
Machine Translation Meta Evaluation
through Translation Accuracy Challenge Sets

Nikita Moghe1, Arnisa Fazla2, Chantal Amrhein3, Tom Kocmi4,
Mark Steedman1, Alexandra Birch1, Rico Sennrich2, and Liane Guillou1

1University of Edinburgh, School of Informatics
nikitamoghe29@gmail.com, m.steedman@ed.ac.uk,
a.birch@ed.ac.uk, liane.guillou@ed.ac.uk

2University of Zurich, Department of Computational Linguistics
arnisa.fazla@uzh.ch, sennrich@cl.uzh.ch

3Supertext
chantal@supertext.ch

4Microsoft
tom.kocmi@microsoft.com

Recent machine translation (MT) metrics calibrate their effectiveness by correlating with human
judgment. However, these results are often obtained by averaging predictions across large test
sets without any insights into the strengths and weaknesses of these metrics across different error
types. Challenge sets are used to probe specific dimensions of metric behavior but there are very
few such datasets and they either focus on a limited number of phenomena or a limited number
of language pairs. We introduce ACES, a contrastive challenge set spanning 146 language
pairs, aimed at discovering whether metrics can identify 68 translation accuracy errors. These
phenomena range from basic alterations at the word/character level to more intricate errors based
on discourse and real-world knowledge. We conducted a large-scale study by benchmarking
ACES on 47 metrics submitted to the WMT 2022 and WMT 2023 metrics shared tasks. We
also measure their sensitivity to a range of linguistic phenomena. We further investigate claims
that large language models (LLMs) are effective as MT evaluators, addressing the limitations of
previous studies by using a dataset that covers a range of linguistic phenomena and language
pairs and includes both low- and medium-resource languages. Our results demonstrate that
different metric families struggle with different phenomena and that LLM-based methods are
unreliable. We expose a number of major flaws with existing methods: Most metrics ignore the
source sentence; metrics tend to prefer surface level overlap; and over-reliance on language-
agnostic representations leads to confusion when the target language is similar to the source
language. To further encourage detailed evaluation beyond singular scores, we expand ACES to
include error span annotations, denoted as SPAN-ACES, and we use this dataset to evaluate
span-based error metrics, showing that these metrics also need considerable improvement. Based
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on our observations, we provide a set of recommendations for building better MT metrics,
including focusing on error labels instead of scores, ensembling, designing metrics to explicitly
focus on the source sentence, focusing on semantic content rather than relying on the lexical
overlap, and choosing the right pre-trained model for obtaining representations.

1. Introduction

Machine translation (MT) metrics are a fundamental component of the development of
high-quality MT systems as most state-of-the-art MT models claim their effectiveness
through such metrics (Kocmi et al. 2021). While human evaluation of these MT systems
is ideal, it is labor-intensive, time-consuming, and expensive. Development of automatic
metrics has thus received significant interest over the past years (Koehn and Monz 2006;
Freitag et al. 2023), resulting in a surge of new metrics. These metrics are typically
judged by their ability to distinguish the quality of one machine translation system
over another (system-level) on large test sets. This type of evaluation only provides
an overview and it is difficult to identify whether these metrics are robust to specific
MT errors.

To systematically study the advantages and shortcomings of MT metrics, and to
identify broad trends in metric development, we rely on the construction of challenge
sets for MT metrics. Challenge sets are a useful tool in measuring the performance of
systems or metrics on one or more specific phenomena of interest. They may be used
to compare the performance of a range of different systems or to identify performance
improvement/degradation between successive iterations of the same system. Although
challenge sets have already been created for measuring the success of systems or metrics
on a particular phenomenon of interest for a range of NLP tasks—including but not lim-
ited to: sentiment analysis1 (Li, Cohn, and Baldwin 2017; Mahler et al. 2017; Staliūnaitė
and Bonfil 2017), natural language inference (McCoy and Linzen 2019; Rocchietti et al.
2021), question answering (Ravichander et al. 2021), machine reading comprehension
(Khashabi et al. 2018), machine translation (MT) (King and Falkedal 1990; Isabelle,
Cherry, and Foster 2017), and the more specific task of pronoun translation in MT
(Guillou and Hardmeier 2016)—they have only recently been applied to the evaluation
of MT metrics.

The WMT 2021 Metrics shared task (Freitag et al. 2021b) introduced the task of
constructing contrastive challenge sets for the evaluation of MT metrics. Contrastive
challenge sets aim to assess how well a given metric can discriminate between a good
and incorrect translation of the source text where the incorrect translation consists of a
translation error of interest. Providing a reference translation allows for flexibility: It may
be included to assess reference-based metrics or excluded to assess reference-free (i.e.,
Quality Estimation [QE]) metrics. Benchmarking metrics on such challenge sets pro-
vides insights into their strengths while simultaneously uncovering their weaknesses
on different translation errors.

In this work, we describe the Translation Accuracy ChallengE Set (ACES) dataset
submitted to the challenge sets subtask of the WMT 2022 and WMT 2023 Metrics shared
task and its subsequent expansion to include error span annotations (SPAN-ACES).
The ACES dataset2 (Amrhein, Moghe, and Guillou 2022) consists of 36,476 examples
covering 146 language pairs and representing challenges from 68 phenomena. Most

1 Submitted to the EMNLP 2017 “Build It Break It” shared task on sentiment analysis.
2 The ACES dataset is available at https://huggingface.co/datasets/nikitam/ACES.
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Figure 1
Diagram of the error categories on which our collection of challenge sets is based. Red means
challenge sets are created automatically, blue means challenge sets are created manually.

MT metric challenge sets (Avramidis et al. 2018; Alves et al. 2022; Karpinska et al.
2022) either focus on a small number of phenomena or a small number of languages.
Our dataset is larger in coverage of phenomena as well as language pairs, providing
comprehensive challenge sets for MT metrics.

We focus on translation accuracy errors because in recent years, machine translation
outputs have become increasingly fluent (Bentivogli et al. 2016; Toral and Sánchez-
Cartagena 2017; Castilho et al. 2017). Further, accuracy errors can have dangerous
consequences in certain contexts, for example, in the medical and legal domains (Vieira,
O’Hagan, and O’Sullivan 2021).

ACES uses the hierarchy of errors under the class Accuracy from the Multidimen-
sional Quality Metrics (MQM) ontology (Lommel, Burchardt, and Uszkoreit 2014) to
design the challenge sets. We extend this ontology by two error classes (translations de-
fying real-world knowledge and translations in the wrong language) and specify several
more specific subclasses such as discourse-level errors or ordering mismatches. We in-
clude phenomena ranging from simple perturbations involving the omission/addition
of characters or tokens to more complex examples involving mistranslation (e.g., ambi-
guity and hallucinations in translation, untranslated elements of a sentence, discourse-
level phenomena, and real-world knowledge). A full overview of all error classes can
be seen in Figure 1. Our challenge set consists of synthetically generated adversarial
examples, examples from re-purposed contrastive MT test sets (both marked in red),
and manually annotated examples (marked in blue).

We use ACES to benchmark the metrics that participated in the WMT 2022 and
2023 metrics shared tasks. We also investigate whether large language models (LLMs)
can perform MT evaluation (Kocmi and Federmann 2023b; Xu et al. 2023). We conduct
several analyses on these results revealing:

1. There is no winning metric as conducting granular evaluation reveals
different metrics have different strengths and weaknesses.
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2. Most metrics tend to disregard information present in the source.

3. Reference-based neural metrics still rely on surface-level overlap.

4. Some properties of the pretrained models in neural metrics may cause
undesirable effects on evaluation like learning language agnostic
representations can fail to detect untranslated output.

The introduction of ACES marks a paradigm shift from relying on a single score,
to providing multiple scores across different categories of linguistic phenomena. How-
ever, a metric that can, in addition to providing scores, accurately label errors in MT
output provides many clear advantages over one that only provides scores (Freitag
et al. 2021a). Observations by Moghe et al. (2023) suggest that interpreting the quality of
MT output based on scores is both unreliable and uninformative. Instead, they recom-
mend the development of metrics that predict labels for error spans in the MT output.
Similarly, Lommel, Burchardt, and Uszkoreit (2014) and Freitag et al. (2021a) and the
recent WMT challenges (Freitag et al. 2021b, 2022, 2023) also advocate the use of labeled
error spans for MT evaluation. When considering whether to deploy an MT system (or
which of several systems to deploy), system developers can take into consideration the
type, frequency, and severity of the errors that the system is likely to make, coupled with
information about what types of errors may be tolerated/not for a given downstream
task.

With these motivations, we extend the ACES dataset into SPAN-ACES, where
we include error span annotations for each example. These annotations indicate the
location of error spans present in the incorrect translation and pertaining to the specific
linguistic phenomenon in focus. While some currently available MT metrics are already
able to mark error spans including MATESE (Perrella et al. 2022a) and COMET-22 (Rei
et al. 2022) that are trained on MQM (Lommel, Burchardt, and Uszkoreit 2014), and
GEMBA-MQM (Kocmi and Federmann 2023a) and AutoMQM (Fernandes et al. 2023)
that prompt LLMs to obtain the corresponding error span, we believe that error-span
labeling is an important next step in MT metric evolution. Independent challenge sets
such as SPAN-ACES will be essential in driving development forward. We benchmark
GEMBA-MQM (Kocmi and Federmann 2023a)), XCOMET-XL (Guerreiro et al. 2023),
and adapted versions of COMET-22 (Rei et al. 2022) and UniTE (Wan et al. 2022b) on
SPAN-ACES.

In this article, we provide an overview of the ACES challenge set and its participa-
tion at the WMT 2022 and 2023 Metrics shared task - Challenge Sets subtask (Amrhein,
Moghe, and Guillou 2022, 2023). We list our contributions below; items 1–3 have already
been published at WMT 2022 and 2023, and items 4–7 represent novel contributions:

1. We briefly present the construction of ACES, containing 36k examples
across 146 language pairs and 68 phenomena.

2. We evaluate ACES on the metrics submitted to the WMT 2022 and WMT
23 Metrics shared task providing an overview of the performance of 47
different metrics.

3. We conduct several analyses on these metrics revealing their drawbacks
and also providing recommendations to mitigate them.
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4. We describe the construction of SPAN-ACES, an extended version ACES
which includes error span annotations.

5. Using SPAN-ACES, we benchmark the performance of currently
available metrics for the task of labeling errors in MT output. Our results
suggest that these methods show some success on the error labeling task
with the highest span-F1 score reaching 26.9. However, these results and
corresponding poor results on the contrastive task also raise new
questions in labeling MT errors as evaluation.

6. We present the results of analyses aimed at determining how sensitive
metrics are to different phenomena. This is grounded in our assertion
that an ideal metric should be able to discriminate reliably between a
good translation and an incorrect one—that is, there should be a sizeable
difference between the scores it assigns to the good and incorrect
translations.

7. We investigate claims that LLMs may be used as MT evaluators and
describe experiments on LLMs from three different LLM families.
Benchmarking these LLMs on ACES reveals that these models perform
worse than the string-overlap metrics. These results degrade further in
the reference-free setting where all of the LLMs have a negative
correlation across all of the ACES categories.

We advocate steering metric development towards methods that produce error
labels in addition to the scores. Based on our analyses, we also recommend that metric
developers consider: (a) combining metrics with different strengths, for example, in the
form of ensemble models, (b) paying more attention to the source and avoiding over-
reliance on surface-overlap with the reference, and (c) checking the properties of the
pre-trained models prior to their use in developing new metrics.

We propose the adoption of both ACES and SPAN-ACES by the MT community,
as a benchmark for developing MT metrics. We envisage several use cases in which
the challenge sets may be used: to profile and compare metric performance across a
range of error categories, and to identify improvement/degradation in performance
of successive development iterations of the same metric. Similarly, MT models can
also be evaluated using this dataset by calculating sentence-level perplexity of the two
translations. Furthermore, we propose the use of SPAN-ACES to aid in advancing the
development of the next generation of MT metrics, which aim to provide error-span
labels over MT output in addition to scores. Our work provides baseline results for
LLM-based MT evaluation and we hope the findings can better inform metric design
with LLMs.

2. Related Work

Challenge sets have been used for a range of NLP tasks to investigate the behavior
of these tasks under a specific phenomenon rather than the standard test distribution
(Popović and Castilho 2019). Challenge sets aim to provide insights on whether state-of-
the-art models are robust to domain shifts or simple textual perturbations, whether they
have some understanding of linguistic phenomena such as negation/commonsense, or
simply rely on shallow heuristics, to name a few. The earliest introduction of challenge
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sets was by King and Falkedal (1990), who probed the acceptability of machine transla-
tions for different domains. Since then challenge sets have been developed for different
fields within NLP including parsing (Rimell, Clark, and Steedman 2009), NLI (McCoy
and Linzen 2019; Rocchietti et al. 2021), question answering (Ravichander et al. 2021),
machine reading comprehension (Khashabi et al. 2018), and sentiment analysis (Li,
Cohn, and Baldwin 2017; Mahler et al. 2017; Staliūnaitė and Bonfil 2017). Challenge sets
are also referred to as “adversarial datasets”, which also create examples by perturbing
the standard test set to fool the model (Smith 2012; Jia and Liang 2017, inter-alia).

Challenge sets for evaluating MT systems have focused on the translation mod-
els’ ability to generate the correct translation given a phenomenon of interest. These
include word sense ambiguity (Rios, Müller, and Sennrich 2018; Campolungo et al.
2022), gender bias (Rudinger, May, and Van Durme 2017; Zhao et al. 2018; Stanovsky,
Smith, and Zettlemoyer 2019), structural divergence (Isabelle, Cherry, and Foster 2017),
and discourse level phenomena (Guillou and Hardmeier 2016; Emelin and Sennrich
2021). While such challenge sets focus on evaluating specific MT models, it is necessary
to identify whether the existing MT evaluation metrics also perform well under these
and related phenomena. Following the success of neural MT metrics, which have been
shown to correlate well with human judgments (Freitag et al. 2021b; Kocmi et al. 2021),
the development of challenge sets designed to examine their strengths and weaknesses
has received considerable interest. However, metric weaknesses remain relatively un-
known and only a small number of works (e.g., Hanna and Bojar 2021; Amrhein and
Sennrich 2022) have proposed systematic analyses to uncover them.

Early work on constructing challenge sets for metric evaluation typically focused
on a small range of phenomena (Specia et al. 2020; Zerva et al. 2022), synthetic pertur-
bations (Freitag et al. 2021b), or manual perturbations for high-resource language pairs
(Avramidis et al. 2018). These limitations have been addressed in the development of
the DEMETR (Karpinska et al. 2022) and ACES datasets.

DEMETR (Karpinska et al. 2022), which comprises 31K English examples translated
from ten languages, was developed for evaluating MT metric sensitivity to a range
of 35 different types of linguistic perturbations, belonging to semantic, syntactic, and
morphological error categories. These were divided into minor, major, and critical errors
according to the type of perturbation, similar to the grading of error categories to
compute the weighted ACES-Score. As in ACES, example generation was carefully
designed to form minimal pairs such that the perturbed translation only differs from
the actual translation in one aspect. The application of DEMETR in evaluating a suite
of baseline metrics revealed a similar pattern to the analyses in Amrhein, Moghe, and
Guillou (2022)—that metric performance varies considerably across the different error
categories, often with no clear winner. It is worth noting that DEMETR and ACES
each have their respective advantages: All examples in DEMETR have been verified by
human annotators; ACES provides broader coverage in terms of both languages and
linguistic phenomena.

