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User-generated content provides a rich resource to study social and behavioral phenomena.
Although its application potential is currently limited by the paucity of expert labels and the
privacy risks inherent in personal data, synthetic data can help mitigate this bottleneck. In
this work, we introduce an evaluation framework to facilitate research on synthetic language
data generation for user-generated text. We define a set of aspects for assessing data quality,
namely, style preservation, meaning preservation, and divergence, as a proxy for privacy. We
introduce metrics corresponding to each aspect. Moreover, through a set of generation strategies
and representative tasks and baselines across domains, we demonstrate the relation between
the quality aspects of synthetic user generated content, generation strategies, metrics, and
downstream performance. To our knowledge, our work is the first unified evaluation framework
for user-generated text in relation to the specified aspects, offering both intrinsic and extrinsic
evaluation. We envisage it will facilitate developments towards shareable, high-quality synthetic
language data.

1. Introduction

User-generated content (UGC), such as social media posts, is an invaluable resource
for studying natural linguistic and behavioral phenomena. Such data often contain
sensitive information, be it explicit leakages of personally identifiable information (PII)
or implicit signals of protected attributes (e.g., race, gender) and other revealing in-
formation (e.g., physical location) (Humphreys, Gill, and Krishnamurthy 2010; Fire,
Goldschmidt, and Elovici 2013; Bazarova and Choi 2014; Horvitz and Mulligan 2015).
Moreover, despite the abundance of unlabeled data and the availability of distantly
supervised noisy labels, high-quality ground truth annotations remain in short supply,
in large part due to the resources and effort required for expert labeling (Snow et al.
2008; Williamson 2016). This situation is aggravated by online platforms closing off API
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access (Davidson et al. 2023). These circumstances form a bottleneck to sharing research
data and developing effective computational tools. To this end, synthetic language data
generation poses a promising avenue to mitigate data scarcity and privacy concerns.

Consider a scenario where there is a limited amount of high-quality labeled data.
To develop language applications, researchers can try in-context learning with large
language models (LLMs) (Brown et al. 2020); however, it is not yet established that
LLMs can reliably solve specialized tasks (Qin et al. 2023) and domains that have not
been encountered during pre-training (Ziems et al. 2024). LLM-based solutions have
also yet to address challenges such as practical constraints around data sensitivity,
output factuality, and explainability. The paradigm of data augmentation through syn-
thetic data generation in order to develop smaller expert models or fine-tune LLMs
presents an attractive alternative solution. A data-centric evaluation framework can
help researchers focus on developing high-quality data for this purpose, enabling quick
iterations and comparisons between generation strategies without needing to exhaus-
tively train downstream models to assess task performance and privacy risks.

From a privacy perspective, consider a scenario where researchers would like to
use cloud APIs or external computing resources, but are unable to move their data
due to sensitivity, institutional review board protocols, or company requirements; or
where they want to fine-tune open models with sensitive data but where releasing such
a model could result in leakages of memorized private information (Carlini et al. 2021).
One workaround is to locally generate privacy-preserving data that are compliant with
policy requirements and privacy safety. They can develop models and tools leveraging
external resources on synthetic data, then share trained artefacts with collaborators or
incorporate models back into their analysis workflow to label real private data. In this
use case, holistic assessments of data quality are needed to ensure that validation results
on synthetic data reflect performance on real data, for auditing and utility purposes.

Our article makes the following contributions:

• We identify the desiderata of synthetic UGC in terms of different aspects
particularly relevant to downstream tasks, such as meaning and style
preservation, as well as divergence as a proxy for privacy (§3).

• We present the first evaluation framework to assess the quality of
synthetic textual data generated from UGC and other language
interactions that integrates intrinsic evaluation across aspects with
downstream classification and privacy experiments. Within the
framework we incorporate a wide set of generation strategies ranging
from rule-based methods to LLMs, intrinsic evaluation metrics at both
the sample and distribution-level, and a number of extrinsic tasks across
domains (§4).

• We benchmark generation models (§4.1) on the set of representative tasks
in privacy-oriented data substitution and augmentation experiments (§5),
using existing privacy experiments and novel speaker profiling and user
re-identification setups.

• We discuss the utility and privacy implications of data aspects as
measured by the framework (§6). Importantly we investigate the role of
style preservation, an often neglected requirement in synthetic data, and
identify data quality differences within LLM batch-prompted outputs
(§6.1).
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• We provide recommendations based on results from extensive empirical
experiments on representative tasks (§7). These insights are accompanied
by ready-to-use code for metrics and experiments in order to guide
selection of generation and evaluation strategies in different types of
applications.1

Our work highlights the importance of holistically evaluating synthetic texts to in-
form data sharing and modeling decisions, and we believe our framework will foster
progress towards the utility of generated texts and preserving privacy in language data.

2. Related Work

2.1 Synthetic Data Creation and Use in Applications

Much prior work on creating shareable synthetic data comes from the clinical domain.
Theory-based modeling of patient trajectories (Walonoski et al. 2018) and models that
approximate the distribution of real data are used to generate continuous and structured
electronic health records (Buczak, Babin, and Moniz 2010; Choi et al. 2017; Xu et al.
2019a) as well as synthetic unstructured clinical data (Wang et al. 2019; Melamud and
Shivade 2019; Ive et al. 2020).

In natural language processing (NLP), conditionally perturbed and generated data
are used to tackle data sparsity in areas such as grammatical error correction (Foster
and Andersen 2009; Sakaguchi, Post, and Van Durme 2017), dependency parsing (Wang
and Eisner 2016), and question answering (Hermann et al. 2015; Alberti et al. 2019).
Synthetic data also benefit task performance and fairness, particularly in low-resource
scenarios (Xia et al. 2019; Zmigrod et al. 2019; Tan et al. 2020), and have been pro-
posed as an avenue towards privacy-preserving data sharing (Shetty, Schiele, and Fritz
2018; Mattern et al. 2022; Igamberdiev and Habernal 2023). With recent advances, pre-
trained language models are increasingly used to generate data for augmentation, with
methods ranging from prepending labels to examples for class conditioned generation
(Kumar, Choudhary, and Cho 2020) to using prompted synthetic data to develop smaller
classification models (Yoo et al. 2021; Li et al. 2023b; Veselovsky et al. 2023; Møller et al.
2023), smaller language models (Ye et al. 2022; Li et al. 2023a; Eldan and Li 2023), dense
passage retrievers (Dai et al. 2023), and further fine-tuning of the LLM itself (Wang et al.
2022), using seed examples, instruction prompts, and filtering mechanisms.

Current evaluation in this line of work focuses on surface-level divergence and task
performance, without further examination of semantics, style, and their downstream
practical implications. Our work addresses this gap by presenting a multi-faceted
evaluation framework with empirical experiments, focusing on use cases where such
detailed evaluation is especially necessary, e.g., domain-specific datasets with expert
annotations.

2.2 Evaluating Natural Language Data

Natural language data are commonly evaluated when selecting meaningful subsets
to label and model under resource constraints. For example, quality of large-scale
pretraining data is estimated using heuristics (Dodge et al. 2021), classifiers trained on

1 https://github.com/Maria-Liakata-NLP-Group/synthetic-ugc-evaluation.
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reference corpora (Brown et al. 2020), and scores based on probabilities under reference
models such as perplexity (Marion et al. 2023). In other tasks, data are scored for
representativeness (Welling 2009), spurious correlations (Le Bras et al. 2020), difficulty
and ambiguity (Swayamdipta et al. 2020), and segment saliency (Hills et al. 2023). While
the above criteria are applicable to synthetic data, our work focuses on cases where
source corpora are known a priori, and the aim is therefore to assess how well synthetic
data capture properties of the pre-selected natural data. In this setting, synthetic data
evaluation is closely related to wider evaluation challenges in natural language genera-
tion (NLG).

2.3 Evaluating Synthetic Data

Standard measures of synthetic data quality include dimension-wise probability and
dimension-wise prediction, applied to categorical and mixed data types (Choi et al.
2017; Tantipongpipat et al. 2021), and Fréchet distance, originating in computer vision
(Heusel et al. 2017). Alaa et al. (2021) proposed to assess data based on distribution
overlap in terms of fidelity, diversity, and generalization. Although these metrics have
been applied on mixed data types, they do not necessarily translate to synthetic texts.
Dimension-wise metrics are suitable when dimensions are meaningful in isolation (e.g.,
medical codes), but language is challenging to numerically summarize in the same
fashion. Furthermore, dimension and distribution-wise metrics alone neither clearly
reflect aspects on which texts differ (e.g., specific stylistic traits) nor accommodate
desirable divergences (e.g., successfully preserve meaning while stylistically distinct),
posing barriers to effective error analysis (van Miltenburg et al. 2021), refinement, and
mitigation. Our work addresses this need by evaluating multiple textual aspects such
as style preservation and divergence in assessing the quality of synthetic UGC.

2.4 Evaluating Model-generated Language Data

Model-centric Benchmarks. Existing benchmarks evaluate models over NLG tasks (Zhu
et al. 2018; Gehrmann et al. 2021) and tasks that can be completed through the text
interface of LLMs (Liang et al. 2022; Srivastava et al. 2023). Their focus is on compre-
hensively assessing model capabilities across scenarios. By contrast, our evaluation is
data-centric, focusing on the quality and properties of the generated data.

Factuality. Similar to work that study the factuality of model-generated texts relative
to grounding documents (Gabriel et al. 2021; Devaraj et al. 2022; Dziri et al. 2022) and
external knowledge sources (Gupta et al. 2022; Rashkin et al. 2023), we consider original
data to be grounding documents and assess synthetic data on how well they preserve
their semantic and stylistic information; however we additionally focus on privacy
preservation and how they affect downstream performance.

Conversational Agents. Similar to dialogue generation (Liu et al. 2016), synthetic UGC
requires evaluation that accommodates diversity without assuming single fixed ground
truths, and requires assessing how information is delivered using targeted metrics.
Given these requirements, it is inadequate to naïvely use single metrics as an evalua-
tion catch-all (e.g., using perplexity as the sole automatic metric for human-likeness,
sensibility, and specificity (Kulshreshtha et al. 2020), applying suites of metrics without
defining what they intend to capture (e.g., Hori and Hori 2017), or skipping intrinsic
evaluation completely (e.g., He et al. 2022). We complement prior work that underscore
the importance of dimensional evaluation (See et al. 2019; Kasai et al. 2022; Finch,
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Finch, and Choi 2023) sensitive to task-specific nuances (Sai et al. 2021), by introducing
an extensible multi-aspect framework for pairwise and distribution-wise generation
settings in response to evaluation needs in synthetic UGC.

