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One of the major outstanding questions in computational semantics is how humans integrate
the meaning of individual words into a sentence in a way that enables understanding of complex
and novel combinations of words, a phenomenon known as compositionality. Many approaches
to modeling the process of compositionality can be classified as either “vector-based” models, in
which the meaning of a sentence is represented as a vector of numbers, or “syntax-based” models,
in which the meaning of a sentence is represented as a structured tree of labeled components.
A major barrier in assessing and comparing these contrasting approaches is the lack of large,
relevant datasets for model comparison. This article aims to address this gap by introducing
a new dataset, STS3k, which consists of 2,800 pairs of sentences rated for semantic similarity
by human participants. The sentence pairs have been selected to systematically vary different
combinations of words, providing a rigorous test and enabling a clearer picture of the comparative
strengths and weaknesses of vector-based and syntax-based methods. Our results show that
when tested on the new STS3k dataset, state-of-the-art transformers poorly capture the pattern
of human semantic similarity judgments, while even simple methods for combining syntax-
and vector-based components into a novel hybrid model yield substantial improvements. We
further show that this improvement is due to the ability of the hybrid model to replicate human
sensitivity to specific changes in sentence structure. Our findings provide evidence for the value
of integrating multiple methods to better reflect the way in which humans mentally represent
compositional meaning.
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1. Introduction

An important goal of computational semantics is to develop formal models to describe
how humans understand and represent the meaning of words and sentences (Hampton
2017; Boleda 2020). There are many aspects of meaning that these theories seek to
capture, including the descriptive content of words (dictionary definitions), the rela-
tionship between language and the external world (truth conditions), fuzzy gradations
of meaning (polysemy), and hierarchical relations between words (hyponymy) (Boleda
and Herbelot 2016; Emerson 2020). This article focuses on how individual words are
combined into sentences to express complex and potentially novel ideas, a phenomenon
often referred to as compositionality. Specifically, we assess how well different classes
of language models capture human compositional representation of sentence meaning,
providing a scaffold for developing formal models of human compositionality.

Beginning with the work of Gottlob Frege (Frege et al. 1892), most accounts in
theoretical linguistics have appealed to the principle of compositionality as essential
to human processing of sentence meaning (Montague 1970; Fodor and McLaughlin
1990; Baroni, Bernardi, and Zamparelli 2014). Though the term has no single accepted
definition, broadly speaking, a symbolic system is said to exhibit compositionality if the
truth value of a composite expression is a function only of the symbols contained in that
expression and the formal syntactic rules used to combine them (Pelletier 2017). It has
been argued that compositionality explains the productivity of language, the ability to
use rules and concepts to produce and understand sentences never previously encoun-
tered (Szabó 2020; Löhr 2017). For instance, we can understand “man bites dog” by
understanding the relation between the subject, verb, and object, even if we have never
heard of a man biting a dog before (Frankland and Greene 2020). Compositionality also
explains the systematicity of language, whereby understanding a sentence entails the
ability to understand systematic variants of that sentence (Amigó et al. 2022).1 Given
that humans are capable of understanding a vast array of rich, complex sentences
that they have never before encountered, many commentators have argued that any
adequate theory of semantics must be able to account for compositional generalization
(Fodor and Pylyshyn 1988; Baroni, Bernardi, and Zamparelli 2014; Boleda and Herbelot
2016; Frankland and Greene 2020).

Such considerations have motivated the development of several distinct approaches
to representing sentence meaning. Vector-based semantics2 derives from the distribu-
tional semantics tradition in which a word, sentence, or passage is represented as a
vector of numbers, the direction of which in semantic space represents the meaning
of that word or passage (Erk 2012; Clark 2015; Boleda 2020). Early approaches in this
tradition were based on explicitly modeling the distribution of word occurrences in
a corpus and using this to construct an embedding (Deerwester et al. 1990). More
recent approaches instead train neural networks on tasks such as next word pred-
iction (Mikolov et al. 2013), and hence are sometimes called neural network (Baroni
2020) or deep-learning representations (Pavlick 2022). Currently the most capable

1 Hence, for instance, if we understand “John loves Mary”, we necessarily understand “Mary loves John”
(Baroni 2020), even though neither claim necessarily entails the other. In a compositional system,
predicates and their arguments are represented independently, thereby allowing novel systematic
variations of such arguments (such as interchanging “Mary” with “John”) to be understood (Martin and
Baggio 2020).

2 See subsubsection 8.1.1 in the Appendix for further discussion of our terminology of vector-based and
syntax-based.
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vector-based models are based on the transformer neural network architecture, and are
trained on very large language datasets with additional fine-tuning on a range of NLI
tasks (Vaswani et al. 2017). These models have achieved impressive performance on
a wide range of natural language benchmarks, and have recently shown a remarkable
ability to generate grammatically correct and relevant text in response to human queries
and instructions (Ouyang et al. 2022; Chang et al. 2023; Bubeck et al. 2023). In this article
we adopt the term vector-based models (Blacoe and Lapata 2012) to describe methods of
sentence representation in this tradition, in which a sentence is represented as a vector
of numbers in a vector space without any explicitly encoded syntax.

Syntax-based approaches to sentence meaning developed from parsing methods
which represent the syntactic structure of a sentence as a tree structure of nodes linked
by edges. Early methods such as context-free grammars focused on specifying formal
rules which determine the grammatical structure of sentences (Chomsky 1956; Kasami
1966). More recently, deep-syntactic parsing models have been developed which ab-
stract away from much of the surface form of a sentence in an attempt to represent its
underlying meaning (Kingsbury and Palmer 2002; Ballesteros et al. 2014; Michalon et al.
2016). This typically involves constructing a parse tree in which nodes are words (or
other lexical items), and whose edges represent important semantic relations (e.g., pred-
icate/argument relations) between these nodes (Žabokrtskỳ, Zeman, and Ševčı́ková
2020; Donatelli and Koller 2023; Simoulin and Crabbé 2022). In this article we use the
term syntax-based models to describe approaches to representing sentence meaning in
this tradition.3

In recent years, hybrid models that combine the complementary strengths of both
syntax and vector-based approaches have been introduced (Boleda and Herbelot 2016;
Ferrone and Zanzotto 2020; Donatelli and Koller 2023). Hybrid models are very diverse,
and include methods for embedding parse trees into a vector representation, as well as
other specialized architectures and approaches that sometimes go by the name neuro-
compositional semantics (Smolensky et al. 2022). What unifies hybrid approaches is a
desire to integrate the distinct benefits of vector-based semantics with those of syntax-
based approaches. For instance, transformers perform poorly on tasks specifically de-
signed to test for productivity and systematicity, while syntax-based methods utilizing
explicit symbols easily achieve near-perfect performance (Dziri et al. 2023). Conversely,
human language is highly complex and filled with nuances and idiosyncrasies, making
it difficult to devise appropriate syntactic rules that describe the entirety of natural
language, while vector-based methods excel at representing vagueness and nuance
due to their flexibility and use of continuous numerical values rather than discrete
symbols (McClelland et al. 2020). Furthermore, syntax-based methods are more read-
ily interpretable (Linzen and Baroni 2021) and show better compositional capabilities
(Yao and Koller 2022; Liang and Potts 2015), while vector-based methods excel in
capturing contextual effects, integrate better with lexical semantics (Erk 2012; Pavlick
2022), and underpin existing state-of-the-art NLP applications. See Figure 1 for a visual
summary of the differences between the three approaches.

3 While any parse tree representation can also be encoded as a vector, we classify such vector encoding of
parse trees as hybrid models, since unlike traditional distributional semantics approaches they are
trained to embed structured information rather than plain text. Also, unlike syntax-based approaches
they collapse information into a vector-space representation, eliminating explicit representation of how
semantic roles are bound to specific variables (Fodor and Pylyshyn 1988; Greff, Van Steenkiste, and
Schmidhuber 2020). We therefore believe it most useful to categorize them separately from either
vector-based or syntax-based models.
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Figure 1
Illustration of three different ways of representing the sentence “A different guest speaker talks
to the uninterested teachers at the school each month.” Transformer neural network (top), AMR
syntax-based parse tree (middle), and our novel AMR-ConceptNet hybrid model (bottom).

Despite extensive development of vector-based, syntax-based, and hybrid ap-
proaches, little work has attempted to systematically evaluate and compare how well
models in each class capture human compositional representation of sentence meaning.
A major difficulty is the lack of suitable frameworks and datasets for comparing such
models. As we explain further in subsection 3.1, Semantic Textual Similarity (STS)
provides such a measure for comparing disparate forms of sentence representation.
Unfortunately, as we show in subsection 3.2, existing STS datasets based on sentential
semantic similarity are inadequate for evaluating models of human compositionality.
These considerations suggest the need for a novel approach to evaluate syntax, vector,
and hybrid models against a common dataset.

This article assesses how different classes of models capture human compositional
representation of sentence meaning, by developing a new STS dataset. We specifically
focus on their ability to model the process of human compositionality, rather than their
performance in applied tasks such as sentence parsing or machine translation. Our
key contributions are twofold. First, we introduce a new dataset called STS3k, which
is optimized to evaluate the strengths and weaknesses of syntax-based, vector-based,
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and hybrid models. Second, we evaluate several vector, syntax, and hybrid models
of sentence meaning against both existing datasets and our novel STS3k dataset. Our
findings show that even leading vector-based models (i.e., Transformers) poorly match
human judgments of sentence similarity on our adversarial dataset, while our novel
hybrid methods perform well even with no task-specific training. These key contribu-
tions together provide significant insights into formal models that describe how humans
understand and represent the sentence meaning.

The remainder of this article is structured as follows. In Section 2, we review existing
vector-based, syntax-based, and hybrid approaches for representing sentence meaning.
In Section 3, we discuss the limitations of existing STS datasets and thereby motivate our
development of a new dataset. In Section 4, we explain the construction of our dataset
and our evaluation approach for comparing different models. In Section 5, we present
the results of our evaluations of the strengths and weaknesses of existing sentence
models. In Section 6, we discuss the implications of our results for the question of
sentence representation and compositionality. In Section 7, we summarize our research
objectives and highlight our unique contributions.

2. Existing Models of Sentence Meaning

In this section, we review several major approaches for representing sentence meaning.
We focus on the difference between syntax-based and vector-based approaches, high-
lighting their distinctions, strengths, and limitations. We also discuss previous attempts
to integrate the two into various hybrid models, emphasizing their limitations and the
potential for a novel approach.

2.1 Arithmetic Vector-based Models

Vector-based semantics models describe word meaning as a vector of real numbers,
each component of which corresponds to an abstract feature in an underlying vector
space (Landauer, Foltz, and Laham 1998; Lieto, Chella, and Frixione 2017; Almeida
and Xexéo 2019). The meaning of each word is thus represented by the direction of
its word embedding in semantic space. Word embeddings are typically learned from
statistical associations of their occurrences in large natural language corpora (Boleda
2020). They are widely used in natural language processing, either directly or as part
of a machine learning pipeline, and have achieved impressive performance on a range
of NLP tasks (Lenci 2018; Young et al. 2018; Devlin et al. 2019; Ranasinghe, Orǎsan,
and Mitkov 2019). While word embeddings capture aspects of meaning difficult to
incorporate into syntactic approaches, such as vagueness and graded associations (Erk
2022), they do not come equipped with any framework for how they can be composed to
form representations of an entire sentence, as this requires the specification of additional
formalism beyond the word level.

An early framework for combining word embeddings into sentence embed-
dings was introduced by Mitchell and Lapata (2010). In this approach, the sentence
embedding p̃ of a given sentence is written as a function of its component word embed-
dings w1, w2, . . . wi. This is expressed compactly by the equation:

p̃ = f
(
w̃1, w̃2, . . . , w̃i

)
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Table 1
Summary of arithmetic models of sentence semantics.

Model Function Citation
Additive/mean p̃ = s̃ + ṽ + õ Mitchell and Lapata (2010)
Multiplicative p̃ = s̃� ṽ� õ Mitchell and Lapata (2010)
Circular convolution p̃ =

(
s̃ ∗ õ

)
∗ ṽ Blouw et al. (2016)

Tensor product p̃ =
(
s̃× õ

)
× ṽ Hartung et al. (2017)

The problem of representing sentences can thus be modeled as finding an appropriate
function f that satisfies certain linguistic constraints and yields predictions that are
psychologically plausible (Baroni 2020). Proposals for the functional forms of f are
extremely diverse, with some of the most influential summarized in Table 1.

Additive/mean models are the simplest case and involve simply adding individual
word embeddings component-wise to produce the sentence embedding. In some cases,
the embeddings are normalized by dividing them by the number of words in the sen-
tence, in which case the term “mean embeddings” is used. Additive and mean models
are limited because they do not incorporate any interaction effect between words,
a necessity in accounting for polysemous usages such as “hot summer” compared
to “hot topic” (Hartung et al. 2017). Importantly, additive models provide a useful
non-compositional baseline against which more complex models can be evaluated.
Two approaches for incorporating interaction effects into sentence embeddings are
element-wise multiplication and circular convolution (Emerson 2020). However, both of
these operations are commutative, meaning that unlike natural language, the resulting
embeddings are invariant to word order (Ferrone and Zanzotto 2020). Given these
limitations, more complex models have been developed. One example is the tensor
product model, in which the outer product of two vectors is taken to represent the
compound of those two vectors. One major drawback of such approaches is that they
lead to exponentially larger embeddings for more complex expressions, as the combined
embeddings scale is ln, where l is the embedding length and n is the number of words
in the expression (Stewart and Eliasmith 2009). These and other limitations of purely
arithmetic models for compositional semantics have contributed to their being largely
superseded by neural network models. Nonetheless, we include them in our analysis as
a simple baseline for more complex models.