In addition to ACES, three other datasets were submitted to the WMT 2022 chal-
lenge sets shared task (Freitag et al. 2022): SMAUG (Alves et al. 2022), the HWTSC chal-
lenge set (Chen et al. 2022), and the DFKI challenge set (Avramidis and Macketanz 2022).
These datasets differ from ACES in terms of their size, and the languages and phe-
nomena/categories they cover. Both SMAUG and HWTSC are relatively small datasets
(<1,000 examples) focusing on a small set of five phenomena, each pertaining to a single
category of critical error for meaning change. In comparison, the DFKI challenge set is
much larger—it contains 19,347 examples and covers over 100 linguistically motivated
phenomena, which are organized into 14 categories. Whereas the aim of ACES was
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to provide a broad coverage of language pairs, the other datasets provide an in-depth
focus on specific high-resource language pairs: SMAUG (pt↔en and es→en), DFKI
(de↔en), and HWTSC (zh↔en). Although there is a clear overlap between the ACES
phenomena and those in SMAUG and HWTSC, many of the phenomena in the DFKI
dataset are complementary, such that in the case of evaluating metrics for the German-
English pair, metric developers might consider benchmarking on both datasets.

The WMT 2023 Challenge Sets submissions included ACES, MSLC23 (Lo, Larkin,
and Knowles 2023), and an extended version of the DFKI challenge set to include
the en→ru language pair plus additional examples and phenomena for the en→de
language pair (Avramidis et al. 2023). The MSLC23 dataset covers four language pairs
(zh→en, he↔en, and en→de) and includes examples of low-, medium-, and high-
quality output designed to provide an interpretation of metric performance across a
range of different levels of translation quality. The motivation for this is that while
metric performance may be evaluated on high-quality MT output, these same metrics
may later be used to evaluate low-quality MT output, and it is therefore important to
understand their performance in the lower-quality setting.

Together with descriptions of the datasets, the authors of all challenge sets submit-
ted to WMT 2022 and 2023 also include large-scale meta evaluations over a large collec-
tion of metrics. While we are therefore not the first to conduct such a meta-evaluation,
our evaluation covers a wider range of language pairs, and includes comparably more
comprehensive and in-depth analyses aimed at making specific recommendations for
future metric development. For example, whereas the DFKI dataset covers only a single
language pair in 2022 and two pairs in 2023, we include 146 language pairs in our
evaluation; the DEMETER dataset covers ten languages, but contains only very shallow
analyses. We also note that SPAN-ACES, our contrastive challenge set with error span
annotations, is the first of its kind.

3. Challenge Sets

Creating a contrastive challenge set for evaluating a machine translation evaluation
metric requires a source sentence, a reference translation, and two translation hypothe-
ses: one that contains an error or phenomenon of interest (the “incorrect” translation)
and one that is a correct translation in that respect (the “good” translation). One possible
way to create such challenge sets is to start with two alternative references (or two
identical copies of the same reference) and insert errors into one of them to form an
incorrect translation while the uncorrupted version can be used as the good translation.
This limits the full evaluation scope to translation hypotheses that only contain a single
error. To create a more realistic setup, we also create many challenge sets where the good
translation is not free of errors, but it is a better translation than the incorrect translation.
For automatically created challenge sets, we put measures in place to ensure that the
incorrect translation is indeed a worse translation than the good translation.

3.1 Datasets

The examples in ACES are based on several academic datasets designed to test partic-
ular properties in MT or other multilingual NLP tasks. The majority of the examples
in our challenge set were based on data extracted from three main datasets: FLORES-
101, PAWS-X, and XNLI (with additional translations from XTREME). FLORES-101
(Goyal et al. 2022) and FLORES-200 (NLLB Team et al. 2022) are low-resource MT
evaluation benchmarks with parallel data in 101 and 200 languages, respectively.
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The FLORES-101 data was extracted from Wikipedia, and the FLORES-200 data from
three Wikimedia projects: Wikinews, Wikijunior, and Wikivoyage. PAWS-X (Yang et al.
2019) is a cross-lingual dataset based on Wikipedia data and designed for the task of
paraphrase identification. PAWS-X consists of pairs of sentences that are labeled as
true or adversarial paraphrases, for seven languages. XNLI (Conneau et al. 2018) is a
multilingual natural language inference (NLI) dataset consisting of premise-hypothesis
pairs with their corresponding inference label for 14 languages. In terms of text genres,
XNLI is the most diverse dataset used in the construction of ACES, with texts drawn
from ten genres—nine are from the Open American National Corpus: Face-To-Face,
Telephone, Government, 9/11, Letters, Oxford University Press (OUP), Slate, Verbatim,
and Government, and the tenth (Fiction) is drawn from the novel Captain Blood. The
other datasets used in the development of ACES serve specific challenges. WinoMT
(Stanovsky, Smith, and Zettlemoyer 2019), a challenge set developed for analyzing
gender bias in MT with examples exhibiting an equal balance of male and female gen-
ders, and of stereotypical and non-stereotypical gender-role assignments (e.g., a female
nurse vs. a female doctor), is derived from two corpora constructed using Winograd-
style Schemas. MuCoW (Raganato, Scherrer, and Tiedemann 2019) is a multilingual
contrastive word sense disambiguation test suite for MT based on the OPUS collection
of translated texts from the Web. The WMT 2018 English-German pronoun translation
evaluation test suite (Guillou et al. 2018) contains examples of the ambiguous English
pronouns it and they extracted from the TED talks portion of ParCorFull (Lapshinova-
Koltunski, Hardmeier, and Krielke 2018). The Europarl ConcoDisco corpus (Laali and
Kosseim 2017) comprises the English-French parallel texts from Europarl (Koehn 2005)
over which automatic methods were used to perform discourse connective annotation
of their sense types. Wino-X (Emelin and Sennrich 2021) is a parallel dataset of German,
French, and Russian Winograd schemas, aligned with their English counterparts used
to test commonsense reasoning and coreference resolution of MT models.

We will now discuss the different categories of challenge sets. We list some examples
from ACES in Table 1. We refer the reader to Amrhein, Moghe, and Guillou (2022) for a
comprehensive description of the ACES phenomena and additional examples.

3.2 Addition and Omission

We create a challenge set for addition and omission errors that are defined in the MQM
ontology as “target content that includes content not present in the source” and “errors
where content is missing from the translation that is present in the source”, respectively.
We focus on the level of constituents and use an implementation by Vamvas and
Sennrich (2022) to create synthetic examples of addition and omission errors using
the likelihood of tokens for a given MT model. To generate examples, we use the
concatenated dev and devtest sets from the FLORES-101 evaluation benchmark for
46 languages. We focus on the 46 languages for which there exists a stanza parser3

and create datasets for all languages paired with English plus ten additional language
pairs that we selected randomly. For translation, we use the M2M1004 model with 1.2B
parameters (Fan et al. 2021).

3 https://stanfordnlp.github.io/stanza/available_models.html.
4 https://huggingface.co/facebook/m2m100_1.2B.
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Table 1
Examples from each top-level accuracy error category in ACES. An example consists of a source
sentence (SRC), reference (REF), good (3) and incorrect (7) translations, language pair, and a
phenomenon label. We also provide a description of the relevant phenomenon which is
sourced from the MQM ontology. en: English, de: German, fr: French, ja: Japanese, es: Spanish,
ca: Catalan
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3.3 Mistranslation

The mistranslation phenomenon is broadly defined as the target translation not accu-
rately containing the information in the source content.

3.3.1 Mistranslation - Ambiguous Translation. This error type is defined in the MQM
ontology as a case where “an unambiguous source text is translated ambiguously”.
For this error type, we create challenge sets where MT metrics are presented with an
unambiguous source and an ambiguous reference. The metrics then need to choose
between two disambiguated translation hypotheses where only one meaning matches
the source sentence. Therefore, these challenge sets test whether metrics consider the
source when the reference is not expressive enough to identify the better translation.
Since many reference-based metrics, by design, do not include the source to compute
evaluation scores, we believe that this presents a challenging test set.

Our method for creating examples is inspired by Vamvas and Sennrich (2021),
who score a translation against two versions of the source sentence, one with an
added correct disambiguation cue and one with a wrong disambiguation cue to de-
termine whether a translation model produced the correct translation or not. Instead of
adding the disambiguation cues to the source, we use an unambiguous source and add
disambiguation cues to an ambiguous reference to create two contrasting translation
hypotheses. We create three separate challenge sets of this type:

Occupation Name Gender using the WinoMT dataset where the target language is
English and the source language has gendered occupation names. For example, in
German there are specific male or female inflections for professions, for example, Bäcker
refers to a male baker and Bäckerin to a female baker. The cues added to the reference to
form the “good” and “incorrect” translations are “female” and “male”.

Word Sense Disambiguation using the MuCoW dataset where the ambiguity lies in
homographs in the target language that are unambiguous in the source sentence. The
cues added to the reference to form the contrastive translations are sense-specific.

Discourse Connectives using the Europarl ConDisco corpus where the ambiguity lies
in the English discourse connective “since” which can have both causal and temporal
meanings.

3.3.2 Mistranslation - Hallucinations. In this category, we group several subcategories of
mistranslation errors that happen at the word level and could occur due to hallucination
by a neural MT model. Hallucinations are a common error type for several natural
language generation tasks where a model generates an output that is partially related
or completely unrelated to the source sentence (Dale et al. 2023; Ji et al. 2023).5

These challenge sets test whether the machine translation evaluation metrics can
reliably identify hallucinations when presented with a correct alternative translation.

5 Often, sentences with hallucinations can contain unrelated content beyond a single word/phrase. This
category only contains hallucinations at the word/sub-word level.
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We create five different challenge sets based on hallucination errors:

Date-Time Errors: Using the FLORES-101 data where a month name in the reference
(e.g., November) is replaced with a corresponding abbreviation in the “good” transla-
tion (e.g., Nov.) and a different month name in the “incorrect” translation (e.g., August).

Numbers and Named Entities: We create a challenge set for numbers and named
entities where we perform character-level edits (adding, removing or substituting digits
in numbers or characters in named entities) as well as word-level edits (substituting
whole numbers or named entities). In the 2021 WMT metrics shared task, number
differences were not a big issue for most neural metrics (Freitag et al. 2021b). However,
we believe that simply changing a number in an alternative translation and using this
as an incorrect translation as done by Freitag et al. (2021b) is an overly simplistic setup
and does not cover the whole translation hypothesis space. To address this shortcoming,
we propose a three-level evaluation. The first, easiest level follows Freitag et al. (2021b)
and applies a change to an alternative translation to form an incorrect translation. The
second level uses an alternative translation that is lexically very similar to the reference
as the good translation and applies a change to the reference to form an incorrect
translation. The third, and hardest level, uses an alternative translation that is lexically
very different from the reference as the good translation and applies a change to the
reference to form an incorrect translation. In this way, our challenge set tests whether
the number and named entity differences can still be detected as the surface similarity
between the two translation candidates decreases and the surface similarity between
the incorrect translation and the reference increases. We use cross-lingual paraphrases
from the PAWS-X dataset as a pool of alternative translations to create this challenge
set. We only consider language pairs for which we can use a spaCy NER model on the
target side, which results in 42 language pairs.

Unit Conversion: Using the FLORES-101 dataset, where we replace unit mentions in the
reference (e.g., 100 feet) with a different unit and corresponding amount in the “good”
translation (e.g., 30.5 metres) and either the wrong amount (e.g., 100 metres) or wrong
unit (30.5 feet) compared to the reference in the “incorrect” translation.

Nonsense Words: We develop a challenge set for evaluating hallucinations at subword
level (Sennrich, Haddow, and Birch 2016). To create this challenge set, we consider to-
kens which are broken down into at least two subwords and then randomly swap those
subwords with other subwords to create nonsense words by using the multilingual
BERT tokenizer (Devlin et al. 2019). We use the paraphrases from the PAWS-X dataset
as good translations and randomly swap one subword in the reference to generate an
incorrect translation.

Real Data Hallucinations: To also create a more realistic hallucination benchmark, we
manually check some machine translations of the FLORES-101 dev and devtest sets for
four language pairs: de→en, en→de, fr→de, and en→mr. We consider both cases where
a more frequent, completely wrong word occurs and cases where the MT model started
with the correct subword but then produced random subwords as hallucinations. Trans-
lations with a hallucination are used as incorrect translations. We manually replace the
hallucination part with its correct translation to form the good translation.
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3.3.3 Mistranslation - Lexical Overlap. Language models trained with the masked lan-
guage modeling objective are successful on downstream tasks because they model
higher-order word co-occurrence statistics instead of syntactic structures (Sinha et al.
2021). We create this challenge set to test if metrics can reliably identify an incorrect
translation especially when it shares a high degree of lexical overlap with the reference.
To create such examples, we use the PAWS-X dataset for which adversarial paraphrase
examples were constructed by changing the word order and/or the syntactic structure
at the phrase level while maintaining a high degree of lexical overlap. It is likely that
there will be higher unigram overlap, but the context beyond the altered phrase is
retained as is, thus providing some n-gram overlap.

3.3.4 Mistranslation - Linguistic Modality. Modal auxiliary verbs signal the function of
the main verb that they govern. For example, they may be used to denote possibility
(“could”), permission (“may”), the giving of advice (“should”), or necessity (“must”).
We are interested in whether MT evaluation metrics can identify when modal auxiliary
verbs are incorrectly translated. We focus on the English modal auxiliary verbs: “must”
(necessity), and “may”, “might”, “could” (possibility). We then translate the source
sentence using Google Translate to obtain the “good” translation and manually replace
the modal verb with an alternative with the same meaning where necessary (e.g., “have
to” denotes necessity as does “must”; also “might”, “may”, and “could” are considered
equivalent). For the incorrect translation, we manually substitute the modal verb that
conveys a different meaning or epistemic strength, for example, in the example above
“might” (possibility) is replaced with “will”, which denotes (near) certainty. We use a
combination of the FLORES-200 and PAWS-X datasets as the basis of the challenge sets.

3.3.5 Mistranslation - Overly Literal Translations. MQM defines this error type as transla-
tions that are overly literal, for example, literal translations of figurative language. We
create two challenge sets based on this error type:

Idioms: We create this challenge set based on the PIE6 parallel corpus of English id-
iomatic expressions and literal paraphrases (Zhou, Gong, and Bhat 2021). We manually
translate 102 parallel sentences into German for which we find a matching idiom that
is not a word-by-word translation of the original English idiom. Further, we create an
overly literal translation of the English and German idioms. We use either the German
or English original idiom as the source sentence. Then, we either use the correct idiom
in the other language as the reference and the literal paraphrase as the good translation,
or vice versa. The incorrect translation is always the overly literal translation of the
source idiom.

Real Data Errors: For this challenge set, we manually check MT translations of the
FLORES-101 datasets. If we find an overly literal translation, we manually correct it
to form the good translation and use the overly literal translation as the incorrect
translation.

3.3.6 Mistranslation - Sentence-Level Meaning Error. We also consider a special case of
sentence-level semantic error that arises due to the nature of the task of NLI. The task of
NLI requires identifying where the given hypothesis is an entailment, contradiction,

6 https://github.com/zhjjn/MWE_PIE.
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or neutral, for a given premise. Thus, the premise and hypothesis have substantial
overlap but they vary in meaning. We use the XNLI dataset to create such examples
where there is at least a 0.5 chrF score between the English premise and hypothesis only
for the neutral and contradiction examples. We use either the premise/hypothesis as
the reference, an automatic translation as the “good translation”, premise/hypothesis
from the remaining non-English languages, and hypothesis/premise as the “incorrect
translation”.

3.3.7 Mistranslation - Ordering Mismatch. We also investigate the effects of changing word
order in a way that changes meaning. For example, “I like apple pie and fried chicken”
is changed to “I like chicken pie and fried apple” to form the incorrect translation. This
challenge set is created manually by changing translations from the FLORES-101 dataset
and covers de→en, en→de, and fr→de.

