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In this article we present Enhanced Rhetorical Structure Theory (eRST), a new theoretical
framework for computational discourse analysis, based on an expansion of Rhetorical Structure
Theory (RST). The framework encompasses discourse relation graphs with tree-breaking, non-
projective and concurrent relations, as well as implicit and explicit signals which give explainable
rationales to our analyses. We survey shortcomings of RST and other existing frameworks, such
as Segmented Discourse Representation Theory, the Penn Discourse Treebank, and Discourse
Dependencies, and address these using constructs in the proposed theory. We provide annotation,
search, and visualization tools for data, and present and evaluate a freely available corpus of
English annotated according to our framework, encompassing 12 spoken and written genres with
over 200K tokens. Finally, we discuss automatic parsing, evaluation metrics, and applications
for data in our framework.

1. Introduction

Natural language documents are more than just an ordered list of equally important and
self-contained sentences: They form complex structures that can often be divided into
more or less prominent sections and subsections, which together give rise to meanings
that are not necessarily localizable to individual propositions by themselves. Identifying
these structures and the meanings associated with them is the task of discourse parsing,
in which arbitrary documents are assigned an analysis within a theoretical parsing
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framework that defines the types of combinatory semantic and pragmatic meanings
to be recognized, and the structures that components of a document can create.

While not discussed in the field of NLP as often as syntactic parsing or entity
recognition, discourse parsing has been one of the “textbook” examples of Natural
Language Understanding (Jurafsky and Martin 2024, pages 536–540) for a long time,
with implementable frameworks being suggested as early as Mann and Thompson’s
(1988) Rhetorical Structure Theory (RST). Most approaches to discourse parsing involve
(at least) recognizing spans of text that are connected by one of a set of predetermined
discourse relation types (Hovy 1990), such as CAUSE or CONCESSION, and naming the
relation and configuration in which those parts appear in the text, which can take on
many linguistic forms. For instance, in example (1) from Asher and Lascarides (2003,
page 136), both formulations in a. and b. are typically interpreted to mean that the
predicate pushed is the cause of the predicate fell, and that the pushing preceded the
falling in time, although these events are related in chronological order in b., but in
counter-chronological order in a.

(1) a. Max fell. John pushed him.

b. John pushed Max. He fell.

The exact nature and inventory of such relations, sometimes called “coherence rela-
tions,” “prominence relations,” or also “rhetorical relations,” as well as the structures
they form, vary across theoretical accounts.

Like other areas of NLP, discourse parsing has benefited from increasingly accurate
scores following the introduction of large pre-trained language models, with scores ap-
proaching human performance on some subtasks, such as discourse unit segmentation
(Gessler et al. 2021), recognition of explicitly signaled relations (Knaebel 2021), as well
as hierarchical parsing, especially for English in the news domain (Guz, Huber, and
Carenini 2020; Liu, Shi, and Chen 2021; Kobayashi et al. 2022).

By contrast, less progress has been made in advancing our theories of discourse
relations and their organization. After the introduction of RST and subsequent projects
to construct datasets using the theory (Carlson, Marcu, and Okurowski 2001), several
alternative frameworks were proposed to address some of its shortcomings (surveyed
below in Section 2.1), with the main strands resulting in implemented datasets in-
cluding Segmented Discourse Representation Theory (SDRT, Asher and Lascarides
2003, Section 2.2), the Penn Discourse Treebank framework (PDTB, Prasad et al. 2006,
Section 2.3), and the Cognitive Approach to Coherence Relations (CCR, Sanders,
Spooren, and Noordman 1992, Section 2.4). These frameworks each improve on certain
problems identified quite early on in RST, including notably:

• Tree-breaking, non-projective structures (SDRT)

• Distinguishing implicitly and explicitly signaled relations, with the latter
being more reliably identifiable (PDTB)

• Support for multiple concurrent relations (mainly SDRT, but to some
extent all of the above)

• Identification of relation hierarchies or subtypes based on formal markers
(PDTB) or feature structures (CCR)

• Explicit support for nested relations (SDRT)
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Although there has been substantial work in each framework, including refine-
ments to guidelines or covered phenomena, and development of new annotated re-
sources, little has changed in the landscape of implemented theoretical models of
discourse relations since the inception of PDTB almost two decades ago. However, this
stability should not be taken as a sign that our theoretical models are now completely
satisfactory: Each of the theories mentioned above has shortcomings, such as inability to
model hierarchical structure in PDTB, or lack of relative prominence marking in SDRT.

In this article we aim to push the development of discourse representation theories
further, by proposing a new formalism that draws on insights from several frameworks
in an attempt to keep the most useful parts of the original formulation of discourse
parsing as envisioned by Mann and Thompson (1988), while incorporating solutions
to problems from over three decades of work in the field. Since our formalism is
“backwards compatible” with RST, we designate it Enhanced Rhetorical Structure Theory
(eRST), in the hopes of drawing researchers already familiar with RST and harnessing
existing resources for its development (in this sense it can be viewed as an optional
“enhanced” representation, similar to Enhanced Dependencies for more basic Universal
Dependencies in syntax, Nivre et al. 2020). At the same time, our framework offers
important additional expressive mechanisms that should appeal to researchers engaged
with other frameworks, specifically supporting:

• Multiple relations between the same nodes

• Non-projective, tree-breaking structures

• Maintaining RST’s recursive prominence hierarchy despite the above

• Marking categorized and subtyped discourse relation signals, including
implicit and explicit connectives, as well as alternative lexicalization
mechanisms

• Use of a hierarchical relation taxonomy

• Supporting new NLU applications by linking relations to implicated
spans of text fulfilling specific relation participant roles

We would like to stress that while the last point is of interest to us, the primary moti-
vation for eRST is not improving performance on any particular NLP tasks compared
with RST, but simply to provide a more comprehensive and detailed representation
of discourse relations in text across any genre, which can recover relations that are
present, but not currently covered by RST analyses, along with the rationale or evidence
supporting and sub-categorizing their occurrences.

eRST, with its advanced set of features, can support the inquiry of numerous
discourse phenomena. Some general research questions we envisage eRST would help
us investigate include: How do discourse relations and their signals are distributed
across texts and text types or genres? What correlations exist between relation and signal
types? Are there semantic or pragmatic correlates of the amount and type of signaling
observed for relation types? When and how often does natural discourse violate strict
tree constraints? And to what extent can discourse relation identification be completely
motivated by localizable signals? Complementing the theoretical framework proposed
in this article, we also release data and tools to support development work, which are
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Figure 1
RST Fragment from GUM (Zeldes 2017). The most central point is the nucleus in [24], to which
other units are direct or indirect satellites (MANNER and CONCESSION). Symmetrical relations
such as LIST are multinuclear nodes ([26]–[27]).

meant to cover a wide range of scenarios and types of text. The main contributions of
this article are therefore:

[1] A new framework for discourse relation and discourse structure
annotation

[2] Extending a robust freely available annotation tool to create gold
standard data

[3] A corpus of over 200K tokens covering 12 spoken and written English
text types1

[4] A corresponding XML format, annotation, and conversion tools for the
freely available search and visualization tool ANNIS (Krause, Leser, and
Lüdeling 2016)

[5] A newly defined discourse parsing task including metrics and an official
scorer

[6] A baseline system using a contemporary neural architecture and scores

2. Related Work

Mann and Thompson’s (1988) formulation of discourse parsing understood relations to
hold recursively between adjacent and contiguous spans of text, which covered entire
arbitrary documents down to the level of basic propositions known as Elementary
Discourse Units (EDUs), thereby forming a hierarchical labeled tree, as in Figure 1.
Labeled RST trees are directed and assume a distinction between more prominent
“nucleus” units, and less prominent “satellite” units at each level of the tree.

The recursive nature of RST trees was particularly appealing to early research on
automatic summarization (Marcu 1997; Teufel and Moens 2002) and dialog planning
(Moore and Paris 1993; Taboada and Lavid 2003), since removing satellites and their
descendants could be used to obtain extractive summaries of arbitrary passages (Liu

1 Since submission of this paper, the corpus has grown even larger and now covers 16 genres,
supplemented by test data in 8 additional genres, for a total of 246K tokens in 24 genres; see Section 4 for
more details.
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2024) (e.g., [24] is the best extractive summary unit for the entire tree in Figure 1) and a
recursive tree could be used to track complex bifurcating topics in a long conversation.

In the years since the proposal of RST, a number of competing frameworks, which
will be surveyed below in more detail, have suggested both limiting and expanding the
scope of discourse relation identification. For example, according to Sanders, Spooren,
and Noordman’s (1992, page 2) CCR, relations should be identified by the presence
of meanings “of two or more discourse segments that cannot be described in terms of
the meaning of the segments in isolation,” without necessarily assuming a hierarchy or
coverage of the text, and are distinguished using a set of binary attributes (e.g., basic vs.
non-basic ordering in Example (1) above, see Hoek, Evers-Vermeul, and Sanders 2019).
Asher and Lascarides’s SDRT, proposed that segments could participate in multiple
relations, addressing early criticism of RST’s strict tree constraint (Moore and Pollack
1992), and forming a graph rather than a tree, with elementary units that are also
allowed to nest. SDRT distinguishes subordinating and coordinating relations, rather
than distinguishing satellites from nuclei, with some consequences for the structures
postulated by the theory.

Moving in the opposite direction and more similarly to CCR, the framework of
the PDTB (Prasad et al. 2006) proposed to identify relations as projections of explicit
or implicit discourse markers called connectives, such as the word “because,” whose
presence (or possible presence when omitted) indicates a causal relation. PDTB analyses
are also called shallow discourse parses (Xue et al. 2016), since they do not assume a
hierarchical tree or graph structure for documents, but also add more complex facilities
by associating each relation with a type of connective, employing a hierarchical label
taxonomy, and allowing relations to connect discontinuous/overlapping segments.

Despite progress on new datasets in the frameworks listed above and many re-
finements to their guidelines, comparatively little progress has been made on dis-
course relation representation since the publication of PDTB. Because a full survey of
the literature on computationally implementable theories of discourse relations and
discourse organization is unfeasible in the scope of the current article,2 we focus here on
a synopsis and comparison of the main formalisms used in the field, for which substan-
tial annotated corpus data exists: RST, SDRT, PDTB, CCR, and Discourse Dependencies.