2.2 Neural Network Vector-based Architectures

More recent vector-based approaches have moved away from explicitly representing
the combination function f , instead learning it implicitly by adjusting the weights in
a neural network architecture in accordance with a learning objective such as next
word prediction (Ferrone and Zanzotto 2020; Baroni 2020). Several architectures have
been developed (Qiu et al. 2020), including recurrent neural networks (Socher et al.
2012), long-term short-term memory (LSTM) networks (Graves 2013), and transformers
(Vaswani et al. 2017; Devlin et al. 2019). Transformers, which lack recurrent connections
and rely entirely on the self-attention mechanism for encoding word context, have
become the most commonly used approach for sentence representation and achieve
impressive performance on a wide range of language tasks (Tripathy et al. 2021; Qin
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Table 2
Summary of neural network models of compositional semantics.

Model Model description Citation
InferSent A bi-directional LSTM trained on various natural

language inference tasks.
Conneau et al.

(2017)
USE Standard transformer architecture trained on a

range of language tasks.
Cer et al. (2018)

SentBERT Based on the MPNet-base transformer model, with
additional training to predict paired sentences
from a large dataset.

Reimers and
Gurevych (2019)

ERNIE Trained on next word prediction, masked word
prediction, and prediction of hidden nodes in a
knowledge graph.

Sun et al. (2020)

DefSent Based on RoBERTa-large transformer model
fine-tuned using about 100,000 words paired
with their dictionary definitions.

Tsukagoshi,
Sasano, and
Takeda (2021)

OpenAI Embeddings Embeddings provided from the OpenAI API,
based on a large transformer with additional
fine-tuning from human feedback.

Ouyang et al.
(2022)

et al. 2023). We summarize a selection of neural network models in Table 2. We have
chosen a range of models to illustrate different architectures and training methods,
including an LSTM model (InferSent), three transformer architectures optimized for
producing representations of an entire sentence (USE, SentBERT, and DefSent), one
general-purpose transformer optimized for text generation (ERNIE), and state-of-the-
art sentence embeddings from the OpenAI API (see https://platform.openai.com

/docs/guides/embeddings).
Despite substantial progress, it is still an open question whether neural network

models of sentence meaning provide a cognitively plausible model of sentence meaning
(McCoy, Min, and Linzen 2020). Although they are able to learn aspects of sentence
syntax and structure (Krasnowska-Kieraś and Wróblewska 2019; Manning et al. 2020;
Pimentel et al. 2020), standard neural network architectures are not compositional in the
classical sense of applying rules independently of semantic content, since combination
rules are not explicitly represented, but are learned implicitly over training along with
the individual word embeddings (Fodor and Pylyshyn 1988; Hupkes et al. 2020; Linzen
and Baroni 2021). This violates the key criterion of compositionality that the meaning of
a composite phrase is determined solely by the meaning of its constituent words and the
syntactic operations for combining them (Boleda 2020). In most vector-based semantic
models, structure is not defined in advance in the way that syntax is defined in formal
semantics (Gajewski 2015). In theory, large language models (LLMs) could learn these
rules themselves, though in practice even very large models often fail to adequately
and consistently generalize beyond examples found in the training distribution (McCoy,
Min, and Linzen 2020; Dziri et al. 2023). Transformers are often unable to learn the types
of linguistic regularities relevant to humans, instead commonly relying on lexical cues
(Yu and Ettinger 2020) or spurious correlations in their training data (Geirhos et al.
2020; Niven and Kao 2019), resulting in unsystematic and insufficient generalization
when evaluated on examples outside their training set (Hupkes et al. 2020; Gubelmann
and Handschuh 2022; Loula, Baroni, and Lake 2018; Zhang et al. 2022). A final
difficulty is that in typical neural network models, the meaning of individual words
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is not separately represented when they are composed into a complex expression, as
the network simply produces a new overall pattern of activity jointly representing all
constituent words combined to form that specific sentence (Ferrone and Zanzotto 2020).
Unlike traditional symbolic systems, no separate representation of individual words is
preserved after composition. This makes it difficult to implement compositional rules
that operate consistently across diverse examples (Fodor and Pylyshyn 1988; Martin
and Doumas 2020; Mitchell and Lapata 2010).

2.3 Semantic Parsing Syntax-based Models

Syntax-based models represent the meaning of a sentence as a graph of connected
nodes, with the links between nodes reflecting syntactic or semantic relationships
between components of the sentence. Individual words are typically represented in
symbolic form, with formal syntactic roles governing how they can be combined to-
gether to produce valid compound expressions (Žabokrtskỳ, Zeman, and Ševčı́ková
2020). There is considerable variation between models in the degree of abstraction
away from the surface structure of the sentence and in what types of relations are
presented. This variation takes the form of different grammars, the sets of formal rules
specifying how nodes in the resulting graph are combined (Zhang 2020). Examples of
some major contemporary frameworks are presented along with brief explanations in
Table 3. These all share a common approach of first identifying key verbs or predicates,
and then associating various semantic roles to those predicates. The set of semantic
roles is usually predetermined based on linguistic theory, and may be constant for
every predicate or different for each one. Some frameworks (such as AMR and UCCA)
also provide a nested structure of relations between sentence components, while others
(such as FrameNet and VerbNet) only specify the relation between the main predicate
and its arguments at a single layer without any nested structure. While we highlight
a range of different approaches to illustrate the range of formalisms that have been

Table 3
Summary of major syntax-based approaches to representing sentence meaning.

Model Description Citation
PropBank A corpus and annotation framework based around

verbs and their arguments, with generic argument
roles applied to each verb.

Kingsbury and
Palmer (2002)

VerbNet An annotation and classification scheme for verbs,
incorporating a standardized set of thematic roles
and selectional preferences depending on the verb.

Palmer, Bonial,
and Hwang
(2016)

FrameNet A database of lexical frames, each of which describes
a particular type of event or relation and the
elements that participate in it.

Baker, Fillmore,
and Lowe (1998)

AMR Abstract Meaning Representation is a graph-based
framework rooted at the main verb of a sentence.
Verb arguments are assigned to nested components
of the sentence.

Banarescu et al.
(2013)

UCCA Universal Conceptual Cognitive Annotation is a
graph-based approach to represent sentence
meaning in terms of key abstract nodes and a
determined set of relations between them.

Abend and
Rappoport (2013)
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developed, in this article we selected for further analysis VerbNet (based on semantic
role labeling) and AMR (a graph-based method), owing to their flexibility and the
availability of efficient parsing algorithms.

Syntax-based methods for semantic parsing have been the focus of much theoretical
work in semantics, and recently have seen an increase in attention due to the develop-
ment of more sophisticated neural network parsing algorithms and the availability of
much larger annotated datasets (Bölücü, Can, and Artuner 2023). Because they describe
the logical connections between different components of a sentence in a readily extensi-
ble manner that separates variables from their values, syntax methods readily support
compositional reasoning, at least for constrained problems. On the other hand, these
methods typically treat individual words as undefined primitive symbols and thus
provide no clear interface between lexical semantics and compositional semantics (Erk
2016). Manual parsing rules often fail to represent language variability and phenomena
such as polysemy or connotation. A further challenge is the difficulty in evaluating
syntax-based models using a similarity metric analogous to the cosine similarity widely
used for assessing vector-based embeddings. The SMATCH metric (Cai and Knight
2013), along with SMATCH-based variations like WWLK (Opitz, Daza, and Frank 2021),
are widely used for computing the similarity of two parse graphs. However, recent
studies have found that the results show a very low correlation with human similarity
judgments (Leung, Wein, and Schneider 2022). We discuss this issue in more detail in
subsection 4.4.

2.4 Hybrid Approaches

The fact that syntactic and vector-based semantic models have complementary
strengths and weaknesses has led to considerable interest in combining these ap-
proaches (Padó and Lapata 2007; Boleda and Herbelot 2016; Ferrone and Zanzotto
2020; Martin and Baggio 2020). Although standard transformer architectures have been
shown to learn some aspects of sentence structure and semantic relations implicitly,
such learning is still imperfect and is likely to be inadequate for robust, comprehensive
sentence representations (Zhang et al. 2020; Hupkes et al. 2020). As such, the goal of
much recent work has typically been to augment transformers with explicit information
about syntactic relations and semantic roles (Colon-Hernandez et al. 2021; Bai et al.
2021). The most common method is to inject such information during training using
treebanks or other syntactic data (Yu et al. 2022). Several recent approaches to such
hybrid models are summarized in Table 4. While we include a range of models in the
table to highlight the diverse range of approaches, we selected S3BERT and AMRBART
as representative hybrid models for further analysis, as they utilize information from
AMR graphs, thereby providing a useful comparison to other AMR-based methods we
analyze.

An examination of recent hybrid models highlights several challenges. First, the
range of approaches is extremely broad, with little consistency between them and
often minimal theoretical justification of each method (Colon-Hernandez et al. 2021).
This makes interpretation of results difficult, especially since even small variations in
preprocessing can significantly impact parsing performance (Kabbach, Ribeyre, and
Herbelot 2018). Second, as shown in the “increase in correlation” column of Table 4,
none of these approaches substantially improve their ability to describe human judg-
ments of sentence similarity, with most models only achieving a 1–2 percentage point
increase in correlation against STS datasets relative to traditional vector-based models.
Third, Yu et al. (2022) recently showed that augmenting transformers with entirely
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Table 4
Summary of hybrid models of sentence meaning. The column “increase in correl.” shows the
percentage point increase in correlation over the best-performing comparable non-hybrid model
(e.g., BERT), as reported in the original paper.
Model Explanation Increase

in correl.
Citation

DRS Sentence similarity computed as a weighted
average of word order, constituency parse, and
embedding similarities.

1.30 Farouk (2020)

SemBERT PropBank semantic roles extracted and encoded
into vectors using BERT. These roles are
concatenated with word embeddings to produce
sentence embeddings.

0.20 Zhang et al. (2020)

Syntax-BERT Mask matrices computed with semantic parsers
indicate which words are syntactically connected.
Transformer attention was then augmented with
these mask matrices.

2.00 Bai et al. (2021)

SynWMD Syntactic distance between components is
estimated by dependency parsing. Sentence
similarity is then computed by word mover
distance weighted by syntactic distance.

0.84 Wei, Wang, and Kuo
(2023)

AMRBART A method based on the BART transformer for
embedding an AMR graph into a vector.

– Bai, Chen, and Zhang
(2022)

S3BERT Modification of SentenceBERT to incorporate
information from AMR parsing of sentences. Also
decomposes the sentence similarity score into
constituent AMR features.

0.60 Opitz and Frank (2022)

EF-SBERT Constituency-parsed semantic elements are
passed through a transformer, then combined with
a full sentence embedding.

0.54 Wang et al. (2022)

SpeBERT Words are paired using dependency parsing to
compute part embeddings, which are
concatenated to give full sentence embeddings.

1.92 Liu et al. (2023)

uninformative parse graphs can improve their performance on various benchmarks,
in line with previous results for Tree-LSTMs (Shi et al. 2018), suggesting that these
improvements may be due to a greater depth of processing of existing input rather than
any crucial role of syntactic information as such.

Given these difficulties, we have developed an alternative approach to develop
novel hybrid models. Instead of attempting to inject information about semantic roles
and syntax into transformers, we take individual word embeddings and then combine
them in accordance with the sentence structure or semantic roles specified by a syntax-
based method. This effectively means using vector-based models at the level of lexical
semantics and syntax-based methods at the level of compositional semantics. The aim is
to combine the flexibility and gradedness of vector-based embeddings with the explicit
structure of syntax-based methods. We explain our novel approach in more detail in
subsection 4.4.

3. Testing Models of Sentence Meaning

Having presented an overview of existing models for representing sentence meaning,
we now consider different methods for evaluating such models. Given our interest is
in assessing how accurately different models of sentence representation describe the
cognitive mechanisms for sentence representation in humans, we focus on evaluation
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methods capable of testing the representations (graphs or embeddings) of different for-
malisms rather than their performance on downstream tasks. We are thus interested in
the cognitive plausibility of these models—their ability to form human-like represen-
tations of sentences, not just whether they are able to perform well in language tasks.
As such, in this section we review the STS approach to evaluation, outline important
limitations of existing datasets and the need for better data, and place our work in
the context of other approaches to evaluating compositionality in models of sentence
meaning.