3.4 Mistranslation - Discourse-level Errors

We introduce a new subclass of mistranslation errors that specifically cover discourse-
level phenomena. We create several challenge sets based on discourse-level errors:

Pronouns: To create these challenge sets, we use the English-German pronoun transla-
tion evaluation test suite from the WMT 2018 shared task as the basis for our examples.
We focus on the following six categories derived from the manually annotated pronoun
function and attribute labels: pleonastic it, anaphoric subject and non-subject position
it, anaphoric they, singular they, and group it/they. We use the MT translations as the
“good” translations and automatically generate “incorrect” translations using one of the
following strategies: omission - the translated pronoun is deleted from the MT output,
substitution - the “correct” pronoun is replaced with an “incorrect” form.

Discourse Connectives: We leverage the Europarl ConcoDisco corpus of parallel En-
glish/French sentences with discourse connectives marked and annotated for sense,
and select examples with ambiguity in the French source sentence. We construct the
good translation by replacing instances of “while” (temporal) with “as” or “as long
as” and instances of “while” (comparison) as “whereas” (ensuring grammaticality is
preserved). For the incorrect translation, we replace the discourse connective with one
with the alternative sense of “while”—for example, we use “whereas” (comparison)
where a temporal sense is required.

Commonsense Co-Reference Disambiguation: We use the English sentences in the
Wino-X challenge set which were sampled from the Winograd schema. All contain
the pronoun it and were manually translated into two contrastive translations for
de, fr, and ru. Based on this data, we create our challenge sets covering two types
of examples: For the first, the good translation contains the pronoun referring to the
correct antecedent, while the incorrect translation contains the pronoun referring to the
incorrect antecedent. For the second, the correct translation translates the instance of it
into the correct disambiguating filler, while the second translation contains the pronoun
referring to the incorrect antecedent.
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3.5 Untranslated

MQM defines this error type as “errors occurring when a text segment that was in-
tended for translation is left untranslated in the target content”. We create two challenge
sets based on untranslated content errors:

Word-Level: We manually annotate real errors in translations of the FLORES-101 dev
and devtest sets. We count complete copies as untranslated content as well as content
that comes from the source language but was only adapted to look more like the target
language.

Sentence-Level: We create a challenge set for untranslated sentences by simply copy-
ing the entire source sentence as the incorrect translation. We used a combination of
examples from the FLORES-200, XNLI, and PAWS-X datasets to create these examples.

3.6 Do Not Translate Errors

This category of errors is defined in MQM as content in the source that should be
copied to the output in the source language but was mistakenly translated into the
target language. Common examples of this error type are company names or slogans.
Here, we manually create a challenge set based on the PAWS-X data which contains
many song titles that should not be translated. To construct the challenge set, we use
one paraphrase as the good translation and manually translate an English sequence of
tokens (e.g., a song title) into German to form the incorrect translation.

3.7 Overtranslation and Undertranslation

Hallucinations from a translation model can often produce a term which is either more
generic than the source word or more specific. Within the MQM ontology, the former
is referred to as undertranslation while the latter is referred to as overtranslation. For
example, “car” may be substituted with “vehicle” (undertranslation) or “BMW” (over-
translation). A randomly selected noun from the reference translation is replaced by its
corresponding hypernym or hyponym (by using Wordnet) to simulate undertranslation
or overtranslation errors, respectively.

3.8 Real-world Knowledge

We propose a new error category where translations disagree with real-world knowl-
edge in addition to the accuracy categories in MQM. We create five challenge sets based
on this error type. For the first four, we manually construct examples each for en→de
and de→en. We used German-English examples from XNLI, plus English translations
from XTREME as the basis for our examples. Typically, we select a single sentence, either
the premise or hypothesis from XNLI, and manipulate the MT translations.

Textual Entailment: We construct examples for which the good translation entails the
meaning of the original sentence (and its reference). For example, we use the entailment
was murdered→ died (i.e., if a person is murdered then they must have died) to construct
the good translation in the example above. We construct the incorrect translation by
replacing the entailed predicate (died) with a related but non-entailed predicate (here
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was attacked)—a person may have been murdered without being attacked (e.g., by being
poisoned).

Hypernyms and Hyponyms: We consider a translation that contains a hypernym of a
word to be better than one that contains a hyponym. For example, while translating
“Hund” (“dog”) with the broader term “animal” results in some loss of information,
this is preferable over hallucinating information by using a more specific term such
as “labrador” (i.e., an instance of the hyponym class “dog”). We used WordNet and
WordRel.com7 (an online dictionary of words’ relations) to identify hypernyms and
hyponyms of nouns within the reference sentences, and used these as substitutions in
the MT output: Hypernyms are used in the “good” translations and hyponyms in the
“incorrect” translations. This category is different from the two categories in Section
3.7 as the good translation is still a paraphrase of the reference (no loss of information)
while the incorrect translation is created by manipulating the reference.

Hypernyms and Distractors: Similar to above, we construct examples in which the good
translation contains a hypernym (e.g., “pet”) of the word in the reference (e.g., “dog”).
We form the incorrect translation by replacing the original word in the source/reference
with a different member from the same class (e.g., “cat”; both cats and dogs belong to
the class of pets).

Antonyms: We also construct incorrect translations by replacing words with their
corresponding antonyms from WordNet. We construct challenge sets for both nouns
and verbs. For nouns, we automatically constructed incorrect translations by replacing
nouns in the reference with their antonyms. In the case of verbs, we manually con-
structed a more challenging set of examples intended to be used to assess whether the
metrics can distinguish between translations that contain a synonym versus an antonym
of a given word.

Commonsense: We are also interested in whether evaluation metrics prefer transla-
tions that adhere to common sense. To test this, we remove explanatory subordinate
clauses from the sources and references in the dataset described in Section 3.4. This
guarantees that when choosing between a good and incorrect translation, the metric
cannot infer the correct answer from looking at the source or the reference. We then
pair the shortened source and reference sentences with the full translation that follows
commonsense as the good translation and the full translation with the other noun as the
incorrect translation.

3.9 Wrong Language

Most of the representations obtained from large multilingual language models do
not explicitly use the language identifier (id) as an input while encoding a sentence.
Here, we are interested in checking whether sentences that have similar meanings are
closer together in the representation space of neural MT evaluation metrics, irrespective
of their language. We create a challenge set for embedding-based metrics using the
FLORES-200 dataset where the incorrect translation is in a similar language (same

7 https://wordrel.com/.
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Table 2
Number of examples per top-level category in ACES.

Category Examples Category Examples
addition 999 overtranslation 1,000
omission 999 undertranslation 1,000
mistranslation 24,457 real-world knowledge 2,948
untranslated 1,300 wrong language 2,000
do not translate 100 punctuation 1,673

typology/same script) to the reference (e.g., a Catalan translation may be used as the
incorrect translation if the target language is Spanish).

3.10 Fluency

Although the focus of ACES is on accuracy errors, we also include a small set of fluency
errors for the punctuation category.8

Punctuation: We assess the effect of deleting and substituting punctuation characters.
We use four strategies: (1) deleting all punctuation, (2) deleting only quotation marks
(i.e., removing indications of quoted speech), (3) deleting only commas (i.e., removing
clause boundary markers), (4) replacing exclamation points with question marks (i.e.,
statement → question). In strategies 1 and, especially, 3 and 4, some of the examples
may also contain accuracy-related errors. For example, the meaning of the sentence
could be changed in the incorrect translation if we remove a comma, for example, in
the (in)famous example “Let’s eat, Grandma!” vs. “Let’s eat Grandma!”. We use the
TED Talks from the WMT 2018 English-German pronoun translation evaluation test
suite and apply all deletions and substitutions automatically.

We leave the development of challenge sets for other fluency phenomena to future
work.

4. ACES Statistics

The ACES dataset consists of 36,476 examples and covers 146 languages. See Table 2
for a distribution of examples over the ten top-level error categories in ACES.

The distribution of examples across language pairs is provided in the matrix in
Appendix C: Distribution of Examples Across Language Pairs. We note that the distri-
bution of examples is variable across language pairs, with high-resource language pairs
such as en-de and en-fr better represented than medium-and low-resource language
pairs, reflecting the limitations of the underlying datasets used to construct ACES.
The distribution of language pairs across the 68 fine-grained phenomena in ACES is
included in Appendix D: Distribution of Language Pairs Across Phenomena. Again, the
distribution of language pairs is variable across phenomena. We list the different do-
mains used for constructing the ACES dataset in Appendix E: Distribution of Domains
Across Phenomena. We find that examples are largely created from Wikipedia text.

8 Part of the rationale for including fluency as an additional category stems from the need to satisfy the
requirement that TED talks be replicated in their entirety; the pronoun examples described in Section 3.4
are drawn from TED talks, but not all sentences contain a pronoun.
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5. Span Annotations

To support the development of Quality Estimation and MT evaluation metrics that
predict error spans, we extended the original version of ACES (released at WMT 2022)
to include error span annotations. Specifically, we annotated all error spans of the type
denoted by the phenomenon category label, ignoring the presence of errors belonging
to other categories. We therefore label only errors present in the incorrect translation,
which by design contains errors of the phenomenon category denoted by the label.
We annotate spans at the word/token level similar to the MQM format (Freitag et al.
2021a) and in line with recent developments in error span prediction metrics (Perrella
et al. 2022a; Rei et al. 2022). Following the WMT 2022 MQM Human Evaluation span
annotation format (Freitag et al. 2022), error spans are enclosed in tags (<v> error span
</v>) denoting the start and end position of the error in the incorrect translation. Note
that due to the formulation of the manual annotation guidelines (see Appendix I: ACES
Span Annotation Guidelines) it is not possible for two spans to overlap.

We provide annotations for all ACES examples, using a combination of automated
and manual methods. The annotation methods used for each phenomenon can be found
in Appendix F: ACES Annotation Methods per Phenomena. For many of the phe-
nomena categories, we were able to automatically annotate examples using rule-based
methods informed by the methodology that we followed to construct the examples.
For the remaining phenomena, which we could not annotate automatically due to the
manual methods used to generate the good and incorrect translations, we annotated
the error spans manually (see Appendix I: ACES Span Annotation Guidelines). We
also manually annotated a small number of examples (1,959 from the mistranslation
phenomena and 3 from the real-world knowledge phenomena) for which the automated
annotation rules failed.

5.1 Automatic Annotations

We automatically annotate the error spans in the incorrect translations for 34,514 sam-
ples out of 36,476, by deterministically comparing the incorrect translation to either
the good translation or the reference sentence. As the span annotations were added to
ACES post-hoc, the automatic annotation methods were reverse-engineered according
to the methods from which challenge sets for each phenomena were constructed.9 In the
majority of cases these contain only word-level annotations (though more complex cases
exist and required manual annotation [see Section 5.2]). We used unit tests and manual
inspection (for every category) to ensure that the error span marked by the automatic
annotation method matches the original error. The details of the automatic annotation
methods are as follows:

Annotation of addition, omission, and substitutions. This method tokenizes the good
translation and incorrect translation, and compares the tokens to annotate word-level
addition, omission, and substitutions, which may occur multiple times. It is only used
to annotate the simpler cases of substitutions, when each word was replaced with
another word.

9 Ideally, for any future dataset, the spans should be retained during dataset creation, rather than
annotated post-hoc.
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Annotation of substitution of a variable-sized span compared to the correct transla-
tion. This method tokenizes the good translation and the incorrect translation and then
finds a single word-level error span with variable size.

Annotation of substitution of a variable-sized span compared to the reference sentence.
Similar to “Annotation of substitution of a variable-sized span comparing to the correct
translation”, this method tokenizes the reference and the incorrect translation and then
finds a single word-level error span with variable size.

Annotation of the date-time translation errors. In the Hallucination - Date-Time chal-
lenge set, the incorrect translations were built by substituting a month name in the
reference with another month. This method finds the month names that are different
in the incorrect translations and the reference, ignoring the months replaced with their
corresponding abbreviations.

Annotation of the unit-conversion translation errors. In the Hallucination - Unit Con-
version phenomenon, the unit mentions in the reference (e.g., 100 feet) were replaced
with either the wrong amount (e.g., 100 metres) or wrong unit (30.5 feet) in the incorrect
translation. Using the Python package quantulum3,10 we detect the amount and units
used in the incorrect translation, and annotate either the wrong amount or the wrong
unit, according to the phenomenon category label (hallucination-unit-conversion-unit-
matches-ref and hallucination-unit-conversion-amount-matches-ref, respectively).

Annotation of the error where two words in the good translation were swapped. In
ordering-mismatch challenge set, the incorrect sentence was generated by swapping
the places of two words in the good translation. This method computes the annotations
when two spans were swapped, and we manually annotated 4 samples that the method
was not able to correctly annotate.

Annotation of the whole sentence. This method trivially annotates the whole incor-
rect translation as an error. For examples belonging to the following Mistranslation -
Sentence-Level Meaning Error phenomena, constructed using the XNLI dataset,
we automatically mark the entire sentence as an error: xnli-addition-contradiction,
xnli-addition-neutral, xnli-omission-contradiction, xnli-omission-neutral. Despite some
degree of lexical overlap between the good- and incorrect-translation, the incorrect-
translation is drawn from either a contradiction or neutral hypothesis in the XNLI
dataset, and will therefore by definition not be a translation of the premise (i.e., the sen-
tence extracted as the good-translation).

5.2 Manual Annotation

Automated annotation is suitable for many of the examples, for example, where the
good and incorrect translations only exhibit differences relevant to the particular phe-
nomenon indicated by the phenomenon label. However, it is not suitable in all cases,
for example, where the good and incorrect translations contain additional differences
(not related to the error phenomenon), which could result in the automatic annotation

10 https://github.com/nielstron/quantulum3.
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Table 3
Mapping of ACES phenomenon labels to manual annotation categories.

ACES Phenomenon Label Category in Annotation Guidelines
coreference-based-on-commonsense coreference
hallucination-real-data-vs-ref-word hallucination
hallucination-real-data-vs-synonym hallucination
lexical-overlap word swap

method introducing annotation errors. We identified four phenomena for which auto-
mated annotation was unsuitable, and submitted all examples from these categories
for manual annotation. Table 3 lists the four ACES phenomenon labels and their corre-
sponding category in the manual annotation guidelines.

We extracted a total of 2,006 examples belonging to these phenomena (427 hallu-
cination, 559 coreference, and 1,020 word swap), with examples for the following lan-
guages: English (471), French (551), German (456), Japanese (322), Korean (4), Marathi
(44), and Russian (158). The manual annotation of these examples was completed by a
team of seven annotators (one per language), who are either professional translators or
linguists. The annotators were provided with a set of general guidelines plus specific
instructions for each of the different phenomena listed above. The annotation guide-
lines are summarized in the following sections and the complete set of guidelines given
to the annotators is provided in Appendix I: ACES Span Annotation Guidelines.

Automated checks were carried out over the manual annotations to provide a basic
validation. These checks were used to ensure that (1) each example had been annotated
(i.e., contained at least one span of text within tags), (2) all spans were marked with an
open and close tag (i.e., the number of open and close tags per example, should match),
and (3) no changes had been made to the example text other than the addition of the
tags. Examples that failed these checks were sent to the annotators for re-annotation. We
also automatically identified and resolved instances where additional whitespace was
introduced (in error) at the start or end of an error span, ensuring that the annotated
text and original (unannotated) text differed only in terms of the presence/absence of
error tags.

5.2.1 Overview of Annotation Guidelines. We split the annotation guidelines into (a) gen-
eral guidelines suitable for annotating all examples, and (b) error type-specific guide-
lines intended for annotating specific categories. The annotators are presented with an
ACES phenomenon label representing the type of error present, and two sentences:
A and B, where B is the incorrect translation (i.e., contains one or more errors) and A
is either the good translation or the reference (depending on the phenomenon). The
annotators are asked to identify and mark all error spans in sentence B that belong to
the error type indicated by the phenomenon label. Error spans are marked with tags
(<>) at the word level, that is, in the case that the error is a misspelling (e.g., “combuter”
instead of “computer”), the complete word (i.e., “combuter”) should be marked.