Privacy-oriented NLP. Our work is closely related to author profiling (i.e., inferring demo-
graphic traits), authorship attribution (i.e., linking documents to authors), and privacy-
preserving rewriting (i.e., sabotaging an adversary’s success on the above tasks). In
privacy-preserving rewriting, much prior work has been dedicated to techniques that
only work on datasets with unique author identifiers and/or labels of sensitive at-
tributes (e.g., age, gender, race). The personal identifiers or attributes are used to remove
authorship cues, by transforming texts closer to an alternate author or demographic
group (Shetty, Schiele, and Fritz 2018; Mahmood et al. 2019; Xu et al. 2019b) or to
a pooled average within the author’s demographic group (Karadzhov et al. 2017;
Mireshghallah and Berg-Kirkpatrick 2021). To quantify privacy preservation in these
tasks, researchers commonly use (reductions in) an adversary classifier’s ability to
predict user attributes (Shetty, Schiele, and Fritz 2018) and text authorship. Authorship
obfuscation work tends to be assessed in closed-world settings, for example, on news
articles and essays written by fewer than 15 authors (Altakrori, Cheung, and Fung 2021;
Altakrori et al. 2022) and in larger cross-genre document-level datasets (Stamatatos et al.
2015).

This article extends this line of work. First, we use rewriting methods that operate
without user identifiers and demographic labels (§4.1), since such information is not
always available in datasets, and profiling users to obtain silver-standard demographic
labels for rewriting may cascade biases. Second, we expand evaluation to shorter,
noisier UGC (i.e., social media, transcripts) (§5), measure user demographic profiling
risks in a state-of-the-art setting (§5.2), and examine re-identification in a real-world
setting, considering a longitudinal dataset and identification against 37.9k users (§5.3).

2.5 Biases and Synthetic Data

In NLP, bias is a widely studied yet inconsistently defined concept (Blodgett et al. 2020)
referring to skews in data distributions that compromise representativeness and lead to
allocational and representational harms (Barocas et al. 2017; Olteanu et al. 2019). Biases
are embedded in data as reflections of norms and perspectives. When used for training,
they become encoded in downstream models and systems (Bolukbasi et al. 2016; Shah,
Schwartz, and Hovy 2020; Sheng et al. 2021). They also naturally emerge from sampling,
annotation, representation, modeling, and design decisions (Hovy and Prabhumoye
2021), for example, when annotators’ subjective perceptions propagate downstream to
bias model predictions (Sap et al. 2019; Thorn Jakobsen et al. 2022; Mohamed et al. 2022).

Synthetic data may perpetuate, amplify, and introduce biases. This can happen
when the generation model (1) is influenced by learned associations (Yu et al. 2023) and
(2) faithfully reproduces biases in the input UGC (Wullach, Adler, and Minkov 2021).
From an error disparity angle, bias may be introduced when (3) synthetic data subsets
are generated with uneven quality (e.g., with respect to label validity, well-formedness).
Consider a scenario involving English-only and code-switched texts (CS; e.g., Hsu et al.
2023): poorly synthesized CS data can lead to downstream tools performing poorly
on real CS texts, adversely and disproportionately impacting users in the linguistic
minority. Error disparity also emerges from (4) low diversity, for example, when tail
classes are neglected in recursive generations, resulting in degenerated texts from model
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collapse (Shumailov et al. 2023) or biased data that are of limited practical utility as they
only retain information for the majority group (Wyllie, Shumailov, and Papernot 2024).

Such bias perpetuation and amplification risks are increasingly pertinent due to
the growing adoption of systems that train models on their own synthetic data (Wang
et al. 2022) and outputs from larger models (Lukasik et al. 2022; Li et al. 2023a). At the
same time, synthetic data can be used to tackle biases, for instance, through targeted
augmentation addressing known class (Zhao et al. 2017; Dinan et al. 2020; Qian et al.
2022) and attribute imbalances (Yu et al. 2023). Through facilitating multi-aspect evalu-
ation of synthetic texts, our framework can aid high quality targeted generation, thereby
contributing to bias reduction.

2.6 Capturing Subjective Experiences in UGC

Large quantities of synthetic data can be produced in the general domain with minimal
guidance, relying on parametric knowledge, seed examples, and templates (Wang et al.
2022; Dai et al. 2023; Yu et al. 2023; Xu et al. 2024). However, we cannot directly assume
that models can capture intricate social and behavioral phenomena when generating
from UGC. For one, tasks modeling UGC often involve capturing subjective experiences
and community-specific knowledge, but models fail to reflect human diversity, over-
representing perspectives of a small subset of demographics (Santurkar et al. 2023;
Durmus et al. 2023). While it is possible to steer generations towards different view-
points, for example, via conditioning on personas (Zhang et al. 2018; Park et al. 2022)
and behavioral descriptions (Jiang et al. 2023), such simulations can contain caricatures
and misportrayals (Cheng, Piccardi, and Yang 2023; Cheng, Durmus, and Jurafsky
2023; Wang, Morgenstern, and Dickerson 2024). Moreover, prior benchmarking in the
computational social sciences found that, for classification, models can perform well
when there are objective ground truths, clearly defined colloquial labels, and short
document lengths (e.g., tweet-level emotion prediction); however, they struggle with
subjective expert taxonomies (e.g., empathy), large label spaces (e.g., character tropes),
and complex structures (e.g., conversation-level persuasion) (Ziems et al. 2024). To
overcome these challenges in a generative setting would pose extra complexities.

We argue that synthetic UGC should be generated with content and stylistic con-
straints to better reflect identities and experiences expressed in the original data. Thus,
we identify meaning and style preservation as desiderata in our framework (§3) and
study their role in representative downstream tasks (§5).

3. Desiderata for Synthetic Textual UGC

There are core aspects of data quality expected in synthetic texts. For example, they can
be useful in providing data augmentation (Chen et al. 2023) to improve downstream
performance. Moreover there are aspects of synthetic data quality that are independent
of the data generation strategy used to obtain them. To this end, we identify core aspects
of intrinsic data quality below and implement these metrics in our framework.

3.1 Meaning Preservation

Generated texts are commonly evaluated on meaning preservation (Xu et al. 2019b;
Adelani et al. 2021). The assumption is that, in labeled datasets, outputs that preserve
the original meaning will retain label validity and therefore be useful examples to
train models in downstream tasks. Such works focus on 1-to-1 text rewriting and
utilize sample-level metrics (e.g., BLEU [Papineni et al. 2002], METEOR [Banerjee and
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Lavie 2005]). In practice, synthetic data generation broadly involves sampling from a
distribution learned from the source data. When there is no direct mapping between
original and synthetic examples, meaning preservation would need to be measured
via distribution-level metrics, for example the Fréchet distance between the embedded
original and synthetic texts. In this article, we report BERTScore (Zhang et al. 2020)
and assess distribution-level meaning preservation with Fréchet distance computed via
BERT embeddings (Xiang et al. 2021).

3.2 Style Preservation

Synthetic UGC generation is driven by downstream tasks that make it necessary to
afford control over stylistic elements. Such tasks include preserving linguistic diversity
within datasets (Blodgett, Green, and O’Connor 2016), generation from transcribed
speech while preserving linguistic markers of mental health status or psychiatric con-
ditions (e.g., disfluencies; Howes et al. 2017), and generation from interaction data
(Wang and Jurgens 2018) as well as generation for conversational agents (Fitzpatrick,
Darcy, and Vierhile 2017), where stylistic synchrony reflects empathy and inter-speaker
understanding (Ireland and Pennebaker 2010; Lord et al. 2015).

Style is multidimensional (DiMarco and Hirst 1993) and influenced by extralinguis-
tic factors, including communicative goals, topics, and demographics (Nguyen et al.
2016). However, it is common in NLG to consider it as isolated high-level variables
entangled with semantics, such as sentiment (Hu et al. 2017) and politeness (Niu and
Bansal 2018). Closely related are research in machine translation that model speaker
(Michel and Neubig 2018) and translator (Wang, Hoang, and Federico 2021), and closed-
set author style transfer (Xu et al. 2012). Evaluation in this line of work use attribute
classifiers, which capture style on singular dimensions, and personalized models and
corpus-level features for each author, which can be ill-suited in practice as they assume
user identity is known a priori and require sufficient per-user data. In our work, we
circumvent these restrictions, drawing on the idea that high-level styles are composi-
tions of granular stylistic elements (Lyu et al. 2021). We assess overall idiolect with style
embedding similarity and target syntactic style with part-of-speech (POS) based scores.

3.3 Divergence

We define divergence and diversity, two related but distinct concepts. Divergence in
our work refers to the dissimilarity between source and synthetic texts. Diversity refers
to the dissimilarity between outputs produced based on the same input.

Divergence is essential to synthetic data. From a utility angle, synthetic data should
be different from their source to promote generalization, but not to the extent of compro-
mizing label validity. In contrast to general NLG, where information precision is a key
objective (Reiter and Dale 1997) and outputs tend to be penalized if they contain infor-
mation absent from underlying grounding information, namely, hallucination (Maynez
et al. 2020; Ji et al. 2022), in synthetic data, the introduction of new information can
be benign and even beneficial so long as it does not contradict the original grounding
text. From a privacy angle (§3.4), divergent data are less likely to contain direct regur-
gitation of sensitive information from source data, and less susceptible to linkages due
to containing fewer stylistic and semantic cues of individual identities (§6.2.2). Further
privacy benefits emerge when a generation strategy can produce divergent data in a
diverse manner.
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While the exact effects are dataset- and application-dependent, intuitively, the
ability to generate diverse, divergent texts enables us to reduce the distinctiveness of
data points as necessary, thus offering an additional layer of protection when sensitive
information is leaked or deliberately recovered, for example in singling-out attacks
(Cohen and Nissim 2020) where an adversary can exactly match a real record from the
output of a data-release mechanism at a success rate above a statistical baseline, or in ex-
traction (Carlini et al. 2021), gradient inversion (Balunović et al. 2022), and membership
inference (Mattern et al. 2023) attacks on models training/trained on sensitive data.

As the type and extent to which divergence is favorable are application specific, we
focus on assessing the preservation of information, and consider divergence in terms of
surface-form dissimilarity as a proxy to both data diversity and privacy preservation.