3.1 Semantic Textual Similarity

Semantic Textual Similarity (STS) involves collecting human judgments of semantic
relatedness or similarity for sets of sentence pairs. A model is assessed against an STS
dataset by computing the cosine similarity of the embeddings assigned to each sen-
tence and then calculating the correlation with human judgments, with higher values
indicating a better performance (Erk 2012; Amigó et al. 2022). STS is an established
and widely used method for evaluating models of sentence representation (Mitchell
and Lapata 2010; Krasnowska-Kieraś and Wróblewska 2019). In contrast to evaluations
using downstream performance, the STS task provides a more direct assessment of the
structure of the model representations (Bakarov 2018; Pavlick 2022), which makes it
easier to identify which aspects of the model are beneficial or detrimental (Ribeiro et al.
2020; Bakarov 2018; Pavlick 2022). We consider various criticisms of STS as an evaluation
method in subsubsection 8.1.3 of the Appendix.

The major English STS datasets are summarized in Table 5. The three largest
datasets, STSb, SICK, and STR-2022, are constructed from sentences extracted from var-
ious online sources, mainly news headlines, forum posts, image captions, Twitter, book
reviews, and video descriptions. The smaller STSS-131 dataset consists of sentences
between ten and twenty words long, all constructed from dictionary definitions. The
GS2011 and KS2013 datasets consist of simple subject-verb-object sentences originally
developed to test models of categorical compositional grammar. All are annotated by
crowdsourced participants without specific training, though the precise instructions
vary across the datasets. Several other less directly relevant datasets are discussed in
subsubsection 8.1.2 of the Appendix.

Table 5
Summary of English STS datasets.

Dataset Stimuli Type Raters Citation

STSb 8,628 Sentence pairs 5 Agirre et al. (2016)
SICK 10,000 Sentence pairs 10 Marelli et al. (2014)
GS2011 200 Sentence pairs 6 Grefenstette and Sadrzadeh (2011)
KS2013 108 Sentence pairs 24 Kartsaklis, Sadrzadeh, and Pulman (2013)
STSS-131 131 Sentence pairs 64 O’shea, Bandar, and Crockett (2014)
STR-2022 5,500 Sentence pairs 8 Abdalla, Vishnubhotla, and

Mohammad (2023)
Mitchell-324 324 Bigram pairs 18 Mitchell and Lapata (2010)
BiRD 3,345 Bigram pairs 17 Asaadi, Mohammad, and

Kiritchenko (2019)
STS3k 2,800 Sentence pairs 20 This article
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3.2 The Need for Better Datasets

Despite the value of the STS approach, existing STS datasets using natural language
sentences have significant limitations. First, the datasets are not optimized for com-
paring multiple models in terms of how well each model captures human judgment
similarity. As we show in subsection 5.2 and Figure 3, even entirely non-compositional
models score high correlations against them. A recent small-scale study of fifty complex
sentences showed a similar result in the STSb and SICK tasks (Chandrasekaran and
Mago 2021). These results indicate that the human ratings in existing datasets primarily
reflect the degree of lexical similarity of the words in each sentence, rather than the
degree of similarity of sentence structure. In other words, existing datasets exhibit a
major confound between lexical and structural similarity, which makes it difficult to
assess the adequacy of different models of sentence meaning since even simple non-
compositional models perform about as well as much more sophisticated models.

Furthermore, the data are of highly variable quality and in the case of STSb, SICK,
and STR-2022, include many sentence pairs that are ambiguous, ungrammatical, too
simplistic, or too complex to be ideal for testing models of compositional semantics (see
Table 6 for examples). This stems from the automated selection of sentences from online
forums, tweets, headlines, and image captions. Many headlines and image captions
are not grammatical sentences, which make parsing difficult and poorly serves the
objective of testing representations of sentence meaning. Others lack sufficient context
for humans to adequately judge their meaning. Many sentences are also either very
short (less than about five words) or very lengthy and convoluted (more than twenty
words with multiple clauses).

These limitations highlight the need for a new STS dataset with a more carefully
curated set of sentence pairs designed specifically to facilitate comparisons between
different representations of sentence meaning. Stimuli need to be carefully designed
to ensure that only models sensitive to sentence structure will score high correlations
against the dataset, thereby controlling for the confound of lexical similarity. Further-
more, all stimuli should consist of complete grammatical sentences with sufficient
context for raters to properly understand their meaning. It is also important to strike
the right balance between sentences that are sufficiently complex to contain variable
structure that affects overall meaning, without being so complex that they are difficult
for human raters or parsing algorithms to assess. These principles inform the design
choices we made in constructing our novel STS3k dataset, as described in subsection 4.1.

In this study, we attempt to overcome the weaknesses of existing STS datasets by
developing a novel dataset called STS3k, consisting of 2,800 sentence pairs rated for
semantic similarity by human participants. Using our novel dataset, we compare vector-
based (including non-compositional baseline models and transformer neural networks),
syntax-based, and hybrid models in terms of how well each model captures human
judgments of sentence similarity.

3.3 Compositional Tasks

Our novel STS dataset also draws inspiration from an alternative approach to evalu-
ating sentence representations using compositional generalization tasks. The focus of
these tasks is to examine how language models learn the underlying structure of a
textual input to perform out-of-distribution generalization. The importance of structure
and compositional generalization was one of the guiding principles in the construction
of our task. We discuss this issue in more detail in subsection 8.1 of the Appendix.
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Table 6
Summary of problems with existing STS datasets. Examples have been chosen to illustrate many
similar sentences found in the datasets STSb, SICK, and STR-2022.

Issue Example sentences Comments Frequency
Simplistic
structure

- A dog is barking.
- A man is playing a

violin.
- A man is frying a

tortilla.

Sentences with only a
copula verb are often
too simple to assess
composition.

In image caption
portion, 3,218 of
6,500 sentences
contain only the
verb “is.”

Sentence
fragments,
lacking in context

- You should prime it
first.

- How do you do that?
- 5 nations meet on

haze.
- Well I wouldn’t risk it,

not in a cold compost
system.

- Websites battle nasty
comments, anonymity.

Human judges likely to
struggle with missing
words or lack of
context to assess
meaning.

In a sample of 50
sentences from
the deft-forum
portion (forum
posts), we found
13 (26%) have

undefined pronouns
or are sentence
fragments.

Very short
sentences

- People walk home.
- A man is talking.
- The gate is blue.

Too simple to be
useful for assessing
meaning composition.

Of 3,000 sentences
in the MSRvid
portion (video
captions), 256 have
only four words or
fewer.

Very long
sentences

The Justice Department
filed suit Thursday
against the state of
Mississippi for failing
to end what federal
officials call ‘disturbing’
abuse of juveniles and
unconscionable conditions
at two state-run facilities.

Too complex to be
ideal for assessing
meaning composition.

Common in the
MSRpar portion
(news headlines),
where 903 of 3,000
sentences are
longer than 20
words.

Unfamiliar
acroynms, proper
nouns

- Results from No. 2 U.S. soft
drink maker PepsiCo Inc.
(nyse: PEP - news - people)
were likely to be in the
spotlight.

- Serrano * ES 4705
D m (2)

Sentences cannot be
understood without
prior knowledge that
humans and models
may lack.

Common in MSRpar
portion (news
headlines), with
an average of 4.3
uppercase letters
per sentence, owing
to many acronyms
and proper nouns.

4. Methods

4.1 Dataset Construction

Here we introduce our novel dataset STS3k.4 It consists of 2,800 handcrafted sentence
pairs rated for semantic similarity by crowd-sourced respondents. In order to avoid
some of the limitations described in subsection 3.2, we developed a set of sentences

4 The STS3k dataset and related code is available at https://github.com/bmmlab/compositional
-semantics-eval.
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adhering to a specified structure, designed to test specific aspects of compositional mod-
els. The motivation behind developing our dataset was to develop a new benchmark
that combines the systematic variation in components of the compositional tests with
the linguistic plausibility and structure of natural language sentences from STS datasets.
To provide a more controlled set of stimuli for testing the impact of sentence structure on
similarity, and to mitigate some of the limitations of existing STS datasets described in
subsection 3.2, our dataset includes only single-clause sentences consisting of a subject,
a verb, a direct object, and various combinations of optional elements. Sentences follow
the following structure, with optional elements (which typically correspond to adjuncts
for the main verb) shown in square brackets:

Sentence = [Adjective] + Subject + [Adverb] + Verb + [Adjective] + Object

+ [Manner] + [Adjective] + [Indirect Object] + [Time] + [Place]
(1)

Sentences were constructed excluding the following syntactic dependencies and
word types:

• Auxiliary verbs, including modal verbs. This was to ensure that each
sentence had only a single verb. An exception was made for sentences
converted to passive voice.

• Conjunctions. These are unnecessary as sentences consist of a single
declarative clause.

• Pronouns. These words convey little semantic content and were replaced
with an appropriate regular noun.

• Proper nouns. These have semantic properties different from regular
nouns and may be unfamiliar to some participants.

• Explicit negation. Negation is especially difficult to encode in vector-based
models, and we decided to leave this aspect to further research.

Sentences pairs were designed to systematically vary different semantic elements
to test the effect of each element on the meaning of the overall sentence. The different
sentence types are described in detail in Table 7. The dataset consists of two portions:
non-adversarial and adversarial. The non-adversarial portion is comparable to existing
STS datasets (though with a more controlled structure), consisting of sentences with
varying numbers of components changed. It serves as a baseline of comparison for the
adversarial portion. For example, one non-adversarial sentence pair is:

Malaria infects millions of people each year.

Malaria occurs mostly in tropical countries.

The adversarial portion of the dataset is inspired by adversarial approaches to
machine learning models, where a set of stimuli is constructed deliberately to probe
the capabilities of a particular model or technique (Nie et al. 2020). We are interested
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Table 7
Summary of types of sentence pairs included in the STS3k dataset.

Pair Type Count Adversarial Explanation
Zero 70 No Two sentences with no words in common and

no obvious similarity in meaning.
Adjective 61 No A single adjective added before the subject,

direct object, or indirect object in one of the
sentences.

Constant verb 96 No Verb is kept the same, but all other components
are changed.

Constant dobj 88 No Direct object is kept the same, but all other
components are changed.

Constant subj 94 No Subject is kept the same, but all other components
are changed.

Single change (verb) 137 No Subject and direct object are kept the same, but
verb and modifiers are changed.

Single change (dobj) 138 No Subject and verb are kept the same, but direct
object and modifiers are changed.

Single change (subj) 153 No Direct object and verb are kept the same, but
subject and modifiers are changed.

Other 218 No Variants that do not fit into the above categories,
mostly involving ad hoc interchanges of various
sentence elements.

Check 10 No Attention check items.
Paraphrase 71 Yes Two sentences with similar meanings but few or

no words in common.
Added modifiers 679 Yes Two sentences with the same major semantic

roles (subject, verb, and direct object), but with
between one and six modifiers added to one
sentence in the pair.

Double swap 538 Yes Either the verb and the direct object, or the verb
and the subject, or the direct object and the
subject are swapped, leaving the third element
unchanged.

Triple swap 197 Yes All three of the verb, direct object, and subject
are interchanged.

Quadruple swap 179 Yes All four of the verb, direct object, indirect object,
and subject are interchanged.

Negative 71 Yes Two sentences which describe opposite situations,
but without using explicit negation words
like “not.”

Total 2,800 1,735

in developing a dataset on which entirely non-compositional models perform poorly,
thereby allowing us to test more directly for compositional capability and avoid the
limitation of existing STS datasets discussed above, on which even non-compositional
methods perform well. The key consideration was therefore to generate sentence pairs
where lexical similarity was dissociated with overall similarity in meaning. This takes
two forms: sentence pairs with low lexical similarity but relatively high similarity in
overall meaning, or with high lexical similarity but relatively low similarity in overall
meaning.

To achieve the first case (low lexical similarity but high overall similarity),
we developed two types of sentence pairs: “paraphrases” and “added modifiers.”
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Paraphrase pairs contain two sentences designed to have a very similar overall meaning
with minimal lexical overlap. Added modifier pairs were constructed by keeping the
same major sentence roles (subject, verb, and direct object) fixed, while adding various
numbers of secondary modifying elements such as time, manner, place, trajectory, or
adjectives, thereby reducing lexical overlap while keeping the core meaning similar
across both sentences. For example:

The plane crashed in the desert.

The cargo plane crashed in the rocky desert near the oasis at night.

To achieve the second case (high lexical similarity but lower overall similarity), we
developed three types of sentence pairs which we call “swaps.” These involve inter-
changing two or more words within a sentence, leaving the transformed sentence with
(mostly) the same words as before but with the words now serving different roles. For
example:

The professor asked the student for help.

The student asked the professor for help.

Here the subject and direct object (“professor” and “student”) have been interchanged,
yielding a sentence with the same words but a different meaning. Because two elements
have been interchanged, we call this a “double swap.” An example of an even more
strongly adversarial pair is:

The firm paid for the project with the new government.

The new government projected increased pay for the firm.

Here there have been four interchanges of word components: the subject and indirect
object (“firm” and “new government”) and the verb and direct objects (“paid” and
“project”) in this case, with some minor modifications to ensure grammatically. Since
four elements have been interchanged, we call this a “quadruple swap.”

The adversarial portion of our dataset consists largely of variations of this ap-
proach of interchanging different sentence components. This ensures that entirely non-
compositional models, such as mean word embeddings, will give high similarity ratings
to such sentences because they contain mostly the same words. Only models that
correctly identify the structure of the sentence and the relationship between the different
components are expected to yield accurate similarities. In addition, we also include
some “negative” sentences that have mostly the same words, but express the opposite
meaning due to implicit negation.

