Thirdly, it demonstrates that, in principle, dataset
deficiencies can be addressed via data-driven ap-
proaches, circumventing the need for extensive
manual or rule-based curation. This is particularly
pertinent considering the prevailing belief that un-
desirable outcomes produced by NLP models are
inherently linked to the training datasets and can-
not be rectified algorithmically (Eisenstein, 2019,
14.6.3).

Looking ahead, we anticipate that refining the
process of generating noisy datasets could result
in a model capable of not only identifying label
noise but also filtering out biases, false premises,
and misinformation.
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2018. MultiWOZ - A large-scale multi-domain
wizard-of-oz dataset for task-oriented dia-
logue modeling. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, pages 5016–5026.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/D18
-1547

David A. Cohn, Zoubin Ghahramani, and Michael
I. Jordan. 1996. Active learning with statisti-
cal models. Journal of Artificial Intelligence
Research (JAIR), 4:129–145. https://doi
.org/10.1613/jair.295

David R. Cox. 1958. The Regression Analysis
of Binary Sequences. Journal of the Royal
Statistical Society: Series B (Methodological),
20(2):215–232. https://doi.org/10
.1111/j.2517-6161.1958.tb00292.x

Sanjoy Dasgupta and Daniel Hsu. 2008. Hierarchi-
cal sampling for active learning. In Proceedings
of the 25th International Conference on Ma-
chine Learning, pages 208–215. Association for
Computing Machinery. https://doi.org
/10.1145/1390156.1390183

Shrey Desai and Greg Durrett. 2020. Calibration
of pre-trained transformers. In Proceedings of
the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP),
pages 295–302. https://doi.org/10
.18653/v1/2020.emnlp-main.21

182

https://doi.org/10.1162/neco.1996.8.3.643
https://doi.org/10.1162/neco.1996.8.3.643
https://doi.org/10.1109/CVPR.2018.00976
https://doi.org/10.1109/CVPR.2018.00976
https://doi.org/10.18653/v1/W17-4717
https://doi.org/10.18653/v1/W17-4717
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.1613/jair.295
https://doi.org/10.1613/jair.295
https://doi.org/10.1111/j.2517-6161.1958.tb00292.x
https://doi.org/10.1111/j.2517-6161.1958.tb00292.x
https://doi.org/10.1145/1390156.1390183
https://doi.org/10.1145/1390156.1390183
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/2020.emnlp-main.21


Jacob Eisenstein. 2019. Introduction to Natural
Language Processing. MIT Press.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek
Sethi, Sanchit Agarwal, Shuyang Gao, Adarsh
Kumar, Anuj Goyal, Peter Ku, and Dilek
Hakkani-Tur. 2020. MultiWOZ 2.1: A consoli-
dated multi-domain dialogue dataset with state
corrections and state tracking baselines. In Pro-
ceedings of the 12th Language Resources and
Evaluation Conference, pages 422–428, Mar-
seille, France. European Language Resources
Association.

Yarin Gal. 2016. Uncertainty in Deep Learning.
Ph.D. thesis, University of Cambridge.

Yarin Gal and Zoubin Ghahramani. 2016.
Dropout as a Bayesian approximation: Repre-
senting model uncertainty in deep learning. In
Proceedings of the 33rd International Confer-
ence on International Conference on Machine
Learning, volume 3, pages 1651–1660.

Yarin Gal, Riashat Islam, and Zoubin
Ghahramani. 2017. Deep Bayesian active learn-
ing with image data. In International Confer-
ence on Machine Learning, pages 1183–1192.
PMLR.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q.
Weinberger. 2017. On calibration of modern
neural networks. In Proceedings of the 34th In-
ternational Conference on Machine Learning,
pages 1321–1330.