General Guidelines. The general guidelines may be applied for the annotation of
any example in ACES. We begin by defining four possible operations to mark error
spans: addition, substitution, deletion, and reordering (see Table 4). In simple scenarios, a
single operation may be sufficient to annotate an example. In more complex scenarios
multiple operations may be required.
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Table 4
Manual annotation guidelines: Operations for general guidelines.

Addition: a text span that is not present in sentence A is included in sentence B

Sentence A: The cat is a species of small carnivorous mammal.
Sentence B: The cat is a <domestic> species of small carnivorous mammal.

Substitution: a text span in sentence A is substituted with a different text span in sentence B

Sentence A: Female domestic cats can have kittens from spring to late autumn.
Sentence B: Female domestic cats can have kittens from <May> to <December>.

Deletion: a text span that is present in sentence A is omitted from sentence B

Sentence A: Feral cats are domestic cats that were born in or have reverted to a wild state.
Sentence B: Feral cats are domestic cats <>or have reverted to a wild state.

Reordering: a text span in sentence A that appears in a different position in sentence B

Sentence A: Montreal is the second most populous city in Canada and the most
populous city in the province of Quebec.

Sentence B: Montreal is the <>most populous city in Canada and the <second> most
populous city in the province of Quebec.

Table 5
Manual annotation guidelines: Error type-specific guidelines.

Hallucination: text that is not present in sentence A is observed in sentence B or a word in
sentence A is replaced by a more frequent or orthographically similar word in sentence B

Sentence A: The official languages of Scotland are: English, Scots, and Scottish Gaelic.
Sentence B: The official languages of Scotland are: English, <Welsh, French,> Scots, and

Scottish <Garlic>.

Coreference: a pronoun in sentence A is replaced with a (potentially) inappropriate
noun-phrase in sentence B

Sentence A: The cat had caught the mouse and it was trying to wriggle free.
Sentence B: The cat had caught the mouse and <the cat> was trying to wriggle free.

Word swap: the position of a word or text span in sentence A appears swapped in sentence B
Sentence A: Their music is considered by many as an alternative metal with rap metal and

industrial metal influences, which according to previous interviews call
themselves “murder - rock”.

Sentence B: Their music is considered by many as <industrial> metal with rap metal and
<alternative> metal influences. According to previous interviews, they
consider themselves “murder rock”.

Error Type-specific Guidelines: Additionally, we include specific guidelines for the
annotation of three phenomenon categories: hallucination, coreference, and word swap (see
Table 5). The annotation of examples belonging to these categories may be achieved by
marking the presence of one or more operations. For example, the hallucination exam-
ple in Table 5 contains both an “addition” (i.e., <Welsh, French,>) and a “substitution”
(i.e., Gaelic→ <Garlic>). The three categories, for which we provide error type-specific
guidelines, cover all of the examples submitted for manual annotation.
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5.2.2 Development of Manual Annotation Guidelines. To aid in the development and re-
finement of the annotation guidelines, we conducted a two-phase annotation pilot. In
the first phase, we drew up the set of formal guidelines (described in Section 5.2.1). In
the second phase, we verified the guidelines and measured inter-annotator agreement.
We then asked professional annotators to complete the manual annotation of the four
ACES phenomena listed above, using the guidelines.

In the first pilot phase, four of the authors of the paper11 manually annotated
error spans for a sample of 100 examples with English as the target language, ran-
domly selected across all phenomena in ACES. The annotators had access to the
source-language sentence, the three target-language translations: good- incorrect- and
reference-translation, and the phenomenon label. We considered only the target-
language side and marked one or more error spans in the incorrect translation only.
We then conducted an adjudication exercise in which all four annotators manually
compared the four sets of annotations for each example and discussed their strategies
for annotation. From this, we derived a set of general guidelines to accommodate the
annotation of any example in ACES. We then added specific guidelines for examples
belonging to the categories hallucination, coreference, and word swap.

In the second pilot phase, we verified the quality of the manual annotation guide-
lines. To verify the general guidelines, the same four annotators from the first pilot
phase annotated another sample of 100 examples with English as the target language,
randomly selected across all ACES phenomena. To verify the quality of the span
annotations, we automatically measured inter-annotator agreement. We computed the
percentage of exact matches12 as total exact matches divided by total spans marked,
that is, where all four annotators agree on the same error span, as 81.82% (examples =
100, total spans = 110, exact-match spans = 90), indicating high agreement.13 We also
verified the type-specific guidelines for annotating hallucination, coreference, and word
swap. As the coreference category requires manual annotation in German (ACES con-
tains only en-de examples for the coreference-based-on-commonsense phenomenon), and
examples of the other phenomena exist for English, we asked two native German /
fluent English speakers14 to annotate a randomly selected sample of 100 examples
(25 examples from each of the relevant ACES phenomenon categories). We report
inter-annotator agreement of 77.40% (examples = 100, total spans = 146, exact-match
spans = 113).

In addition to measuring inter-annotator agreement, we also examined the exam-
ples where two or more annotators marked different spans. We concluded that the
majority of differences arose from simple human errors as opposed to differing inter-
pretations of the guidelines. For example, annotators sometimes accidentally marked
longer spans than necessary, or marked the presence of a deletion in the wrong position.
We concluded that many of these mistakes could have been avoided had the annotators
carefully double-checked their annotations. We therefore added a note to the guidelines
to this effect, but made no further changes to the instructions. It is also worth noting that
for a handful of examples, the presence of MT led to annotators struggling to agree on

11 Two annotators for the first pilot phase are native English speakers; two are fluent English speakers.
12 We ignore both leading and trailing whitespace when comparing spans.
13 Highest inter-annotator agreement with three annotators: 90.48% (examples = 100, total spans = 105,

exact-match spans = 95).
14 One annotator for the second pilot phase was also an author of this paper.
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a correct annotation—an issue that is not easily resolved, but is infrequent in the
ACES dataset.

We shall now discuss the result and analysis of different metrics on our benchmarks.

6. Evaluation Methodology

Table 6 lists the baseline, reference-based, and reference-free metrics from WMT 2022
and 2023 that provide segment-level judgments and cover all of the language pairs in
ACES. We indicate whether metrics are embeddings-based with a subset of metrics
using the supervision signal provided by Direct Assessment (DA) judgments from
WMT (Bojar et al. 2016) or MQM (Lommel, Burchardt, and Uszkoreit 2014) annotations,
LLM-based, or rely on surface-level overlap with the reference.

We briefly summarize the metrics here, grouping them into broad categories based
on their design characteristics. The metrics that rely on surface overlap with the refer-
ence include several baseline metrics: BLEU (Papineni et al. 2002), chrF (Popović 2017),
and the spBLEU (Goyal et al. 2022) metrics F101SPBLEU and F200SPBLEU, for which
the SentencePiece tokenizer (Kudo and Richardson 2018) was trained using data from
the FLORES-101 or -200 languages respectively. It also includes the 2023 participant
metrics based on F-scores and inspired by chrF++: Tokengram F and Partokengram F
(Dréano, Molloy, and Murphy 2023b).

The largest group is embedding-based metrics. Many are based on the COMET
architecture: COMET-20 and COMET-QE (Rei et al. 2020), Unbabel’s WMT 2022 sub-
mission COMET-22 (Rei et al. 2022), and Microsoft’s WMT 2022 submissions MS-
COMET-22 and MS-COMET-QE-22 (Kocmi, Matsushita, and Federmann 2022). The
XCOMET family of metrics, trained to identify errors in sentences along with a
final quality score, includes XCOMET-XL, XCOMET-XXL, and XCOMET-QE, and
the two ensemble metrics: XCOMET-Ensemble and XCOMET-QE-Ensemble. The
COMET-Kiwi (Rei et al. 2022) metric and the COMETKIWI-XL and COMETKIWI-
XXL metrics from 2023 form another family. The COMETOID22 (Gowda, Kocmi, and
Junczys-Dowmunt 2023) student metrics are trained to mimic teacher scores from
COMET-22 without access to the reference. (The suffix [WMT-21,22,23] indicates the
training data cut-off year.) The remaining metrics are based on a range of different
architectures: BERTScore (Zhang et al. 2020), BLEURT20 (Sellam et al. 2020), YiSi-1
(Lo 2019), UniTE (Wan et al. 2022a), MATESE and MATESE-QE (Perrella et al. 2022a),
eBLEU (ElNokrashy and Kocmi 2023), and XLsim (Mukherjee and Shrivastava 2023).
The MetricX family includes the metricx * DA and metricx * MQM metrics from 2022
and MetricX-23 and MetricX-23-QE (Juraska et al. 2023) from 2023. The Huawei metrics
include Cross-QE, HWTSC-Teacher-Sim, and HWTSC-TLM (Liu et al. 2022), and KG-
BERTScore (Liu et al. 2022; Wu et al. 2023) which incorporates a multilingual knowl-
edge graph.

The LLM-based metrics group comprises two WMT 2023 metrics: Embed Llama
(Dréano, Molloy, and Murphy 2023a) which uses pre-trained LLaMA2 embeddings
without finetuning, and GEMBA-MQM (Kocmi and Federmann 2023a)—a GPT-based
metric for error quality span marking. Finally, Random-sysname is a random baseline
which samples scores from a Gaussian distribution based on random mean value. It
was included in 2023 to provide a context to scores and also to detect errors in metric
meta-evaluations. In addition to these metrics, we also conducted some experiments on
using LLMs for evaluation as listed below.
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Table 6
Baseline (top), reference-based (middle), and reference-free (bottom) metrics from WMT 2022
and 2023 Metrics shared tasks. * denotes a participating metric from 2022 that was used as a
baseline in 2023. † denotes that metrics were used as baselines for SPAN-ACES. ? indicates no
information was made available.

supervised surface base- LLM-
overlap embedding based 2022 2023

BLEU 3 3 3
f101spBLEU 3 3
f200spBLEU 3 3 3
chrF 3 3 3
BERTScore mBERT 3 3
BLEURT20 WMT human eval mBERT 3 3
COMET-20 XML-R 3
COMET-QE XML-R? 3
YiSi-1 mBERT 3 3
Random-sysname 3

COMET-22*† DA+MQM 3 3
MATESE MQM 3
metricx xl DA 2019 DA mt5 3
metricx xl MQM 2020 MQM mt5 3
metricx xxl DA 2019 DA mt5 3
metricx xxl MQM 2020 MQM mt5 3
MS-COMET-22 human judgments mt5 3
UniTE 3
UniTE-ref † 3
eBLEU 3
embed llama Llama 2 3 3
MetricX-23 DA+MQM mT5 3
MetricX-23-b DA+MQM mT5 3
MetricX-23-c DA+MQM mT5 3
partokengram F 3? 3
tokengram F 3 3
XCOMET-Ensemble DA+MQM XLM-R 3
XCOMET-XL † DA+MQM XLM-R 3
XCOMET-XXL DA+MQM XLM-R 3
XLsim WMT human eval XLM-R 3

COMETKIWI* DA InfoXLM 3 3
Cross-QE ? 3
HWTSC-Teacher-Sim paraphrase-multilingual 3

-mpnet-base-v2
HWTSC-TLM ? 3
KG-BERTScore 3 3
MATESE-QE MQM 3
MS-COMET-QE-22* 3 3
UniTE-src 3
COMETOID22-wmt21 ? InfoXLM 3
COMETOID22-wmt22 ? InfoXLM 3
COMETOID22-wmt23 ? InfoXLM 3
COMETKIWI-XL XLM-R 3
COMETKIWI-XXL XLM-R 3
GEMBA-MQM † 3 3
MetricX-23-QE DA+MQM mT5 3
MetricX-23-QE-b DA+MQM mT5 3
MetricX-23-QE-c DA+MQM mT5 3
XCOMET-QE-Ensemble DA+MQM XLM-R 3
XLsimQE WMT human eval XLM-R 3
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6.1 LLM Metrics

Following the rapid adoption of LLM-based approaches to address a range of NLP
tasks (Brown et al. 2023), there has also been a steady increase in the use of LLMs for
evaluation of text generation tasks. Prompting LLMs allows us to design evaluation
strategies that emulate ranking (Li, Patel, and Du 2023), scoring (Chiang and Lee 2023;
Sottana et al. 2023) as well as providing explanations (Jiang et al. 2023; Leiter et al. 2024).
These techniques have been adapted for MT evaluation with apparently promising
results (Xu et al. 2023; Lu et al. 2023; Kocmi and Federmann 2023a). We note that
these observations are often limited to system-level evaluation and also to high-resource
language pairs. Further, we only had access to the scores produced by the LLM-based
metrics in the previous section, allowing us limited scope for analysis. To obtain a better
understanding of how different strategies with LLMs affect MT evaluation, we resorted
to running a new set of experiments with LLMs described in this section. We intend
to investigate the extent to which these LLMs can be used for MT evaluation more
holistically through the ACES dataset.

We consider three variants of using LLMs for evaluation. The first one is GEMBA-
DA (Kocmi and Federmann 2023a) where the model (GPT Davinci-003, a predecessor
to GPT-4 model) is prompted using a zero-shot approach to produce a translation score
between 0 and 100. Note that GEMBA-DA was the precursor of the GEMBA-MQM
model, which was discussed previously. For the next two methods, we considered
LLaMA2 (7B) (Touvron et al. 2023) and FLAN-ALPACA-XL (Chia et al. 2023) (3B) which
is Flan-T5 (Chung et al. 2022) fine-tuned on the Alpaca dataset (Taori et al. 2023). We
chose LLaMA2 (7B), despite it being predominantly trained in English, to see if the
accidental multilingual tokens are enough to provide multilingual evaluation. In the
case of EMBED LLAMA, the metric uses representations from the LLaMA model to
calculate cosine distance. Our methods with LLaMA2 rely on prompting. We included
FLAN-ALPACA-XL as it is a smaller LLM and that LLM was trained with multilingual
data.15

For two of these LLMs (FLAN-ALPACA-XL and LLAMA2), we experimented with
both zero-shot and five-shot prompting. In five-shot prompting, five examples of scored
translations across varying scoring ranges and language pairs were provided with the
prompt. However, we found that five-shot prompting performed poorly in our initial
experiments and therefore we report only the zero-shot results. We provide the prompt
templates in Appendix G: Prompt for LLMs for MT Evaluation. For the postprocessing
of outputs from the above LLMs, we included the first rational number that appeared
in the output from the respective models as the score produced by that LLM. In the
scenario in which no number was found, the example was given a score of 0. In such
examples, the overgenerated text generally consisted of a hallucinated example of a
source-reference-translation triplet.

As ACES is a contrastive dataset, we also experimented with providing a prompt
that compares the two translations, labeled A and B respectively, and instructs the LLM
to select the better translation. However, in our initial experiments, we found that the
models typically produce an option followed by the generation of both of the candidate
translations. This copying of translations makes it hard to identify if the generation of

15 We also conducted experiments on BLOOM (Scao et al. 2022) but found the majority of outputs produced
by the BLOOM-7B model to be unintelligible which could not be converted into scores.
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the option was a result of the model actually performing the evaluation or an artefact of
the overgeneration.

6.2 Metrics with Error Spans

In addition to the above metrics, we also conduct baseline experiments for SPAN-ACES.
We include recently developed metrics that directly predict error spans while generating
the scores, namely, XCOMET-XL (Guerreiro et al. 2023) and GEMBA-MQM (Kocmi
and Federmann 2023a). These metrics also provide severity of the error for the predicted
error span—minor, major, and critical.