As we show in subsection 5.2, particularly Figure 3, this method of construc-
tion succeeded in generating a dataset that differentiates between compositional
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and non-compositional models of sentence meaning by removing the confound of
lexical similarity.

4.2 Human Similarity Judgments

A total of 523 participants (322 male, 167 female, and 12 other; age range, 18–45
years; mean age ± SD, 32.4 ± 7.0 years) were recruited using the Prolific platform
(https://www.prolific.com/). Participants were paid £4.50 for completing the task,
which took an average of 24.6 minutes, amounting to an hourly rate of £10.96. All
participants were self-declared native English speakers in Australia or the United States.
The study protocol was approved by the University of Melbourne Human Research
Ethics Committee (Reference Number: 2023-23559-36378-6).

Each participant provided similarity judgments on a 7-point Likert scale (1–7) of
110 sentence pairs randomly selected from the pool of 2,800 pairs. Given the inherent
vagueness of the similarity judgment task, previous studies have noted that detailed
instructions on how to make similarity judgments are often unclear, or may bias partici-
pant responses (Abe et al. 2022; Abdalla, Vishnubhotla, and Mohammad 2023). Because
our goal was to elicit intuitive judgments without imposing any particular framework
that might bias results towards a subset of models, we did not provide participants with
any special training or instructions about how to allocate ratings. We simply asked them
to “consider both the similarity in meaning of the individual words contained in the
sentences, as well as the similarity of the overall idea or meaning expressed by the sen-
tences.” The full instructions given to participants can be found in subsubsection 8.2.1
in the Appendix.

Participants were also presented with additional 10 sentence pairs that served as
an attention check. These stimuli consisted of either pairs of identical sentences (high
similarity) or one simple sentence paired with a grammatically correct but nonsensical
sentence (low similarity). We excluded all participants who failed more than one of
the attention check items, resulting in 501 out of 523 participants being retained. This
amounted to 55,110 judgments, providing an average of 20 ratings for each sentence
pair. Similarity judgments were averaged over participants and normalized between 0
and 1 to yield the final STS3k dataset.

4.3 Evaluation of Vector-based Models

We evaluated various vector-based models, including non-compositional Mean, Mult
(multiplication), and Conv (convolution) models, as well as all the neural network
models (see Table 2 for details), based on the consistency between the model-predicted
similarities of sentence pairs and human judgments of the similarity of sentence pairs.
To obtain the model-predicted similarities on the STS3k dataset, cosine similarities of
the sentence embedding vectors between sentence pairs were computed. The cosine
similarities were then compared with human similarity judgments using the Spearman
correlation coefficient to evaluate model performance. We utilize the Spearman rank
correlation since different models may give different distributions of similarities (e.g.,
some may tend to rate most sentences high, others may tend to rate them low); the
Spearman correlation coefficient considers only the relative ordering of sentence simi-
larities, which can be meaningfully compared across models.

Sentence embeddings using the Mean, Mult, and Conv methods were computed
by performing the corresponding operation element-wise on the ConceptNet word
embeddings for each word of the target sentences after removing stop words. All
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other vector-based models (including InferSent and all transformer-based models) were
utilized as pre-trained models without any further modification or training. The last
output layer was used for neural network architectures designed specifically for rep-
resenting sentences (InferSent, USE, SentBERT, DefSent, and OpenAI Embeddings). In
the case of the general-purpose transformer ERNIE, we computed cosine similarities
using both the input layer (layer 0) and the final layer (layer 12). For all transformers,
the sentence embeddings were normalized by subtracting the mean and dividing by
the standard deviation of each feature. This was found to improve the correlation
with human judgments, and is motivated by previous research indicating that without
normalization, transformers tend to learn very anisotropic embeddings with a few
dimensions dominating over all the others (Timkey and van Schijndel 2021; Cai et al.
2021). See Table 12 in the Appendix for details of all the models tested.

4.4 Evaluation of Syntax-based Models

We adopted AMR as a representative syntax-based model for representing sentence
meaning. We used the SapienzaNLP (Spring) AMR parser (Bevilacqua, Blloshmi, and
Navigli 2021) to parse all sentences, as it is among the best-performing AMR parses
with freely available and easily implementable code. As discussed in subsection 2.4,
evaluating syntax-based models also requires a method for computing the similarity
between the graphs for each sentence. While various techniques have been developed
for converting graphs into vector embeddings, these have typically focused on knowl-
edge databanks rather than natural language (Goyal and Ferrara 2018; Rossi et al.
2021). Furthermore, we are interested in testing graph-based models of representing
sentences more directly, rather than the embeddings produced from these graphs. As
such, we analyze the similarity of AMR-embeddings using two existing methods for
comparing graph similarity directly: SMATCH (Cai and Knight 2013) and WWLK
(Opitz, Daza, and Frank 2021). The corresponding sets of similarity ratings are therefore
referred to as AMR-SMATCH and AMR-WWLK, indicating both the deep-syntactic
formalism used and the method of similarity adopted for comparing sentences. As
for the vector-based models, the fit to human similarity judgments was estimated
by computing the Spearman correlation coefficient between model similarities and
human judgments.

4.5 Evaluation of Existing Hybrid Models

Two of the hybrid models we examine (AMRBART and S3BERT) utilize vector embed-
dings for the final sentence representation, and so for these models use cosine similarity
to compute sentence similarities. Once again, the fit to human judgments was estimated
using the Spearman correlation coefficient.

4.6 Development of Novel Hybrid Models

Inspired by previous work (Salehi, Cook, and Baldwin 2015; Wang, Mi, and Ittycheriah
2016; Farouk 2020), we developed a novel method for evaluating the similarity of parse
trees as a linear combination of the similarity of various sentence components. The
key idea is to represent each sentence as a combination of the major semantic roles
that describe the relevant situation (Chersoni et al. 2019). Several previous studies have
implemented comparable hybrid methods using weighted averages of various sentence
elements. Farouk (2020) compute sentence similarity as the weighted average of word
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order similarity, constituency parse similarity, and overall embedding similarity. Wang
et al. (2022) and Liu et al. (2023) each implement a slightly different method involving
computing embeddings of constituency-parsed semantic elements of a sentence, which
are then combined together to produce a full sentence embedding. Our approach is
designed to combine the flexibility and gradedness of vector-based models with the
explicit structure provided by syntax-based models. The major downside to this method
is that we are only able to incorporate specific predefined aspects of syntax. We discuss
this in further detail in subsection 6.3.

Our two novel hybrid models differ from previous hybrid approaches in that they
do not use any neural network architecture at all, nor do they represent a sentence using
a single final embedding. Instead, the meaning of a sentence is represented as a set of
embeddings (see Figure 1 for an illustration), each of which is computed by averaging
the word embeddings for all words in a given parse element, where elements are
taken from either AMR (Banarescu et al. 2013) or VerbNet (Palmer, Bonial, and Hwang
2016), depending on the model. In the VerbNet case, we parsed each sentence using a
VerbNet semantic role labeling algorithm, then computed the embeddings for each role
by averaging over the static ConceptNet word embeddings for each word associated
with that role. As far as we are aware, use of ConceptNet word embeddings for such a
purpose is also novel. These were chosen as the highest performing word embeddings
on word similarity datasets (Fodor, De Deyne, and Suzuki 2023). The overall sentence
similarity was then computed as the weighted average of role-wise similarities. In
the AMR case, we first parsed each sentence using an AMR parser, then computed
the embeddings for each level of the parse tree by averaging over static ConceptNet
word embeddings of each leaf node. Leaves at the same level of the parse tree are
then aligned, and the overall sentence similarity is computed as the weighted average
of these aligned leaf embeddings. We refer to these hybrid models as “AMR-CN”
and “VerbNet-CN” to emphasize that they involve combining the relevant parsing
method with the ConceptNet (CN) word embeddings. Below we outline our process
for computing the similarity of VerbNet semantic role and AMR parses of sentence
pairs in detail.

VerbNet-CN similarities were computed as follows:

1. Compute the VerbNet semantic roles for each sentence using the
SemParse Docker image provided in the SemLink project (Gung 2020).
We used this as a high-performing and easy-to-use semantic role labeling
algorithm.

2. Manually adjust the automated output to ensure consistency and rectify
improperly parsed sentences. Improper parsing was usually the result of
failing to correctly identify the main verb of the sentence or
inconsistently classifying similar elements into different roles.

3. Consolidate all semantic roles into eight basic categories. These were
based on the General Thematic Roles from the VerbNet Unified Verb
Index.5 In addition to the Verb, we selected the most commonly used
roles Agent, Patient, Theme, and grouped most of the less common roles

5 See documentation at https://uvi.colorado.edu/references_page.
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into Location, Trajectory, Manner, and Place. As an additional check on
our method, we used the GPT-4 model of the OpenAI Chat Completions
API6 to directly parse each of the STS3k sentences using the same eight
semantic roles. We give the full instruction in subsubsection 8.2.1

4. Compute the embeddings of each semantic role by averaging the static
ConceptNet embeddings of each constituent word after the removal of
stop words. Words that are not associated with any semantic role are
discarded.

5. Compute the cosine similarity between the embeddings of each semantic
role of the first sentence with the corresponding semantic role of the
second sentence. This yields eight similarity scores, which we refer to as
the RoleSims, one for each semantic role.

6. To improve matching between similar sentences with different
structures, we paired non-identical semantic roles when no exact match
could be found. For example, if one sentence had an Agent but no
Patient, while the second sentence had a Patient but no Agent, then the
Patient and Agent similarity would be calculated and used in the
calculation for the overall sentence similarity. This matching process was
hard-coded to operate in the same way for all sentence pairs.

7. Finally, compute the sentence similarity as a weighted average of
RoleSims. This is depicted in Equation (2), where s1 and s2 represent the
two sentences to be compared, and ri,1 and ri,2 represent the semantic role
embeddings for role i.

8. The RoleSim weights βi were chosen using a separate pilot dataset
consisting of simple subject, verb, and object sentence pairs along with
similarity ratings provided by human participants. By rounding the
estimated parameters from this pilot data, we set the weight of 3 for the
Verb and 2 for Agent, Patient, and Theme. As this pilot data only
included simple sentences without additional semantic roles, we selected
lower weights of 0.5 for Time, Manner, Location, and Trajectory based on
the intuition they would have less impact on sentence meaning than
Agent, Patient, or Theme. We opted to use fixed parameters rather than
learn them from the STS3k data to avoid giving the VerbNet-CN model
an unfair advantage over the transformer models, which had no
parameters adjusted based on the STS3k dataset. Also, as shown in
Figure 6, the performance of VerbNet-CN is not dramatically changed
even when the parameters are learned directly from the STS3k dataset.
All pilot data is available on our GitHub repository.

SentSim (s1, s2) =
8∑

i=1

βi · RoleSim
(
ri,1, ri,2

)
(2)

6 https://platform.openai.com/docs/guides/text-generation/chat-completions-api.
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AMR-CN sentence similarities were computed as follows:

1. Sentences were parsed using the SapienzaNLP (Spring) AMR parser
(Bevilacqua, Blloshmi, and Navigli 2021).

2. Each token in the sentence was assigned an “AMR role” in accordance
with its location in the parse tree. This was constructed by concatenating
all nested parse labels.

3. Role similarities were computed as the cosine similarity between the
averaged ConceptNet word embeddings for all tokens with the same
AMR role in each sentence of a sentence pair.

4. Compute the final sentence similarity as average role similarity over all
roles found in either sentence:

SentSim (s1, s2) = 1
n

n∑
i=1

RoleSim
(
ri,1, ri,2

)
(3)

4.7 Fine-tuning Against the STS3k Dataset

To investigate whether fine-tuning against our STS3k dataset would improve model
performance, we developed a series of models to predict human similarity judgments
by training a classifier using the STS3k dataset. Following a similar methodology to that
used in previous studies (Reimers and Gurevych 2019; Etcheverry and Wonsever 2019),
we trained a simple classifier taking the concatenated embeddings for two sentences
as input and outputting a number between 0 and 1, corresponding to the predicted
human-rated similarity of the two sentences. Because our VerbNet-CN model has only
eight parameters (one for each of the semantic roles), we first used principal component
analysis to reduce the dimensionality of the sentence embeddings for each arithmetic
and neural network model, retaining the top eight components to match the number
from VerbNet-CN. We then trained simple feed-forward neural networks with between
zero and three hidden layers, each fitted using a subset of the STS3k dataset and
evaluated on a holdout testing subset. The number of hidden units and total number of
parameters is shown in Table 8. We selected the number of hidden units so that the total
number of parameters increased by roughly a factor of ten for each additional layer. The
models were trained using Sklearn MLPRegressor 1.2.2 with default parameters. We
trained two sets of models, first a random train/testing split and then a split where the
model was trained on the non-adversarial subset and tested on the adversarial subset
(excluding negatives). The purpose of the latter split was to analyze out-of-distribution
generalization, a crucial component of compositional reasoning. As an additional check,
we also performed this analysis without any dimensionality reduction.

Table 8
Parameters used for training a feed-forward neural network for fine-tuning against the STS3k
dataset.