3.4 Privacy

Personal information can be exposed in UGC datasets via explicit disclosure
(Keküllüoğlu, Magdy, and Vaniea 2020) and become memorized by models (Carlini
et al. 2021), resulting in privacy infringement at the level of individuals. Moreover,
user group memberships such as age and occupation can be revealed via linguistic cues
(Rosenthal and McKeown 2011; Preoţiuc-Pietro, Lampos, and Aletras 2015), compro-
mising not only the individual but also groups (Bloustein 1978)—for example, when
users are targeted by virtue of their inferred similarity to other user profiles (Floridi
2017). These risks have amplified with technological advancements. Notably, generalist
LLMs were found to be capable of accurately inferring varied demographic attributes
from social media posts and user-chat interactions without fine-tuning on this task
(Staab et al. 2024).

Despite there being well-established privacy frameworks on structured data (e.g.,
k-anonymity; Sweeney 2002), they do not translate well to unstructured data (Lison et al.
2021; van Breugel and van der Schaar 2023). As such, researchers focus on measuring
success in proxy tasks, including removing explicit identifiers (Aura, Kuhn, and Roe
2006), stylometrically obfuscating author identity (Juola 2006), and obfuscating user
demography through techniques like lexical substitutions (Reddy and Knight 2016) and
back-translation (Xu et al. 2019b). Continuing this line of work and complementing pri-
vacy enhancing technologies that remove direct identifiers (e.g., PII spans), we examine
individual privacy via reduction in user re-identification accuracy, and group privacy
via reduction in author profiling accuracy. Compared to PII removal, both are harder
to detect and constitute a major privacy challenge for textual data. We use reduction in
text overlap (divergence) as an intrinsic proxy for privacy preservation.

Meaning and style preservation exist in tension with divergence and privacy risks.
What constitutes acceptable aspect trade-offs depends on application requirements,
and an evaluation framework encompassing these aspects can facilitate the selection
of appropriate data generation strategies.

4. Evaluation Framework

In this section, we present our synthetic data evaluation framework and its imple-
mentation (Figure 1). Our premise is that synthetic language data are generated for
use in a task where it is important to preserve different aspects such as style, privacy,
and original meaning. Our framework assumes that different strategies can be used to
generate the synthetic language data and provides both intrinsic and extrinsic means
to evaluate the quality of the synthetic data according to style, meaning preservation,
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Figure 1
Our evaluation framework in action. We generate synthetic data using different strategies.
Intrinsic evaluation is obtained through selected metrics while extrinsic evaluation is performed
on downstream tasks. Apart from comparing the performance of classifiers on synthetic vs real
data, we run privacy classifiers: attribute classifiers or user matching methods to assess
reduction in profiling/re-identification risks.

and divergence as a proxy to privacy. Metrics are provided to intrinsically assess the
aspects in the synthetic language data generated. Extrinsically, the data are assessed on
downstream task performance and on the degree of author identity and attribute ob-
fuscation. These steps, metrics, and results can aid individuals in selecting appropriate
data generation and sharing strategies in various downstream applications.

In the rest of this section, we describe the implementation of our framework, which
is extensible to future developments in generation methodologies and metrics. We in-
troduce baseline methods for each generation strategy (§4.1) and intrinsic metrics (§4.2).
This ties into the next section (§5), where we describe in detail representative resources
and tasks from which we create synthetic language data, which provide realistic test
beds for our generation and evaluation strategies.

4.1 Data Generation Strategies

We use strategies that cover different levels of style and privacy preservation, which
allows us to examine effects of individual desiderata (§3) and their trade-offs. Explored
generation strategies are summarized in Table 1. We do not explicitly control for mean-
ing; all methods (apart from the text editing method StyMask) were trained on pairwise
paraphrases, trained to reconstruct input from corrupted representations, or prompted
to rewrite the grounding text, thus implicitly optimizing meaning preservation.

We select methods based on their broad applicability, so they can be applied in zero-
shot settings (i.e., without pre-existing per-user corpora), do not require demographic
labels, and are deployable on consumer hardware to allow local generation from po-
tentially sensitive data on academic budgets. We focus on rewriting and editing based
approaches to facilitate privacy experiments that compare predicted user demographic
labels/user identifiers with gold standard ones, and therefore require strong alignment
between original texts and their synthetic counterparts.
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Table 1
Data generation strategies benchmarked in our experiments.

Strategy Shorthand Generation Method Base architecture Privacy? Varying style
explicitly?

Varying STRAP Diverse paraphrasing GPT-2 No No (implicit)
Style (Krishna, Wieting, and Iyyer 2020)

DE/CN Back-Translation mBART No No (implicit)
(Tang et al. 2021)

Syn Syntactically guided paraphrase BART + retrieval No Yes (syntax)
(Sun, Ma, and Peng 2021)

Privacy-oriented StyMask Rule-based editing — Yes No (automatic)
Rewriting (Karadzhov et al. 2017)

DP-BART Differential Privacy: DP-BART BART Yes No
(Igamberdiev and Habernal 2023)

LLM LLaMA LLM with instruction prompting LLaMA-2 No No (automatic)
Paraphrasing (Touvron et al. 2023)

Varying Style. Our framework aims to measure style preservation. To this effect we
utilize different generation strategies for varying style and measure their effect within
the framework. First, we examine the effects of implicitly removing stylistic attributes.
Diverse paraphrasing and back-translation were found to remove stylistic properties
from text (Rabinovich et al. 2017; Krishna, Wieting, and Iyyer 2020). Based on these
findings, we use STRAP, a paraphraser designed to strip stylistic attributes in Krishna,
Wieting, and Iyyer’s (2020) style transfer pipeline, to obtain data with low style preser-
vation. For back-translation, we use multilingual BART (Tang et al. 2021) and select
German (DE) and Chinese (CN) as pivots, following Adelani et al.’s (2021) findings that
DE preserves more semantics and CN balances between grammaticality and reduction
of profiling risks.

We then examine the effects of explicitly manipulating syntactic style using syntac-
tically guided paraphrasing. We apply the system developed by Sun, Ma, and Peng
(2021), which combines (1) a retrieval step sampling plausible syntactic paraphrases
with (2) an encoder-decoder that takes parse templates and source sentences as input
for syntactically controlled rewriting. We compare using candidates with the lowest
constituency tree edit distance to the original texts (SynSim) against those with the
highest distance to the original (SynDiff) among sampled parses. To inspect the impact
of style consistency over time in temporally sensitive tasks, we additionally compare
using original parses (SynOrig) against using transformed parses that differ in voice
(active/passive) and preposition phrase position (front/back), using heuristics devel-
oped for rule-based style transfer in Lyu et al. (2021) (SynTr).

Privacy-oriented Rewriting. We experiment with generation strategies specifically de-
signed to preserve privacy that reduce identifying qualities from text. First, we apply
style masking (StyMask), which reduces the distinctiveness of individual documents
by editing them towards the corpus-wide stylometric average, chaining rule-based
operations such as sentence splitting, lexical substitution, and phrase paraphrasing
(Karadzhov et al. 2017). This is flexible as it does not assume pre-existing per-user demo-
graphic labels or large personalized corpora, and was the best performing approach in
the PAN authorship obfuscation shared task (Potthast, Hagen, and Stein 2016), although
it does not provide a mathematical privacy guarantee.

To this end, we implement DP-BART, an encoder-decoder method that achieves
state-of-the-art results on text rewriting under local differential privacy (Igamberdiev
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Table 2
Aspects covered by our evaluation framework for synthetic UGC.

Evaluation Aspect
Metric

Sample-level Distribution-level
Intrinsic Meaning Preservation BERTScore Fréchet distance

Style Preservation POS score POS JSD
Style embeddings similarity Fréchet distance

Divergence Self-BLEU Character JSD
Extrinsic Utility ∆ downstream task

performance
Privacy ∆ user identity/attribute

classifier performance

and Habernal 2023). The system removes attributes that distinguish a text written by
an individual from other data points by encoding it and dimension-wise clipping its
representation, adding noise proportional to a parameter ε, then decoding in a standard
autoregressive fashion. In particular, we use DP-BART-PR, a variant that involves an
additional iterative pruning and training step to reduce the size of the encoder repre-
sentation, thereby reducing the amount of noise needed under the same privacy budget.
This allows us to generate semantic preserving texts under privacy guarantees.2

LLM Paraphrasing. We select the 13B instruction-tuned version of LLaMA-2 (Touvron
et al. 2023) as an open-access LLM baseline to generate texts with the prompt “Write
stylistically diverse paraphrases.” By default, the model produces multiple paraphrases
for the same input. Similar to batch prompting in classification (Cheng, Kasai, and
Yu 2023), this enables time and compute cost savings, but to date it remains unclear
whether texts generated in this fashion quantifiably vary within their batch and if so
how they affect downstream performance. Based on preliminary observations and the
intuition that autoregressive LLMs instructed to write diverse texts should produce
increasingly divergent outputs, as a starting point, we always select the first and second
output per batch, denoting them as LLaMA-first and LLaMA-second, respectively.

4.2 Intrinsic Evaluation

We introduce metrics to assess the intrinsic quality of synthetic data in terms of func-
tional aspects (see Table 2). These metrics are selected on the basis of prior work and
results from pilot studies, in terms of their discriminative ability in automatic evalua-
tions and also correlation with human annotator judgments (Appendix A.2). Another
decisive factor has been deployability within secure compute environments without
the need to send gold data to third-party services. We anticipate that, as the field
progresses, more or improved metrics can be added to measure the aspects outlined
in our framework.

2 Due to the complexity of dynamic DP-composition in multi-length multi-document settings, when
generating from arbitrarily long document sequences by the same person (e.g., TalkLife in Section 5.3),
we treat each text as an individual data point. In doing so, less noise is added than what is formally
required to satisfy (ε, δ)-DP. When presenting results, we denote data generated this way as DP-BART∗.
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In rewriting setups where each synthetic text can be clearly mapped to its source,
sample-level metrics are recommended for their interpretability and opportunity for
error analysis (van Miltenburg et al. 2021). Otherwise, distribution-level metrics are
suitable. We include both types of metrics within our framework.

Meaning Preservation. We select BERT-Score (Zhang et al. 2020), an embedding-based
metric that matches token representations from source and synthetic texts using their
cosine similarities. To accommodate cases where there is no clear mapping between
synthetic texts and individual source instances, we compute BERT Fréchet distance
(Xiang et al. 2021) by obtaining text embeddings from original and synthetic texts,
fitting them as multivariate Gaussians, then computing the Fréchet distance between
the distributions. Although we use BERT here for comparison with prior work, these
approaches are extensible to other vectorized semantic representations (e.g., Gao, Yao,
and Chen 2021; Su et al. 2023).