Additionally, we derive baselines from existing metrics that were trained to only
produce scores. We re-purpose the work in Rei et al. (2023), which included the proposal
of several neural explainability methods for interpreting state-of-the-art fine-tuned neu-
ral machine translation metrics such as COMET and UNITE. In one of these techniques,
embed–align, they calculate the maximum cosine similarity between each translation
token embedding and the reference and/or source token embeddings (Tao et al. 2022)
and assign that scalar value to each translation token. Starting from embed—align
scores attributed to each translation token, we generate error spans over the translations
by marking any token which has an embed-align score higher than a constant threshold.
We set the threshold that yields the span predictions with the highest Recall@K score
on the WMT 2021 MQM annotations development dataset.16 This method produces
six different types of span predictions: embed–align[mt, src], embed–align[mt, ref], and
embed–align[mt, src; ref] using the embeddings extracted from each of the COMET-22
and UNITE models.17

6.3 Evaluation of Metrics

For all phenomena in ACES where we generated more than 1,000 examples, we ran-
domly subsample 1,000 examples according to the per language pair distribution to
include in the final challenge set to keep the evaluation of new metrics tractable.

We follow the evaluation of the challenge sets from the 2021 edition of the WMT
metrics shared task (Freitag et al. 2021b) and report performance with Kendall’s tau-
like correlation.18 The Kendall’s tau-like metric (see Equation (1)) measures the number
of times a metric scores the good translation above the incorrect translation (concordant)
and equal to or lower than the incorrect translation (discordant). Ties are considered as
discordant. Note that a higher τ indicates a better performance and that the values can
range between −1 and 1.

τ = concordant− discordant
concordant + discordant (1)

We discuss the evaluation on SPAN-ACES closer to its Results section.

16 Threshold = 0.1 for COMET-22, threshold = 0.14 for UNiTE.
17 We use the wmt22-comet-da version for COMET-22 and SRC+REF version for UNITE.
18 Evaluation scripts are available here: https://github.com/EdinburghNLP/ACES.
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7. Results

We discuss results of different metrics on ACES and SPAN-ACES. We provide the
results of metrics that participated in the WMT Metrics shared tasks followed by LLM-
based evaluation on ACES, and finally baseline results for SPAN-ACES.

7.1 Shared Task Results

We begin by providing a broad overview of metric performance on the different phe-
nomena categories, before conducting more detailed analyses in Section 8. We restrict
the overview to the metrics which (a) participated in the shared task, and provide (b)
segment-level scores and (c) scores for all language pairs and directions in ACES. After
filtering according to these criteria, 24 metrics from 2022 remain: nine baseline, eight
reference-based, and seven reference-free metrics. In 2023, 33 metrics fulfil these criteria:
10 baseline, 11 reference-based, and 12 reference-free metrics.

We first calculate Kendall’s tau-like correlation scores for all of the ACES examples
(see Equation (1)). We then report the average score over all examples belonging to each
of the nine top-level accuracy categories in ACES, plus the fluency category punctuation
(see Tables 7 and 8). In addition, we calculate the ACES-Score, a weighted combination
of the top-level categories, which allows us to identify high-level performance trends
of the metrics (see Equation (2)). The weights correspond to the values under the
MQM framework (Freitag et al. 2021a) for major (weight = 5), minor (weight = 1), and
fluency/punctuation errors (weight = 0.1). We categorize untranslated, do not translate,
and wrong language as minor errors due to the ease with which they can be identified
with automatic language detection tools or during post-editing. We also include real-
world knowledge under minor errors since we do not generally expect MT evaluation
metrics to have any notion of real-world knowledge and do not wish to punish them for
this. Note that the ACES-Score ranges from −29.1 (all phenomena have a correlation of
−1) to 29.1 (all phenomena have a correlation of +1).

ACES = sum



5 ∗ τaddition

5 ∗ τomission

5 ∗ τmistranslation

1 ∗ τuntranslated

1 ∗ τdo not translate

5 ∗ τovertranslation

5 ∗ τundertranslation

1 ∗ τreal-world knowledge

1 ∗ τwrong language

0.1 ∗ τpunctuation



(2)

Overall Performance: We report an overview of the results for WMT 2022 in Table 7
and the results for WMT 2023 in Table 8. Using the ACES-Score (the final column in
each of the tables), we can see at a glance that the majority of the metrics submitted
to the WMT 2022 shared task outperform the baseline metrics. The same is true of
the WMT 2023 metrics—except for COMETKIWI, a successful submission from 2022
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which was used as a baseline in 2023—the majority of the 2023 baseline metrics are
outperformed by the metrics submitted by participants. Interestingly, in both years,
many reference-free metrics performed on par with reference-based metrics. This is
because our challenge sets are constructed to make the reference useless (ambiguous
translation, discourse connectives, etc.), or misleading (hallucinations, lexical overlap,
sentence-level meaning error). Note that we cannot directly compare the results from
2022 and 2023—for a small subset (2,659; approx. 7%) of the ACES examples, different
results were returned in 2022 and 2023 for metrics where no changes had been made
(baseline metrics such as BLEU or COMETKIWI, etc.).19

The best-performing metric in 2022 is a reference-free metric, namely, KG-
BERTSCORE, closely followed by the reference-based metric METRICX XL DA 2019.
The best-performing metrics in 2023 are COMETKIWI (a reference-free baseline metric),
and KG-BERTSCORE. Perhaps unsurprisingly, BLEU is one of the worst perform-
ing metrics (Callison-Burch, Osborne, and Koehn 2006; Freitag et al. 2022), underper-
formed only by the random baseline, RANDOM-SYSNAME, in 2023. We caution that we
developed ACES to investigate strengths and weaknesses of metrics on a phenomena
level—hence, we advise the reader not to draw any conclusions based solely on the
ACES-Score.

Across both years, we observed that metric performance varies greatly and there is
no clear winner in terms of performance across all of the categories. There is also a high
degree of variation in terms of metric performance when each category is considered
in isolation. While each of the categories proves challenging for at least one metric,
some categories are more challenging than others. Unlike 2022, in 2023, we observe that
the reference-free group exhibits overall stronger performance compared with the other
groups, but in particular for the mistranslation, overtranslation, undertranslation, and real-
world knowledge categories.

7.1.1 Top-level Error Category Results. The previous section outlines an overview of met-
rics submitted to the consecutive shared tasks. We now look at the trends exhibited by
these metrics on a phenomenon level.

Looking at the average scores in the last row of the results and without taking
outliers into account, we might conclude that addition, undertranslation, real-world
knowledge, and wrong language (all with average Kendall tau-like correlation of< 0.3)
present more of a challenge than the other categories. On the other hand, for omission
and do not translate (with an average Kendall tau-like correlation of > 0.7 in 2022 and
> 0.6 in 2023) metric performance is generally rather high. We note that the average
phenomena co-relation is not inversely related to the critical-major-minor weighting;
omission is a critical error in the ACES-Score yet metrics can detect these errors.

We observe variation in terms of the performance of metrics belonging to the base-
line, reference-based, and reference-free groups. For example, in both years, the baseline
metrics generally appear to struggle more on the overtranslation and undertranslation
categories than the metrics belonging to the other groups. Reference-based metrics also
appear to perform better overall on the untranslated category than the reference-free
metrics. This makes sense as a comparison with the reference is likely to highlight to-
kens that ought to have been translated.

19 A subsequent investigation suggested that differences in the pre-processing steps by the shared task
organizers in 2022 and 2023 may have led to the differences; in particular, the handling of double quotes
present in some of the ACES examples may be one of the main causes.
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Case Study: We look at the results of chrF, BERTScore, KGBERTScore, XCOMET-
XL, and GEMBA-MQM from Table 8 as these metrics correspond to different de-
sign paradigms listed in Section 6. While BERTScore, KGBERTScore, XCOMET-XL are
embedding-based metrics, BERTScore is an unsupervised metric, XCOMET-XL is a
supervised metric, and KGBERTScore is the overall winning metric. First we note that
chrF has high correlation (>0.6) across six categories, BERTScore and KGBERTScore
for five categories, XCOMET-XL for two categories, and none for GEMBA-MQM. This
is because chrF shines at categories that are easier to detect with simple heuristics for
lexical matching with the reference sentence such as wrong language, untranslated or
do-not-translate.

As we move to categories that require understanding semantic content, embedding
based metrics show superior performance. This is evident with the high correlation
scores of KGBERTScore and XCOMET-XL for real-world knowledge and mistransla-
tion. We note that BERTScore has poorer correlation than these two suggesting that
leveraging supervision is helpful in detecting errors that require semantic understand-
ing. We find that both BERTScore and chrF have negative correlation for overtransla-
tion/undertranslation. The failure is expected for chrF as we corrupt only one word
from the reference to create the incorrect translation, thus giving it a high score while
the good-translation is a paraphrase of the reference (with low lexical overlap). For
BERTScore, we suspect the raw representations for hypernyms/hyponyms of the word
to lie in a similar space, causing a confusion for the metric. Omission and punctuation
are fairly easy categories for all the metrics while addition is challenging for XCOMET-
XL and GEMBA-MQM. Lastly, GEMBA-MQM does not show an impressive trend
across any category. We outline the possible reasons for this failure of LLM metrics in
Section 7.2.

Our dataset was largely constructed for accuracy errors which account to “major”
and “critical” errors. Identifying if an accuracy error is major or critical is dependent
on its usage in downstream application (Moghe et al. 2023; Lommel, Burchardt, and
Uszkoreit 2014). Our weights were decided based on either the severity for general
use of that translation and/or how well a contemporary metric may handle that error.
Despite this, we find that our weighting of the error categories might give artificial
gains/loses in the ACES-Score. For example, chrF has high correlation across six cat-
egories, yet it has the poorest ACES-Score in this group. At the same time, chrF is
extremely useful in scenarios with poor MT outputs. Future metrics may try to game
the ACES-Score by focusing on categories with higher weights. Still, we believe that
an ACES-Score will be helpful to quickly identify changes in performance of a metric
(e.g., following modifications), prior to conducting in-depth analyses at the category
and sub-category levels.

7.1.2 Mistranslation Results. After discussing the phenomena-level results of these met-
rics, we drill down to the fine-grained categories of the largest category: mistranslation.
We present metric performance on its sub-level categories (discourse, hallucination, and
other) in Table 9 (2022 results) and Table 10 (2023 results). The discourse sub-category
includes errors involving the mistranslation of discourse-level phenomena such as
pronouns and discourse connectives. Hallucination includes errors at the word level that
could occur due to hallucination by an MT model, for example, the use of wrong units,
dates, times, numbers, or named entities, as well as hallucinations at the subword level
that result in nonsensical words. The other sub-category covers all other categories of
mistranslation errors including overly literal translations of idioms and the introduction
of ambiguities in the translation output.
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Table 9
2022 Results. Average Kendall’s tau-like correlation results for the sub-level categories in
mistranslation: discourse-level, hallucination, and other errors. The horizontal lines delimit
baseline metrics (top), participating reference-based metrics (middle), and participating
reference-free metrics (bottom). The best result for each category is denoted by bold text with a
green highlight. Note that Average is an average over averages.

– disco. halluci. other
Examples 3698 10270 10489
BLEU −0.048 −0.420 −0.251
f101spBLEU 0.105 −0.206 −0.153
f200spBLEU 0.094 −0.191 −0.149
chrF 0.405 −0.137 0.161
BERTScore 0.567 −0.058 0.362
BLEURT-20 0.695 0.142 0.402
COMET-20 0.641 0.016 0.399
COMET-QE 0.666 0.303 0.208
YiSi-1 0.609 0.019 0.368
COMET-22 0.682 0.461 0.542
metricx xl DA 2019 0.701 0.493 0.458
metricx xl MQM 2020 0.573 0.677 0.394
metricx xxl DA 2019 0.768 0.541 0.463
metricx xxl MQM 2020 0.716 0.713 0.392
MS-COMET-22 0.645 0.148 0.360
UniTE 0.746 0.322 0.424
UniTE-ref 0.776 0.396 0.437

COMETKIWI 0.733 0.493 0.637
Cross-QE 0.644 0.395 0.563
HWTSC-Teacher-Sim 0.594 0.296 0.330
HWTSC-TLM 0.756 0.306 0.151
KG-BERTScore 0.593 0.387 0.472
MS-COMET-QE-22 0.626 0.243 0.416
UniTE-src 0.772 0.463 0.551
Average 0.586 0.242 0.331

As for the results overview in Section 7.1, we find that performance on the different
sub-categories is variable, with no clear winner among the metrics in either 2022 or
2023. The results from both years suggest that hallucination phenomena are generally
more challenging than discourse-level phenomena. Performance on the hallucination
sub-category is poor overall, although it appears to be particularly challenging for the
baseline metrics. We present additional, more fine-grained, performance analyses for
individual phenomena in Section 8.

7.2 LLM Results

We report the results of the LLM experiments described in Section 6.1 in Table 11. Over-
all, we find MT evaluation via LLMs is a hard task in the zero-shot setup. This is also
evident in the results in Section 7.1 where we highlight the relatively low performance
of GEMBA-MQM and EMBED-LLAMA. This is contrary to findings where LLMs show
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Table 10
2023 Results. Average Kendall’s tau-like correlation results for the sub-level categories in
mistranslation: discourse-level, hallucination, and other errors. The horizontal lines delimit
baseline metrics (top), participating reference-based metrics (middle), and participating
reference-free metrics (bottom). The best result for each category is denoted by bold text with a
green highlight. Note that Average is an average over averages.

disco. halluci. other
Examples 3698 10270 10489
BERTscore 0.563 −0.062 0.361
BLEU −0.042 −0.418 −0.250
BLEURT-20 0.695 0.141 0.398
chrF 0.406 −0.138 0.160
COMET-22 0.657 0.113 0.383
COMETKIWI 0.779 0.465 0.580
f200spBLEU 0.095 −0.190 −0.150
MS-COMET-QE-22 0.631 0.240 0.417
Random-sysname −0.117 −0.122 −0.111
YiSi-1 0.608 0.017 0.366
eBLEU 0.374 −0.166 0.282
embed llama −0.089 −0.140 0.189
MetricX-23 0.757 0.663 0.393
MetricX-23-b 0.749 0.656 0.390
MetricX-23-c 0.694 0.755 0.477
partokengram F −0.062 −0.101 0.027
tokengram F 0.396 −0.132 0.157
XCOMET-Ensemble 0.791 0.566 0.626
XCOMET-XL 0.706 0.482 0.521
XCOMET-XXL 0.609 0.540 0.504
XLsim 0.217 −0.066 0.236
COMETOID22-wmt21 0.782 0.286 0.400
COMETOID22-wmt22 0.748 0.290 0.423
COMETOID22-wmt23 0.758 0.223 0.478
COMETKIWI-XL 0.752 0.501 0.602
COMETKIWI-XXL 0.735 0.535 0.661
GEMBA-MQM 0.076 0.291 0.127
KG-BERTScore 0.685 0.466 0.580
MetricX-23-QE 0.728 0.604 0.628
MetricX-23-QE-b 0.694 0.617 0.666
MetricX-23-QE-c 0.747 0.659 0.739
XCOMET-QE-Ensemble 0.702 0.558 0.651
XLsimQE 0.053 0.050 0.134
Average 0.511 0.248 0.365

promising trends for evaluation at the system-level or on segment-level for a handful of
high-resource language pairs (Fernandes et al. 2023; Kocmi and Federmann 2023b).