Num hidden layers Hidden units Total parameters
0 0 8
1 10 80
2 60, 100 1,090
3 100, 100, 10 11,810
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In a separate analysis, we performed a full fine-tuning of the SentenceBERT model
using a script provided by the authors of this model (Reimers 2021). All parameters
in the model were adjusted during training over 1,000 evaluation steps and 4 training
epochs. As before, we performed the fine-tuning using a random train/testing split, and
also a split based on training on the non-adversarial subset of STS3k and testing on the
adversarial subset.

5. Results

In this section, we begin by presenting key descriptive statistics and assessing the
quality of our STS3k dataset. We then use our dataset to evaluate a range of models
of sentence meaning, first without any specific training on our dataset, and then with
fine-tuning on the STS3k dataset. Finally, we investigate the STS3k results in more depth
to determine what effect different sentence components have on human judgments of
sentence meaning.

5.1 STS3k Dataset Descriptive Statistics

The normalized sentence similarity ratings ranged from 0 to 0.975 with the mean =
0.442 and SD = 0.242. As shown in Figure 2, the shape of the ratings histogram is sig-
nificantly different from that obtained by randomly shuffled ratings (p = 4.3× 10−119,
Kolmogorov–Smirnov test). Those results indicate that the similarity ratings cover almost
the entire range of the rating scale in a systematic non-random manner.

To assess the consistency of ratings across participants, we computed the average
standard deviation of similarity scores for each sentence pair across participants. We
found this to be equal to 0.216, which is comparable to the 0.19 adjusted average
standard deviation of the SICK dataset (Marelli et al. 2014) and slightly above the 0.163
of the STSS-131 dataset (O’shea, Bandar, and Crockett 2014). Moreover, we computed
the split-half reliability with the Spearman-Brown correction for the entire dataset as

Figure 2
Histogram of normalized ratings of sentence pairs, showing the actual distribution and the
distribution obtained by shuffling ratings within each participant.
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Table 9
Comparison of Spearman correlations of sentence similarities computed by various sentence
models with human-rated sentence similarities from major STS datasets. An explanation of the
models is given in Table 12 in the Appendix, and an explanation of the datasets is given in
Table 5. Model types are separated by a horizontal line, from top down: vector-based arithmetic
models using ConceptNet word embeddings, vector-based neural network models,
syntax-based models, and hybrid models. The highest correlation for each dataset is shown in
bold. STSb-capt: STSb-captions, STS3k-all: the entire STS3k dataset, STS3k-non:
STS3k-non-adversarial, STS3k-adv: adversarial portion of STS3k.

Model Name STSb- STSb- SICK STSS- STR- STS3k- STS3k- STS3k-
capt test 131 2022 all non adv

Mean-CN .806 .689 .597 .871 .612 .368 .800 −.291
Mult-CN .260 .169 .273 .274 .057 .096 .450 −.333
Conv-CN .164 .158 .268 .078 .057 −.042 .323 −.462
InferSent .798 .661 .663 .868 .657 .445 .830 −.088
USE .881 .795 .702 .900 .746 .442 .824 −.071
ERNIE-0 .619 .550 .601 .713 .592 .423 .799 −.206
ERNIE-12 .604 .549 .597 .809 .617 .576 .834 .227
SentBERT .929 .836 .804 .939 .821 .580 .866 .145
DefSent .903 .812 .785 .942 .779 .701 .868 .494
OpenAI .923 .835 .805 .960 .847 .598 .890 .184
AMR-SMATCH .565 – .502 .653 .435 .424 .666 .029
AMR-WWLK .738 – .633 .829 .618 .316 .710 −.270
AMRBART .699 .621 .637 .800 .616 .490 .837 .053
S3BERT .931 .841 .811 .940 .826 .571 .865 .122
AMR-CN .391 – .517 .434 – .602 .631 .608
VerbNet-CN .565 – – – – .672 .652 .647

0.953, indicating very high agreement between individual raters. Inter-rater agreement
was also very high for each portion of the dataset, with values of 0.950 for the non-
adversarial and 0.940 for the adversarial portions, respectively. We also computed
linearly weighted Cohen’s kappa using the same split-half method, finding values of
0.832 for the entire dataset, 0.825 for the non-adversarial portion, and 0.804 for the
adversarial portion.

5.2 Comparative Evaluation of Sentence Models

We next evaluated the fit of each computational sentence model with existing STS
datasets and our new STS3k dataset without any additional training. For this purpose,
we computed the Spearman correlation between model-derived similarities and human
similarity ratings of sentence pairs. The complete set of results is shown in Table 9.
As described in subsection 4.3, sentence similarities for all vector-based models were
computed using cosine similarity. Sentence similarities for the syntax-based models are
computed using SMATCH or WWLK metrics, as outlined in subsection 4.4 . Similar-
ities for the novel hybrid methods (AMR-CN and VerbNet-CN7) were computed as
described in subsection 4.6.

7 Here and throughout the remainder of the article we report VerbNet-CN results generated using the
SemParse parser. Selected results from the GPT-4 parser are presented in subsection 8.3 in the Appendix.
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Figure 3
Comparison of correlations of a non-compositional method (the Mean-CN model) and the best
performing neural network method (the DefSent transformer) on three existing STS datasets and
the STS3k dataset. For the STS3k dataset, correlations are shown for the full dataset, for the
non-adversarial portion, and for the adversarial portion. The difference between these two
values (DefSent - Mean) provides a measure of the degree to which sentence structure (as
measured by DefSent) contributes to similarity scores above and beyond lexical similarity.

5.2.1 Existing Datasets Cannot Effectively Discriminate Between Sentence Models. We first
demonstrate that existing datasets cannot differentiate between the non-compositional
Mean-CN model and more complex models of interest. On the existing STSb, SICK,
and STSS-131 datasets, even the non-compositional Mean-CN model performs fairly
well compared to other neural-network, syntax-based, and hybrid models (Table 9),
indicating that current STS datasets cannot effectively discriminate between these mod-
els. For example, as illustrated in Figure 3, there is only a small difference in the
Spearman correlation (0.1–0.2 points) between the non-compositional Mean-CN model
and the DefSent transformer neural network model. Similar levels of difference (0.1–
0.3 depending on the dataset) are observed for other neural network models, including
OpenAI and SentBERT. The Spearman correlations of syntax and hybrid models are
highly variable, ranging from even lower than the non-compositional Mean-CN model
in the case of AMR-WWLK, to being comparable to the best transformer models in
the case of S3BERT. Overall, these results indicate that existing datasets are easy even
for entirely non-compositional models, and hence are inadequate for testing models of
human representation of sentence meaning.

5.2.2 Our STS3k Dataset Can Discriminate Between Sentence Models. By contrast, on our
new STS3k dataset, the gap between the non-compositional Mean-CN model and other
complex models is much larger. This difference is best illustrated by comparing the non-
adversarial portion of the STS3k dataset to the adversarial portion (see Figure 3). While
both use the same controlled syntax, only the adversarial portion incorporates sentences
with structural manipulations specifically designed to be difficult for models that do
not account for compositional aspects of sentence meaning. Applying this insight, we
find that both the non-compositional Mean-CN model and transformer models (DefSent
shown for illustration) perform similarly well on the non-adversarial portion of the new
dataset, with correlations of 0.800 and 0.868 respectively, a difference of only 0.068.
By contrast, on the adversarial portion the non-compositional Mean model performs
poorly, achieving below-chance levels with a negative correlation of −0.29, while the
correlation of DefSent falls to 0.49. Because of the very low performance of the non-
compositional baseline model, the difference between the Mean-CN and the DefSent
transformer reaches 0.8 (Figure 3). Since the adversarial and non-adversarial portions
of the STS3k dataset are otherwise similar, these results demonstrate that unlike exist-
ing STS datasets, STS3k is able to discriminate between the non-compositional Mean-
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Figure 4
Comparison of correlations of all models against the non-adversarial portion of the STS3k
dataset (STS3k-non) and the adversarial portion of STS3k (STS3k-adv), along with the difference
between these two values. More negative values of the red bar indicate greater difficulty in
modeling sentence meaning when compositional aspects are important.

CN model and other models of interest. The fact the difference emerges only for the
adversarial portion of the dataset indicates that the dramatic change in performance
is due to the introduction of structural manipulations as discussed in subsection 4.1.
This highlights the importance of utilizing stimuli which can adequately probe the
importance of sentence structure by controlling for the confound of lexical similarity.

5.2.3 Novel Hybrid Models Outperform All Other Models on the STS3k Dataset. We now
compare the performance of the more advanced vector-based, syntax-based, and hybrid
models on our new STS3k dataset. All neural network models and some syntax-based
ones (e.g., S3BERT) provide very good predictions of human similarity judgments on
the non-adversarial portion of the dataset (STSk-non in Table 9). However, on the
adversarial part of the dataset, most transformer models show very low correlations
of less than 0.2 (Table 9; see discussion below for further details). The syntax-based
models also perform fairly poorly, with negative or low positive correlations. Only our
two novel hybrid models, AMR-CN and VerbNet-CN, achieve similar high correlations
for both subsets of the STS3k dataset (around 0.6–0.65). These results highlight the
superiority of the hybrid models to the other vector-based and syntax-based models
in capturing human compositional representation of sentence meaning.

To further elucidate the differential performance of the various models of sentence
meaning, we quantitatively compare their performances on the non-adversarial por-
tion of the STS3k dataset (STS3k-non) to the adversarial portion only (STS3k-adv: see
Figure 4). If a model has a much higher correlation with the non-adversarial dataset
than with the adversarial portion, this means the model has difficulty when composi-
tional aspects of sentence meaning become prominent. As expected, the entirely non-
compositional Mean model shows the greatest difference in correlations of about 1.1.
Older neural network models, including InferSent, USE, and the first layer of ERNIE,
achieve somewhat lower scores of around 0.9. More recent transformer models, includ-
ing SentBERT and OpenAI, along with hybrid models like S3BERT, have lower differ-
ences of around 0.7, while the best-performing transformer model (DefSent) only has a
difference of 0.36. The lowest differences of all, close to zero, are shown by our novel
hybrid models AMR-CN and VerbNet-CN. These results show a general trend of newer
and larger neural network models exhibiting improved compositional capabilities, but
the hybrid models show by far the greatest ability to incorporate compositional aspects
of sentence meaning.

5.2.4 Transformers Are Insufficiently Sensitive to Sentence Structure. To illustrate the reason
for this divergence in performance, in Figure 5 we plot the human-rated sentence

163



Computational Linguistics Volume 51, Number 1

Figure 5
A comparison of three models of sentence meaning showing model cosine similarities on the
vertical axis and human-rated sentence similarities on the horizontal axis. The colors highlight
different subsets of the STS3k-adv dataset. Gray: all sentence similarities from the adversarial
portion; purple: quads; orange: doubles; red: new modifiers.

similarities for selected subsets of the STS3k adversarial dataset against the model
cosine similarities for the Mean-CN, OpenAI, and VerbNet-CN models. The Mean-
CN plot shows that for an entirely non-compositional model, only lexical similarity
affects sentence similarity. As expected, this results in nearly all sentences with high
lexical similarity, including quadruple swap, double swap, and added modifier sentence
pairs, receiving high similarity scores. By contrast, the VerbNet-CN model provides
similarity ratings much closer to human participants, with quadruple swaps being
rated the least similar, double swaps receiving moderate similarity ratings, and added
modifiers receiving highest similarity ratings. OpenAI Embeddings perform somewhat
better than Mean-CN, with quadruple swaps receiving lower similarity ratings than
double swaps, but overall the pattern is comparable to Mean-CN and constitutes a
poor match to human ratings. These discrepancies highlight that even a sophisticated
transformer model like OpenAI has not constructed sentence embeddings that reflect
the core structural elements of the sentences. Swapping multiple sentence elements has
little effect on cosine similarities, even though humans judge the resulting sentences to
be very different in meaning. We discuss these trends across different types of sentences
more systematically in subsection 5.4.

5.3 Fine-tuning Against the STS3k Dataset

In the previous section, we evaluated the representations of different sentence models
without specific training on the STS3k dataset. In this section, we consider the impact of
fine-tuning sentence representations against the STS3k data. Specifically, we compare
the best-performing neural network transformers (SentBERT, OpenAI, ERNIE, and
DefSent) to the VerbNet-CN hybrid model, and also include as the non-compositional
Mean-CN word embeddings for comparison.

5.3.1 Interrogating Model Performance Using Fine-tuning. One problem with training
neural network models on sentence embeddings is that the embeddings of different
models have differing numbers of dimensions, and hence the resulting neural network
models have different numbers of parameters for the learned weights, which can act
as a confound (Eger, Rücklé, and Gurevych 2019). We control for this confound by
using PCA to reduce the dimensionality of model embeddings (Ferrone and Zanzotto
2020), retaining the eight leading PCA components of each model to match the eight
parameters of VerbNet-CN. We then used this low-dimensional representation to train
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Figure 6
Correlations between model-predicted and human similarity judgments (vertical axis) against
the number of parameters of the neural networks used for fine-tuning (horizontal axis). The left
subplot corresponds to a random test/train split. The right subplot shows results after training
on non-adversarial sentences and testing on the adversarial sentences.

neural network models with varying numbers of parameters to predict human sentence
similarity judgments in the STS3k dataset. The purpose of varying the number of
parameters is to determine the difficulty of learning the mapping between the model
PCA components and the human similarity judgments. We also note that while it is
likely that more sophisticated methods than PCA could show improved performance,
our purpose here is only to examine whether the transformers were able to learn the
adversarial portion of the STS3k dataset when trained on the non-adversarial data,
not to compare different dimensionality reduction methods.8 We perform this analysis
using two different test/train splits. The first is simply a random split over the entire
dataset. The second uses an adversarial split, with the non-adversarial subset used
for training and the adversarial subset used for testing. This second split provides a
much stronger test of the compositional capabilities of each model by forcing out-of-
distribution generalization.