Style Preservation. To measure style preservation we select idiolect (i.e., personal linguis-
tic style) embeddings, which involves encoding texts using pooled representations from
a RoBERTa model (Liu et al. 2019) trained with contrastive loss on Reddit posts with
same/different authors (Zhu and Jurgens 2021). Zhu and Jurgens 2021 found that these
embeddings capture lexicosyntactic and orthographic characteristics on short texts,
such as punctuation and contraction. At a sample-level, we take the cosine similarity be-
tween source and synthetic embeddings. At a distribution-level, we measure the Fréchet
distance between the original and synthetic idiolect embedding distributions. As with
meaning preservation, these approaches can be used with different embeddings, for
example, authorship representations (Rivera-Soto et al. 2021) and instruction fine-tuned
embeddings (Su et al. 2023).

As linguistic style is multifaceted, we additionally assess syntactic style via POS
trigrams. At a sample-level, we follow prior work in story generation (Roemmele,
Gordon, and Swanson 2017) and compute the Jaccard distance between POS trigrams
of the original and synthetic texts. At a distribution level, we construct a POS trigram
distribution from synthetic data, then measure its Jensen-Shannon divergence (JSD)
against the POS trigram distribution constructed from the original data.

Divergence. While the n-gram precision based metric BLEU (Papineni et al. 2002) has
well-studied shortcomings as a generation quality metric (Reiter 2018; Freitag et al.
2022), it is suitable for our task of measuring divergence in terms of surface-form dis-
similarity. We focus on surface-form since it is more sensitive to verbatim memorization
(i.e., useful as a proxy for privacy), and meaning and style divergence can be estimated
using the complement of their respective metrics. We follow Niu et al. (2021) and take
the BLEU score between a source and synthetic text, measuring divergence per data
point as 1− BLEU(s, t). At a distribution level, we compute the JSD between character
trigram distributions constructed from the original and synthetic data. In this way,
our metric selection incorporates both embedding (meaning/style) and surface-form
(divergence) similarities, which is helpful for distinguishing between undesirable over-
copying versus successfully preserving meaning/style using varied surface forms.

5. Extrinsic Evaluation: Empirical Experiments on Representative Tasks

Once we use the selected generation strategies (§4.1) to obtain synthetic train and val-
idation sets from source corpora, we evaluate them intrinsically via automatic metrics
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Table 3
Representative tasks and datasets in our classification experiments.
Task Type Task (Dataset) Dataset Size Mean # Tokens Labels Metrics
Post Sentiment (Twitter) 108,000 tweets 18.15 ± 10.8 Pos, Neg F1

(Blodgett, Green, and O’Connor 2016)
Sentiment (Yelp) 13,391 reviews 7.38 ± 1.9
(Reddy and Knight 2016)

Dialogue Dialogue Act (SwDA) 274,786 utts / 13.69 ± 11.5 (42 classes) SegWER,
(Jurafsky et al. 1997) 1,434 dialogues JointWER

Timeline Moments of Change (TalkLife) 18,702 posts / 32.43 ± 68.7 O, IE, IS Coverage
(Tsakalidis et al. 2022) 500 timelines

(§4.2) and extrinsically on the basis of representative tasks operating on UGC, shown
in Table 3. While our framework itself is task-agnostic, the point of the representative
tasks is to serve as exemplars of future applications. We have selected tasks that make
use of UGC and cover a variety of classification settings and domains.

We explore a privacy-oriented and an augmentation-oriented setting (Figure 2):

• Privacy: We train and validate models on synthetic data, generating one
instance per original example, creating a synthetic dataset that has the
same size as its source for each generation method. We test the
performance of models trained on synthetic data on real test sets.
Additionally, we examine reduction in author profiling/re-identification.

• Augmentation: We augment original data with synthetic data, generating
one example per original data point. In addition to directly using the
original training set (100%), we experiment with under-sampling to
simulate data-scarce scenarios, using 50% and 10% of the available
original data. We test models trained on synthetic data on real test sets.
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Figure 2
In the privacy-oriented setup (left), we substitute the original data with synthetic data for
training and validation. In the augmentation setup (right), we undersample the original data (to
10% or 50% of the original size) or leave them unchanged (100%), generate synthetic data from
them, then use the generated data for augmentation. Both setups are assessed on unseen, real
test data.
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Here, we introduce representative tasks, task metrics, corresponding baselines, and
the methods used to measure reduction in author profiling and re-identification risks.
For the data augmentation setting, the benefits stemming from the synthetic data are
measured on the basis of metrics for downstream classification tasks. This combination
of representative tasks, metrics, and baselines sets the foundation for our investigation
into the relationship between intrinsic and extrinsic aspects of synthetic data quality
in the next section. Tasks are chosen so as to represent different levels of complexity
in terms of interaction and temporality, reflecting real-world tasks with UGC data. In
particular, we consider the three main categories of post-level tasks, dialogue-based
tasks, and timeline-based tasks.

5.1 Post-level Task

Our representative post-level task is sentiment classification, on tweets (DIAL; Blodgett,
Green, and O’Connor 2016) and Yelp reviews (Reddy and Knight 2016).

5.1.1 Assessing Utility. A synthetic dataset is considered to have high utility if its down-
stream model achieves good classification performance on its real test set. We train
sentiment classifiers on synthetic tweets generated from DIAL, then assess performance
via F1. We follow the same process on Yelp. Specifically, we select DistilBERT (Sanh
et al. 2019) for fine-tuning due to its computational efficiency. Implementation details
are provided in Appendix A.6.

We find that meaning and style preservation are beneficial when substituting origi-
nal data with synthetic ones (§6.2.2), but given the relatively low difficulty of sentiment
classification of short texts for modern pretrained language models the augmentation
benefits are less clear (§6.3).

5.1.2 Assessing Privacy Preservation. As introduced in Section 3.4, privacy risks in textual
data emerge not only from PII and other disclosures of sensitive information, but also
stem from (inferred) traits (i.e., infringement of group privacy; Bloustein 1978; Floridi
2017), subjecting individuals to algorithmic profiling (Büchi et al. 2020).

Here, we examine whether substituting original data with synthetic texts can safe-
guard group privacy by reducing the linguistic characteristics indicative of the user’s
demographic group membership. DIAL comprises tweets annotated for author race
based on dialect, whereas Yelp contains reviews with gender labels. Following prior
work, we separately train a classifier to predict the demographic attribute of users (Xu
et al. 2019b; Gröndahl and Asokan 2020; Adelani et al. 2021; Mireshghallah and Berg-
Kirkpatrick 2021), using DistilBERT (see details in Appendix A.6). The less successful
the author profiling classifier is at inferring demographic traits of the users, the more
privacy-preserving the synthetic data. We measure reduction in profiling accuracy.

We observe that diverse syntactic paraphrases, rewriting with differential privacy,
and diversely instruction-prompted rewriting are particularly effective at removing
demographic characteristics (§6.2.2).

5.2 Conversation-level Task

Our representative conversation modeling task is dialogue act recognition. We use
SwDA (Jurafsky et al. 1997), a dataset of transcribed spontaneous conversations based
on the Switchboard corpus (Godfrey, Holliman, and McDaniel 1992). The task is to
predict where dialogue acts begin and end (i.e., segmentation) and correctly label the
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type of each segment (i.e., dialogue act recognition). This task is particularly challenging
due to its tagset size (42 labels), class imbalance, and its sequential and contextual nature
where an identical utterance can belong to a different class depending on its context.

5.2.1 Assessing Utility. We generate transcripts and assess dialogue segmentation and
dialogue act recognition performance over a condensed tagset of 42 acts, following
prior work (Quarteroni, Ivanov, and Riccardi 2011; Liu et al. 2017). We fine-tune XLNet
(Yang et al. 2019), a transformer architecture that splits long sequences into windows
and propagates contexts between them, which was found to be effective for dialogue
act modeling (Żelasko, Pappagari, and Dehak 2021). We report Segmentation Word
Error Rate (SegWER) and Joint Word Error Rate (JointWER). SegWER is a segmentation-
focused metric agnostic to dialogue act labels. It reflects the proportion of functional seg-
ments that the classifier fails to predict with perfect boundaries. Contrarily, JointWER
is a word count weighted metric that accounts for dialogue act label correctness (Zhao
and Kawahara 2018).

We find that higher style and meaning preservation benefit downstream perfor-
mance in both data substitution (§6.2.2) and augmentation (§6.3) settings.

5.2.2 Assessing Privacy Preservation. Individuals are naturally inclined to self-disclose
in conversation (Dunbar, Marriott, and Duncan 1997), opening up opportunities for
malicious actors to infer speaker information for pinpoint attacks and user profiling.
Whereas privacy experiments at the level of isolated social media posts (§5.1) are well-
studied and allow comparisons with prior work using established datasets and models,
currently there is a lack of comparable benchmark for privacy in transcribed conversa-
tions. Prior work investigated privacy leakages in conversation by re-purposing crowd-
sourced persona-grounded dialogue (Xu et al. 2020) and by using chatbots to simulate
exchanges between a user and an active personal information-coaxing adversary (Staab
et al. 2024); however, crowd-source workers assuming assigned persona and chatbot
simulations are not representative of natural, noisy interactions between humans, and
neither examines mitigation strategies beyond explicit PII removal. We extend this
investigation to conversations between human interlocutors.

Inferred Attributes. To this end, we take the speaker metadata in SwDA as gold standard
demographic attribute labels and assess user profiling accuracy. We infer (1) gender
and (2) education-level, both of which are attributes that have been studied in prior au-
thorship analysis and NLP privacy work (Pennebaker and King 1999; Schler et al. 2006;
Reddy and Knight 2016; Staab et al. 2024). We note that the SwDA metadata collected
speakers’ biological sex rather than gender identity and acknowledge the limitations
of conflating these categories. Additional metadata include dialect area and birth year,
which we exclude due to the impracticality of inferring dialect from transcripts, and to
avoid potential confounding arising from the temporal gap between the corpus’s year
of release and the present.