We find that of the three LLMs, GEMBA-DA has better (though still poor) perfor-
mance. These results worsen for the reference-less setting where most of the phenomena
have a negative correlation. Despite the instructions for DA scores to be assigned using
a continuous scale of 0–100, we find that the LLMs tend to produce a peaked distribu-
tion. For example, GEMBA-DA produces only seven different scores for the full set of
examples. This results in a higher number of ties which get penalized in Equation (1).
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Table 11
LLM results across three LLMs: GPT-4 through GEMBA-DA, LLAMA-2, and FLAN-T5-XL
fine-tuned with Alpaca. REF: Reference based, QE: Quality Estimation/Reference-free. Using
zero-shot prompting on LLMs for MT evaluation has results poorer than the surface overlap
baselines in Table 7. This result worsens when the LLMs operate in a QE setting.

GEMBA-DA LLAMA-2 (7B) FLAN-T5-XL + Alpaca (3B)
REF QE REF QE REF QE

addition −0.235 −0.794 −0.607 −0.587 −0.834 −0.922
mistranslation −0.031 −0.322 −0.58 −0.552 −0.656 −0.832
real-world knowledge 0.366 0.157 −0.58 −0.6 −0.280 −0.739
untranslated −0.334 −0.606 −0.650 −0.626 −0.529 −0.631
do not translate −0.100 −0.840 −0.64 −0.52 −0.180 −0.500
undertranslation 0.090 −0.286 −0.602 −0.602 0.016 −0.730
overtranslation 0.472 −0.034 −0.564 −0.524 0.026 −0.744
omission −0.281 −0.568 −0.549 −0.503 −0.848 −0.854
punctuation −0.306 −0.355 −0.646 −0.650 −0.875 −0.924
wrong language 0.026 −0.688 −0.55 −0.483 −0.632 −0.705
ACES-Score −0.02 −12.0 −16.9 −16.1 −13.2 −23.1

Even after instructing the LLMs to output scores within the range of 0–100, we observed
instances where the LLMs produced scores beyond that range.

These results suggest that while LLMs may perform well for MT evaluation under
a specific setup like high-resource pairs or system-level evaluation, their zero-shot
inference abilities for MT evaluation at segment-level are far from perfect. This can be
attributed to a lack of multilingual training data (Kocmi and Federmann 2023a) as well
as a limited numerical understanding of LLMs (Dziri et al. 2023). We additionally ex-
press concerns over test-data leakage as ACES is built on several other academic datasets
(see Section 3.1) that may have been a part of the LLM training data (Carlini et al. 2020).
We also note that these models are quite slow at inference. It takes approximately six
hours to make a pass over the entire dataset using FLAN-T5-XL on a 24GB GPU, while
it takes five days with two 24GB GPUs for LLAMA2 on 8-bit precision.

7.3 Span-based Results

We first discuss the evaluation for SPAN-ACES and then report the results for the
baseline methods discussed in Section 6.2.

7.3.1 Metrics for SPAN-ACES. We consider two different types of evaluation for SPAN-
ACES, namely, span extraction and contrastive evaluation:

Span Extraction: We first measure how well the methods that produce spans perform
the task of identifying erroneous span(s) in a translation. We evaluate the predicted
spans for the incorrect translation against the gold annotation. We calculate sample F1
score, where a span is considered to be a true positive if the span exactly matches its
ground truth and average across the dataset, denoted as Span-F1. We also experimented
with using partial matches between the gold error span and the predicted error span.
However, using standardized tokenization based on words/sub-words/characters and
then developing a threshold for partial match is not trivial and results in incorrect
inflation of scores. Our current evaluation setup requires span prediction and error
labeling to be conducted simultaneously. In future work, evaluation could be separated
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into two phases, with gold error spans optionally provided for the evaluation of error
labeling.

Contrastive Evaluation: To evaluate these methods on ACES and compare their results,
we obtain span predictions for the good translation as well. We use a length heuristic
where we measure the number of times the metric produces fewer spans for the good
translation compared with the incorrect translation (concordant) and greater than or
equal to the incorrect translation (discordant) and calculate the correlation as described
in Section 6.3. Note that COMET-22 and UNITE were trained only to predict scores.
Based on the observations in Rei et al. (2023), these scores do correspond to MT error
spans. We use these observations to convert metrics that produce scores into the ones
that predict spans as there are not enough off-the-shelf metrics that produce spans.
The prediction of an error span is based on a pre-defined threshold on attention values
between the hypothesis and the reference, without any information of the severity of the
error. Thus, we resorted to the naive length heuristic and leave development of better
heuristics as future work. Specifically, the length heuristic is not robust to the scenario
in which an error span is incorrectly predicted where there is no error present (i.e.
false positives) as well as where labels are correctly predicted but spans are incorrectly
marked.

If the severity of errors for the predicted spans is available as is the case with
GEMBA-MQM and XCOMET-XL, we use a weighted score based on the severity la-
bel. We use the following weights: (critical: 10, major: 5, minor: 1) and cap them at 25. We
include the length heuristic for GEMBA-MQM and XCOMET-XL for completeness.
Ideally, any metric that produces both spans and labels should include the appropriate
weighting of labels to obtain a score for contrastive evaluation.

7.3.2 Results. We now report the results of different models that produce error spans
(and occasionally labels) from Section 7.3.1 on the SPAN-ACES dataset in Table 12.
Overall, we find that these methods perform poorly on both the error span extraction
and contrastive evaluation tasks.

On the span extraction task, we find that the derived methods—COMET-22 and
UNITE—that is, using attention maps over the source/reference sentences, lead to
higher Span-F1 scores than either XCOMET and GEMBA-MQM which were specif-
ically designed to generate error spans. This adds some more evidence to the findings
in Rei et al. (2023) that suggest metrics (COMET-22 and UNITE) tend to use token-
level information that can be associated with tangible translation errors. Within using
attention maps over the source/reference sentences for COMET-22 and UNITE, we
find that the scores for the src only version are the worst suggesting that these metrics
use very limited information from the source (c.f. the similar observation made in
Section 8.2).

While using the length heuristic for the contrastive evaluation, GEMBA-MQM has
better results followed by UNITE. As GEMBA-MQM and XCOMET-XL also provide
labels for their predicted error spans, we also convert these labels into score based on
the weights in Guerreiro et al. (2023) (critical: 10, major: 5, minor: 1), then cap the error
score per sentence at 25, and finally convert the score to a value between 0 and 1. We
find that weighted label scores have a good improvement over the length heuristic,
suggesting that more sophisticated heuristics need to be developed in the future to
obtain better meta-evaluation strategies. After using the label weighted score, we find
that the performance for XCOMET-XL is still lower than the performance in Table 8,
suggesting that the scores produced by the joint model may not necessarily rely on
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Table 12
Results of span-based metrics on SPAN-ACES for the tasks of span extraction and then
contrastive evaluation on ACES using the predicted spans as outlined in Section 7.3.1. Under
COMET-22 and UniTE, use of src and ref denotes whether these components were used to
obtain attention weights which were converted to spans. Span-F1 is only calculated for the
incorrect translation. For the contrastive evaluation on ACES, all the above methods consider a
candidate translation to be better than the other translation if the number of predicted spans in
the former translation is less than the later, denoted by “length”. For the “weight” version of
XCOMET-XL and GEMBA-MQM, the labels denoting error severity of the predicted spans are
converted to a weighted score. We note the derived metrics—COMET-22 and UNITE—have
better results on the span extraction task than the metrics designed to predict the spans. This
trend flips for the contrastive evaluation. Overall, all of the methods struggle on both tasks.

COMET-22 UNITE XCOMET-XL GEMBA-MQM

src-ref ref src src-ref ref src length weight length weight

Span Extraction Evaluation
Span F1 26.9 26.2 4 22.7 22.7 7.3 10.6 10.6 8.67 8.67

Contrastive Evaluation
addition 0.598 0.477 −0.177 0.522 0.475 0.317 −0.269 −0.191 −0.077 0.103
mistranslation −0.313 −0.364 −0.482 −0.447 −0.431 −0.308 −0.222 −0.016 0.005 0.240
real-world knowledge −0.470 −0.501 −0.417 −0.360 −0.377 −0.279 −0.202 0.088 −0.330 0.328
untranslated −0.641 −0.056 −0.689 −0.759 0.260 −0.910 −0.239 −0.166 −0.152 0.103
do not translate 0.500 0.340 −0.380 0.460 0.520 0.380 0.060 0.100 −0.080 0.140
undertranslation −0.192 −0.206 −0.392 0.110 0.092 −0.220 −0.066 0.250 0.162 0.368
overtranslation −0.144 −0.174 −0.362 0.312 0.284 −0.088 0.008 0.430 0.236 0.554
omission −0.770 −0.842 −0.838 −0.814 −0.784 −0.700 −0.381 −0.197 0.165 0.385
punctuation −0.385 −0.479 −0.609 −0.642 −0.574 −0.624 −0.593 −0.525 0.039 0.129
wrong language 0.406 0.289 −0.212 0.484 0.387 0.285 −0.225 −0.279 −0.132 −0.047

ACES-Score −4.3 −5.5 −13.0 −1.8 −1.1 −5.6 −5.3 1.1 1.8 8.8

the error spans produced by that model. In contrast, GEMBA-MQM improves on its
performance in Tables 8 and 12. We attribute this to either a change in the underlying
model powering GPT-4 between submissions to WMT and re-running for SPAN-ACES
or the use of a different weighting scheme. We also find it encouraging that GEMBA-
MQM improves over GEMBA-DA, providing us with some evidence that label-based
evaluation can be helpful.

We speculate that these poor results may be attributed to (i) the unavailability of
labeled MQM data during training (COMET-22 and UNITE), (ii) the availability of
labeled data for only a few language pairs (XCOMET-XL), (iii) the use of proprietary
models, and thus no knowledge of underlying training data (GEMBA-MQM), (iv) the
fact that these metrics are the earliest designs for span-based evaluation, and (v) that our
annotation schemes and evaluation regimes are also the first of their kind, potentially
introducing new challenges for span-based evaluation metrics. We also caution the
reader that our heuristics for contrastive evaluation only offer a starting point. Future
work can include model confidence, different weighting schemes, POS tags, and so
forth, to compare the two translations.

8. Analysis

Aside from high-level evaluations of which metrics perform best, we are mostly inter-
ested in weaknesses of metrics in general that we can identify using ACES. This section
presents an analysis of some general questions that we aim to answer using ACES.
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8.1 How Sensitive Are the Metrics to Error Types?

One important quality of a reliable metric is its ability to assign sufficiently different
scores to a good vs. an incorrect translation. To evaluate and compare the difference
between the scores that the metrics assign to the good and incorrect translations, we
normalize the metric scores to a common scale with an open-ended range, using the
statistics from the metric scores submitted to the 2022 and 2023 editions of the WMT
metrics task (Freitag et al. 2022, 2023). We do that by scaling the metric scores based
on the mean and interquartile range (IQR) of the scores of that metric submitted to the
WMT22/23 metric shared task (see Equation (3)).

score∗ =
score− Avg(scorewmt)

IQRwmt
(3)

Our sensitivity metric builds on the second evaluation method proposed by Alves
et al. (2022), which measures the average difference between the scores assigned to
good and incorrect translations, but only when the good translation receives a higher
score. While this method indicates the metric’s confidence in correctly identifying good
translations, it overlooks cases where the good translation is scored lower than the incor-
rect one. This can result in misleadingly high confidence scores for poorly performing
metrics, making the evaluation method less suitable for comparing multiple metrics.

To address these limitations, we modified that approach. We calculate the sensitivity
score of the metric (see Equation (4)) as the average difference between the scores as-
signed to good and incorrect translations, specifically by subtracting the score assigned
to the incorrect translation from the score assigned to the good translation, including
when the incorrect translation receives a higher score. With this modification, we aimed
to ensure that metrics which assign higher scores to incorrect translations are penalized.
Thus, the sensitivity score serves as a better overall performance evaluation metric,
enabling us to compare different metrics more reliably.

In the Equation (4), sgood and sbad are the normalized scores assigned to the good
translation and incorrect translation pairs. The value range of the sensitivity scores is
open.20

sensitivity = Avg(sgood − sbad) (4)

Similar to the Kendall’s tau-like correlation scores, we then report the average score
overall examples belonging to each of the nine top-level accuracy categories in ACES,
plus the fluency category punctuation, calculated for the top three metrics from the
baseline, reference-based, and reference-free metrics each, submitted to WMT 2022 and
WMT 2023 (see Table 13). The phenomena-level sensitivity scores for all the metrics
submitted to WMT 2022 and WMT 2023 can be found in Appendix J: Phenomena-level
Metric Sensitivity Scores.

The average sensitivity scores of the metrics support the results reached by the anal-
ysis of the average Kendall’s tau-like correlation scores in most cases. One of the most
significant exceptions to that is that GEMBA-MQM has significantly higher sensitivity
scores across a majority of the high-level phenomena when evaluated according to the
average sensitivity scores, unlike the Kendall’s tau-like correlation results.

20 Evaluation scripts are available here: https://github.com/EdinburghNLP/ACES.
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Looking at the average sensitivity scores of the metrics in the last row of Tables J.1
and J.2 in Appendix J: Phenomena-level Metric Sensitivity Scores, we can see that the
metrics are more sensitive to the untranslated category than all the other categories by
a margin, where the untranslated category is not one of the easier categories according
to the average Kendall’s tau-like correlation scores.

Regarding the subcategories of mistranslation, discourse, which was previously
considered the least challenging category based on Kendall’s tau-like correlation,
emerges as the most difficult for the metrics according to sensitivity scores. It can be
seen that across multiple 2022 and 2023 metrics, the average sensitivity scores of the
metrics on the hallucination subcategory are higher compared to the average sensitivity
scores on discourse, while the average Kendall’s tau-like correlation scores favor the
discourse subcategory over hallucination.

Finding: Average sensitivity scores provide a more fine-grained analysis of the
metric performances. They reveal that the metrics are particularly sensitive to the
untranslated category, and that GEMBA outperforms other metrics in most error types
in the sensitivity evaluation.

8.2 How Sensitive Are Metrics to the Source?

We designed our challenge sets for the type of ambiguous translation in a way that
the correct translation candidate given an ambiguous reference can only be identified
through the source sentence. See the third example in Table 1, where the reference is in
non-gendered language, thus requiring the information in the source sentence about the
female baker to disambiguate the sentence. We present a targeted evaluation intended
to provide some insights into how important the source is for different metrics. For
brevity, we include top three performing metrics in each category in 2022 and 2023, and
a couple of baseline metrics. Table 14 shows the detailed results of each metric on the
considered phenomena.

The most important finding is that the reference-free metrics generally perform
much better on these challenge sets than the reference-based metrics. This indicates that
reference-based metrics rely too much on the reference. Interestingly, most of the metrics
that seem to ignore the source do not randomly guess the correct translation (which is
a valid alternative choice when the correct meaning is not identified via the source)
but rather they strongly prefer one phenomenon over the other. For example, several
metrics show a gender bias either towards female occupation names (female correla-
tions are high, male low) or male occupation names (vice versa). Likewise, most metrics
prefer translations with frequent senses for the word-sense disambiguation challenge
sets, although the difference between frequent and infrequent is not as pronounced as
for gender.

Only metrics that look at the source and exhibit fewer such preferences can perform
well on average on this collection of challenge sets. XCOMET-ENSEMBLE performs best
out of the reference-based metrics and XCOMET-QE-ENSEMBLE performs best of all
reference-free metrics. It is noteworthy that there is still a considerable gap between
these two models across most of the error categories, suggesting that reference-based
models should pay more attention to the source when a reference is ambiguous in order
to reach the performance of reference-free metrics.