2.1 Rhetorical Structure Theory

RST covers the most languages and datasets for discourse relations (12/26 datasets and
9/13 languages in the recent cross-formalism DISRPT shared task came from RST data
[Braud et al. 2023, 2024]). The theory distinguishes itself from other frameworks in its
strong assumption of a tree constraint on all graphs, which must cover the entire text of
a document, and the distinction of satellite vs. nucleus nodes (cf. Figure 1).

The first large scale implementation of RST was the RST Discourse Treebank,
annotating newswire material from the Wall Street Journal (WSJ) corpus (Marcus,
Santorini, and Marcinkiewicz 1993), with over 200K tokens in 385 documents, and one
of the largest inventories of relations ever implemented, with 78 relations,3 as well as a
pseudo-relation type called SAME-UNIT, used to connect parts of discontinuous units,
as shown in [33–35] in Figure 2.

2 See Stede (2012) for an in depth overview.
3 These include subtypes and variants accounting for different nuclearity patterns, which are often

collapsed into 16 coarse classes in automatic discourse parsing work, cf. Hernault et al. (2010, page 6).
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Figure 2
RST fragment from RST-DT: Satellites point to nuclei (e.g., [28] is a CONSEQUENCE of [27]) while
the symmetrical SEQUENCE relation connects equally prominent nodes. [33] and [35] form a
discontinuous SAME-UNIT.

The figure also demonstrates two shortcomings of RST, which fed into the devel-
opment of subsequent work. The first is that upon closer inspection, we may notice
discourse relations that are unexpressed in the tree: Unit [31] contains two discourse
markers explicitly signaling different relations. The word “then” corresponds to the an-
notated relation TEMPORAL-AFTER, while the word “but” corresponds to no relation in
the tree, but probably indicates the existence of a concurrent CONCESSION relation (see
Moore and Pollack 1992). The second shortcoming is the lack of a distinction between
such explicitly marked relations, for which we can supply simple textual evidence as
a rationale (e.g., the existence of “then”), and implicit ones, such as the CONSEQUENCE
satellite relation in [30–31], which is not indicated by a word like “then” or “but.”

A first attempt to address the latter shortcoming in RST was undertaken in the RST
Signaling Corpus (RST-SC; Das and Taboada 2018), which added signal type annota-
tions to relations in the English RST-DT corpus, but did not anchor them to tokens.
Thus for [31], the presence of explicit marking was annotated, but the word “then” was
not identified as its locus. Liu and Zeldes (2019) presented a pilot study on anchored
signals for RST-DT, which was extended to four genres from an early version of the
GUM RST treebank (Zeldes 2017), anchoring signals to specific tokens (Liu 2019)—the
present work develops this idea further in Section 3 below.

2.2 Segmented Discourse Representation Theory

SDRT (Asher and Lascarides 2003), is the most similar framework to RST in assuming
graphs covering entire documents, and discourse units connected recursively using
relations defined independently of formal marking. As in RST, EDUs also coalesce to
form complex discourse units, which are in turn joined with others to create larger
units. SDRT is also notable in producing resources that explore discourse structure for
multiparty dialogue, such as the STAC corpus (Asher et al. 2016) and the Molweni
corpus (Li et al. 2020), which focus on multiparty chat as part of an online game and
in Ubuntu chat forums, respectively.

However, several differences distinguish SDRT, which also aligns with a specific
formal semantic representation (DRT; Kamp, Van Genabith, and Reyle 2011) and defines
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Figure 3
Fragment of an SDRT graph in the Glozz tool. The large blue discourse unit on the bottom has
two incoming relations, CONTRAST from the large blue unit at the top, and ELABORATION from
the gray EDU with the text “Inhibition de contact” at the top.

relations as part of a formal logic. Notably, SDRT allows multiple relations between
units, as in example (2) from Lascarides and Asher (2007) and non-projective graphs, as
shown in Figure 3 using Glozz (Widlöcher and Mathet 2012), the most commonly used
interface for SDRT annotation.

(2) π1: John bought an apartment. π2: But he rented it.

In (2), Lascarides and Asher posit that unit π2 forms both a NARRATION relation and
a CONTRAST relation to π1. SDRT also distinguishes coordinating relations, such as
CONTRAST from subordinating ones, such as ELABORATION (Asher and Vieu 2005), but
both can occur concurrently, as in Figure 3 for a French text from the ANNODIS corpus
(Afantenos et al. 2010): The bottom complex unit (in blue) has incoming ELABORATION
and CONTRAST relations, one from an EDU (in gray) and one from another complex
unit. SDRT relations therefore do not reflect an RST-like notion of nuclearity or promi-
nence. Units are also allowed to nest in each other, further complicating the data model.

2.3 Penn Discourse Treebank

The PDTB adopts a “lexically grounded” approach where discourse relations are an-
notated as senses of their associated discourse connectives (Prasad, Webber, and Joshi
2014). For instance, Figure 4 shows the same two concurrent relations from Figure 2,
identified by the two connectives, but and then: COMPARISON.CONCESSION.ARG2-
AS-DENIER and TEMPORAL.ASYNCHRONOUS.PRECEDENCE. Such relations are called
explicit relations in PDTB-style corpora. On the other hand, since there is no connective
between the first two sentences in the figure, there is no explicit relation annotation.
However, an implicit connective “then” can be inserted between the two sentences
(“...Inco raised its bid. . . Then on a single day Inco lifted...”), and therefore an implicit rela-
tion instance is identified and annotated as TEMPORAL.ASYNCHRONOUS.PRECEDENCE.
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Figure 4
PDTB annotation interface for the same fragment from Figure 2. Two concurrent relations are
recognized, corresponding to but and then, respectively.

In addition to explicit and implicit relations, several other types are recognized
in the English PDTB v3.0: 1) Alternative Lexicalizations (AltLex), AltLexC, EntRel,
Hypophora, and NoRel (Prasad, Webber, and Joshi 2014). AltLex items are expressions
not considered to be connectives by PDTB’s syntactic guidelines, which limit connec-
tives to subordinating or coordinating conjunctions, prepositional phrases, and adverbs
(for example “let alone,” which can mark an EXPANSION.CONJUNCTION). AltLexC
items are lexico-syntactic constructions which indicate relations, such as inverted auxil-
iaries marking a CONTINGENCY.CONDITION (e.g., “Had I done it...”).

Arguments associated with identified relations in PDTB follow the principle of
minimality: Only the minimal text needed for a given relation will be selected, which
can be sentences, clauses, nominalizations, verb phrases, and so forth. (Prasad, Webber,
and Joshi 2014). Additional text that is relevant but not necessary for the interpretation
can be selected as supplementary information during annotation.

A major shortcoming of PDTB is the lack of higher-level structure over the relations
between text spans (compare this with the RST annotation of the same fragment in
Figure 2, which constructs an overarching nested structure). However, the lack of high-
level structure makes annotation easier compared to RST and SDRT, as high-level
structures are considered more challenging (Peng 2023). Thus, PDTB has allowed the
creation of large corpora in a variety of languages such as Chinese (Zhou et al. 2014),
Turkish (Zeyrek and Kurfalı 2017), Portuguese (Mendes and Lejeune 2022), and Italian
(Tonelli et al. 2010) as well as for multilingual versions of TED talks (TED-MDB, Zeyrek,
Mendes, and Kurfalı 2018; Zeyrek et al. 2019).

2.4 Cognitive Approach to Coherence Relations

CCR (Sanders, Spooren, and Noordman 1992), unlike most other discourse frameworks,
offers a psycholinguistic account of discourse relations and discourse signalling, focus-
ing on discourse comprehension. CCR defines discourse comprehension as a psycholog-
ical mechanism that creates a coherent representation of the text content based on the
ways text segments are linked with each other by discourse relations. CCR characterizes
relations as a configuration of five dimensions, each decomposed into binary attributes
(Sanders et al. 2021):

• Polarity: positive or negative discourse relations

• Basic operation: causal (strongly linked) or additive (weakly linked)
relations
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• Source of coherence: objective (semantic) or subjective (pragmatic)
relations4

• Implication order: basic (antecedent-consequent) or non-basic (reverse)
order

• Temporality: temporal or non-temporal relations

As an example, consider the relation in (3), from Sanders et al. (2021, page 11),
which CCR decomposes as follows: The relation expresses a denial of expectation,5

and hence, represents a negative causal relation (CONCESSION in RST). The relation links
two segments that express facts; so, it is an objective relation. The implication order is
basic since the antecedent segment precedes the consequent segment. Furthermore, the
linear sequence of the segments represents a chronological progression, which makes
the relation a temporal one.

(3) Although [they were officially assured the police would not be involved
in the census] [many people are afraid of reprisals . . . ]

CCR considers discourse signals (connectives/cue phrases) as processing instructions
guiding the reader to infer the relation between segments (Sanders, Land, and Mulder
2007). In the absence of such signals, CCR postulates that relation identification may
require additional cognitive energy and longer processing time, affecting text com-
prehension. Evidence to support these claims comes from both psycholinguistic and
corpus-based studies (see Kleijn, Pander Maat, and Sanders 2019; Sanders et al. 2021).
CCR annotation, like PDTB’s, targets local-level relations and their connectives. CCR
corpora, albeit fewer in number, are available for English (Rehbein, Scholman, and
Demberg 2016) and Dutch (Vis, Sanders, and Spooren 2012).

2.5 Discourse Dependency Structure

DDS (Li et al. 2014; Morey, Muller, and Asher 2018) deviates from RST’s constituency
structure (a.k.a. c-tree) and connects EDUs using binary and asymmetrical dependency
relations to facilitate parsing (i.e., d-trees). DDS aligns with widely used syntactic depen-
dency structures such as Universal Dependencies (UD; Nivre et al. 2020) and offers a
simple and transparent tree structure for annotating document-level discourse relations
(Morey, Muller, and Asher 2018).

Only a few discourse treebanks are annotated natively in DDS, including SciDTB
(Yang and Li 2018), SciCDTB (Cheng and Li 2019), and COVID19-DTB (Nishida and
Matsumoto 2022). Most DDS data is converted from corpora in other frameworks—for
example, Hirao et al. (2013) and Li et al. (2014) designed transformations from RST-
DT to obtain parent-child relations between EDUs for summarization and discourse
parsing. Both approaches produce binarized, asymmetric dependency trees translating
nuclearity to headedness, while differing in the handling of multinuclear relations.
Morey, Muller, and Asher (2018) further add head-ordering to preserve the scope of
satellite modifications and render conversions between constituent and dependency

4 Similarly, RST relations are sometimes classified as either subject matter or presentational relations.
5 For a positive causal relation, the implication would be: police not involved→ no need to fear reprisals.
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Figure 5
Head-ordered DDS converted from the RST fragment in Figure 1.

trees bijective. Figure 5 presents a converted head-ordered DDS equivalent to the
fragment in Figure 1. The multinuclear list relation is transformed into a right-to-left
dependency arc, with a chain modifying the first EDU in [24].