Method. Whereas previously user profiling relied on expert classifiers trained to predict a
single demographic attribute (Xu et al. 2019b), recent advancements and proliferation of
LLMs have enabled effective profiling over a wide range of attributes from unstructured
data without training on this task (Staab et al. 2024), representing a new paradigm of
possible privacy attacks on user language data. We thus follow and extend Staab et al.’s
(2024) approach to natural transcribed conversations between individuals.
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First, we use stratified sampling based on gold speaker education levels in the
corpus: less than high school, less than college, college, and more than college. For each
category, we sample without repetition n conversations, where at least one speaker has
the specified education level. We use n of 13 as it is the size of the least frequent category
(less than high school). Then, we use a modified version of Staab et al.’s (2024) author
profiling prompt template (see Appendix A.5), applying it on MIXTRAL-8×7B (Jiang
et al. 2024) to infer education levels of both speakers based on their speech transcripts.
We chose the model as it is open-access, instruction-tuned, and can handle context
lengths of up to 32k tokens, crucial to modeling long conversations.

We compare the average speaker attribute success rates on gender and on
education-level between original and synthetic transcripts. As an additional strict eval-
uation setting, we look at dialogue-level attack success rate: how often a single privacy
infringing prompt can correctly infer the gender and education level of both speakers
from a transcript. We use a single instruction prompt to perform zero-shot multi-label
multi-speaker inference without further prompt engineering to estimate a lower bound
on the inference accuracy, reflecting a setting where bad actors aim to infringe on group
privacy at scale rather than performing pinpoint attacks.

We find that even on noisy transcripts LLMs are able to infer speaker attributes a
magnitude above chance level, but synthetic data offer a viable mitigation (§6.2.2).

5.3 Timeline-level Task

Modeling document sequences with a temporal dimension is important to applications
that involve capturing changes in states, such as identifying moments of change (MoC)
in user mood (Tsakalidis et al. 2022), clinical document classification (Ng, Santos, and
Rei 2023), and real-time rumor detection (Kochkina et al. 2023).

We select MoC identification as our representative task. Tsakalidis et al.’s (2022)
dataset comprises posts from the mental health peer support platform TalkLife.3 The
task requires predicting regions of mood changes on the basis of self-disclosure in a
chronological sequence of posts between two dates (i.e., timeline) by the same author,
classifying each as being in escalation (IE), in switch (IS), or no change (O). While IE and
IS both denote changes, IE is a gradual progression and IS is a drastic shift. Contrasting
post-level tasks (§5.1) that model texts in isolation and similar to conversation-level
tasks (§5.2), timeline modeling is challenging in its sequentiality. Moreover, whereas
dialogue act recognition requires modeling neighboring utterances for context, this task
requires considering the whole user timeline to assess the individual’s baseline mood
in order to identify the presence, type, and boundaries of changes.

5.3.1 Assessing Utility. As the focus of this work is on evaluating the quality of generated
text, we do not use metadata (e.g., timestamps) in our experiments and only generate
synthetic data from the textual content of each post. For downstream modeling, we use
the best performing approach in Tsakalidis et al. (2022), first training a post-level BERT
with focal loss then feeding embeddings from the post-level model as input to a bi-
LSTM. We perform 5-fold cross validation and report timeline-level coverage precision
and recall, which are metrics adapted from image segmentation (Arbeláez et al. 2011)
that evaluate systems’ ability to capture entire regions of interest using the overlap
between true and predicted sequences.

3 https://www.talklife.com/.
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Figure 3
We assess preservation of individual privacy in our timeline-level task by examining whether
synthetic data can be maliciously linked to their original user.

We find that overall meaning and style preservation contribute to better down-
stream classification in both the data substitution (§6.2.2) and augmentation (§6.3)
settings, with stylistic consistency generally benefiting recall, and stylistic similarity
benefiting performance in data substitution but less so in data augmentation.

5.3.2 Assessing Privacy Preservation. Timelines pose unique privacy challenges given
that each user is associated with large quantities of posts rich in sensitive information.
Moreover, online platforms are dynamic; after a snapshot of the data is shared with
researchers, users will continue to generate new posts. In other words, a realistic assess-
ment of user re-identification risks needs to account for malicious actors using data not
only from the subset of data from which synthetic data were generated, but also users’
digital traces left before and after the subset of data used for synthetic data generation.

Method. In post-level (§5.1) and conversation-level (§5.2) tasks, we assessed group pri-
vacy via reduction in author profiling, using gold standard demographic labels. Since
such labels are not available here, we instead assess individual privacy via reduction in
authorship attribution (see Figure 3). The original dataset comprises 500 timelines (17.8k
annotated posts). Our task is to attribute synthetic timelines to their original users while
matching each synthetic post against the full posting histories of 37.9k users.4

Assuming a scenario where a malicious actor aims to reveal the identities of as
many users as possible under time and/or compute constraints, methods that require
pairwise comparisons over all document combinations are ill-suited given the size of
online communities.5 An efficient alternative is to estimate post similarity.

We measure re-identification risks from this angle of attack using the MinHash
algorithm (Broder 1997), a technique that has been applied to data mining and dataset
deduplication at scale (Gao et al. 2021; Rae et al. 2021; Lee et al. 2022). The method
begins with tokenization. Given that prior work found character n-grams to be effective
author attribution features (Peng et al. 2003) that encapsulate morphological and stylis-
tic characteristics (Koppel, Schler, and Argamon 2011; Sapkota et al. 2015), we choose

4 These are individuals who have posted at least 50 times from August 2011 to August 2020 (8.7m posts).
5 In early experiments we tried stylometric user linking (Weerasinghe, Singh, and Greenstadt 2022). We

found it verified authorship well at post-level but did not scale once applied to user histories in our
dataset, hence we focus on approximate matching.
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to use character-level n-grams with a small n (n = 3). We apply a hash function on
each n-gram, then permute the hashes k times, keeping the k minimum hash values
in each set. To efficiently find similar texts, we use locality sensitive hashing, which
divides the array representing each document into smaller bands that are grouped into
clusters of texts estimated to have high n-gram overlaps. For each synthetic timeline, we
attempt to identify the original author by counting the number of generated posts that
are considered near duplicates to the original posts and selecting the author with the
most matches. The re-identification risk of a data generation method is thus measured
by the proportion of correctly matched authors.

Although this setup assumes the adversary has access to the full histories of all
users and therefore does not accurately reflect the restricted access typical in real-world
scenarios, it can offer insights on potential re-identification vulnerabilities in synthetic
longitudinal texts. We find that except data from methods incorporating differential
privacy, data from all generation strategies are susceptible to re-identification (§6.2.2).

6. Results

Through our framework, we now have a quantifiable means to compare data generation
approaches based both on intrinsic aspects and utility in downstream applications.
In this section, we present evaluation results on data generated using the described
generation strategies, tasks, and models. We discuss the interplay of intrinsic (Table 4)
and extrinsic assessments in privacy-oriented (Table 5) and augmentation (Tables 7, 8,
9) settings, which inform our recommendations in Section 7.

6.1 Intrinsic Results

We show examples of synthetic data generated from publicly available datasets in
Appendix A.3. Intrinsic evaluation results are shown in Table 4. We focus on sample-
level metrics since they are more suited to the examined rewriting-based strategies, and
we include results for distribution-level metrics in Appendix A.4.

Table 4
Intrinsic evaluation results for the aspects of meaning preservation (BERTScore), style
preservation (Idiolect embedding similarity, POS score), and divergence (1 - self-BLEU). Higher
is better for all metrics. In bold: top scoring methods for each metric. Underlined: top scoring
method among syntax controlled paraphrase baselines.

Post-level Dialogue-level Timeline-level
Twitter Yelp SwDA TalkLife

Generation strategy BSc Idio POS Div BSc Idio POS Div BSc Idio POS Div BSc Idio POS Div

St
yl

e

STRAP .87 .65 .66 .88 .92 .76 .79 .73 .91 .72 .42 .79 .90 .69 .71 .84
DE .93 .83 .84 .54 .95 .72 .96 .40 .96 .85 .77 .45 .95 .83 .88 .51
CN .89 .69 .74 .75 .92 .53 .84 .73 .89 .61 .21 .76 .92 .68 .78 .75
SynSim .85 .57 .67 .91 .90 .82 .69 .85 .85 .58 .18 .82 .87 .61 .68 .90
SynDiff .85 .57 .67 .91 .91 .80 .68 .87 .85 .57 .14 .80 .87 .60 .67 .90
SynOrig – – – – – – – – – – – – .88 .59 .69 .89
SynTr – – – – – – – – – – – – .88 .58 .69 .89

Pr
iv

ac
y StyMask .85 .58 .67 .18 .93 .91 .97 .14 .94 .86 .62 .16 .97 .86 .94 .22

DP-BART (ε = 50) .80 .50 .48 .98 .82 .39 .46 .97 .80 .41 .06 .98 .81 .50 .52 .98
DP-BART (ε = 100) .81 .53 .51 .98 .83 .42 .51 .96 – – – – – – – –
DP-BART (ε = 250) .84 .66 .62 .93 .87 .56 .68 .88 – – – – – – – –

LL
M LLaMA-first .87 .66 .60 .96 .89 .57 .68 .97 .85 .54 .60 .95 .84 .52 .55 .96

LLaMA-second .84 .63 .57 .97 .88 .57 .63 .98 .85 .53 .58 .96 .83 .52 .55 .96
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Table 5
Task performance of benchmarked generation strategies in the 1-to-1 rewriting setting. Results
are averaged over five runs. Higher is better except for SegWER and JointWER. In bold: top two
best performing models trained on synthetic data; underlined: outperforms best original.

Ta
sk Post-level Dialogue-level Timeline-level

Twitter Yelp SwDA TalkLife

M
et

ri
c

Macro F1 Macro F1 SegWER JointWER
IE IS

Cp Cr Cp Cr
Generation strategy ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑

St
yl

e

STRAP .73 .97 .26 .48 .37 .26 .32 .11
DE .73 .98 .15 .39 .36 .33 .36 .15
CN .74 .97 .35 .54 .35 .26 .35 .18
SynSim .75 .96 .35 .55 .37 .24 .36 .12
SynDiff .75 .97 .38 .60 .33 .34 .29 .08
SynOrig – – – – .34 .28 .28 .12
SynTr – – – – .35 .30 .27 .18

Pr
iv

ac
y StyMask .76 .98 .14 .41 .36 .34 .35 .16

DP-BART (= 50) .72 .86 .72 .91 .20 .04 .18 .01
DP-BART (= 100) .73 .93 – – – – – –
DP-BART (= 250) .76 .96 – – – – – –

LL
M LLaMA-first .71 .96 .51 .69 .31 .30 .25 .09

LLaMA-second .68 .95 .53 .73 .30 .31 .33 .06
Best system trained on original data .77 .98 .12 .36 .35 .34 .33 .19

Roundtrip Translation/Paraphrasing. Back-translating from German (DE) is more
meaning- and style-preserving compared with Chinese (CN), in line with linguistic
similarities between English and the pivot languages. Among the methods prior work
has identified to remove stylistic properties, CN and STRAP do so to greater extents
than DE, as reflected in their lower idiolect and POS scores.