This finding is also supported by our real-world knowledge commonsense chal-
lenge set. If we compare the scores on the examples where the subordinate clauses
are missing from both the source and the reference to the ones where they are only
missing from the reference, we can directly see the effect of disambiguation through the
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Table 14
Results on the challenge sets where the good translation can only be identified through the
source sentence. Upper block: reference-based metrics, lower block: reference-free metrics.
The best results for each phenomenon and each group of models are marked in bold and green
and the average overall can be seen in the last column.

since female male wsd

causal temp. anti. pro. anti. pro. freq. infreq. AVG

Examples 106 106 1000 806 806 1000 471 471 4766
BERTScore −0.434 0.434 −0.614 −0.216 0.208 0.618 0.214 −0.223 −0.001
COMET-22 −0.415 0.792 0.940 1.000 −0.628 0.374 0.558 0.040 0.333
MS-COMET-22 −0.604 0.623 0.296 0.640 −0.342 0.046 0.316 −0.155 0.102
UniTE 0.038 −0.075 −0.890 −0.213 0.377 0.934 0.270 −0.223 0.027

MetricX-23 −1.000 1.000 −0.864 −0.062 0.062 0.870 0.227 −0.222 0.001

MetricX-23-c −0.849 0.849 −0.998 −0.581 0.576 0.996 0.150 −0.133 0.172

XCOMET-Ensemble −0.585 0.981 0.852 0.948 0.273 0.922 0.554 0.231 0.522

Cross-QE 0.208 0.830 0.976 0.995 −0.337 0.364 0.762 0.355 0.519
MS-COMET-QE-22 −0.283 0.792 −0.194 0.320 0.246 0.694 0.465 0.002 0.255
UniTE-src −0.321 0.906 0.976 0.980 0.171 0.736 0.622 0.346 0.552
COMETKIWI 0.075 1.000 0.990 0.998 −0.171 0.440 0.740 0.384 0.557

KG-BERTScore 0.075 1.000 0.990 0.998 −0.171 0.440 0.702 0.460 0.315

MetricX-23-QE-b −0.566 0.868 0.968 0.995 0.722 0.968 0.643 0.490 0.643

XCOMET-QE-Ensemble −0.208 0.925 0.930 0.975 0.546 0.912 0.740 0.477 0.662

source. The corresponding correlation gains are shown in Table H.1 in the Appendix.
All reference-based model correlation scores improve less than most reference-free
correlations when access to the subordinate clause is given through the source. This
highlights again that reference-based metrics do not give enough weight to the source
sentence.

Finding: Source sentences are the primary textual unit of information for a trans-
lation. Yet, reference-based metrics tend to ignore the information in the source. This
was later confirmed by Rei et al. (2023) that, in some cases, reference-based metrics may
largely ignore source information and instead rely heavily on the reference. We note,
however, that their study was restricted to two metrics (COMET and UNITE) and their
observations regarding ignoring source information appears only to relate to COMET.
In this work, we report on a large-scale meta-level evaluation and base our observations
on multiple reference-based metrics.

8.3 How Much Do Metrics Rely on Surface Overlap with the Reference?

We are interested in whether neural reference-based metrics still rely on surface-level
overlap with the reference.

For this analysis, we use the dataset we created for hallucinated named entities and
numbers. We add an example about the three levels. Note that as the levels increase, the
surface level similarity between the good translation and the reference decreases while
the surface level overlap between the incorrect translation and the reference increases.
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Figure 2
Decrease in correlation for reference-based and reference-free metrics on the named entity and
number hallucination challenge sets.

SRC (es): Sin embargo, Michael Jackson, Prince y Madonna fueron influencias para el álbum.
REF (en): Michael Jackson, Prince and Madonna were, however, influences on the album.

Level-1 3: However, Michael Jackson, Prince, and Madonna were influences on the album.
Level-1 7: However, Michael Jackson, Prince, and Garza were influences on the album.

Level-2 3: However, Michael Jackson, Prince, and Madonna were influences on the album.
Level-2 7: Michael Jackson, Prince and Garza were, however, influences on the album.

Level-3 3: The record was influenced by Madonna, Prince, and Michael Jackson though.
Level-3 7: Michael Jackson, Prince and Garza were, however, influences on the album.

We take the average correlation for all reference-based metrics (excluding lexical
overlap metrics like BLEU), and the average correlation of all reference-free metrics
that cover all languages across both the years and plot the decrease in correlation with
increasing surface-level similarity of the incorrect translation to the reference. The result
can be seen in Figure 2.

We can see that on average reference-based metrics have a much steeper decrease
in correlation than the reference-free metrics as the two translation candidates become
more and more lexically diverse and the surface overlap between the incorrect transla-
tion and the reference increases. This indicates a possible weakness of reference-based
metrics: If one translation is lexically similar to the reference but contains a grave error
while others are correct but share less surface-level overlap with the reference, the
incorrect translation may still be preferred.

We also show that this is the case for the challenge set where we use an adver-
sarial paraphrase from PAWS-X that shares a high degree of lexical overlap with the
reference but does not have the same meaning as an incorrect translation. On average,
the reference-based metrics only reach a correlation of 0.05 ± 0.17 on this challenge set,
whereas the reference-free metrics reach a correlation of 0.24 ± 0.17. This shows that
reference-based metrics are less robust when the incorrect translation has high lexical
overlap with the reference.

Finding: Despite the claims of neural methods being robust to paraphrases, neural
reference-based metrics for MT evaluation largely rely on surface-level overlap be-
tween the hypothesis and the reference. Concurrently, Alves et al. (2022) showed that
reference-based metrics are dependent on word overlap between the reference and
hypothesis. This over-reliance has been highlighted as a particular issue for named
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Figure 3
Correlation of reference-based metrics (blue) and reference-free metrics (orange) on the
sentence-level untranslated test challenge set.

entities and numbers (Alves et al. 2022), and for multi-word expressions in Chinese
(Song and Xu 2024).

8.4 Do Multilingual Embeddings Help Design Better Metrics?

As the community moves towards building metrics that use multilingual encoders, we
investigate if some (un)desirable properties of multilingual embeddings or other pre-
trained models are propagated in these metrics.

Multilingual models often learn cross-lingual representations by abstracting away
from language-specific information (Wu and Dredze 2019). We are interested in whether
the representations are still language-dependent in neural MT evaluation metrics which
are trained on such models. For this analysis, we look at the sentence-level untranslated
text challenge set (see Figure 3) and wrong language phenomena (see Table 7).

Figure 3 shows the correlations for all reference-based and reference-free metrics.
Unsurprisingly, some reference-free metrics struggle considerably on this challenge set
and almost always prefer the copied source to the real translation. The representations
of the source and the incorrect translation are identical, leading to a higher surface and
embedding similarity, and thus a higher score. We do, however, find some exceptions
to this trend—COMET-KIWI and MS-COMET-QE-22 both have a high correlation on
sentence-level untranslated text. This suggests that these metrics could have learned
language-dependent representations.

Most reference-based metrics have good to almost perfect correlation and can iden-
tify the copied source quite easily. As reference-based metrics tend to ignore the source
(see Section 8.3), the scores are based on the similarity between the reference and the MT
output. In this challenge set, the similarity between the good translation and the refer-
ence is likely to be higher than the incorrect translation and the reference. The former
MT output is in the same language as the reference and will have more surface-level
overlap. We believe the reference here acts as grounding.

However, this grounding property of the reference is only robust when the source
and reference languages are dissimilar, as is the case with language pairs in the sentence-
level untranslated text challenge set. We find that reference-based metrics struggle on
wrong language phenomena (see Tables 7, 10) where the setup is similar, but now the
incorrect translation and the reference are from similar languages (e.g., one is in Hindi
and the other is in Marathi). Naturally, there will be surface-level overlap between the
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reference and both the good translation and the incorrect translation. For example, both
Marathi and Hindi use named entities with identical surface form, and so these will ap-
pear in the reference and also in both the good translation and the incorrect translation.
Thus, the semantic content drives the similarity scores between the MT outputs and
the references. The human translation in the similar language (labeled as the incorrect
translation) may have a closer representation to the human reference, as some semantic
information may be lost in the MT output (labeled as the good translation). We leave
further investigation of this for future work.

Finding: Pre-trained models are trained without any task-specific objective. Rep-
resentations from multilingual pre-trained models or LLMs can produce undesirable
effects on MT evaluation.

In addition to the above analyses, we refer the reader to our work in Amrhein,
Moghe, and Guillou (2023) for further insights. We analyze the effect of adding metric
training data on MT evaluation through the COMETOID22 metric. We find that more
training data is beneficial for metric development across all the different phenomena.
We also discuss in detail whether there is any incremental improvement in metric fami-
lies submitted to both WMT 2022 and WMT 2023. We find that architectural changes or
data changes only contribute to minimal improvements for a few metrics.

9. Recommendations

Based on the metrics results on ACES, SPAN-ACES, and our analyses, we first make
some recommendations for MT evaluation in general and then provide some more
specific suggestions for metric development.

Informative Evaluation: From our results in Section 7, we find that a single score
is not enough to identify if a metric has superior performance. By evaluating on ACES,
we can obtain a profile for the metric showcasing its strengths and weaknesses across
different MT errors, supporting metric developers in making more informed choices.
To further deter the development of metrics that produce a single score, we also recom-
mend predicting error spans (ideally with labels) instead of scores. We propose SPAN-
ACES as an additional test suite for the development of metrics that produce error
spans.

Building Metric Ensembles: Both the evaluation on phenomena and language pair
categories in Section 7 showed that there is no single best-performing metric. This
divergence is likely to become even larger if we evaluate metrics on different domains.
In future work on MT evaluation, it may be worthwhile thinking about how different
metrics can be combined to make more robust decisions as to which is the best translation.
Recent submissions to the WMT Metrics shared task include ensemble models (such as
COMET-KIWI, KG-BERTSCORE, XCOMET-ENSEMBLE, etc.), which suggests that our
recommendations are aligned with the efforts of the community.

The Source Matters: Our analysis in Section 8.2 highlighted that many reference-
based metrics that take the source as input do not consider it enough. Cases where the
correct translation can only be identified through the source are currently better handled
by reference-free metrics. This is a serious shortcoming of reference-based metrics,
which should be addressed in future research, also considering that many reference-
based metrics choose to exclude source information by design.

Surface Overlap Prevails: In Section 8.3 we showed that despite moving beyond
a purely surface-level comparison with the reference, most reference-based metrics are
still considerably influenced by surface-level overlap. We thus recommend including
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paraphrases in the training regime as well as designing loss functions that explicitly
discourage surface-level overlap (Tang et al. 2024; Bawden et al. 2020).

Check the Pre-trained Model Properties: Some properties of multilingual represen-
tations, like the representation space being language-agnostic, can result in undesirable
effects on MT evaluation (Section 8.4). Simple strategies to model language-specific in-
formation in the metrics could also improve the robustness of the metrics to adversarial
language pair attacks.

We also find that LLMs are not effective segment-level MT evaluators just yet (see
Section 6.1), hence, better design strategies must be employed to make LLMs useful in
evaluation. We recommend using the generation capabilities rather than relying on their
scoring abilities (West et al. 2024). LLMs can generate synthetic data that can be used for
fine-tuning smaller or traditional MT metrics (Fernandes et al. 2023; Tang et al. 2024).
Similarly, we encourage research towards leveraging LLMs to include explanations of
their evaluations for better MT evaluation as demonstrated in Jiang et al. (2023) and
Leiter et al. (2024).

10. Conclusion

In this work, we identify and address some of the shortcomings of MT metrics. A single
segment-level (or system-level) score for a metric does not provide an overview of that
metric’s strengths and weaknesses. To address this, we developed ACES: a translation
accuracy challenge set based on the MQM ontology, which consists of 36,476 examples
covering 146 language pairs and representing challenges from 68 phenomena. ACES
can be used to provide a profile of metric performance over a range of phenomena, and
to measure incremental performance between multiple versions of the same metric. We
used ACES to evaluate the baseline and submitted metrics from the WMT 2022 and
2023 metrics shared tasks, to measure how sensitive metrics are to certain phenomena,
and to provide fine-grained analyses of metric performance to reveal the extent to which
metrics rely on the source and on surface-level overlap with the reference, and to assess
whether multilingual embeddings are a helpful component in metric design.

Our overview of metric performance at the phenomena and language levels in Sec-
tion 7 reveals that there is no single best-performing metric. The more fine-grained anal-
yses in Section 8 highlight that (1) metric sensitivity is correlated with score prediction
for most of the metrics, (2) many reference-based metrics that take the source as input
do not consider it enough, (3) most reference-based metric scores are still considerably
influenced by surface overlap with the reference, (4) the use of multilingual embeddings
can have undesirable effects on MT evaluation, and (5) the addition of metric-specific
data improves the quality of the metric. We find that LLM-based evaluation methods
have mediocre results and in some cases even worse than the surface overlap-based
metrics.

We recommend that these shortcomings of existing metrics be addressed in future
research and that metric developers should consider (a) combining metrics with differ-
ent strengths, for example, in the form of ensemble models, (b) developing metrics that
give more weight to the source and less to surface-level overlap with the reference, and
(c) incorporating strategies to explicitly model additional language-specific information
(rather than simply relying on multilingual embeddings). We also recommend that the
community develop evaluation methods that produce error types and error spans as
singular scores are not informative. To that end, we have released SPAN-ACES, where
every incorrect translation in ACES contains span-level annotations for the erroneous
text corresponding to the phenomenon label. We also provided baseline results on
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SPAN-ACES. We have made ACES and SPAN-ACES publicly available and hope that
it will provide a useful benchmark for MT researchers in the future.

In terms of future directions for the development of ACES, there are several options
aimed at addressing some of the limitations of the current dataset. Firstly, expansion to
additional medium- and low-resource language pairs, and expending upon the provi-
sion for those language pairs already in the dataset, would address the issue of coverage
of ACES. We note that while it is common to talk about specific language pairs as
high-, medium-, and low-resource from an MT training perspective, the definition may
differ for MT evaluation where available resources may not follow the same patterns.
With the exception of ACES, the challenge sets submitted to the WMT Challenge Sets
task (Freitag et al. 2022, 2023) typically focus on high-resource MT language pairs, and
we might therefore expect that high availability of MT training and evaluation data
go hand in hand. Secondly, we encourage further analysis of metrics with respect to
their performance on high- medium- and low-resource language pairs. The language-
level analysis in Amrhein, Moghe, and Guillou (2022) that compares performance
for language pairs where neither the source nor target language are English, versus
when the source/target is English, provides a first step in this direction, but barely
scratches the surface. Thirdly, the focus of the challenge set is on accuracy errors due
to their critical nature; however, future work could consider the extension to fluency
errors (beyond punctuation). Again, the MQM framework, which includes fluency
error categories (in addition to accuracy errors), could be used as the foundation for
such challenge sets, in particular errors belonging to the linguistic conventions category
which is concerned with errors relating to linguistic well-formedness of the text, including
problems with grammaticality, idiomaticity, and mechanical correctness. Some of the error
types in this category have already been explored by Macketanz et al. (2022) in their
fine-grained linguistically motivated analysis of MT systems submitted to WMT 2022:
punctuation, function words, tense/mood/aspect, agreement. Finally, we recommend
that the community continue to work on developing challenge sets for MT and other
tasks to improve our understanding of the progress along these directions.

Appendix A: Language Codes

Table A.1
ISO 2-Letter language codes of the languages included in the challenge set.

Code Language Code Language Code Language Code Language
af Afrikaans fa Persian ja Japanese sl Slovenian
ar Arabic fi Finnish ko Korean sr Serbian
be Belarusian fr French lt Lithuanian sv Swedish
bg Bulgarian ga Irish lv Latvian sw Swahili
ca Catalan gl Galician mr Marathi ta Tamil
cs Czech he Hebrew nl Dutch th Thai
da Danish hi Hindi no Norwegian tr Turkish
de German hr Croatian pl Polish uk Ukranian
el Greek hu Hungarian pt Portuguese ur Urdu
en English hy Armenian ro Romanian vi Vietnamese
es Spanish id Indonesian ru Russian wo Wolof
et Estonian it Italian sk Slovak zh Chinese
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Appendix B: Permitted Unit Conversions

The unit conversions permitted for the Hallucination - Unit Conversion challenge set are
listed in Table B.1.