DDS datasets have also been converted from SDRT and PDTB data, with the latter
complemented by automatically predicted higher-level relations (Stede et al. 2016; Yi,
Sujian, and Yueyuan 2021). Due to the lack of large-scale DDS-native treebanks, dis-
course dependency parsing models are either trained on converted datasets (Yi, Sujian,
and Yueyuan 2021) or through zero/few-shot learning and bootstrapping (Cheng and
Li 2019; Nishida and Matsumoto 2022).

2.6 Multiple Frameworks

Some multilayer datasets have been developed that contain analyses in multiple frame-
works in parallel. RST-DT and PDTB contain overlapping material from the WSJ corpus,
allowing for some framework comparisons (Demberg, Asr, and Scholman 2019). Stede
and Neumann (2014) and Bourgonje and Stede (2020) added connective annotations for
explicit relations to the German RST-annotated Potsdam Commentary Corpus (PCC).
Sun and Wang (2022) constructed a corpus of 500 Chinese “run-on” sentences anno-
tated with both RST and PDTB-style analyses. However, to the best of our knowledge,
this article is the first attempt at producing a new theory incorporating insights and
advantages from the multiple frameworks described above, in which complete RST-
style trees with nuclearity are anchored to connectives and other signals, while allowing
tree-breaking relations as postulated in SDRT. The next section defines the scope of the
formalism, before presenting data and parsing experiments implementing our analyses.

3. Formalism

Analyses in eRST aim to retain the benefits of RST trees (nuclearity and its applications
to recursive summarization and information extraction, dialogue planning, etc.), while
addressing weaknesses discussed in Section 2.1. Analyses consist of three components
which we discuss below:

[1] A primary, single-rooted, labeled projective n-ary constituent tree over
non-overlapping EDUs, which cover the text

[2] A possibly empty set of secondary labeled, directed, and possibly cyclic
and/or non-projective edges, which are licensed under specific
conditions
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[3] A possibly empty set of categorized signals associated with a set of
tokens and a single primary or secondary edge from [1] or [2]

Although in the study below we expand on a corpus with existing primary trees, the
formalism is intended to be applicable to the analysis of plain text, for which a primary
tree would then be prepared as part of the eRST analysis.

3.1 The Primary Tree

A primary tree G is defined, as in traditional RST, as a directed, single-rooted and fully
connected labeled tree. Let V be a set of terminal and non-terminal vertices with a subset
of ordered terminals S that are segments covering the tokens of the text T, and edges E
between vertices with labels from the set L:

G = 〈V, S, E, L, T〉

V = {v1, v2, . . . , vn}

S ⊆ V

E = {〈vi, vj〉 | vi ∈ V ∧ vj ∈ V ∧ vi is the parent of vj}

L = {l1, l2, . . . , lm}

T = {t1, t2, . . . , tk}

(1)

Note that S is actually in almost all cases a proper subset of V: The sole exception is
the degenerate case where there is only a single EDU, which produces S = V. The tree is
further constrained to be projective. All tokens belong to exactly one terminal segment
(i.e., EDU), and there is a single unique label for each edge:

∀ t ∈ T[∃! s ∈ S[s contains t]]

∀ v ∈ V[∃! l ∈ L[l labels v]]
(2)

In addition, each node in V is classified as a satellite or nucleus node, and for
each non-terminal node in V, at least one child node is a nucleus. eRST allows n-ary
branching trees, though binarization via Chomsky Normal Form is possible as a trivial
conversion for use with binary parsers.

The criteria for building trees are the same as in RST (see Mann and Thompson
1988; Taboada and Mann 2006), and will not be discussed in depth due to space.
Briefly, propositions are grouped together based on the function they serve, with more
prominent or necessary units being assigned the nucleus status, and less necessary or
omittable units serving as satellites. Labels are defined based on relations’ effect on the
reader or hearer, and are assigned based on the perceived intention of the author or
speaker to have such an effect, for example, a group of EDUs which is perceived as an
explanation supplying evidence for a claim in another group of EDUs may be analyzed
as a satellite to the latter group, with a label such as EXPLANATION-EVIDENCE. While
eRST as a theory does not necessarily prescribe a specific set of relation labels, the labels
in this article will come from the inventory of the GUM corpus, which has 32 total labels,
including the label SAME-UNIT to connect parts of discontinuous EDUs (see Appendix
A for the full inventory).
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Figure 6
Violations of additional constraints in eRST.

eRST primary trees are thus largely identical to RST trees, with some constraints
made more explicit than in previous implementations. Specifically, eRST trees must
define an explicit word tokenization of EDU contents to allow for the alignment of signals
(see Section 3.3 below); it is assumed that there is no empty hierarchy, that is, each non-
terminal has at least two children, and hierarchy is strictly ordered without ties. These
constraints mean that there are no unary derivations, and no two satellite children for
the same node. Violations of both constraints are illustrated in Figure 6.6

On the left, a redundant span has no child relations (the lowest span labeled [1–2]);
on the right, [2] has two satellites which are not hierarchically ordered—instead eRST
requires that [1] scopes over [2–3] (meaning the ATTRIBUTION contents of what the court
ruled include the other two units, or that [3] scopes over [1–2], forming BACKGROUND
to both. In this case, the latter option is the correct one.

3.2 Secondary Edges

As noted earlier, some discourse relations occur in texts which cannot be expressed in a
projective, acyclic tree as defined in Section 3.1. To represent such relations, we define
a subset of edges, called secondary edges, which are not constrained by limitations on
projectivity or cycles.7 Secondary edges are permitted to connect any two nodes in the
primary tree, including nodes which are already connected by a primary edge, subject
to the following constraints. A secondary edge:

[1] may only be added if it is supported by a sufficient signal

[2] may only connect two nodes which are not already connected by a
secondary edge with the same directed path

6 These constraints are often applied in RST trees in practice, but are occasionally violated in most datasets,
and would cause problems for some of the algorithms we use for aligning signals below.

7 The term “secondary edge” is inspired by the “secedges” in the German Tiger Treebank (Brants et al.
2002), where similar edges where added to a primary syntax tree for tree-breaking dependencies.
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Figure 7
Secondary edges licensed by an orphan DM and reported speech. On the left, a secondary
CONCESSION in blue points from 22 to the sentence containing 23–24; on the right, a secondary
positive ATTRIBUTION points from 140 to 141.

[3] may not connect a node to itself

[4] may not require the definition of additional nodes

Constraints [2–3] mean that any two nodes v1, v2 in the tree can, at most, be connected
via three edges: a primary edge, a secondary edge v1 → v2, and a secondary edge v2 →
v1. This places an upper bound on the complexity of the formalism (see Section 3.4).

Constraint [1] lies at the core of our proposal for additional relations: Since agree-
ment on discourse relations is already challenging, we want to limit additional edges
only to clearly signaled cases. While it is conceivable that a variety of definitions could
be used for “clear signals,” we limit our proposal to two kinds of signals: Discourse
markers (DMs) like “but” or “then”8 for which no corresponding associated parent
relation can be found, which we refer to as “orphan DMs”; and unambiguous mor-
phosyntactic signals, in our implementation specifically restricted to either reported
speech that is not already captured in a primary ATTRIBUTION relation,9 and adnominal
clauses that are not already captured using an embedded adnominal ELABORATION or
PURPOSE relation, for example, relative clauses not interpreted as a primary ELABORA-
TION.10 Figure 7 demonstrates these two types of licensing conditions.

On the left, the secondary edge captures the relation corresponding to the or-
phan DM “but” (highlighted in dark blue), which has no corresponding relation in
the primary tree—instead, the annotator perceives the main function of [23–27] as an
EVALUATION of how a rainy day isn’t too bad; note also that the nuclearity of the
EVALUATION goes in the opposite direction of the CONCESSION, and that they do not
scope over the same part of the text (the secondary edge connects [27] with [23–24]).

On the right, the fact that arrogant people subconsciously know they have no
friends ([140–141]) is seen as the CAUSE of compensating for this. Although “know” is

8 We use the term “discourse marker” with largely the same definition and items as PDTB connectives, but
with the difference that the spans they connect correspond to RST EDUs or complex discourse units,
rather than argument spans following PDTB guidelines.

9 We note that ATTRIBUTION is especially well known to co-exist alongside other relations (Potter 2019),
and has merited concurrent treatment in PDTB as well.

10 We do not rule out that other types of reliable signals could be added to license further secondary edges
in future work.
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a typical ATTRIBUTION verb, the annotator has analyzed the nucleus of the causal pred-
icate to be knowing that they have no friends ([140]), rather than the fact that they have
no friends in itself ([141]), forcing them to make [141] an ELABORATION to [140]. Never-
theless, syntactically [140–141] unambiguously follows the reported speech/cognition
verb pattern, licensing a secondary ATTRIBUTION signaled by the predicate “know” and
the complementizer “that” (syntactic signals highlighted in cyan), and the attribution
source “Arrogant people,” a semantic signal highlighted in green.

As shown in these examples, the relation inventory for secondary edges is assumed
to be the same set of labels L used for the primary tree, though we note that if the
inventory distinguishes a multinuclear and a satellite version of the same relation,
these collapse and become indistinguishable for secondary edges, which do not in-
dicate nuclearity by nature (though they do indicate directionality (e.g., a secondary
CONCESSION still has a conceded part and a claim the concession contrasts with). In
this way, eRST offers a partial remedy to previous criticism of RST in situations in
which a single nuclearity choice may not express everything we want to know about
discourse structure (Moore and Pollack 1992; Stede 2008), by allowing the expression of
concurrent relations; however, the cost of retaining the advantages of the primary tree is
that nuclearity itself is still kept unambiguous—secondary edges express only relations,
and not overall prominence in the discourse structure.