5.3.2 Transformers Do not Learn Generalizable Similarity Ratings. The results of this fine-
tuning are shown in Figure 6. We observe that for the random split (left subfigure),
the hybrid VerbNet-CN model shows fairly consistent correlations of around 0.7, with
little change when the number of parameters increases. By contrast, the transformer
models (SentBERT, OpenAI, DefSent, and ERNIE) show very low correlations of around
0.2–0.3 with few parameters, but as the number of parameters increases, the differ-
ence in correlation narrows considerably. With enough parameters, all models can
predict human judgments with correlations of 0.7–0.8. By comparison, none of the
transformers could learn the task when trained on the non-adversarial set and tested

8 We also show in subsubsection 8.3.1 in the Appendix that similar results are observed when we perform
the same analysis without dimensionality reduction.

165



Computational Linguistics Volume 51, Number 1

Figure 7
Correlations between STS3k-adv and the SentBERT (blue) and VerbNet-CN (orange) models,
with three different methods of training.

on the adversarial set of the STS3k dataset (right subfigure). The performance of the
VerbNet-CN model did not improve significantly with training, though it also did not
degrade and maintained at a fairly high correlation of around 0.6 regardless of the num-
ber of parameters. These results indicate that with enough parameters and training on a
random training/testing split, all models can perform well on the testing set. However,
when there are few parameters or when trained only on the non-adversarial portion of
the STS3k dataset and tested on the adversarial portion, transformer models perform
very poorly and cannot learn the task. This constitutes evidence that, unlike humans,
the sentence representations of the transformer models we tested do not readily support
compositional generalization to sentences different from those seen in their training set.

We found similar results when fine-tuning a full neural network model without
any dimensionality reduction. In this case, we used SentBERT, the best-performing
sentence transformer for which fine-tuning was possible, and compared the results to
the fine-tuned hybrid VerbNet-CN model (Figure 7). When neither model was given
any specific training on the STS3k dataset (no training), SentBERT performed very
poorly, with a correlation of only 0.17 compared with 0.65 for VerbNet-CN. When both
models were fine-tuned on a representative subset of the entire STS3k dataset (random
split), both achieved high correlations of around 0.8–0.85. Most interestingly, when each
model was fine-tuned only on the non-adversarial portion of the dataset and evaluated
on the adversarial portion (adv split), SentBERT achieved only a modest increase to
0.4, while VerbNet-CN slightly decreased to 0.57. These results indicate that even a
complex transformer model trained specifically to learn sentence representations and
fine-tuned on a similar dataset has limited ability to generalize to adversarial example
sentences. By contrast, our hybrid VerbNet-CN model can represent the structure of
such adversarial sentences even without any training.

5.4 Analyzing Different Sentence Components

We conducted additional analyses on the STS3k dataset to better understand why some
models perform much better than others. We hypothesized that the best-performing
models more accurately represent sentence structure, particularly how word order
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affects sentence meaning and the logical relation between sentence components. One
way to measure this while controlling for lexical similarity is to interchange two
words in a sentence (e.g., the subject and the object), thus altering sentence structure
while largely preserving the constituent words. Figure 8 shows the rated similarity
of sentence pairs categorized by the type of sentence manipulation, along with the
predicted similarity from various compositional models. Smaller structural changes to
the sentence are shown on the left, while progressively larger structural changes are
shown farther to the right. Note that we opted to position negation on the far right
of the graph even though it involves few structural changes, as humans are known
to rate antonyms and negated sentences as highly dissimilar (Fodor, De Deyne, and
Suzuki 2023). The results show that human judgments are sensitive to the number of
substitutions in a monotonically decreasing fashion, while the non-compositional Mean
model and transformer models (SentBERT, OpenAI, and DefSent) show relatively little
sensitivity to changes in sentence structure. The VerbNet-CN hybrid model, and to a
lesser extent, the DefSent transformer, show an intermediate pattern in between the
other transformers and human judgments.

To quantify the difference between the models, we computed the mean absolute
deviation from the normalized model similarities and the normalized human judgments
across all eight categories of sentence pairs shown in Figure 8, with higher values
indicating a poorer match. The entirely non-compositional Mean-CN embeddings had
the highest score of 0.37, with the SentBERT and OpenAI embeddings having similarly
lower scores of 0.29, 0.30, respectively. The DefSent score is lower still at 0.23, while
VerbNet achieves the lowest score of 0.18, with the poor performance on Paraphrase
and Negative sentence pairs partly offsetting the strong performance on Single and
Swap sentence pairs. These results support our hypothesis that models that better match
human similarity judgments are those with greater sensitivity to sentence structure.

Finally, to investigate whether some types of modifiers have more of an effect on
sentence meaning than others, we analyzed the effect of introducing a single sentence

Figure 8
Mean human similarity ratings and model cosine similarities (vertical axis) plotted by the type
of sentence pair in the STS3k dataset (horizontal axis). See Table 7 for an explanation of each type
of sentence pair. Here we abbreviate single changes as “single,” double swap as “swap-2,” triple
swap as “swap-3,” and quadruple swap as “swap-4.” Similarities are divided by the value for
“modifiers” sentences to emphasize relative changes within each model.
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Figure 9
Change in the mean rated similarity of sentence pairs by the type of modifier added (including
only sentences with a single added or changed modifier), along with the change in cosine
similarities of various compositional models. Error bars denote 95% confidence intervals over
sentences in each category. Add IOBJ: add an indirect object; SUBJ adj: add or change an
adjective modifying the subject; DOBJ adj: add or change an adjective modifying the direct
object; IOBJ adj: add or change an adjective modifying the indirect object.

modifier on sentence similarity ratings. As shown in Figure 9, most types of modifiers
have similar effects on rated sentence similarity, decreasing human-assessed similarity
by an average of 0.216. The only category to show a significant difference from this was
Passive with an average reduction of only 0.097, which is 2.4 standard deviations from
the overall mean across categories.

6. Discussion

6.1 Summary of Major Findings

A major goal of computational semantics is to develop formal models to describe how
humans understand and represent the meaning of words and sentences. Any such
models must account for not only human comprehension of individual word meanings
(lexical meaning), but also for how humans are capable of integrating familiar words
in a systematic manner to understand a wide range of complex sentences they have
not previously encountered (compositionality). In this study we analyzed competing
models of sentence meaning against human behavioral data to assess how adequately
these models capture human capabilities of sentence comprehension. In particular, we
investigated how well different models can capture human judgments of sentence sim-
ilarity, thereby assessing the extent to which these models adequately encode sentence
structure beyond the meaning of individual words. Because similarity is a fundamental
component of any cognitive theory of representation, central to functions such as anal-
ogy, categorization, and semantics (Goldstone and Son 2012), comparing the degree to
which models of sentence meaning can capture human judgments of sentence similarity
provides an important test of their adequacy as cognitive models.
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Figure 10
Schematic diagram illustrating the major contributions of our study, specifically how the
contrast between the non-adversarial and adversarial portions of the STS3k dataset allows for
discriminating models of sentence meaning, and illustrating how our novel VerbNet-CN hybrid
model highlights how models sensitive to semantic roles can be used to understand human
representation of sentence meaning.

To this end, our study makes four major contributions. First, we introduced a novel
STS dataset (termed STS3k) constructed for the purpose of evaluating the compositional
capabilities of models of sentence meaning. This dataset differs from existing STS
datasets in that it contains an adversarial portion designed specifically to test whether
models of sentence meaning are capable of encoding sentence structure and semantic
relations beyond individual word meanings. Second, we presented a simple method
for combining syntax- and vector-based semantic models into a hybrid representation
that can be evaluated alongside vector-based models on STS tasks. Third, we conducted
a comparative analysis of vector-based, syntax-based, and hybrid models against our
novel STS3k dataset, showing that even state-of-the-art vector-based models (e.g., trans-
former neural networks) perform very poorly on the adversarial portion of our dataset,
while our novel hybrid models succeed with no specific training. Fourth, we show
through a more detailed analysis of our novel dataset that the reason why existing
models perform poorly is because they are not sensitive to changes in sentence structure
in the way humans are. We summarize these contributions in Figure 10.

6.2 Limitations of Neural Network Models

Our results demonstrate that vector-based neural network models of sentences, includ-
ing state-of-the-art transformers like OpenAI Embeddings, represent sentence meaning
differently to human raters, which impedes their ability to perform compositional
generalization. As shown in Figure 4, the performance of these models declines dramat-
ically when evaluated on an adversarial portion relative to a non-adversarial portion of
the STS3k dataset. Because the adversarial dataset contains sentence pairs with similar
lexical semantics but differing meanings by virtue of changed structure or seman-
tic roles, and is otherwise similar to the non-adversarial portion of our dataset, this
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indicates the decline in performance is specifically due to the adversarial alterations,
such as swapping the role of words within a sentence. This constitutes evidence that
even leading transformers rely primarily on lexical cues for assessing sentence simi-
larity, and are not very sensitive to structural changes that preserve lexical similarity
while altering overall sentence meaning. This suggests transformers do not adhere to
principles of compositionality when producing sentence embeddings.

Since neural networks are universal function approximators (Hornik, Stinchcombe,
and White 1989), we would expect that given sufficient data, they could learn to predict
sentence similarity accurately for many different types of sentences. Indeed, our results
in Figure 6 show that when trained on a random test/train split, transformers can learn
the task well, achieving correlations of 0.7–0.8 with human judgments. This corrobo-
rates findings from compositional evaluation tasks such as COGS and SCAN, where
standard transformer neural networks can learn the tasks fairly easily when trained on
a representative range of examples but not when tested on generalizations of problems
beyond that on which they were trained (Loula, Baroni, and Lake 2018; Ontanon et al.
2022; Yao and Koller 2022). A related finding is that the generalization of transformers
is often highly variable and inconsistent across training instances of the same model
(McCoy, Min, and Linzen 2020), which aligns with our observation that transformer
models trained only on non-adversarial sentences have difficulty generalizing their
performance to out-of-sample adversarial sentences.

While our findings are novel for STS tasks, several previous studies have found
analogous results of limited compositional capability when controlling for lexical
overlap using paraphrase data (Yu and Ettinger 2020; Bernardi et al. 2013). Other
investigations have found that transformer neural network models perform highly
inconsistently on subtle variations of language tasks that humans would regard as
equivalent (Srivastava et al. 2022; Dankers, Bruni, and Hupkes 2022), indicating that
they have not learned to perform the task in a manner comparable to humans. Whether
this limitation could be overcome with a much larger training dataset of sentences
covering a wider range of topics and sentence structures is unclear. Based on previous
work, it is likely that transformers will struggle to generalize to sentences significantly
different from those in the training distribution, and given that language is necessarily
productive in generating sentences of arbitrary length and combinations, presenting a
wide enough range of sentences may be infeasible. This highlights the importance of
adversarial testing to investigate whether models extract the relevant features that will
enable them to perform language tasks across various contexts.

The only neural network model to show moderate correlations on the adversarial
portion of the dataset is the transformer DefSent, which achieves a surprisingly high
correlation of 0.49 despite performing at or slightly below the level of SentBERT on the
other datasets. Judging from Figure 8, this is due to DefSent giving lower similarities
for single, double, triple, and quadruple sentence pairs relative to modified sentences,
which is closer to human judgments than any of the other transformer models. We
speculate that the superior performance of DefSent may be due to its unique training, in
which it learns to map a word to its definition sentence from a lexical dictionary. How-
ever it is unclear exactly why this training method would lead to such an improvement
in performance on the adversarial task.

Another novel result from our analysis is that transformers, at least of the scale
assessed in this study, do not efficiently extract semantic information from word order.
Much of the adversarial aspect of our STS3k dataset relies on varying the position of
words within a sentence. For example, in one version, we move a word from the subject
position near the start of the sentence to the object position near the end of the sentence.
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As we show in Figure 8, such sentence alterations have little effect on the similarities
computed from transformer embeddings, indicating that transformers are not sensitive
to such changes. Since transformers use positional encoding to represent the linear or-
dering of words within a sentence, semantic role information should be readily available
to the transformers (Dufter, Schmitt, and Schütze 2022). However, our results indicate
that the transformers in our benchmark have difficulty extracting this information from
positional embeddings. We speculate that this may result from transformers relying on
lexical information and other incidental correlations for next-word or masked token
prediction tasks, meaning that the underlying structural and semantic role information
from the sentence is underutilized. Although numerous probing studies have found
that transformers do represent information about syntax and word order in their hidden
layers (Clark et al. 2019; Manning et al. 2020), this information may not be effectively
utilized in sentence embeddings for representing the meaning of the entire sentence.