Table B.1
Permitted unit conversions.

Distance: Volume:
• miles→metres • barrels→ gallons
• kilometres→miles • barrels→ litres
• kilometres→metres • gallons→ barrels
• metres→ feet • gallons→ litres
• metres→ yards
• feet→metres Weight:
• feet→ yards • kilograms→ grams
• centimetres→ inches • kilograms→ pounds
• centimetres→millimetres • grams→ ounces
• inches→ centimetres • ounces→ grams
• inches→millimetres
• millimetres→ centimetres Time:
• millimetres→ inches • hours→minutes

• minutes→ seconds
Speed: • seconds→minutes
• miles per hour→ kilometres per hour • days→ hours
• kilometres per hour→miles per hour • months→weeks
• kilometres per second→miles per second • weeks→ days
• miles per second→ kilometres per second

Area:
• square kilometres→ square miles

Appendix C: Distribution of Examples Across Language Pairs

Table C.1 contains the total number of examples per language pair in the challenge set.
As can be seen in the table, the distribution of examples is variable across language
pairs. The dominant language pairs are: en-de, de-en, and fr-en.

Appendix D: Distribution of Language Pairs Across Phenomena

Table D.1 contains the list of language pairs per phenomena in the challenge set. As can
be seen in the table, the distribution of language pairs is variable across phenomena.
Addition and omission have the highest variety of language pairs. en-de is the most
frequent language pair across all phenomena.

Appendix E: Distribution of Domains Across Phenomena

Table E.1 contains the different datasets used per phenomena. This is followed by listing
the domains of the examples per phenomena obtained by aggregating domains of the
respective datasets. Please refer to the description of these datasets in Section 3.1.
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Appendix F: ACES Annotation Methods per Phenomena

The methods used to annotate the error spans for each of the phenomena in SPAN-ACES
are listed in Table F.1.

Appendix G: Prompt for LLMs for MT Evaluation

For reference-based evaluation, we used the following prompt:

Score the following translation with respect to human reference on a continuous scale of
0 to 100 where score of zero means “no meaning preserved” and score of one hundred
means “perfect meaning and grammar”. Only output an integer between 0 to 100.
Source: source sentence here
Human Reference: reference sentence here
Translation: candidate translation

For reference-free evaluation, we excluded the “with respect to human reference”
and “Human Reference” from the prompt.

Appendix H: Importance of Source

We report the results on the real-world knowledge commonsense challenge set in
Table H.1. Reference-based metrics tend to disregard the information in the source.

Appendix I: ACES Span Annotation Guidelines

1. General Guidelines

Your task is to annotate spans of translation errors that match a specific error type: e.g.,
“word swap”, or “overtranslation”. You are presented with two sentences (A and B) as
well as a label denoting the error type that you should look for. You should compare
translations A and B and mark any error spans of the specified type that occur in
sentence B.

Please note that:

• You should annotate at the word level, not at the character level. I.e. in
the case that the error is a misspelling (e.g., “combuter” instead of
“computer”) the complete word (“combuter”) should be marked.

• You should only mark errors of the type specified by the error type label,
and no other errors that may be present in sentence B.

• You are not required to mark any errors that may be present in sentence
A.

• Whilst the majority of sentences you will encounter will be fluent, some
machine-generated sentences will contain disfluencies.
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Table F.1
Methods used to annotate the error spans for each of the phenomena in SPAN-ACES.
Phenomenon Annotation Method
addition addition/omissions
ambiguous-translation-wrong-discourse-connective-since-causal word-lvl-compare-to-good
ambiguous-translation-wrong-discourse-connective-since-temporal word-lvl-compare-to-good
ambiguous-translation-wrong-discourse-connective-while-contrast word-lvl-compare-to-good
ambiguous-translation-wrong-discourse-connective-while-temporal word-lvl-compare-to-good
ambiguous-translation-wrong-gender-female-anti word-lvl-compare-to-good
ambiguous-translation-wrong-gender-female-pro word-lvl-compare-to-good
ambiguous-translation-wrong-gender-male-anti word-lvl-compare-to-good
ambiguous-translation-wrong-gender-male-pro word-lvl-compare-to-good
ambiguous-translation-wrong-sense-frequent word-lvl-compare-to-good
ambiguous-translation-wrong-sense-infrequent word-lvl-compare-to-good
anaphoric group it-they:deletion addition/omissions
anaphoric group it-they:substitution addition/omissions
anaphoric intra non-subject it:deletion addition/omissions
anaphoric intra non-subject it:substitution addition/omissions
anaphoric intra subject it:deletion addition/omissions
anaphoric intra subject it:substitution addition/omissions
anaphoric intra they:deletion addition/omissions
anaphoric intra they:substitution addition/omissions
anaphoric singular they:deletion addition/omissions
anaphoric singular they:substitution addition/omissions
antonym-replacement word-lvl-compare-to-ref
commonsense-only-ref-ambiguous word-lvl-compare-to-good
commonsense-src-and-ref-ambiguous word-lvl-compare-to-good
copy-source whole-sentence
coreference-based-on-commonsense manual
do-not-translate word-lvl-compare-to-good
hallucination-date-time date-time
hallucination-named-entity-level-1 word-lvl-compare-to-good
hallucination-named-entity-level-2 word-lvl-compare-to-ref
hallucination-named-entity-level-3 word-lvl-compare-to-ref
hallucination-number-level-1 word-lvl-compare-to-good
hallucination-number-level-2 word-lvl-compare-to-ref
hallucination-number-level-3 word-lvl-compare-to-ref
hallucination-real-data-vs-ref-word manual
hallucination-real-data-vs-synonym manual
hallucination-unit-conversion-amount-matches-ref unit-conversion
hallucination-unit-conversion-unit-matches-ref unit-conversion
hypernym-replacement word-lvl-compare-to-ref
hyponym-replacement word-lvl-compare-to-ref
lexical-overlap manual
modal verb:deletion addition/omissions
modal verb:substitution word-lvl-compare-to-good
nonsense word-lvl-compare-to-ref
omission addition/omissions
ordering-mismatch word-swap
overly-literal-vs-correct-idiom word-lvl-compare-to-good
overly-literal-vs-explanation word-lvl-compare-to-good
overly-literal-vs-ref-word word-lvl-compare-to-good
overly-literal-vs-synonym word-lvl-compare-to-good
pleonastic it:deletion addition/omissions
pleonastic it:substitution addition/omissions
punctuation:deletion all addition/omissions
punctuation:deletion commas addition/omissions
punctuation:deletion quotes addition/omissions
punctuation:statement-to-question addition/omissions
real-world-knowledge-entailment word-lvl-compare-to-good
real-world-knowledge-hypernym-vs-distractor word-lvl-compare-to-good
real-world-knowledge-hypernym-vs-hyponym word-lvl-compare-to-good
real-world-knowledge-synonym-vs-antonym word-lvl-compare-to-good
similar-language-high whole-sentence
similar-language-low whole-sentence
untranslated-vs-ref-word word-lvl-compare-to-good
untranslated-vs-synonym word-lvl-compare-to-good
xnli-addition-contradiction whole-sentence
xnli-addition-neutral whole-sentence
xnli-omission-contradiction whole-sentence
xnli-omission-neutral whole-sentence
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Table H.1
Results on the real-world knowledge commonsense challenge set with reference-based metrics
in the left block and reference-free metrics in the right block. The numbers are computed as the
difference between the correlation with the subordinate clause in the source and the correlation
without the subordinate clause in the source. Largest gains are bolded.

Reference-based corr-gain Reference-free corr-gain
BERTScore 0.002 COMET-QE 0.018
COMET-20 0.06 Cross-QE 0.292
COMET-22 0.19 HWTSC-Teacher-Sim 0.154
metricx xxl DA 2019 0.012 KG-BERTScore 0.154
metricx xxl MQM 2020 −0.016 MS-COMET-QE-22 0.196
MS-COMET-22 0.05 UniTE-src 0.216
UniTE 0.042 COMETOID22-wmt23 0.138
COMET-22 0.042 COMETKIWI 0.454
MetricX-23 0.004 COMETKIWI-XL 0.148
MetricX-23-b −0.002 GEMBA-MQM 1.107
MetricX-23-c 0.008 KG-BERTScore 0.436
XCOMET-Ensemble 0.162 MS-COMET-QE-22 0.198
XCOMET-XL 0.11 MetricX-23-QE-b 0.296
XCOMET-XXL 0.016 XCOMET-QE-Ensemble 0.112

XLsimQE 0.184

• In the examples in this document, errors are highlighted in bold text to
help make the examples clearer. You do not need to bold the error spans
in your annotations.

• This document is intended to be comprehensive and cover the cases
assigned across multiple annotators. As such, a batch that is assigned to
you may contain only a subset of the error types listed in the Error
type-specific section (below).

• You should only mark punctuation as part of error spans if it is part of the
error (e.g., added as part of an addition operation or changed as part of a
substitution operation).

Please read the guidelines thoroughly before you start the annotation task. Once you
have finished, please make a second pass to identify and correct any mistakes that you
may have made. Please also make a note of any examples that you were unsure how to
annotate e.g., the example ID and a brief note.

All error spans should be marked with open and closing tags (e.g., <error span>).
Errors of specific types may be formed by addition, substitution, deletion or reordering
operations. For deletion operations, you should insert an empty pair of tags <> where
content is missing in sentence B.

Whitespace: Error tags should not contain leading (e.g., <error span>) or trailing (e.g.,
<error span>) whitespace.
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Addition: a text span that is not present in sentence A is included in sentence B.

Sentence A: The cat is a species of small carnivorous mammal.
Sentence B: The cat is a <domestic> species of small carnivorous mammal.

Substitution: a text span in sentence A is substituted with a different text span in
sentence B.

Sentence A: Female domestic cats can have kittens from spring to late autumn.
Sentence B: Female domestic cats can have kittens from <May> to <December>.

Deletion: a text span that is present in sentence A is omitted from sentence B. Note that
when marking a deletion, care should be taken to ensure that no extra whitespace is
inserted into the sentence. Tags marking the deletion should be inserted after the space
separating the two words where the deletion occurred.

Sentence A: Feral cats are domestic cats that were born in or have reverted to a wild
state.
Sentence B: Feral cats are domestic cats <>or have reverted to a wild state.

Reordering: a text span in sentence A that appears in a different position in sentence B,
as though the sentence has been reordered.

Sentence A: Montreal is the second most populous city in Canada and the most
populous city in the province of Quebec.
Sentence B: Montreal is the <>most populous city in Canada and the <second> most
populous city in the province of Quebec.

Note: reordering operations can be viewed as a combination of a deletion and an addition
operation to change the order of elements of a sentence.

Example 1: Marking a single error span of a specified error type; ignoring other error
types

In this example, the aim is to mark “overtranslation” type errors, i.e. where translation
B is more specific than translation A:

Sentence A: The festival in Houston took place in the summer.
Sentence B: The festival in took place in August.

The error span is “August”, which is more specific than “the summer” - the information
that the event took place in August has been “hallucinated”.

Annotated B: The Republican National Convention in was in <August>.

Note that the missing information in sentence B (“Houston”) can be ignored because it
is an “omission” error not an “overtranslation” error. Other examples of errors that can
be ignored include e.g., agreement errors in German.
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Example 2: Marking multiple error spans in the same example

If there are multiple errors of the specified type present in sentence B, you should mark
each error span individually. For example, if the error label is “omission” you should
mark the two spans of omitted text in sentence B:

Sentence A: Like the other planets in the Solar System, Mars was formed 4.5 billion
years ago.
Sentence B: Like the other planets, Mars was formed 4.5 years ago.

Annotated B: Like the other planets <>, Mars was formed 4.5 <>years ago.

2. Error Type–Specific Guidelines

In your annotations, you will only encounter three specific error types. Additional
guidelines are provided below for these error types - hallucination, word swap and
coreference.

Hallucination

In a hallucination example, text that is not present in sentence A is observed in sentence
B or word in sentence A is replaced by a more frequent or orthographically similar word
in sentence B. I.e. hallucination can be an “addition” or a “substitution” case. This may
result in a change of meaning in sentence B. You should mark the “hallucinated” text in
sentence B.

Sentence A: The official languages of Scotland are: English, Scots, and Scottish Gaelic.
Sentence B: The official languages of Scotland are: English, Welsh, French, Scots, and
Scottish Garlic.

The information that Welsh and French are official languages of Scotland has been
hallucinated and inserted into sentence B. Additionally, “Gaelic” has been hallucinated
as “Garlic”. This should be annotated as:

Annotated B: The official languages of Scotland are: English, <Welsh, French,> Scots,
and Scottish <Garlic>.

Word Swap

In a word swap example the position of a word or a span of text in sentence A appears
swapped in sentence B. This may result in sentence B being factually incorrect. You
should mark (in sentence B) the spans of text that have been swapped.

Sentence A: Their music is considered by many as an alternative metal with rap metal
and industrial metal influences, which according to previous interviews call themselves
“murder - rock”.
Sentence B: Their music is considered by many as industrial metal with rap metal and
alternative metal influences. According to previous interviews, they consider
themselves “murder rock”.
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The position of the words “alternative” and “industrial” is different in sentence A,
compared with sentence B and should be annotated as follows:

Annotated B: Their music is considered by many as <industrial> metal with rap metal
and <alternative> metal influences. According to previous interviews, they consider
themselves “murder rock”.

Coreference

In a coreference example a pronoun in sentence A is replaced with a (potentially)
inappropriate noun-phrase in sentence B. You should mark the relevant noun-phrase
in sentence B.

Example:

Sentence A: The cat had caught the mouse and it was trying to wriggle free.
Sentence B: The cat had caught the mouse and the cat was trying to wriggle free.

The pronoun “it” has been replaced with the noun-phrase “the cat”, resulting in a
change in meaning. This should be annotated as:

Annotated B: The cat had caught the mouse and <the cat> was trying to wriggle free.

Appendix J: Phenomena-level Metric Sensitivity Scores

Tables J.1 and J.2 contain the average sensitivity scores for each high-level phenomena
of the metrics submitted to WMT 2022 and WMT 2023, respectively.
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Campolungo, Niccolò, Federico Martelli,
Francesco Saina, and Roberto Navigli.
2022. DiBiMT: A novel benchmark for
measuring Word Sense Disambiguation
biases in Machine Translation. In
Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 4331–4352.
https://doi.org/10.18653/v1
/2022.acl-long.298

Carlini, Nicholas, Florian Tramèr, Eric
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Results of the WMT21 metrics shared task:
Evaluating metrics with expert-based
human evaluations on TED and news
domain. In Proceedings of the Sixth
Conference on Machine Translation,
pages 733–774.

Gowda, Thamme, Tom Kocmi, and Marcin
Junczys-Dowmunt. 2023. COMETOID:
Distilling strong reference-based machine
translation metrics into even stronger
quality estimation metrics. In Proceedings of
the Eighth Conference on Machine Translation,
pages 749–753. https://doi.org
/10.18653/v1/2023.wmt-1.62

Goyal, Naman, Cynthia Gao, Vishrav
Chaudhary, Peng-Jen Chen, Guillaume
Wenzek, Da Ju, Sanjana Krishnan,
Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2022. The Flores-101
evaluation benchmark for low-resource
and multilingual machine translation.
Transactions of the Association for
Computational Linguistics, 10:522–538.
https://doi.org/10.1162/tacl_a_00474

Guerreiro, Nuno M., Ricardo Rei, Daan van
Stigt, Luisa Coheur, Pierre Colombo, and
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