As an annotation practice, we therefore recommend that secondary edges should
only be added after the complete primary tree has been annotated, so that the most
prominent relations can determine nuclearity without considering the presence of or-
phaned DMs. The first example in Figure 7 illustrates why this is important: If primary
and secondary edges are annotated concurrently, annotators may be tempted to select
the unmarked relation as primary, and utilize the resulting orphan “but” to establish the
second relation, so that both can be marked. If the relation not corresponding to a DM
is deemed more prominent from a functional perspective, as in Figure 7(a), then this is
what we want; but that means the primary relation must always be established first, or
else we may compromise our standards for determining nuclearity. In other words, the
primary tree in eRST should be the same tree as in plain RST.

Finally, we note that not all potential DM items will necessarily receive a corre-
sponding edge. Although we may expect any DM without a corresponding primary
edge to automatically receive a secondary one, this will be ruled out in two cases: (1)
when there are two orphan DMs which can be associated with secondary edges along
the same path, due to constraint [2]; and (2) when the necessary spans for the edge to
connect do not exist, conflicting with constraint [4]. While we did not encounter the first
situation in our data (see Section 4.1), the second issue has occurred, especially when the
necessary spans do not exist due to segmentation guidelines, as in Example (4).

(4) [If you live in or near a big city,]<condition> it is easier to attract enough
customers .. [than if you live in a sparsely populated rural
area.]<antithesis>

In this example, there are three subordinating conjunctions: Two “if’s” and one “than.”
The first “if” marks a primary CONDITION relation, and “than” marks an ANTITHESIS.
Although the second “if” clearly has a conditional sense, it is not a condition of the main
clause (“easier to attract customers”), but rather a condition for the implied elliptical
clause that might have followed “than” (“easier .. than it would be”). However, because
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such a clause does not appear, EDU segmentation guidelines prevent the existence of
the necessary argument span for a secondary relation, and the orphaned second “if”
remains without a corresponding edge.

3.3 Signals

Like PDTB, eRST anchors relations to markers in a text called “signals” (Liu 2019):
This allows one not only to know which relation is indicated by which signal(s), but
also to pinpoint exactly which words/phrases/constructions in the text contribute to
the signalling of the relation. However, we assume a broader perspective on signalling
than PDTB, encompassing much more than DMs and similar expressions. Following
the taxonomy proposed by RST-SC (Das and Taboada 2014), we divide non-DM signals
into seven types, corresponding to: graphical, lexical, morphological, numerical, reference,
semantic, and syntactic features.

These types are divided into further subtypes, shown with examples in Table 1. For
example, the reference type indicates that cohesion is signaled by anaphoric reference
to an entity, with four subtypes: personal (anchored to a personal pronoun and its
antecedent), demonstrative (an anaphoric NP headed or determined by a demonstra-
tive), comparative (a comparative or relative expression, e.g., “(an)other” anaphora), and
propositional reference (e.g., NPs referring back to a verbal phrase). Some signal types
are anchored to a lexical indicative expression such as a word (e.g., “nice” signaling an
EVALUATION), phrase, or other alternate expression, with the latter corresponding to

Table 1
Non-DM signal types and subtypes, with examples highlighting in red the signal tokens which
indicate the relation of the unit in square brackets.
signal type subtypes example
graphical colon, dash, semicolon [Let me tell you a story :]<organization−preparation>

layout [Introduction]<organization−heading>
items in sequence 1. wash [2. cut]<joint−list>
parentheses, quotation marks it rained [(and snowed a bit)]<elaboration−additional>
question mark [Did you?]<topic−question>No.

lexical alternate expression He agreed. [That is he said yes]<restatement−repetition>
indicative word/phrase They planned a party! [That’s nice/Can’t wait!]<evaluation−comment>

morphological mood Go with them [I think you should]<explanation−motivation>
tense I started an hour ago, [now I’m resting]<joint−sequence>

numerical same count [Two reasons.]<organization−preparation>First. . .
reference comparative [I don’t want it]<adversative−antithesis>I want another one.

demonstrative / personal They met Kim. [This person / she was. . . ]<elaboration−additional>
propositional They met Kim. [This encouner was. . . ]<elaboration−additional>

semantic antonymy Beer is cheap, [wine is expensive]<adversative−contrast>
attribution source [Kim said]<attribution−positive>they would
lexical chain it was funny [so they laughed]<causal−result>
meronymy The house was big, [the door two meters tall]<elaboration−additional>
negation Kim danced, [Yun didn’t dance]<adversative−contrast>
repetition/synonymy They met Dr. Kim. [Dr. Kim/The surgeon was. . . ]<elaboration−additional>

syntactic infinitival/relative clause a plan [to win]<purpose−attribute>
interrupted matrix clause [I meant –]<orgnization−phatic>I mean,
modified head a plan [to win]<purpose−attribute>
nominal modifier articles [explaining chess]<elaboration−attribute>
parallel syntactic construction it’s all tasty [it’s all pretty]<joint−list>
past/present participial clause Kim appeared [dressed in black]<elaboration−attribute>
reported speech [Kim said]<attribution−positive>that they would
subject auxiliary inversion I would have [had I known]<contingency−condition>
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Figure 8
A larger fragment annotated in eRST.

PDTB’s inventory of AltLex signals. Other signals may be anchored to tokens which are
only signals in very specific contexts, such as negations accompanying an adversative
relation with the same predicate in positive and negative environments, which can be
crucial to interpreting contrasts (cf. Webber 2013). Others still refer to paired tokens,
such as brackets or quotation marks, while some are not anchored to any tokens, such
as graphical layout (a heading identified by its font, size, and separate appearance), or
placement in a sequence of indented blocks or bullet points.11

Figure 8 shows a larger eRST graph fragment, which differs from a corresponding
basic RST tree only in the addition of highlighted signals (background colors for tokens)
and tree-breaking secondary edges (blue arrow edge type). Units [151–154] function as
BACKGROUND to a question “Why did she so badly want to attend?” ([155]), which
carries 3 signals (notice the number “3” next to the relation QUESTION): A lexical signal in
dark yellow (“Why”), a graphical one in light yellow (the “?”), and a syntactic auxiliary
inversion (in cyan, anchored to “did” in [155]). The BACKGROUND relation has a per-
sonal reference signal in gray (“Kiara Perkins . . . she,” indicating the background relates
to this person), and the contents of the BACKGROUND is attributed to Perkins in [151],
signaled by a semantic attribution source (another signal anchored to the span “Kiara
Perkins”), an attribution verb “admitted” (lexical, in yellow), and a complement clause
headed by “willing” (syntactic, reported speech, in cyan). The PURPOSE-GOAL clause in
[153] is signaled by a to-infinitive (syntactic, infinitival clause, anchored to “to”), and the
CONTRAST is marked by “but” (a DM, in red) and the lexical chain “attend . . . attend.”
Finally, an orphan “then” (in blue) indicates the presence of the secondary SEQUENCE
relation. More details on the annotation interface used for the visualization are given in
Section 4.1.

11 Following acceptance of this article, we have also been discussing the possibility of incorporating implicit
connectives, following PDTB definitions, as a type of signal not anchored to specific tokens, or even as a
possible trigger for another type of secondary edges. We leave this idea for exploration in further work.
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3.4 Complexity and Effort

Although eRST graphs as shown in Figure 8 are quite complex, the computational com-
plexity of derivations in eRST is not very much higher than in RST. Because we retain
the premise of a primary tree, and we constrain secondary edges to connecting at most
each pair of nodes in each direction once, parsing secondary edges in the worst case
scenario adds a single step in quadratic time. As for signal detection, although each span
of tokens can be used multiple times with multiple signal types or for multiple relations
(see the example “Kiara Perkins” above, which serves as both an attribution source and
a personal reference signal for different relations), the problem of signal detection can be
approached as token-wise multilabel classification, where each token must be classified
for a complex signal type (we can consider, e.g., reference:personal_reference to be a
single label) and a pointer to a corresponding relation from the closed set of relations
available in the tree. In practice, automatic eRST parsing can be substantially less costly
using a pipeline, as we will show in Section 5, or potentially a joint model.

In terms of annotation effort, an anonymous reviewer has brought up the relatively
high cost of a manual RST analysis and its extensions using eRST, while another
reviewer has asked why the starting point of the analysis is RST-like, rather than PDTB-
like. To address the first point, we certainly agree that building primary trees is labor-
intensive, an aspect in which eRST does not differ from RST; however, the amount of
effort associated with the addition of secondary edges and signals can be reduced by
relying on preprocessing from NLP tools for tasks that show promising performance,
such as connective detection (Gessler et al. 2021; Liu, Fan, and Strube 2023), provided
that these can be aligned to trees (see Section 5.3). Unalignable signals could then be
inspected as indicators that secondary edges may be needed. Although the cost for
eRST annotation at the moment is high, we would argue that it is unavoidable for a
computationally implemented theory accounting for discourse relations and the devices
used to mark them, since these will inevitably include multiple, concurrent instances.
We are hopeful that with increasing performance of NLP models, much of the task could
be done automatically, and we give some first numbers for complete automatic eRST
annotation in Section 5.3.

Regarding the use of RST, rather than PDTB as a starting point, eRST focuses on
incorporating two of PDTB’s greatest advantages into a hierarchical discourse rep-
resentation: (1), the inclusion of multiple concurrent relations, and (2), providing a
text-anchored rationale for relations (DMs and other signal types). However, strictly
building on top of PDTB as a framework would bring in its shortcomings (see Section
2.3): Lack of the usually implicit high level relations (e.g., between paragraphs), lack
of hierarchical structure and nuclearity (recognizing that documents consist of more or
less important but coherent parts and subparts), and a focus on a very limited inventory
of signals (the latter is addressed by building on the RST-SC inventory instead).