The fact that the transformers investigated in this study fail to match human
predictions of sentence similarity does not mean that transformers are useless as lan-
guage models. The transformer architecture is still very flexible and underpins many
models that are highly successful in numerous language tasks. Rather, our results are
significant because they show that, regardless of their success on downstream language
tasks, transformers (along with other vector-based models) are insufficiently sensitive
to sentence structure, and hence do not represent sentence meaning in the manner that
humans do. As we show in Figure 5 and Figure 8, transformer sentence embeddings do
not vary in proportion to the degree of structural change within a sentence (e.g., when
words interchange their semantic roles). This indicates that they have fundamentally
failed at the task of representing sentence meaning in a manner that respects well-
established psychological and linguistic principles relating to the effects of sentence
structure on meaning.

Our findings align with the results of various recent studies demonstrating the
limitations of transformers as plausible models of human compositional language
processing. Gupta, Kvernadze, and Srikumar (2021) found that performing various
transformations on input sentences, such as randomly shuffling the word order, re-
sulted in only small changes to the predictions made by BERT-family transformers on
a range of NLI tasks, despite the fact that the resulting sentences were now entirely
meaningless. Golan et al. (2023) constructed a set of “controversial” sentence pairs for
which different models disagreed about which sentence of the two was most likely.
They found in a series of tests that all transformers displayed behavior inconsistent
with human judgments. Webson and Pavlick (2022) found that even for very large
transformer models like GPT-3, there was little to no difference in performance on
various NLI tasks when instructive prompts were used compared to nonsensical or
irrelevant prompts, casting doubt on whether models are capable of understanding
such prompts in a human-like manner. Another study found a similar result using
negated prompts (Jang, Ye, and Seo 2023). Various other techniques involving injecting
irrelevant content into prompts or modifying prompts in ways that do not change their
meaning (such as simple typographical substitutions) have likewise highlighted that
transformers do not appear to understand the meaning of their prompts (Jiang, Chen,
and Tang 2023; Wang et al. 2023; Shi et al. 2023). These difficulties likely result from the
fact that transformers primarily rely on superficial heuristics and spurious correlations
learned from their training data, allowing them to perform well on many typical tasks
even without forming relevant structured representations of the situation or problem
to be solved (Niven and Kao 2019; Zhang et al. 2022; Dziri et al. 2023; Gubelmann
and Handschuh 2022). Our results provide further evidence in support of this general
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conclusion, highlighting that transformers do not form structural representations of
sentence meaning capable of capturing the sorts of information important to human
representations of sentence meaning. This limits the value of transformers both as psy-
chological models of representations of sentence meaning, and also on tasks requiring
extensive capability with generalization or compositional reasoning.

6.3 Integrating Vector-based and Syntax-based Methods

Our novel hybrid models differ in important ways from previous methods of combin-
ing vector-based and syntax-based models. Most traditional hybrid models attempt
to inject syntax into neural networks by training them to perform graph prediction
tasks. As outlined in Table 4, this approach has typically led to only modest increases
in correlation with human data, though it is unclear if this is due to a limitation of
the methodology or existing STS datasets. Furthermore, such approaches have been
criticized as theoretically unmotivated, as there is typically little explanation of what
the embedding space is intended to represent. One study has suggested that sentence
embeddings share a semantic space with individual words, with both the direction
and length of sentence embeddings conveying semantic information (Amigó et al.
2022). However, considering that embeddings in transformer neural network models
are known to be highly anisotropic, meaning that a few dimensions account for nearly
all of the vector length (Timkey and van Schijndel 2021; Su et al. 2021), it seems unlikely
that embeddings learned by transformers represent sentences in this way. Our approach
differs in not representing a sentence using a single vector embedding, but instead
utilizing a hybrid method in which individual words are represented using static word
embeddings, which are then combined in a manner specified by a syntax-based model
to form the full sentence representation. The result is not a single embedding for the
entire sentence but instead a structured representation, the elements of which consist of
embeddings of sentence components.

Our VerbNet-CN and AMR-CN hybrid methods are not consistently superior to
transformers, as they perform worse both on existing STS datasets and the STS3k non-
adversarial portion (Table 9). This is unsurprising, given that each semantic role uses
simple averaged word embeddings rather than the sophisticated attention mechanism
of transformers. Furthermore, our hybrid models are much less flexible than trans-
formers, designed only to extract a defined set of semantic roles in relatively simple
single-clause sentences. Many aspects of natural language, including auxiliary verbs,
multiple clauses, polysemy, and multi-word expressions, are not incorporated. As such,
the purpose of our novel hybrid models is not to replace transformers or even achieve
comparable performance on downstream language tasks, but rather to highlight the
inadequacy of current transformer models in representing sentence structure, and to
illustrate the value of explicitly representing elements of sentence structure such as
semantic roles. Our aim is for these models to serve as a simple baseline method for
more complex models in which vector-based and syntax models incorporate a wider
range of syntactic and semantic components.

One question raised by our analysis is the status of semantic roles or predicate
arguments in the context of vector-based models of semantics. How exactly are they to
be interpreted? One possibility is that semantic roles correspond to high-level semantic
features, which together characterize the semantic meaning of the sentence. However,
a problem with this interpretation is that features in semantic space are typically
represented as independent dimensions which can vary separately from one other.
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By contrast, semantic roles or arguments of predicates are “roles” that bind to their
“fillers” in each particular context. There has been extensive discussion about how to
integrate symbolic role-filler dynamics with vector-based representations (Soulos et al.
2019; Vankov and Bowers 2020), with tensor products being a recent popular approach
(Badreddine et al. 2022; Smolensky et al. 2022). We leave this aspect to future research.

A second question raised by our analysis is how it can be established what the
“correct” sentence representation structure is. Which semantic roles are the most im-
portant in describing human semantic representations? In this study, we adopted a
heuristic approach of selecting major semantic roles based on the VerbNet framework,
as discussed in subsection 4.6. However, we do not make any claim that the eight we
have selected are the singular “correct” semantic roles. Indeed, it is likely that different
roles are important in different contexts and domains, though some are likely prominent
and broadly applicable. Our findings do not suggest that any specific semantic roles
are psychologically real. Instead, we claim only that incorporating semantic roles into
sentence representations improves their fit to human judgments, and this constitutes
evidence that such structured elements of meaning form part of human representations
of sentence meaning.

Given these considerations, we affirm previous calls for the importance of com-
bining syntax-based and vector-based approaches to language modeling, ensuring that
vector-based models are equipped with the appropriate inductive biases to facilitate
learning representations and identifying features that will be useful beyond the train-
ing set.

6.4 Human Representation of Sentence Meaning

Research into compositional semantics is hampered by a lack of agreement on how com-
positionality should be characterized (Pagin and Westerståhl 2010; Szabó 2012). Indeed,
it has been argued that the concept is formally vacuous without being tied to a particular
syntactic formalism or set of rules (Janssen 1986; Zadrozny 1994; Westerståhl 1998).
Furthermore, human language is unlikely to adhere to the strict rules of composition-
ality. If it did, different words fulfilling the same abstract role should be processed in
exactly the same way irrespective of the lexical meaning of the word, whereas in fact
contextual and situational effects have a significant effect on how humans represent
and process sentence meaning. As such, it may be helpful to think of compositionality
as a rough abstraction describing some idealized aspects of cognitive and linguistic
competencies rather than as a strict formal definition (Dankers, Bruni, and Hupkes
2022; Martin and Baggio 2020). We adopt this heuristic approach to analyzing com-
peting models of sentence meaning, asking whether such models construct sentence
representations that facilitate inferences and behaviors characteristic of compositional
systems, such as generalization and systematicity.

Our results show that raters are sensitive to subtle and non-obvious distinctions
between sentences, and make discriminating decisions even in this vaguely defined
task. This is most evident from Figure 8, where humans give similarity ratings of 0.6 for
two sentences with a single element altered, decreasing progressively to 0.4 for sentence
pairs with four elements interchanged. This aligns with previous results supporting
an “edit-distance” approach for assessing sentence similarity, whereby humans judge
sentence similarity based on the number of sentence elements (such as semantic roles)
that are altered between the two sentences (Gershman and Tenenbaum 2015; Kemp,
Bernstein, and Tenenbaum 2005). In Figure 9 in the Appendix, we show that participants
were roughly equally responsive to additions of all different types of modifier elements,
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each of which reduced assessed sentence similarity by about 0.2, except for the use of
passive voice, which only reduced similarity by about 0.1. This latter result is especially
interesting since, in terms of truth conditions or logical entailments, sentences expressed
in the active and passive voice are identical, the only difference being emphasis and
connotation. The fact that humans assess such sentence pairs as differing in meaning
highlights the limitation of representational approaches that ignore such subtle but
important aspects of meaning. We also note that human similarity judgments are sub-
additive in the number of modifiers included (see Figure 9), with each modifier having
a larger effect on similarity when occurring individually than when combined with
others.

Previous work in linguistics and cognitive psychology has demonstrated that hu-
mans are sensitive to the roles played by words within a sentence (Philipp et al. 2017;
Lau, Clark, and Lappin 2017; Alishahi and Stevenson 2010). However, it is unclear
exactly how such roles and structure are represented or encoded, whether this takes
the form of a static set of roles that are widely reused across contexts (such as “agent”
or “patient”) or a set of selection rules linking different verbs with their common argu-
ments. Another approach models human representations as frames, which are highly
structured representations evoked by an entire situation. While our results do not allow
us to distinguish between such models, insofar as a model utilizing a simple set of
semantic roles shows a much higher correlation with experimental data than models
that do not, there is evidence that some type of semantic role or structure plays a role in
human judgments of sentence meaning.

Experimental results have shown that humans can readily learn novel categories
and predicates with only a few examples by using various inductive biases (Lake,
Linzen, and Baroni 2019). However, current methods for training neural networks do
not typically incorporate such inductive biases either directly through architectural
constraints or indirectly in the way they are trained. As such, while they form represen-
tations suitable for word prediction and which generalize to other inference tasks, these
representations are typically unsuitable for tasks involving substantial generalization or
systematic variation of components beyond the training data.

7. Conclusion

In this article, we introduced a novel semantic textual similarity dataset involving
adversarial sentence pairs designed to test for compositional representations of sentence
meaning while controlling for lexical similarity. We then tested various models against
this dataset, including vector-based, syntax-based, and hybrid models. We found that
for the adversarial subset of our task, existing vector-based and syntax-based models
failed to accurately predict human judgments of semantic similarity, while our novel
hybrid model performs well. Our analysis of these results has shown that while humans
rate sentence similarity in accordance with the semantic roles of different sentence com-
ponents, existing vector-based models, including state-of-the-art transformer neural
network models, do not represent sentence structure in this way and perform poorly on
the adversarial portion of the dataset. The transformers could only learn the task when
trained on adversarial examples, but could not generalize from the non-adversarial to
the adversarial portion of the dataset. We further showed how syntax-based approaches
to sentence representation can be combined with vector-based static word embeddings
to produce a hybrid method that performs substantially better than any transformer
model on the adversarial dataset. Overall, our findings highlight the limitations of
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existing transformer models of sentence representation, and the value of semantic roles
and structural information in describing human representations of sentence meaning.

8. Appendix

8.1 Supplementary Background

8.1.1 Further Explanation of Vector/Syntax/Hybrid Terminology. Unfortunately there is no
standard terminology or categorization for describing different approaches to modeling
sentence meaning. In this article we attempt to simplify our presentation by focusing
on two broad classes of models, which we term vector-based and syntax-based semantics.
A third class, which attempts to integrate aspects from both approaches to combine
their respective strengths, we term hybrid approaches. We adapted these terms from
Žabokrtskỳ, Zeman, and Ševčı́ková (2020), who distinguish between “deep-syntactic”
and “vector space” models of sentence meaning. We intend these labels to roughly sep-
arate differing approaches to representing sentence meaning in a manner that simplifies
and provides structure to the presentation of our results, while also acknowledging
alternative classification terminology. For example, in their insightful review, Liang
and Potts (2015) use the terms “distributional representations” and “semantic parsing,”
while Ferrone and Zanzotto (2020) distinguish between “distributed” and “symbolic”
sentence representations. We do not intend our terminology to provide an exhaustive
or strictly dichotomous categorization of all models of sentence meaning.

Syntax-based and vector-based models are typically evaluated differently. In
particular, syntax-based models are usually evaluated by comparing the sentence rep-
resentations with a gold standard of human-annotated sentence parses. By contrast,
vector-based models are assessed using a range of tasks including natural language
inference, paraphrase, translation, sentiment analysis, and semantic similarity tasks.
This difference in evaluation methods stems from slightly different objectives and
strengths of different types of models (Beltagy et al. 2016; Ferrone and Zanzotto 2020).
Syntax-based methods usually focus on producing a graph-based parse of a sentence,
and require augmentation to perform text generation or other forms of NLI inference.
By contrast, most vector-based models do not intrinsically have any representation of
syntax which can be compared to a human-annotated sentence parse, and are instead
trained directly to perform next word prediction or some other linguistic task.