Ting Han, Ximing Liu, Ryuichi Takanabu, Yixin
Lian, Chongxuan Huang, Dazhen Wan, Wei
Peng, and Minlie Huang. 2021. MultiWOZ 2.3:
A multi-domain task-oriented dialogue dataset
enhanced with annotation corrections and
co-reference annotation. In CCF International
Conference on Natural Language Process-
ing and Chinese Computing, pages 206–218.
Springer. https://doi.org/10.1007
/978-3-030-88483-3_16

Michael Heck, Nurul Lubis, Benjamin Ruppik,
Renato Vukovic, Shutong Feng, Christian
Geishauser, Hsien-chin Lin, Carel van Niekerk,
and Milica Gasic. 2023. ChatGPT for
zero-shot dialogue state tracking: A solu-
tion or an opportunity? In Proceedings of
the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2:
Short Papers), pages 936–950, Toronto,

Canada. Association for Computational Lin-
guistics. https://doi.org/10.18653
/v1/2023.acl-short.81

Michael Heck, Nurul Lubis, Carel van Niekerk,
Shutong Feng, Christian Geishauser,
Hsien-Chin Lin, and Milica Gašić. 2022.
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Pei-Hao Su, Milica Gašic, and Steve Young.
2018. Reward estimation for dialogue policy
optimisation. Computer Speech and Lan-
guage, 51:24–43. https://doi.org/10
.1016/j.csl.2018.02.003

Yixuan Su, Lei Shu, Elman Mansimov, Arshit
Gupta, Deng Cai, Yi-An Lai, and Yi Zhang.
2022. Multi-task pre-training for plug-and-play
task-oriented dialogue system. In Proceed-
ings of the 60th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 4661–4676,
Dublin, Ireland. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/2022.acl-long.319

Sainbayar Sukhbaatar, Joan Bruna, Manohar
Paluri, Lubomir Bourdev, and Rob Fergus.
2015. Training convolutional networks with
noisy labels. In 3rd International Confer-
ence on Learning Representations, ICLR 2015
(Workshop).

Christian Szegedy, Sergey Ioffe, Vincent
Vanhoucke, and Alexander A. Alemi. 2017.
Inception-v4, Inception-ResNet and the im-
pact of residual connections on learning. In
Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, AAAI’17,
pages 4278–4284. AAAI Press. https://
doi.org/10.1609/aaai.v31i1.11231

Christian Szegedy, Vincent Vanhoucke, Sergey
Ioffe, Jon Shlens, and Zbigniew Wojna. 2016.
Rethinking the inception architecture for com-
puter vision. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pages 2818–2826. https://
doi.org/10.1109/CVPR.2016.308

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen,
Naman Goyal, Vishrav Chaudhary, Jiatao Gu,
and Angela Fan. 2020. Multilingual translation
with extensible multilingual pretraining and
finetuning. arXiv preprint arXiv:2008.00401
Version 1.

Blaise Thomson and Steve Young. 2010.
Bayesian update of dialogue state: A POMDP
framework for spoken dialogue systems. Com-
puter Speech and Language, 24(4):562–588.
https://doi.org/10.1016/j.csl.2009
.07.003

Neeraj Vashistha, Kriti Singh, and Ramakant
Shakya. 2022. Active learning for neu-
ral machine translation. arXiv preprint
arXiv:2301.00688 Version 1. https://doi
.org/10.2139/ssrn.4316582

Tong Xiao, Tian Xia, Yi Yang, Chang Huang,
and Xiaogang Wang. 2015. Learning from
massive noisy labeled data for image clas-
sification. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR), pages 2691–2699. https://doi
.org/10.1109/CVPR.2015.7298885

Kaige Xie, Cheng Chang, Liliang Ren, Lu
Chen, and Kai Yu. 2018. Cost-sensitive active
learning for dialogue state tracking. In Pro-
ceedings of the 19th Annual SIGdial Meeting
on Discourse and Dialogue, pages 209–213,
Melbourne, Australia. Association for Compu-
tational Linguistics.https://doi.org/10
.18653/v1/W18-5022

Qizhe Xie, Minh-Thang Luong, Eduard Hovy,
and Quoc V. Le. 2020. Self-training with
noisy student improves imagenet classification.
In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR),
pages 10684–10695. https://doi.org
/10.1109/CVPR42600.2020.01070

Fanghua Ye, Jarana Manotumruksa, and Emine
Yilmaz. 2022. MultiWOZ 2.4: A multi-domain
task-oriented dialogue dataset with essential an-
notation corrections to improve state tracking
evaluation. In Proceedings of the 23rd An-
nual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 351–360,
Edinburgh, UK. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/2022.sigdial-1.34

Steve Young, Milica Gašic, Simon Keizer,
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A BLEU Scores for Translation
Experiments

Figure 8: BLEU score of the T5 translation model using
different active learning approaches on the WMT17
DE-EN test set, as a function of (a) the number of
word-level labels and (b) the number of complete
translations, with 95% conf. int.
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