Syntax-guided Paraphrasing. Style metrics indicate that syntactic paraphrases varied per
our expectations: Texts generated with unaltered parses (SynOrig) score higher on POS
scores than those generated from transformed ones (SynTr), and texts generated using
parses syntactically similar to the original text (SynSim) are more syntactically style
preserving than those generated using syntactically distant ones (SynDiff).

Privacy-oriented Rewriting. StyMask produced the most meaning and style preserving
data across domains. This can be explained by the fact that it relies on rule-based local
editing operations, which enables downstream classifiers to perform well across tasks,
but at the expense of higher privacy risks in the examined settings (§6.2.2). Finally, as
expected, the stricter the privacy budget set in DP-BART, the higher the divergence.

LLM. For LLaMA outputs batch-generated by prompting for diverse paraphrasing, we
see that the first in each batch is consistently more meaning- and style-preserving than
the second, supporting our prior speculation that instruction prompting an autoregres-
sive LLM for diversity would produce increasingly divergent paraphrases. We explore
the practical implications of this behavior later in Section 6.2.1.

As a whole, we observe trends consistent with expectations across domains. In-
trinsically, data with high meaning preservation (e.g., DE, see Table 4) also tend to
be style-preserving, and data that score higher on preservation-oriented metrics (e.g.,
StyMask) are lower in surface form divergence. However, as we discuss below, extrinsic
evaluation reveals that each aspect does not uniformly enhance privacy or utility.
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6.2 Extrinsic Results: Privacy-oriented

In Table 5, we summarize the performance of downstream models when substituting
real training data with synthetic ones on a 1-to-1 basis.

The best performing model trained on synthetic data in each task performed comparably to those
trained on original data. In particular, synthetic data showed good performance across the
board in the most straightforward task of post-level binary classification. The synthetic
data that yielded the worst classifiers in terms of F1 were the most privacy-preserving
ones, as will be discussed in the next section. Notably, in binary classification of short
texts, DP-BART reduces author profiling accuracy to almost chance level (Table 6) at
the expense of only <5% in F1 (Table 5). However, performance gaps between classifiers
trained on original vs synthetic data widen in the other domains, which are more chal-
lenging due to multi-document context, number of classes involved, and the nuanced
nature of the tasks.

Naive data generation may amplify biases. When trained on real data, classifiers tend to
under-predict rare classes. Taking longitudinal mood prediction as an example, clas-
sifiers from real data tend to under-predict IS (which comprises only 5% of labels),
resulting in low coverage recall (Cr). As shown in Table 5, most synthetic data classifiers
magnify this gap, exemplified by low Cr across the board. In addition to performance
concerns, this under-prediction problem reflects bias amplification risks in synthetic
data applications (Zhao et al. 2017; Wang and Russakovsky 2021; Wyllie, Shumailov, and
Papernot 2024). As will be discussed later, in the case of longitudinal UGC modeling,
we find that training on stylistically diverse synthetic data can alleviate this problem.

Table 6
Author profiling accuracy (↓) and proportion of re-identified users (↓) across methods. In bold:
most privacy preserving overall; underlined: most privacy preserving without differential
privacy guarantees.

Twitter Yelp SwDA TalkLife

Generation strategy Race Gender Gender Education Both User ID
DP-BART (ε = 50) .51 .51 .34 .22 .03 .00
DP-BART (ε = 100) .53 .54 – –
DP-BART (ε = 250) .64 .71 – –
SynSim .65 .67 .39 .34 .07 .35
SynDiff .67 .63 .40 .26 .03 .31
SynOrig – – – .32
SynTr – – – .32
STRAP .65 .74 .35 .25 .00 .45
CN .68 .74 .41 .27 .04 .73
DE .80 .84 .39 .33 .07 .97
StyMask .66 .91 .42 .30 .08 .99
LLaMA-first .54 .62 .31 .32 .00 .05
LLaMA-second .57 .60 .27 .29 .04 .04
Random Baseline .50 .50 .50 .25 .02 1/37.9k
Original Data .88 .91 .43 .35 .16 1.00
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More generally, class distribution-aware augmentation (He et al. 2008; Ahn, Ko, and
Yun 2023) with aspect-controlled methods is a potential direction for future work.

6.2.1 Implications of Style Preservation in Training Data Substitution.

Style preservation benefits task performance. We find that style preservation benefits per-
formance on most tasks and datasets, except for binary sentiment classification on
Yelp (Table 5). The least performant classifiers were indeed trained on data with low
style preservation, but the remaining classifiers’ system-level ranking in terms of task
performance does not match that of their styles, for example. Models trained on varied
syntactic paraphrases performed similarly well. This suggests that once a baseline level
of data quality has been reached and the task performance is around the level of that
trained on real data, there is a ceiling to style preservation’s benefits to performance.

In contrast, on Twitter and SwDA, there is a relatively straightforward association
between preservation-oriented metrics and performance. For example, when using syn-
tactically controlled methods, the generated instances most syntactically similar to the
original yield better performance compared with their alternatives in order of stylistic
similarity, suggesting that style plays a role in task performance. Likewise, the first of
each batch of diverse LLaMA paraphrases tended to be more style preserving than the
second (§6.1) and also trained more performant downstream models.

Similarly, in longitudinal predictions in TalkLife, overall results show that more
meaning and style-preserving generation strategies tend to perform better. However,
style and meaning preservation do not constitute the whole picture, as detailed below.

Stylistic similarity and stylistic consistency benefit performance differently. Results from
syntax guided paraphrasing, particularly on the task of longitudinal predictions (see
Table 3), suggest that the degree and type of style preservation impact data utility. First,
we compare paraphrases generated with syntactically similar sampled parses (SynSim)
and different ones (SynDiff). We see that SynSim outperforms SynDiff on all classes
and metrics except IE recall, which relies on capturing sequences of posts that depend
on each other to denote a gradual change; thus while style similarity benefits task
performance, the downstream classifier may under-predict temporally sensitive classes,
such as gradual mood changes, if only exposed to stylistically similar data.

Second, we compare paraphrases generated with original parse templates (Syn-
Orig) and those generated with heuristically modified ones that introduce syntactic
variations in a consistent manner to simulate a stable user-level style throughout the
timeline (SynTr). SynTr leads to better performance on all classes and metrics compared
with SynOrig, with the exception of precision on the rarest label of sudden mood
changes (IS); thus artificially inducing stylistic variety in synthetic datasets may be
beneficial but can increase false positives, in this case causing the downstream classifier
to become over-sensitive to within-user changes in linguistic content.

Interestingly, SynDiff has high IE recall but low IS recall, whereas SynTr shows no
such trade-off. An interpretation is that although both involve adding syntactic changes,
SynDiff is subject to sampling variability, whereas SynTr’s rule-based transforms in-
troduce stylistic diversity in a consistent fashion, enabling the downstream classifier
to reap the benefits of increased exposure to syntactic variations while maintaining
sensitivity to stylistic consistency, which assists personalized longitudinal modeling.

In short, across labels in the longitudinal personalized task, diverse syntactically
similar paraphrases train more precise classifiers, and paraphrases with consistent
stylistic variations benefit recall. While style preservation benefits performance, introducing
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stylistic variations can help classifiers generalize and pick up more linguistic cues useful in user
state tracking so long as the introduced changes are consistent. We make recommendations
to this effect in Section 7.

6.2.2 Divergence Benefits Lowering Profiling and Re-identification Risks. Benchmarked gen-
eration strategies are variedly successful in removing cues of user demographic at-
tributes and lowering re-identification rates (Table 6), with low-divergence data most
susceptible to such risks. A notable example is StyMask, which has low divergence
across domains and high profiling accuracy on Yelp yet low on Twitter. This suggests
that heuristics designed for authorship obfuscation are specific and translate well to
masking race but not gender. Such inequality of privacy protection over user attribute
types underscores the need to develop and test obfuscation methods across user groups.

Conversation-level. In the novel challenging task of zero-shot speaker attribute inference
from SwDA human conversation transcripts, we see that synthetic data successfully re-
duced speaker profiling accuracy for both gender and education, although in education
prediction only DP-BART reduced the success rate to lower than chance level. In the
strictest setting where the task is to infer both attributes for both speakers from a single
prompt, we see that on the original data the LLM achieves an attack success rate close to
a magnitude above the random baseline. Although results indicate that synthetic data
have a mitigating effect, the fact that a readily available model can achieve this level
of speaker profiling accuracy in a zero-shot manner, without fine-tuning or elaborate
prompting setups, highlights the need to develop defense strategies against this new
line of privacy infringement risks, corroborating findings from Staab et al. (2024).

Timeline-level. In terms of finding individual users from synthetic data in TalkLife time-
lines, except DP-BART, data from all methods are susceptible to re-identification above
chance level (i.e., 1 in 37,969 users), although attack success rates were remarkably low
on texts rewritten using LLaMA, potentially due to their high divergence. Overall, these
results indicate that while rewriting can mitigate risks of revealing sensitive attributes,
preventing exact re-identification in post sequences remains an open problem. It should be
noted, however, that this setup assumes the adversary has unfettered access to user
posting histories and should therefore be considered a worst-case scenario benchmark
to facilitate development of better privacy-preserving data generation strategies.

6.3 Extrinsic Results: Augmentation

We show the downstream classification results for post-level (Table 7), conversation-
level (Table 8), and timeline-level (Table 9) tasks. Overall, performance improved as data
quantity increased. In terms of performance gains from augmentation using synthetic
data, similar to what we observed in the privacy-oriented (i.e., 1-to-1 data substitution)
experiments, we find that the benefits varied by task type and difficulty:

• Post-level: In Twitter/Yelp, both relatively straightforward tasks of
post-level binary sentiment classification, we see modest to no
improvements. In Yelp, classifiers without augmentation trained on 10%
of the original dataset already achieved a macro F1 of .95, leaving little
room for further performance gains.
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Table 7
Post-level sentiment classification performance in augmentation settings, comparing
augmentation at the original (100%) and sub-sampled (50%, 10%) training set sizes. Higher is
better (↑). Underlined: outperforms no-augmentation.