4. Data

To confront our formalism with real data and provide testing grounds for linguistic and
computational research using the theory, we extend the RST annotations in the English
Georgetown University Multilayer corpus (GUM, Zeldes 2017). GUM is a growing
corpus, created through a classroom annotation project in which students learn to
annotate a text across a semester of coursework using multiple formalisms, resulting in
a rich set of annotations for each document. The corpus covers morphosyntactic annota-
tions according to Universal Dependencies guidelines (de Marneffe et al. 2021), nested

39



Computational Linguistics Volume 51, Number 1

Table 2
Genres and Documents in the GUM Corpus, version 9.

genres source docs tokens EDUs
Interviews Wikinews 19 18,190 2,410
News stories Wikinews 23 16,145 1,779
Travel guides Wikivoyage 18 16,514 1,792
How-to guides wikiHow 19 17,081 2,395
Academic various 18 17,169 1,981
Biographies Wikipedia 20 18,213 2,071
Fiction various 19 17,510 2,474
Web forums Reddit 18 16,364 2,263
Conversations SBC 14 16,416 2,810
Speeches various 15 16,720 1,914
Vlogs YouTube 15 16,864 2,436
Textbooks OpenStax 15 16,693 2,027
total 213 203,879 26,352

entity annotations, coreference and bridging anaphora (see Zeldes 2022), complete
RST trees, and more. At the time of this paper’s submission, GUM (v9) encompassed
213 documents, which come from 12 different spoken and written genres, detailed
in Table 2. These form the data analyzed in this article; however, we note that since
that time, the GUM corpus has grown to encompass four more genres in version 10
(courtroom transcripts, essays, letters and podcasts), and has been expanded with a test
partition-only corpus called GENTLE (GENre Tests for Linguistic Evaluation, Aoyama
et al. 2023) with eight challenging genres.12 These data sources have at the time of
publication also been annotated in the eRST framework, bringing the total available
data up to 246K tokens in 24 genres. To browse these analyses, see the eRST Website.13

With over 26K EDUs in v9 (or 32K in the recently released v10 + GENTLE), GUM
is the largest English RST corpus, followed by RST-DT, with 21,789 EDUs. GUM data is
available from the corpus Website (https://gucorpling.org/gum/), with underlying
text under respective licenses from each source, and annotations under a Creative
Commons Attribution license (CC-BY 4.0).

Due to the centrality of the WSJ corpus in past studies of RST, for this article
we also partly annotate RST-DT for eRST annotations, focusing on the test-set of 38
documents, to which we add full token-anchored annotations of discourse markers
(including orphans based on the primary tree) and corresponding secondary edges
according to our guidelines. Due to the licensing restrictions on RST-DT, we release
these annotations separately, without the underlying text.

4.1 Annotation Process

Since primary RST trees were already available for GUM and RST-DT, eRST annotations
were divided into three main parts: (1) identifying and associating DMs with trees; (2)
adding secondary edges where DMs were left over as orphans or syntactic triggers were
identified; and (3) adding non-DM signals using semi-automatic methods.

12 Specifically: dictionary entries, live eSports commentary, legal, medical, poetry, mathematical proofs,
syllabi, and threat letters.

13 https://gucorpling.org/erst/.
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Table 3
DM detection and attachment performance Untyped = connective detection; Typed = detection
+ classification: DM or orphan; Sourced = detection + classification + association with the correct
relation.

untyped typed (total) typed (DM) typed (orphan) sourced
P 89.31% 72.73% 86.39% 23.11% 46.39%
R 78.83% 64.18% 68.68% 33.93% 40.88%
F 83.74% 68.16% 76.51% 27.50% 43.46%

4.1.1 DM, Orphan, and Secondary Edge Annotation. For DM identification, we prepro-
cessed the corpus with the best-performing English connective detector trained on
PDTB v3, the DisCoDisCo system (Gessler et al. 2021), winner of the DISRPT 2021
shared task on Connective Detection (Zeldes et al. 2021). This step was undertaken
to ensure high recall, high conformity with PDTB connective definitions, and high
consistency (it has repeatedly been shown that correcting state of the art NLP outputs
outperforms purely manual annotation due to tool consistency; see Mikulová et al.
2022).

Following connective detection, a script associated each predicted connective with
the nearest compatible relation in the tree hierarchy, prioritizing the outgoing relation of
the EDU containing it, followed by recursively searching for a larger span containing the
original EDU until finding a relation compatible with the connective, based on the PDTB
guidelines and the PDTB-RST relation mapping from Demberg, Asr, and Scholman
(2019). If no relation is found, then the connective is flagged as an orphan.

Table 3 summarizes performance for connective detection and alignment. The
higher precision for all metrics (except orphans) is due to the aligner searching for a
compatible outgoing relation, but not incoming relations. Allowing attachment to any
compatible incoming relation increases recall but degrades precision substantially. The
current outputs were deemed sufficient as a starting point for manual correction.

After this preprocessing, five annotators went over the entire dataset manually to
correct DM identification and alignment to relations, adding secondary edges for true
orphans, whose relations were not expressed in the primary tree. Manual annotation
was done using rstWeb (Zeldes 2016), an open source Web interface for RST annotation
which was extended to support signal marking by Gessler, Liu, and Zeldes (2019),
and which we extend further for this article with support for secondary edges.14 The
annotation process was repeated for the RST-DT test set.

We conducted an inter-annotator agreement study of DM identification and rela-
tion association for 36 GUM documents and the RST-DT test set, and report mutual
F1 scores. For RST-DT, three annotators double-annotated 38 documents in the test
partition, amounting to about 21K tokens. A mutual F1 score of 95 was obtained for
identifying DMs, and 88.8 for relation association. For GUM, two annotators double-
annotated 36 documents (32K tokens) and obtained an F1 score of 92.3 for DM identifi-
cation and 90 for relation association.

For secondary edges, a first inter-annotator agreement experiment on the GUM
dev set (24 documents) showed substantial disagreements, with S/N/R scores of .311,
.279, and .223, corresponding to % agreement on edge attachment points (regardless

14 Available at https://gucorpling.org/rstweb/info/ under the MIT license.
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Table 4
Twenty additional GUM DMs not attested in PDTB as connectives.
type marker by analogy to
subordinating cuz because

cause because
whilst while
as far as as long as
into marks RESULT, e.g., “trick someone into thinking”
that marks PURPOSE, e.g., “I longed for nets, that I might capture them”
whither where
wherever whenever

adverbial as such marks RESULT

apart from aside from
coordinating or else not attested in PDTB; used for disjunction, analogous to “otherwise”

/ standing for “or”
prepositional by the end in the end

in essence in short
at the time at the same time
around the same time at the same time
to that end to this end
to wit not in PDTB, similar to “for example” or “specifically”
in brief in short
since then since (used adverbially in isolation)

of source/target), exact edge path (including directionality), and the assigned relation.
This is despite the fact that annotators achieved an F-score of .642 on detecting orphan
DMs (i.e., agreeing that a secondary edge was called for, and where the DM tokens
were). Inspection revealed that disagreements hinged either on whether an orphan
candidate was a connective (especially for spoken sentence initial “And” or “So”)
and what the exact scope of the relation included (e.g., including or omitting trailing
bibliographical citations in academic data). After refining the guidelines to be more
explicit, a second experiment on an additional 12 documents produced much better
results of S/N/R = .529, .49, and .412, respectively, indicating agreement levels just
16 points below the human agreement score on primary relation R of .571 (Morey,
Muller, and Asher 2017). We consider this to be substantial agreement, especially
given that secondary relations involve some of the most challenging ones, and their
scores do not benefit from common, easy cases such as relative or other adnominal
clause attachments.

Finally, with the entire corpus in hand, one of the authors of the article reviewed all
annotations for a final consistency pass and finalized the list of possible DMs, which for
RST-DT was a subset of the PDTB connectives. The list of DMs in GUM required some
expansions due to items that are not attested in PDTB or related corpora, such as TED-
MDB, probably due to the different genres in the corpus.15 Table 4 provides the added
items, along with the rationale for adding them by analogy to existing PDTB items.

We note that “aside from” is attested in PDTB only once as an AltLex governing a
noun phrase, but in GUM we have “apart from thinking,” which fits the DM definition

15 Although TED-MDB contains spoken data, it does not cover dialogue, nor data from the web, such as
GUM’s Reddit data. Such user-generated content often contains unique words or spellings, such as “/”
or “cuz” for “or” and “because,” and may require adaptation of guidelines; see Sanguinetti et al. (2020,
2022).
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by governing a VP. The item “as such” is attested in PDTB as AltLex as well, but should
be an explicit connective since it is a relational prepositional phrase, similar to “at the
same time.” All other DMs in GUM beyond the 20 in Table 4 are attested in PDTB,
amounting to a total of 211 distinct types, disregarding connective modifier variants
such as “two/three months later,” which we consider to belong to the type “later.”

4.1.2 Non-DM Signals. Due to limited resources, we did not annotate or correct all non-
DM signals fully manually, and did not annotate them in the RST-DT data. However,
thanks to the rich annotations available in GUM, we were able to induce many signal
types fully automatically from the gold syntax trees and coreference annotations, and
were able to manually annotate or correct many other cases, and evaluated accuracy
and agreement manually on a subset of documents (see below).

Graphical and reference signals were tagged automatically based on token forms
(parentheses, question marks, etc.) and gold coreference chains for eligible relations.
For example, any QUESTION relation whose sentence contained a question mark was
assumed to be signaled by that question mark, and any ELABORATION relation contain-
ing pronominal anaphora in a satellite pointing to an antecedent in the nucleus was
automatically admitted as a reference signal. The list of relations eligible for each such
signal type was obtained by consulting the RST-SC corpus.

Some morphological and syntactic signals were also tagged automatically using the
Python dependency tree-editing library DepEdit (Peng and Zeldes 2018): Relative or
infinitival clauses conveying adnominal attribute relations are easy to identify, as are
reported speech for ATTRIBUTION, imperative mood for MOTIVATION, modals in a
CONDITION, and some tense markers (e.g., past perfect marking BACKGROUND rela-
tions). Harder cases required manual verification, such as change of tense to signal a
SEQUENCE (e.g., past followed by present or present followed by future, fully verified
manually), parallel syntactic constructions (annotated completely manually), or seman-
tic attribution sources. For the latter, the subject or external subject (for nested or coor-
dinate verb phrases) of each attribution predicate was identified using (enhanced) UD
trees, and remaining cases for which the source could not be identified were annotated
manually, such that every ATTRIBUTION in the corpus has a source signal.

Among the trickiest categories to annotate were lexical signals, which require a large
inventory of candidate items, and semantic lexical chains, which consist of related, non-
co-referring word or phrase pairs that signal a relation, and are open-ended. For the
former, we took the combined list of AltLex expressions in PDTB, a manually filtered list
of the top 100 items most associated with each relation by chi square statistics, and addi-
tional items that were noticed during the annotation, all restricted to relevant POS tags.
We observe that automatic annotation of all such items as signals for their associated
relation was close to error free: This is intuitively not very surprising, since, if a word
associated with EVALUATION, such as “good,” appears in such an already manually
annotated gold standard relation, it is highly likely to be signaling that relation. A total
of only 10 errors contradicting this approach were noticed during quality controls. To
illustrate the process, consider example (5), from a short story about a boy leading his
developmentally disabled sister, Cara, out of a store after an unpleasant incident.