8.1.2 Other Textual Similarity Datasets. Beyond sentence similarity ratings, several other
datasets exist pertaining to related tasks, including similarity judgments of adjective-
noun bigrams (Vecchi et al. 2017; Asaadi, Mohammad, and Kiritchenko 2019; Cordeiro
et al. 2019), sets of sentence paraphrases (Dolan and Brockett 2005), or pairs of sentences
differing by grammatical acceptability (Warstadt et al. 2020). In this article we do not
analyze these data, restricting our scope to datasets containing similarity or relatedness
judgments of full sentences. Bigram similarity captures only a small part of sentence
meaning, while sentence paraphrase data only explores one extreme on the range of
similarity, and so likewise is of limited use for our purposes. Grammatical acceptability
datasets primarily probe the ability of language models in various grammatical do-
mains, such as determiner agreement, verb conjugation, and quantifiers, which are also
of less direct relevance to assessments of sentence meaning than STS datasets.

8.1.3 Criticisms of Semantic Textual Similarity Tasks. STS has been criticized for not being
reliably predictive of model performance on applied language tasks (Wang et al. 2019;
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Wang, Kuo, and Li 2022; Abe et al. 2022), and for being subject to other limitations
such as low inter-annotator agreement (Batchkarov et al. 2016). While acknowledging
these concerns, we believe it is an appropriate metric for our current study for several
reasons. First, STS is one of only a few methods capable of directly comparing the
internal representations of models of sentence meaning. This is of particular interest
owing to recent studies highlighting that despite impressive performance of neural
network models on various language tasks, the models often fail to learn or utilize
generalizable representations of the underlying structure of the problem or domain in
question. Instead, often the models achieve high levels of performance by extracting
complex statistical artifacts and utilizing heuristics that do not generalize beyond the
specific dataset used for training or assessment (Gupta, Kvernadze, and Srikumar 2021;
Gubelmann and Handschuh 2022; Zhang et al. 2022). We wish to probe the internal
representations of different approaches to sentence meaning to investigate how well
they are able to incorporate key aspects of sentence structure. Second, it has been noted
that one reason for the relatively low correlation between performance on semantic
similarity tasks and performance on other downstream applications is because for many
tasks (e.g., sentiment analysis or co-reference identification), only certain aspects or
features of the sentence are relevant (Wang, Kuo, and Li 2022). As a holistic measure of
the similarity of meaning of two sentences, STS datasets will not always correlate with
performance on such tasks. Lack of overlap of vocabulary and subject domain has also
been identified as a factor contributing to low predictivity (Abe et al. 2022). These issues
are of less relevance since our focus is on the empirical adequacy of the representations
themselves, rather than their utility for any particular downstream application. Third,
as we show in subsection 5.1, results from our STS3k dataset show very high inter-rater
reliability.

8.1.4 Compositional Inference Tasks. Compositional inference tasks are designed to test
whether language models are capable of appropriately identifying structural similar-
ities between superficially disparate inputs, and utilizing this information to perform
tasks that require generalization beyond a training set. Here we summarize three major
datasets in this tradition. The SCAN dataset (Lake and Baroni 2018) consists of a set of
navigation commands presented in a simple English sentence, each paired with a cor-
responding sequence of movement instructions. The dataset is arranged into different
train-test splits, which requires compositional reasoning to construct movement instruc-
tions corresponding to a novel input sentence. The COGS dataset (Kim and Linzen 2020)
consists of a series of natural language sentences randomly generated in accordance
with certain structural parameters, each paired with a corresponding logical form. The
objective of the task is to predict the logical form of a novel sentence. The dataset is
designed so that compositional generalization is required between the training and test
sets, such as varying the grammatical role of a word or deeper recursion. Finally, the
CFQ dataset (Keysers et al. 2019) consists of a series of natural language questions and
the corresponding syntax for querying a structured database. The goal of the task is to
construct a structured database query from a novel sentence.

Numerous studies have found that syntactic parsing models solve these compo-
sitional tasks easily, while even state-of-the-art neural network models struggle, espe-
cially for instances requiring extensive compositional generalization (Yao and Koller
2022). Nevertheless, various strategies have been developed for modifying transformer
architectures to improve compositional performance. This includes using relative po-
sition encodings (Ontanon et al. 2022), modifying the training data (Patel et al. 2022),
and using longer training periods (Csordás, Irie, and Schmidhuber 2021). Most recently,
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it has been shown that careful choice of prompts can substantially improve LLM per-
formance on compositional tasks (Zhou et al. 2022). Some have even argued that these
techniques show, in contrast to conventional wisdom, that transformers with the appro-
priate training are capable of compositional reasoning (Csordás, Irie, and Schmidhuber
2021).

While compositional tasks are valuable for assessing how LLMs combine word
meanings, they are nonetheless subject to several limitations. First, they are insuffi-
ciently discriminative, being simultaneously too easy for symbolic methods and too
difficult for most vector-based methods. An ideal method of evaluation should discrim-
inate the performance of both types of models, thereby enabling a more precise interro-
gation of their strengths and weaknesses. Second, existing tasks (involving constructing
dataset queries or abstract movement instructions) are somewhat artificial and removed
from human natural language performance (Dankers, Bruni, and Hupkes 2022). As
such, while these tasks are suitable for testing compositionality in the abstract, they are
not suited to testing competing representations of natural language sentences. Partly in
response to such limitations, researchers have emphasized the importance of assessing
LLMs on non-synthetic data (Dankers, Bruni, and Hupkes 2022; Yao and Koller 2022;
Ribeiro et al. 2020), with several studies showing that performance on synthetic data
with highly controlled vocabulary is not always predictive of performance on less
constrained, more natural tasks (Shaw et al. 2021).

8.2 Supplementary Methods

8.2.1 Instructions to Participants. The text below was provided to participants prior to
making sentence similarity judgments.

Please read the following instructions carefully before proceeding.
In this questionnaire you will be presented with a series of paired sentences. Your

task is to judge how similar is the meaning of the two sentences. You will make this
judgement by choosing a rating from 1 (very dissimilar) to 7 (very similar). In
providing your rating, consider both the similarity in meaning of the individual words
contained in the sentences, as well as the similarity of the overall idea or meaning
expressed by the sentences.

Some of the sentences may be slightly unusual or ambiguous; nevertheless you
should do your best to understand their likely meaning. Bear in mind that we are not
looking for any one specific ‘right answer’ or strategy in your responses. Your task is
simply to make a judgement about how similar you think is the meaning of the two
paired sentences. The only exception is that if you find a sentence that truly does not
make any sense at all, then you should give it a very low similarity to whatever it is
paired with. In all other cases, make your best judgement based on your assessment of
overall meaning of the sentences.

There is no time limit to this task, however each sentence pair should not take
more than a few seconds to judge. There is no need to spend a long time pondering
each sentence. In total the task should take around 20–30 minutes.

Thanks very much for your time!

8.2.2 Parsing Instructions for GPT-4. The instruction below was provided to the OpenAI
client using GPT4 for parsing sentences one pair at a time.

Two sentences are given below. First, identify the main verb in each sentence. Each
sentence should only have a single main verb. Use simple present conjugation. Second,
label the semantic roles in each of these new sentences. Use the roles: ‘Agent’, ‘Patient’,
‘Theme’, ‘Time’, ‘Manner’, ‘Location’, ‘Trajectory’. Print all results in a single list on one
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line. Print each role regardless of whether it is found in the sentence. Do not explain
your answers. Here is one example of what to print:

‘Food is what people and animals reluctantly eat on Thursdays.’
{‘Verb’: ‘is’, ‘Agent’: ‘food’, ‘Patient’: ‘NONE’, ‘Theme’, ‘what people and animals

eat’, ‘Time’: ‘on Thursdays’, ‘Manner’: ‘reluctantly’, ‘Location’: “NONE”, ‘Trajectory’:
“NONE”}

Here are the two sentences for you to parse:

8.3 Supplementary Results

8.3.1 Fine-tuning Without Dimensionality Reduction. As an additional check, we per-
formed the fine-tuning as described in subsection 5.3, but without the dimensionality re-
duction (see Figure 11). This meant that the number of parameters in each trained model
is slightly different (see Table 10), as some transformers have larger embeddings than
others. Qualitatively the results are similar to those shown in Figure 6, with transformer
models learning the task well when trained on a random test/train split, but unable to
learn the task when trained on the non-adversarial subset and required to generalize
out of sample. By contrast, the VerbNet-CN hybrid model achieves moderately good
performance in both versions of the task, and is relatively unaffected by the number of
parameters.

8.3.2 VerbNet-CN with GPT-4 parser. In Table 11 we show a comparison of the correlation
between STS3k and the VerbNet-CN hybrid model using both the original SemParse
parser, and the alternative GPT-4 parser. The correlation between the two similarity
series was computed to be 0.92. These results indicate that our novel hybrid approach
is robust to the particular parsing method used.

Table 10
Number of parameters for each fine-tuned model, equal to the entry for each cell multiplied by
the corresponding column header.

Model name 103 104 105 106

Mean-CN .598 .599 .708 .709
SentBERT 1.536 1.537 1.647 1.647
OpenAI 2.800 2.801 2.911 2.911
DefSent 2.048 2.049 2.159 2.159
ERNIE 1.536 1.537 1.647 1.647
VertNet-CN 1.090 1.181 1.190 1.109

Table 11
Summary of models of sentence meaning analyzed in this study.

Model name STS-all STS-non STS-adv
VerbNet-CN (SemParse parser) .672 .652 .647
VerbNet-CN (GPT-4 parser) .673 .685 .627

178



Fodor, De Deyne, and Suzuki Compositionality and Sentence Meaning

Figure 11
Correlations between model-predicted and human similarity judgments (vertical axis) against
the approximate number of parameters of the neural networks used for fine-tuning (horizontal
axis). The left subplot corresponds to a random test/train split. The right subplot shows results
after training on non-adversarial sentences and testing on the adversarial sentences.

8.4 Supplementary Table

Table 12 summarizes all the models examined in the present article. The models are
grouped by category separated by horizontal lines, from top to bottom: arithmetic
vector-based, neural network vector-based, syntax-based, and hybrid.
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Table 12
Summary of models of sentence meaning analyzed in this study.

Model name Type Explanation Citation

Mean-CN Arithmetic
vector-based

Average of ConceptNet token-wise
embeddings after pre-processing of
sentences to remove non-content words.

Mitchell and Lapata
(2010)

Mult-CN Arithmetic
vector-based

Elementwise multiplication of ConceptNet
embeddings after pre-processing.

Mitchell and Lapata
(2010)

Conv-CN Arithmetic
vector-based

Convolution of ConceptNet token-wise
embeddings after pre-processing.

Blouw et al. (2016)

InferSent Vector-based A bi-directional LSTM trained on a variety
of natural language inference tasks.

Conneau et al. (2017)

Universal Vector-based A standard transformer architecture trained
on a range of language tasks.

Cer et al. (2018)

ERNIE 2.0 Vector-based A transformer based on the BERT architecture
trained using multi-task learning.

Sun et al. (2020)

SentBERT Vector-based The MPNet-base transformer model with
additional training to predict paired
sentences from a large dataset.

Reimers and Gurevych
(2019)

DefSent Vector-based The RoBERTa-large transformer model
fine-tuned using about 100,000 words
paired with their dictionary definitions.
We use the CLS output.

Tsukagoshi, Sasano, and
Takeda (2021)

OpenAI Embeddings Vector-based Embeddings provided from the OpenAI API,
based on a large transformer with additional
fine-tuning from human feedback.

Ouyang et al. (2022)

AMR-SMATCH Syntax-based Sentences parsed using an AMR parser, and
similarity between the resulting graphs
computed using SMATCH.

Cai and Knight (2013)

AMR-WWLK Syntax-based Sentences parsed using an AMR parser, and
similarity between the resulting graphs
computed using WWLK.

Opitz, Daza, and Frank
(2021)

AMRBART Hybrid A transformer architecture trained to encode
AMR graphs.

Bai, Chen, and Zhang
(2022)

S3BERT Hybrid A transformer based on SentBERT with extra
training to use AMR graph-based metrics to
construct an overall similarity score.

Opitz and Frank (2022)

AMR-CN Hybrid An AMR parser produces a graph, then
similarity is computed by averaging
ConceptNet word embeddings for
graph components.

Introduced in this paper

Verbnet-CN Hybrid Sentence parsed into VerbNet semantic roles,
then similarity computed as average of
ConceptNet word embeddings over roles.

Introduced in this paper
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Word embeddings: A survey. arXiv preprint
arXiv:1901.09069.
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Krasnowska-Kieraś, Katarzyna and Alina
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Löhr, Guido. 2017. Abstract concepts,
compositionality, and the
contextualism-invariantism debate.
Philosophical Psychology, 30(6):689–710.
https://doi.org/10.1080
/09515089.2017.1296941

Manning, Christopher D., Kevin Clark, John
Hewitt, Urvashi Khandelwal, and Omer
Levy. 2020. Emergent linguistic structure
in artificial neural networks trained by
self-supervision. Proceedings of the National
Academy of Sciences, 117(48):30046–30054.
https://doi.org/10.1073/pnas
.1907367117, PubMed: 32493748

Marelli, Marco, Stefano Menini, Marco
Baroni, Luisa Bentivogli, Raffaella
Bernardi, and Roberto Zamparelli. 2014.
A sick cure for the evaluation of
compositional distributional semantic
models. In Proceedings of the Ninth
International Conference on Language
Resources and Evaluation (LREC’14),
pages 216–223.

Martin, Andrea E. and Giosuè Baggio. 2020.
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