Twitter Yelp

Macro F1 Macro F1
Generation strategy 10 50 100 10 50 100

St
yl

e

STRAP .71 .74 .76 .94 .97 .97
DE .72 .75 .78 .95 .95 .97
CN .72 .73 .77 .94 .96 .97
SynSim .73 .76 .78 .93 .96 .96
SynDiff .72 .76 .78 .94 .96 .96

Pr
iv

ac
y StyMask .70 .75 .76 .94 .96 .96

DP-BART (ε = 50) .71 .74 .77 .94 .96 .97
DP-BART (ε = 100) .71 .75 .78 .94 .96 .97
DP-BART (ε = 250) .71 .74 .77 .94 .95 .97

LL
M LLaMA-first .73 .74 .77 .95 .96 .97

LLaMA-second .72 .74 .76 .92 .96 .97
Original (without augmentation) .72 .74 .77 .95 .95 .98

Table 8
Dialogue-level performance in augmentation settings, comparing augmentation at
under-sampled (10%, 50%) and original (100%) training set sizes. Lower is better (↓).
Underlined: outperforms no-augmentation.

SwDA

SegWER JointWER
Generation strategy 10 50 100 10 50 100

St
yl

e

STRAP .15 .13 .13 .41 .37 .36
DE .15 .13 .12 .40 .35 .35
CN .14 .13 .11 .42 .37 .35
SynSim .15 .12 .11 .41 .35 .33
SynDiff .14 .14 .12 .40 .37 .36

Pr
iv

. StyMask .14 .13 .12 .40 .36 .35
DP-BART (ε = 50) .14 .12 .12 .40 .36 .35

LL
M LLaMA-first .15 .13 .12 .40 .36 .35

LLaMA-second .14 .12 .12 .40 .36 .35
Original (without augmentation) .14 .13 .12 .40 .36 .36

• Dialogue-level: In SwDA, while magnitudes of improvements were
modest, we see that augmentation leads to more improvements when
quantity increased and had more pronounced benefits for JointWER,
which unlike the segmentation-only SegWER considers both segment
boundary and segment label correctness. This suggests that exposure to
synthetic data helped downstream classifiers correctly learn to
distinguish between dialogue act types.

• Timeline-level: In TalkLife, in the most data-scarce setting (10%),
augmenting with most synthetic data generation strategies led to a
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Table 9
Timeline-level task performance in augmentation settings, comparing augmentation at the
original (100%) and sub-sampled (50%, 10%) training set sizes. Higher is better (↑). Underlined:
outperforms no-augmentation.

TalkLife

IE (Cp) IE (Cr) IS (Cp) IS (Cr)
Generation strategy 10 50 100 10 50 100 10 50 100 10 50 100

St
yl

e

STRAP .16 .31 .40 .28 .38 .35 .03 .16 .18 .35 .44 .45
DE .17 .31 .37 .29 .37 .38 .04 .14 .23 .26 .45 .40
CN .11 .27 .33 .27 .37 .39 .03 .14 .21 .21 .55 .47
SynSim .18 .33 .32 .29 .35 .41 .01 .07 .20 .30 .40 .43
SynDiff .21 .36 .32 .30 .38 .43 .02 .13 .15 .21 .52 .44
SynOrig .18 .26 .38 .30 .36 .38 .01 .09 .14 .36 .49 .46
SynTr .16 .23 .34 .23 .41 .43 .01 .12 .18 .35 .51 .45

Pr
iv

. StyMask .16 .31 .40 .28 .38 .35 .03 .16 .18 .35 .44 .45
DP-BART∗(ε = 50) .09 .31 .32 .25 .38 .41 .01 .09 .18 .20 .56 .46

LL
M LLaMA-first .17 .30 .39 .31 .39 .40 .01 .11 .18 .38 .47 .47

LLaMA-second .22 .31 .33 .28 .36 .40 .01 .14 .20 .22 .37 .52
Original (without augmentation) .20 .41 .35 .28 .29 .34 .01 .26 .33 .03 .29 .20

marked improvement in precision and especially recall, which saw an
increase of up to .35. We find that augmentation leads to more frequent
predictions of moments of change on real test data, resulting in improved
recall but often degraded precision. As in the privacy-oriented
classification experiments, we observe the strongest negative effects on
the rarest class IS, whereas the rare but more prevalent class IE did see
benefits in precision and recall on most models trained on synthetic data
generated using the benchmarked strategies, with up to a 26% difference.

In short, on well-defined tasks already adequately modeled using original data under
the examined settings, adding synthetic data will do little to raise the performance ceil-
ing. As task complexity increases so do potential augmentation benefits, although risks
of performance degradation on the rarest label class persist, once again underscoring
the importance of considering class distribution when using synthetic data in practice.

6.3.1 Implications of Style Preservation in Augmentation. We examine the role of style by
focusing on syntactically controlled paraphrases. On the examined post-level tasks,
there are limited noticeable effects as performance tended to be relatively high and
similar across the board. On the dialogue-level task SwDA, as data quantity increases,
the benefits of augmenting with syntactically similar data (SynSim) becomes more
pronounced than by augmenting with syntactically distant data (SynDiff). While overall
magnitudes of improvements are modest, SynSim augmentation is shown to improve
both utterance segmentation (SegWER) and dialogue act recognition (JointWER).

The role of style is more complex in the timeline-level task, TalkLife. Mirroring
findings from data substitution experiments (§6.2.1), when data is most limited (10%),
augmentation with syntactically similar data (SynSim) benefits recall of the minority
class IS more so than with syntactically different ones (SynDiff). However, contrasting
the consistent advantages of SynSim in data substitution, here we find that SynDiff
yields better performance when it comes to identifying gradual progressions (IE) and
overall performance when more data is available. Moreover, contrasting the clear
advantages of using consistently syntactically transformed paraphrases (SynTr) over
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unaltered ones (SynOrig) in earlier experiments, here SynOrig yields more precise IE
while SynTr yields more precise IS; thus augmenting with syntactically consistent and
similar data benefits capturing gradual progressions, whereas data that is syntacti-
cally varied in a consistent manner benefits capturing the minority class, namely, mood
switches. Finally, in line with earlier findings, data with stylistic variation introduced
consistently (SynTr) is better than those varying stochastically (SynDiff) for IS recall.
Combined with the above, this suggests that exposing the downstream classifier to
stylistically varied data help them capture changes in timeline-level tasks, and doing
so while preserving style consistency within each timeline further benefits recall of rare,
drastic changes.

All in all, that the way in which style contributes to performance varies from what
we observed in data substitution experiments underscores the importance of tailor-
ing generation strategies to application requirements, for instance, data availability or
whether it is important to prioritize privacy over performance.

7. Implications for Future Applications

What do our findings mean in practice, for the application of our evaluation framework
by others? Figure 4 summarizes recommendations based on the empirical experiments
presented in Section 6. To guide our discussion, consider the use cases below:

Augmenting Public Datasets in a General Domain. Assuming that the task is challenging
and has room for improvements, highly meaning- (e.g., DE) and style-preserving (e.g.,
SynSim) methods are reasonable choices due to their favorable performance across
examined tasks. If the task involves longitudinal modeling, consider increasing stylistic
variations to improve generalizability (e.g., SynDiff), and pay attention to the within-
user consistency to better capture minority labels (e.g., SynTr).

Start

Run evaluation
framework experiments

with different
generation strategies 

Start with best
generation method

from similar problem

Yes

Similar problem exists

in representative

tasks/

benchmarks?

Yes

No

Is privacy the
highest priority?

Require formal
privacy guarantee?

Yes Differentially Private
methods 


(eg DP-BART)

No
High divergence methods

(eg LLM diversity prompting)

Determine
appropriate budget

using evaluation
framework as

reference

No

No 

(substitute)

Yes

(augment)

Combine original
and synthetic data?

No

Yes Unsure

Is problem style
sensitive?

Yes

Prioritize recall of
rarer labels?

Prioritize...

Precision

Stylistically similar
methods 


(eg SynSim)

Recall

Stylistically consistently

divergent methods


(eg SynTr)

Stylistically divergent
methods


(eg SynDiff)

No

Figure 4
Recommended synthetic UGC generation method selection based on our results and application
requirements.
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Sharing Models Trained on UGC for Health Applications. For sensitive data, methods with
differential privacy (e.g., DP-BART) are the best choice; in addition to mathematical
guarantees, experiments in Section 6.2.2 showed its ability to mitigate profiling and
re-identification risks. The privacy budget ε needs to be calibrated with caution since
a strict budget impedes meaning and style preservation (§6.1, Table 4), which can
cascade to lower label validity and reduce performance especially in complex tasks. If
formal privacy guarantees are not required, other high divergence methods (e.g., LLM-
generated diverse paraphrases) are good candidates for privacy preservation. If the task
is temporally sensitive (e.g., user modeling over document streams), style consistency
seems to benefit task performance, with similar paraphrases (SynSim) benefiting preci-
sion and consistent variations benefiting recall (SynTr).

8. Conclusion

We present an evaluation framework for synthetic language data, which defines core
aspects to assess generated texts accompanied by suitable metrics. Through use cases
that benchmark style and privacy by varying text rewriting strategies, we demonstrate
that our proposed framework captures the intended qualities of the texts and identify
downstream utility and privacy implications of the aspects and generation strategies.

We find that classifiers trained only on synthetic data can achieve task performance
comparable to real ones, especially in straightforward tasks with a single-document
context. However, as task complexity increases so do potential performance gaps and
bias amplification risks. Additionally, while meaning and style preserving synthetic
datasets tend to yield more performant classifiers, meaning is not the whole picture:
Style preservation and consistency impact performance differently in longitudinal tasks,
exercising varied effects depending on whether synthetic texts are used to substitute or
augment original training data. These challenges point to targeted aspect-guided data
generation as an area of future research.

Moreover, users are more susceptible to demographic profiling and re-identification
in low-divergence synthetic datasets, and most methods failed to effectively prevent
re-identification in the longitudinal setting, highlighting the need to progress beyond
standard static setups when developing privacy-preserving generation methods.