(5) I herd Cara towards the front of the store, mouthing sorry at the front
cashier. [She’s kind of pretty.]<evaluation−comment> She smiles at me.
[Nice big brother with retarded sister.]<evaluation−comment>
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The first EVALUATION contains two words listed as evaluative: “kind” and “pretty”;
however the instance of “kind” is in the wrong part of speech (“kind” is listed as
evaluative only as an adjective), so only “pretty” is selected as a signal. In the second
EVALUATION about the cashier’s smile, “Nice” is correctly identified; a false positive,
adjectival “big” would also be included as a signal, and constitutes one of the 10 errors
noticed in the data and removed manually.

For lexical chains, we were concerned about creating a subjective list of associated
word pairs from the corpus, and instead decided to use a large existing inventory of
word associations, opting for MIT’s ConceptNet (Speer, Chin, and Havasi 2017), which
contains over 34 million conceptual relations between words. We allowed a script to
suggest lexical chains of two or more items in the sentence containing each connected
satellite and nucleus, or in two connected clauses for intra-sentential relations, and
filtered the result manually. Since ConceptNet does not connect items to themselves, but
lexical repetitions or variations on the same stem (e.g., “participate”...“participant”) can
be signals, especially for RESTATEMENT and PREPARATION relations, we also allowed
candidates based on stem matching using the Snowball stemmer for English (Porter
2001). Examples of both types of chain appear in (6)–(7):

(6) He had no political power, [and his influence extended only so far as he
was humored by those around him]<elaboration−additional>

(7) [Have a realistic but exaggerated setup.]<organization−preparation> The
opening of the joke—or setup—should have a basis in the real world so
your audience can relate to it, but it should also include exaggeration

In (6) “influence” is recognized as a type of “power,” mirrored by a ConceptNet
“is-a” relation between the two words, while in (7), the identical stem “exaggerat-”
helps to identify how the initial PREPARATION satellite prepares the reader for the
subsequent nucleus.

The final list of lexical chains amounted to 1,280 manually verified instances, cover-
ing 2,825 tokens in the corpus, meaning approximately 1.3% of corpus tokens are part
of a lexical chain. We note that the total would have been much higher due to plain
repetition of nouns, for example, in ELABORATION or BACKGROUND relations, but many
of these were rejected from the chain proposing script, not because they were irrelevant,
but because they were already captured under coreference-related signal types, and
were therefore ineligible to be lexical chains (e.g., the “setup” mentioned twice in
(7), is excluded as a lexical chain, because it is already part of a coreference-based
signal instead).

To evaluate the accuracy of our annotations, and humans annotators’ ability to
agree on non-DM signals, we conducted two experiments: annotations from all signal
categories were manually corrected for 12 documents in the test set (one from each
genre), and four of these were double annotated. Table 5 gives mutual precision/recall
and F1-scores for the humans (hum-v-hum, 4 docs) and for the automatic annotation
performance compared to the human annotation (cpu-v-hum). We evaluate in two
scenarios: token-anchored (signals only match if their type, subtype, covered tokens
and associated relation match) and unanchored (token spans may differ), and we report
micro and macro-averaged scores (across documents average).
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Table 5
Human vs. human and system vs. human agreement for all signal types on a subset of
documents.

anchored unanchored
hum-v-hum P R F1 P R F1
Micro 0.813 0.798 0.805 0.865 0.837 0.851
Macro 0.809 0.801 0.804 0.859 0.839 0.848
cpu-v-hum P R F1 P R F1
Micro 0.841 0.920 0.879 0.868 0.950 0.907
Macro 0.837 0.922 0.877 0.865 0.954 0.906

Comparing human vs. human scores (top half of the table) to automatic system
scores (bottom) is not strictly possible, since human agreement is computed on a smaller
subset of documents; that said, we can observe that the system performs about as well
as humans (on precision) or better (on recall), and that the gap between anchored and
unanchored scenarios is similar as well. We suspect that the reason why the system has
the upper hand in recall is that two humans inevitably generate additional disagreeing
signals, while they are less likely to remove a predicted signal unless it is truly wrong.
As a result, when compared with adjudicated output containing only the more unani-
mously recognized signals, the system does not miss less certain cases which one human
might flag but not another.

Looking at prediction errors more qualitatively, we note that lexical chain disagree-
ments are by far the most common in both human and system performance, followed
by indicative words, while syntactic and coreference based signals are almost always
correct. To understand why, we consider the typical example type in (8)–(9), compared
with the very uncommon syntactic error type in (10).

(8) The Beavertail cactus can grow to be about 24 inches . . . has pads that
look like beavertails

(9) There are holes in the center of the base of each pot to allow for drainage

(10) A: Do you need a partner? B: To go there?

In (8), an annotator recognizes “cactus” and “pads” as a meaningful lexical chain
for a LIST relation, a pair of related terms since pads are the leaves of a cactus; however
the second annotator does not recognize this chain, and they are not included as related
terms in ConceptNet. In (9), one annotator recognizes “holes” and “drainage” as a chain
indicating a PURPOSE relation, which is again not detected by another annotator or
ConceptNet. Finally in (10), we see an unusual case of a syntactic signal across speakers,
where a human annotator marks the infinitive “to” as a syntactic signal indicating
PURPOSE, but the system misses the signal, since these are separate sentences and there
is therefore no syntactic tree relation to indicate the signals—such examples of syntactic
signal corrections are very rare. Overall, we feel these results indicate a high level
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Table 6
DMs and secondary edges in RST-DT test, GUM, and the GUM genres.
genre dms orphans dms+orphans relations markers_per_rel secedges %secedge
RST-DT 406 87 493 2,580 0.191 87 3.37%
GUM 6,025 895 6,920 29,950 0.231 1,008 3.37%
news 334 38 372 1,933 0.192 43 2.22%
academic 403 55 458 2,069 0.221 61 2.95%
bio 392 38 430 2,303 0.186 53 2.30%
conversation 484 127 611 3,341 0.182 131 3.92%
fiction 611 85 696 2,899 0.240 97 3.35%
interview 514 73 587 2,698 0.217 83 3.08%
reddit 622 89 711 2,606 0.272 100 3.84%
speech 446 70 516 2,179 0.236 76 3.49%
textbook 440 47 487 2,201 0.221 54 2.45%
vlog 675 181 856 2,942 0.290 193 6.56%
voyage 397 50 447 2,062 0.216 64 3.10%
whow 707 42 749 2,717 0.275 53 1.95%

of reliability for the additional signal types in the corpus, while also indicating that
subtypes such as lexical chains and other indicative lexical signals warrant more study
in order to arrive at dependable operationalizations that do not rely solely on a lexical
resource like ConceptNet.

4.2 eRST Annotations across Genres

Table 6 gives an overview of the prevalence of secondary edges in GUM as a whole, as
well as by genre, and in comparison to our annotations of the RST-DT test-set. As the
table shows, ∼13% of discourse markers in GUM are orphans (895/6,920), fewer than
in RST-DT, which has ∼17% (87/493). At the same time, the proportion of secondary
edges is identical in both datasets at 3.37%, and there are only slightly more DMs
per relation in GUM (.231 on average per relation, compared to .191 in RST-DT). The
latter differences suggest different amounts of unmarked relations in both corpora, and
slightly more relations with multiple markers in GUM.16

Looking at GUM genres, we see considerable variation. News unsurprisingly comes
very close to the RST-DT values for DMs, but far below for secondary edges, perhaps
because GUM news stories are shorter than some of the long and complex texts in
the RST-DT test set. Other genres are even stronger outliers: Secondary edges are
rarest in how-to guides (whow, 1.95%) and most common in vlog (6.56%), the latter
due to frequent linking of sentences with sentence initial And, and to some extent So
(only counting cases in which “so” is actually a DM). Academic is surprisingly below
average in DMs per relation, despite common assumptions in the literature about the
explicitness of academic text (e.g., Hughes 1996; see Biber and Gray 2010 for criticism).

However, it would be wrong to say that vlogs are more explicit in their discourse
relations than news, since DMs/orphans are not the only means of signaling relations.

16 An anonymous reviewer has noted <4% of relations being secondary may mean that they are close to
negligible, but we note that depending on our interests they can be very important: Over 14% of GUM
RESULT relations are secondary, as are over 10% of CONCESSION relations (see Section 6 for more
statistics). These are highly relevant to semantic applications, research on political speech, and more, and
demonstrate the added value of eRST in covering the full breadth of relations in texts.
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Figure 9
Distribution of signal types across genres vs. GUM and the RST-DT test set.

Turning to all signal types, Figure 9 shows the percentage of each major signal class
across all GUM genres vs. the entire corpus, including the proportion of relations
signaled by any means in black (“any”). RST-DT is shown for comparison but only
has data for DMs (the “dm” bar includes orphans, and secondary edges are counted in
relation totals).

As we can see GUM news is very comparable to RST-DT in DM prevalence. We
also observe that academic is not actually low in signals: It marks the most relations at
73.2%, followed by news at 68.4%, textbook (66.4%), and whow (66.1%), mainly owing to
syntactic cues in the first three, and to some extent frequent graphical signals as well
(esp. whow). The overall “any” signal proportion in GUM is 63%, much lower than
the figure by Das and Taboada (2017) for RST-DT at 92.7%, though we note that some
different signal types were included in that study, and that GUM news is closer to that
mark.17 By contrast, the finding of around 20% DM marking in RST-DT test is in line
with a similar estimate of 18.21% in Das and Taboada (2017, 26).

Another set of contrasts obscured by looking just at signal types can be seen by
comparing how each coarse relation class tends to be signaled, which is very hetero-
geneous.18 Figure 10 gives the proportion of signals for each relation class. We can see

17 The lack of token-level searchable annotations in RST-SC complicates tracking down causes for these
differences quantitatively, but data inspection suggests the inclusion of much more wide ranging lexical
chains constitutes most of the difference.