In addition to ready-to-use evaluation metric code and experiment scripts accom-
panying this publication, we plan to provide a user-friendly platform that includes this
framework for individuals to evaluate their data, compare methods, and extend the
framework to measure aspects of data quality using new metrics and on new tasks. We
also plan to extend our evaluation and generation methods for preserving meaning,
style and privacy for temporally sensitive long documents that allow for benign diver-
gences. We envisage that our findings and tools can enable researchers and practitioners
to better and more efficiently select suitable generation and data sharing strategies.
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A. Appendices

A.1 Limitations

The presented user profiling and re-identifiability measures are bounded by the meth-
ods’ performance and validity. Profiling, re-identifiability, and divergence estimates do
not constitute formal privacy guarantees, but are instead part of a continued effort
towards creating shareable, more privacy preserving textual data. Relatedly, we em-
phasize rewriting-based methods to compare with prior work. Such methods generally
produce data closer to the original and therefore provide more conservative estimates
of privacy risks. Additional strategies include generation grounded in user facts and
few-shot prompting. We will apply our proposed framework to them in future work.

Language use is contextual and an individual may express themselves differently
under varied circumstances, but current metrics assume style to be stable. Methods for
generating synthetic text can be misused to impersonate individuals and spread mis-
information. We also observed potential bias amplification when training models with
synthetic data. Nevertheless, improved style-sensitive evaluation can help develop tar-
geted augmentation strategies, which in turn can help counteract biases. As generative
models become increasingly widely adopted, it is our hope that through underscoring
model capabilities and providing tools to assess synthetic texts, our work will contribute
to improving more nuanced data generation, evaluation, and application.

A.2 Metric Validation Pilots

While our framework is metric-agnostic, we narrowed down candidate metrics through
pilot studies with three annotators who are native speakers of English with prior expe-
rience in annotation for NLP/NLG tasks. In the end, we selected metrics to include in
this article on the basis of their performance on automatic validations and their rank
correlations with human judgments.

• Automatic: For style, we applied STEL (Wegmann and Nguyen 2021) to
author style, constructing 1k task instances each over domains: tweets
(Schler et al. 2006), blogs (Pardo et al. 2017), and speech transcriptions
with and without disfluencies (Godfrey, Holliman, and McDaniel 1992;
Love et al. 2017). We compared hand-engineered features (Abbasi and
Chen 2008; Altakrori, Cheung, and Fung 2021), POS-based scores, and
idiolect embeddings. For divergence in conversations, we used dialog
similarity judgments from Lavi et al. (2021) to benchmark embedding-
based edit distance against document-level BLEU, TER (Snover et al.
2006), and chrF (Popović 2015). We also try using BLEU, TER, and chrF as
edit distance substitution cost.

• Human: In addition to the above aspects and metrics, we included
BERTScore, BLEURT (Sellam, Das, and Parikh 2020), and QuestEval
(Scialom et al. 2021) to evaluate meaning preservation. We randomly
sampled 30 instances from Twitter, Reddit, and Switchboard and
generated synthetic versions of the texts. For each intrinsic aspect, three
evaluators (native English speakers with prior NLG evaluation
experience) performed Best-Worst Scaling (Louviere and Woodworth
1991), selecting the best and worst generations per source text.
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A.3 Example Outputs

Table 10
Example Twitter posts generated from strategies described in Section 4.1.
original @user cuz I see y’all drawn
STRAP I see you all drawn to me.
DE @User Cause I see you all knitted
CN Because I saw you all draw
SynSim i want to see you drawn
SynDiff did i see you drawn ?
StyMask @user and cuz I see y’all drawn, yet
DP-BART(ε = 50) This article is over 2 years old\n\nThis is a guest post by the author
DP-BART(ε = 100) I’ve been reading a lot of posts lately about the Trump administration. I’ve been
DP-BART(ε = 250) @ cetera.ca / y/a I
LLaMA-first *grinning from ear to ear* because I see you all smitten
LLaMA-second Oh my gosh, I am absolutely tickled pink because I see you all having a blast!

Table 11
Example Yelp reviews generated from strategies described in Section 4.1.
original i ordered a wild boar burger instead .
STRAP instead, I’ve ordered a wild pig burger.
DE I ordered a wild boar burger instead.
CN I called a wild pig hamburger.
SynSim i opted for the wild boar burger .
SynDiff instead of wild boar
StyMask i ordered the wild boar burger, instead .
DP-BART(ε = 50) I don’t know what I’m going to do with
DP-BART(ε = 100) A boisterous boisterously conspiratorial conspiracy to hijack the world’
DP-BART(ε = 250) A wild boar boar raided a Whole Foods market Thursday. Then he chopped down
LLaMA-first I opted for the mouth-watering wild boar burger.
LLaMA-second My taste buds were crying out for the savory wild boar burger.

Table 12
Example SwDA utterances generated from strategies described in Section 4.1.

original I’ve been down to a dealer and driven them.
STRAP I was driving a dealer.
DE I have been to a dealer and drove them.
CN I went to a dealer and took them away.
SynSim i was at the dealer ’s and i drove them .
SynDiff i went to the dealer and i drove them . . .
StyMask myself ’ve been down to merchant also driven them;
DP-BART∗(ε = 50) I’m not sure why I’d like to say this. I
LLaMA-first I went to a car dealership and took some models for a test drive.
LLaMA-second I ventured to the local car lot and got behind the wheel of a few cars.
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A.4 Distribution-level Metrics

Table 13 shows the distribution-level metrics identified in Section 4.2.
As shown in Figure 5, the relationship between examined sample-level (i.e., pair-

wise) and distribution-level metrics vary across task datasets. Future work looking
to select or improve metrics should take into account domain differences as well as
potential differences between evaluating at sample and distribution levels.

Table 13
Intrinsic evaluation results computed using distribution-level metrics for the aspects of meaning
preservation (BERT Fréchet Distance), style preservation (idiolect embedding Fréchet distance,
POS JSD), and divergence (character trigram JSD). Lower is better for all metrics except
divergence. In bold: top two scoring methods for each metric; underlined: top scoring method
among syntax controlled paraphrase baselines.

Post-level Dialogue-level Timeline-level
Twitter Yelp SwDA TalkLife

Generation strategy BFD IFD POS Div BFD IFD POS Div BFD IFD POS Div BFD IFD POS Div
STRAP .81 2.3 .14 .12 1.7 2.8 .09 .10 .29 .19 .15 .11 .30 1.6 .10 .06
DE .11 .74 .09 .06 1.8 4.2 .01 .08 .10 1.6 .16 .06 .04 .62 .04 .03
CN .55 2.0 .13 .08 2.0 8.1 .04 .13 .66 4.4 .23 .13 .14 2.5 .08 .04
SynSim .31 6.1 .19 .18 .15 1.7 .13 .13 .31 5.2 .18 .22 .54 4.8 .09 .11
SynDiff .35 6.9 .20 .20 .11 3.15 .09 .14 .31 7.2 .14 .24 .58 6.1 .13 .13
SynOrig – – – – – – – – – – .94 4.9 .07 .10
SynTr – – – – – – – – – – .92 4.9 .08 .10
StyMask .05 .59 .04 .03 .11 .98 .01 .03 .16 1.0 .20 .08 .08 1.3 .03 .03
DP-BART (ε = 50) .41 5.7 .19 .26 .67 11.1 .28 .28 .46 8.8 .37 .28 .34 4.6 .19 .18
DP-BART (ε = 100) .29 4.5 .13 .17 .54 9.8 .22 .20 – – – – – –
DP-BART (ε = 250) .12 2.2 .07 .12 .47 7.1 .07 .13 – – – – – –
LLaMA-first .30 2.6 .07 .11 .38 5.6 .11 .14 .60 .43 .22 .17 .82 .46 .50 .06
LLaMA-second .42 2.3 .08 .12 .34 5.4 .13 .14 .59 .43 .23 .17 .78 .48 .50 .06

Twitter Yelp Swda Talklife

Meaning Preservation

Style Preservation (Idiolect)

Style Preservation (POS)

Divergence

0.07 0.09 0.61 0.61

0.62 0.66 0.19 0.06

0.02 0.92 0.13 0.88

0.70 0.94 0.83 0.72

0.2

0.4
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0.8

C
orrelation S

trength

Figure 5
Absolute Spearman’s rank correlation between sample-level and distribution-level metric
values.
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A.5 SwDA Privacy

Listing 1 shows the speaker attribute inference prompt adapted from Staab et al. (2024).

Listing 1
SwDA privacy experiments prompt as described in Section 5.2.
[INST] <<SYS>> You are an expert investigator with years of experience in online profiling
and text analysis. You work with an analytical mindset and try to answer questions as
precisely as possible.
<</SYS>>

Let us play a guessing game. The following are openly available everyday conversations by
two speakers. They have been carefully transcribed for open research purposes and
therefore contain natural disfluencies and fillers. Do not be distracted by these
characteristics of speech transcriptions. Your task is to guess speaker A and B’s (1)
gender and (2) level of education.

Conversation:

{full_transcript}

First reason step-by-step for each value going over all information in the text as well as
language used. Then give your top guess for gender and top guess for education level based
on your reasoning. For this task, the accepted gender values are [‘‘male’’, ‘‘female’’].
The accepted education level values are: [‘‘less than highschool’’, ‘‘less than college’’,
‘‘college’’, ‘‘more than college’’’]. If you are unsure, make your best guess given the
provided information. Only give one answer value.
Note that someone who received a highschool diploma is considered less than college,
someone currently in college is considered less than college, and any postgraduate studies
are considered more than college.

Follow exactly the format specified below:

Speaker: A or B
Type: education or gender
Inference: Your detailed inference
Guess: Your top guess as a string.

Now, think carefully, choose verbatim from the valid options, and provide the response in
the specified format. [/INST]

A.6 Utility Experiments Classifiers

• Twitter, Yelp: We fine-tune DISTILBERT-BASE-CASED and train models (1)
on real data annotated with demographic attributes (Reddy and Knight
2016; Blodgett, Green, and O’Connor 2016) to measure author profiling
risks and (2) on synthetic data to assess utility. We train on cross-entropy
loss for 3 epochs on a batch size of 32, using the AdamW optimizer and
an initial learning rate of 1e-3 and ε of 1e-8.

• SwDA, TalkLife: We follow the best performing configurations reported in
prior work (Żelasko, Pappagari, and Dehak 2021; Tsakalidis et al. 2022),
shown in Table 14.
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Table 14
Classifier implementation details.

XLNet-base-cased BERT-base-uncased 2 layer biLSTM,
dense layer with softmax

LR 5e-5 2e-5 1e-3
Dropout .10 .25 .25
Batch size 6 8 16
Optimizer Adam Adam Adam
Loss cross entropy focal loss (γ = 2) cross entropy
Epochs 10 3 100 (early stopping)
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