18 The same can be said for fine-grained relations, which we disregard here for space reasons.
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Figure 10
Distribution of signal types for each coarse relation class in GUM.

some relations are almost never signaled by a DM (for example ATTRIBUTION, ORGA-
NIZATION), while others nearly always have one (CONTINGENCY, normally marked by
if, but sometimes by other means, such as syntactic inversion or morphological mood),
and combinations are quite common (cf. Crible 2022). The PURPOSE class is marked
almost always by a syntactic signal (usually a to-infinitive), but can have other signals
(e.g., the DM in order). Relations which can be signaled by recurring mentions, such
as ELBORATION, RESTATEMENT and CONTEXT, show such semantic and reference signals
often (especially semantic repetition). We can also see that ATTRIBUTION is always marked
(not least because a semantic source for the attribution should be present by definition),
while the least marked class overall is JOINT, containing, for example, temporal SE-
QUENCE (often marked only by implicit chronological order), LIST, and other coordinate
structures.

The most lexically marked classes are EVALUATION (e.g., positive and negative
adjectives) and ORGANIZATION, the latter primarily due to back-channeling and prepa-
ration markers in conversation (“Uh-huh,” “you know,”, “I mean,”). Since our data
delivers not only statistics on relation signaling types, but actual aligned token indices
for each relation’s signals, we can extract the most frequent DMs and lexical expressions
used to convey each relation, which are given in Table 7.

As the table shows, some of the most frequent DMs are unsurprisingly polysemous
(“and,” “so,” and “as” occur in several classes), and next to DMs we find lexical signals
for every class, which often work in tandem with the DMs, for example, the DM “then”
in the JOINT class can co-occur with lexical items such as “today” to mark temporal
sequences, or with adverbs not recognized as DMs by PDTB, such as “too” for a JOINT-
LIST. And while ATTRIBUTION is only marked by a DM twice, as in (11), it is usually
accompanied by a speech or cognition verb such as “said” or “think,” providing a clear
lexical signal.

(11) [As Heald told The Huffington Post,]<attribution> US surface ozone has
dropped partly due to the Clean Air Act.
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Table 7
Top DMs and lexical markers per coarse relation class.
relation freq % signaled top DMs top lexical
adversative 2,405 55.88% but (641), however (101), though (59), and (59) may (35), only (24), might (14), actually (13)
attribution 1,592 99.94% as (2) said (162), think (152), know (113), say (73)
causal 1,240 63.31% and (221), because (167), so (167), as (22) due to (7), result (6), caused (6), cause (3)
context 2,317 79.59% when (311), as (96), after (81), while (48) never (17), always (17), often (12), following (11)
contingency 518 96.72% if (367), if then (35), when (31), unless (12) depending (4), based on (3), every time (2), in the case (2)
elaboration 5,339 89.32% and (208), also (55), for example (28), with (25) including (36), too (18), e.g., (17), especially (14)
evaluation 1,047 57.21% and (5), so (4), so that (1) good (45), very (40), important (19), great (19)
explanation 1,650 41.94% so (104), because (69), as (42), and (22) see (22), shown (5), based on (3), considering (3)
joint 8,922 34.17% and (1701), also (211), then (202), or (127) now (39), too (34), again (24), today (12)
mode 512 78.71% by (98), as (76), without (32), as if (14) using (44), based on (19), according to (5), guided by (2)
organization 1,805 75.73% thus (1) you know (94), yeah (57), oh (54), I mean (42)
purpose 904 94.03% for (39), so (30), in order (24), so that (18) stop (7), achieve (6), prevent (5), avoid (4)
restatement 1,213 55.56% and (23), in other words (7), or (7), in short (2) that is (6), aka (6), i.e. (5), known as (2)
topic 486 82.51% so (6), if (3) what (80), how (42), why (24), who (11)

The data in the table only begins to scratch the surface of how relations are marked,
and much more remains to be learned by examining the ways in which relations can
conceivably be marked, and ways in which the same items may occur without signaling
the relation with which they are associated, a topic we leave to future research.

4.3 Search and Visualization

To support exploration of the data, we add support for eRST annotations to the existing
RST search and visualization facilities in ANNIS (Krause and Zeldes 2016, available
open source under the Apache 2.0 license), an open source search platform for mul-
tilayer corpus data.19 ANNIS supports search across all annotation layers in GUM,
meaning queries can combine syntactic structures, coreference links, RST relations, and
more. For instance, the ANNIS Query Language example in (12) searches for a non-
terminal group (a complex discourse unit) dominating a terminal segment (an EDU)
with some ADVERSATIVE relation type, using a regular expression, with a representative
result shown below it (node colors in the query correspond to covered text color in the
example).

(12) kind=“group” >[relname=/adversative.*/] kind=“segment”

a. [The value of Airbnb is approximately $30 billion.] [Compare this market value to
Hilton ’s market capitalization of $19 billion and Marriott’s of $35
billion.]<adversative−contrast>

b. [Not with your gloves or anything .]<adversative−antithesis> [Find something else to pick
it up with.]

Using the expansion to the functionality to support eRST, we can also limit results
to ones in which a DM signal is available, and anchored to a word with a particular POS
tag, for example, a coordinating conjunction (POS tag CC), marked in green in (13). The
operator _i_ indicates that the second node includes the POS node, and the expression

19 Available from https://corpus-tools.org/annis/.
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Figure 11
ANNIS visualization for the second result of the query in (13). The visualization closely follows
the view in rstWeb, except for editing facilities.

signal_type=“dm” > #3 indicates that a DM signal dominates the token declared as
the third node, which carries the POS tag CC.

(13) kind=“segment” >[relname=/adversative.*/] kind=“segment” _i_
pos=“CC” & signal_type=“dm” > #3

a. [They have ideas] [but they can not formulate them in the right
way.]<adversative−contrast>

b. [We should strive for equality] [but also practicality.]<adversative−contrast>

In the last example, where the CC is matched by the word “but,” we also see a second
marker “also” which is not highlighted in the query result—this corresponds to a
secondary edge orphan DM, whose edge can be seen in the ANNIS visualization for this
search result in Figure 11. Each signal can be highlighted by hovering over the counter
button next to each relation (showing “1” for the CONTRAST relation). The secondary
edge corresponding to “also” has the relation JOINT-LIST connecting [6] and [7]. We re-
lease the code for the new visualization and search capabilities, and make the annotated
corpus freely available for search via ANNIS at https://gucorpling.org/annis.

5. Parsing eRST

5.1 Task Definition and Metrics

Using notation from Section 3.1, the goal of conventional RST parsing is to produce the
tree G given the textual tokens T and the EDUs S, which partition T into contiguous
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spans.20 RST parsing is usually evaluated with the Parseval metrics, and we follow
previous work in considering only binarized trees and using the original Parseval
scoring scheme instead of the older RSTParseval (Black et al. 1991; Morey, Muller, and
Asher 2017). Each non-terminal vertex can be seen as the product of a parsing decision,
where two vertices {va, vb} are joined by a relation with nuclearity n and label l. We refer
to the unordered pair {va, vb} as the decision’s associated span s. For any well-formed
sequence of parsing decisions D = 〈〈s1, n1, l1〉, . . . , 〈sm, nm, lm〉〉, there is exactly one tree
that may result, so evaluating decisions is equivalent to evaluating the tree.

To evaluate parser output, consider the gold parsing decision sequence D, and the
parser’s decision sequence D̂, and let d.s, d.n, and d.l correspond to span, nuclearity,
and label of a single parsing decision d. The four Parseval metrics can now be defined
as precision21 metrics over the sets D and D̂:

Span(D, D̂) =
#{d̂ | d̂ ∈ D̂ ∧ ∃d ∈ D[d.s = d̂.s]}

#D̂

Nuclearity(D, D̂) =
#{d̂ | d̂ ∈ D̂ ∧ ∃d ∈ D[d.s = d̂.s ∧ d.n = d̂.n]}

#D̂

Relation(D, D̂) =
#{d̂ | d̂ ∈ D̂ ∧ ∃d ∈ D[d.s = d̂.s ∧ d.l = d̂.l]}

#D̂

Full(D, D̂) =
#{d̂ | d̂ ∈ D̂ ∧ ∃ d ∈ D[d.s = d̂.s ∧ d.n = d̂.n ∧ d.l = d̂.l]}

#D̂

(3)

Note that all metrics depend first on checking whether some predicted span exists
in the gold tree. The Span metric does only this, and the remaining three metrics add
criteria: Nuclearity and Relation metrics also require the span’s nuclearity and relation
label, respectively, to match the corresponding span in the gold tree, and the Full metric
requires matching span, nuclearity, and relation.

eRST introduces signals and secondary edges, which must be scored as well. First,
let us extend our formalization so that in addition to the vertices joined by the edges
vi, vj, each member of E also carries a binary indicator variable σ which is true only for
secondary edges. Further, we expand G with Λ, a vocabulary of signal labels, and Z, the
signals, where each signal may be defined as 〈e, λ, τ〉: e is the associated edge,22 λ is the
signal type label of the signal,23 and τ is a set of tokens associated with the signal.

Let us define signal precision SP and signal recall SR, which assess the quality of the
predicted signals without considering associated tokens:

SP(G, G′) =
SUM({#(ζ̂ ∩ ζ) | ζ̂ ⊆ Ẑ ∧ ζ ⊆ Z ∧ ∀z ∈ ζ[∀ẑ ∈ ζ̂[ẑ.e = z.e ∧ ẑ.λ = z.λ]]})

#Ẑ

SR(G, G′) =
SUM({#(ζ̂ ∩ ζ) | ζ̂ ⊆ Ẑ ∧ ζ ⊆ Z ∧ ∀z ∈ ζ[∀ẑ ∈ ζ̂[ẑ.e = z.e ∧ ẑ.λ = z.λ]]})

#Z

(4)

20 Some parsers relax the requirement that S be given at prediction time, but most assume S as an
input—i.e., the parser receives gold EDUs and segmentation is considered a separate task.

21 We may add metrics for recall/F1, but these would only differ from precision if the assumption of tree
projectivity were dropped.

22 We will consider two edges equal if the terminal vertices of both the source and the target nodes are
identical, i.e., they span the same EDUs.

23 This label may be decomposed into λ1, λ2, etc., if desired; we use a single label item here for simplicity,
e.g., “semantic:lexical_chain” can be a monolithic signal type.
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Informally, these equations group signals by the combination of their label and asso-
ciated edge. This group is computed for both the gold and predicted tree, and the
overlap between the gold and the predicted group for the label–edge combination is
noted. The size of this overlap is summed across all groups, and the sum is divided by
the total number of predicted signals (precision) or gold signals (recall). This slightly
complicated formulation of precision and recall is necessitated by the fact that there
could be potentially many signals which share the same edge and label (but then not
the same tokens, which are however ignored in the above metric).

We would also like to have a quantitative anchored metric of how well the parser
performed at predicting the actual tokens (word forms) associated with a signal. Due
to the complication just noted above, formulating precision and recall metrics is not
entirely straightforward. Consider the case where for some given edge e and signal label
λ, the gold tree has some signals ζ ⊆ Z and the predicted tree has some signals ζ̂ ⊆ Ẑ. It
is possible that even if all signals in ζ̂ and ζ are associated with edge e and are labeled
λ, ζ may not be equal in size to ζ̂. Moreover, even if they are the same size, it is not
immediately clear how to put signals from the two sets into pairwise correspondence
so that their tokens may be compared.

Our solution is to allow the evaluation procedure to find the optimal pairing for
predicted and gold signals for each label–edge signal group. While in principle this is
an expensive operation with computational complexity O(Z!), we expect that a label–
edge group in the 99th percentile by size would contain no more than 5 signals, and
moreover, heuristics would likely be able to make the optimal pairing search more
efficient as needed. Let us therefore define an OPTIMAL-PAIR(λ, e, Z, Ẑ) function which
makes label–edge groups from the signal sets and produces a set of optimal pairings
{〈z1, ẑ1〉, . . . , 〈zm, ẑm〉} that maximizes the total number of overlapping tokens across the
two label–edge groups. With the assistance of OPTIMAL-PAIR, we may now define signal
token precision WP and recall WR as follows:

WP(G, G′) =
SUM({#(ẑ.τ ∩ z.τ) | λ ∈ Λ̂ ∧ e ∈ Ê ∧ 〈z, ẑ〉 ∈ OPTIMAL-PAIR(λ, e, Z, Ẑ)})

SUM({#ẑ.τ | ẑ ∈ Ẑ})

WR(G, G′) =
SUM({#(ẑ.τ ∩ z.τ) | λ ∈ Λ ∧ e ∈ E ∧ 〈z, ẑ〉 ∈ OPTIMAL-PAIR(λ, e, Z, Ẑ)})

SUM({#z.τ | z ∈ Z})

(5)

Intuitively, think of these metrics as proceeding in the following way: For every
relation in the predicted and gold trees, group signals such that each group shares some
edge e and some signal label λ. (Perhaps, for example, the signals all share the label DM.)
Note that (unlabeled) edge correctness is a prerequisite for signals to be deemed correct,
since associated edges are identified by the EDU yield of their source and target nodes.
Now, for each signal label–edge group, find an optimal pairing between predicted and
gold signals such that overlap in each pair’s associated tokens is maximized. Finally,
count the number of overlapping tokens across all pairs, and divide by the total number
of token associations in either the predicted (precision) or gold (recall) signals.

For secondary edges, the four Parseval metrics are directly applicable: a secondary
edge has all the salient properties of a primary edge, although we note that the term “nu-
clearity” should properly be replaced by “direction,” since secondary edge source and
target designations imply only a direction and not necessarily a higher prominence for
the target vis-a-vis the source (such prominence is only represented via the primary tree,
to maintain RST’s unambiguous nuclearity property). The only outstanding question
for how to perform Parseval evaluation for eRST trees, then, is how to combine metrics

52



Zeldes et al. eRST: A Signaled Graph Theory

that are respectively computed for the primary and secondary edges. We expect that in
general it could be useful to consider both in isolation and also to consider the metrics
for both kinds of edges combined. However, in the latter case, since secondary edges
are rare, they would not change a metric pooling both very much, so in the interest of
space we report on each type separately in our experiments below. We publicly release
our scorer with the code and data for this article.

5.2 Model Architecture

Although the main objective of this article is to present eRST as a framework, and
providing a comprehensive NLP system for its parsing is outside of the current scope,
we present an initial experiment in eRST parsing in this section, extending existing
architectures. Conventional RST parsers take either a top–down or a bottom–up ap-
proach: Top–down begins with the entire document and decomposes it recursively into
sections, which may coincide (or be forced to coincide) with paragraphs, sentences,
and so forth (Feng and Hirst 2014; Kobayashi et al. 2020). Recent approaches rely on
end-to-end neural architectures: The DMRST parser (Liu, Shi, and Chen 2021) used a
pointer network as its decoder and maintains a stack by top–down, depth-first span
splitting; Zhang, Kong, and Zhou (2021) utilized adversarial learning to distinguish
gold versus incorrect trees.

Bottom–up approaches are perhaps closer to human RST annotation practices (Shen
et al. 2022), beginning by connecting related clauses and sentences, then larger struc-
tures. This approach currently wins on span and nuclearity identification scores, but not
on relation classification. Guz, Huber, and Carenini (2020) provided a transition-based
neural shift-reduce parser using SpanBERT embeddings and Yu et al. (2022) proposed a
second EDU-level pretraining on top of sentence-level training for next EDU prediction
as well as discourse marker prediction.

After briefly considering ways of implementing novel end-to-end approaches to the
task above, we quickly realized that substantial additional research would be needed in
order to not only add model components to predict signals and secondary edges, but
also to perform at near-state of the art (SOTA) levels for primary tree parsing. eRST
involves aspects not only of the RST parsing literature surveyed above, but also of
connective detection (see Yu et al. 2019; Gessler et al. 2021; Metheniti et al. 2023 for
recent work), explicit and implicit relation recognition (Rutherford, Demberg, and Xue
2017; Dai and Huang 2018; Kim et al. 2020; Scholman et al. 2021), and discourse relation
classification (Liu, Fan, and Strube 2023), which remain challenging even for recent
neural models (Qin et al. 2017; Kurfalı and Östling 2021; Braud et al. 2023). As a starting
point, we therefore decided to adapt existing SOTA models for predicting primary trees
and explicit connectives, and to construct a baseline approach on top of those systems.24

Our approach consists of the following four components:

Primary Tree Parsing. After testing several off-the-shelf parsers, we chose the top–down
DMRST (Liu, Shi, and Chen 2021), which remains SOTA for the RST Relation metric for
GUM and is efficient and easy to run. The system produces projective, binary, labeled

24 We do not mean to say that a unified, end-to-end approach to the task is a bad idea: Our approach is
merely motivated by the observation that our initial attempts to do so resulted in unusable primary tree
prediction accuracy. We believe there is great potential in jointly learning the related subtasks in eRST,
similarly to successful work in multitask learning and pretraining for RST parsing (Braud, Plank, and
Søgaard 2016).
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trees, which we use as an input for signal prediction and association, as well as the basis
for the available non-terminal nodes for secondary edge prediction. For comparison, we
also provide numbers using the best bottom–up shift-reduce-style parser from Guz and
Carenini (2020) in the next section.

Connective Detection. We use DisCoDisCo (Gessler et al. 2021), the highest scoring con-
nective detection system on the DISRPT benchmark. The system is trained on the eRST
training set’s contiguous DM and orphan token spans, with discontinuous spans split
into two BIO-encoded connective instances. This means that discontinuous connectives
(in accordance with PDTB’s definitions, e.g., if...then) must be re-merged later, based
on a closed list of discontinuous items attested in the training data. We also note that
non-DM signals cannot be predicted using this system, since they often overlap. A DM-
lexicon-based baseline is also provided for comparison in the next section.

Morphosyntax and Coreference. We use the AMALGUM pipeline (Gessler et al. 2020),
which is designed to predict the same annotations present in GUM, including UD
parses, entity annotations, and coreference resolution. For testing we then use the same
pre-processing scripts that feed the manual annotation for the eRST corpus described
in Section 4.1, except with predicted, rather than gold standard, syntax trees and
coreference, which can then be used to predict morphological, syntactic, semantic, and
reference signals, and with no manual correction.

Association and Secondary Edges. Here we propose a new transformer-based text classifier,
which receives two text spans known to be connected by a relation (based on the
input primary tree), one of which contains a DM. The system predicts whether the
relation between the spans is signaled by the DM, which is marked in the input by
surrounding “**” characters. The spans are either the head EDUs of the relation (for
intra-sentential relations) or the two sentences containing the head EDUs (for inter-
sentential relations). We further embed the relation label, the distance between head
EDUs and the direction of the relation in the input, and, for secondary edges, the relation
label of any primary edge with the same source and target of the secondary relation, if
available. The serialization is exemplified in (14).

(14) ANTITHESIS (LIST) left 1: past studies have tended to avoid this task » and
have **instead** used samples of researchers

In (14), the input suggests that a left-to-right secondary ANTITHESIS edge may exist
between the given textual units, which are adjacent (direction and distance: left 1), for
which a primary LIST edge already exists, and which is marked by the orphan “instead.”
Note that the DM “and,” which also appears in the example (in fact, it is the DM for the
primary LIST relation), is not targeted, as implied by the “**” notation, which singles out
the word “instead.”

In order to predict secondary edges at test time, the system also generates secondary
edge prediction candidates for all primary edge paths attested in the predicted input
tree, for all relation labels compatible with any predicted DM they contain, as well as
relations between any adjacent pair of sentences, again provided that they contain a
compatible DM. This compatibility is based on a DM-to-relation mapping obtained from
the training data. Finally, the system ranks edges by binary classification probability
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Table 8
eRST graph metrics for our system with different inputs (LX = Lexicon-based connective
detection; DD = DisCoDisCo connective detector; AM = UD trees and coreference from the
AMALGUM parser; DMRST and G&C are the top–down and bottom–up SOTA RST parsers
cited above).

primary secondary

RST NLP S N R F S N R F

gold gold 1.000 1.000 1.000 1.000 0.389 0.270 0.205 0.184
gold LX+AM 1.000 1.000 1.000 1.000 0.210 0.142 0.113 0.091
gold DD+AM 1.000 1.000 1.000 1.000 0.369 0.256 0.195 0.174
DMRST LX+AM 0.620 0.545 0.492 0.482 0.055 0.044 0.027 0.022
DMRST DD+AM 0.620 0.545 0.492 0.482 0.101 0.061 0.030 0.030
G&C-RST LX+AM 0.595 0.530 0.470 0.457 0.022 0.016 0.022 0.016
G&C-RST DD+AM 0.595 0.530 0.470 0.457 0.055 0.037 0.037 0.028

and chooses the top possible relation to associate with each input DM (as predicted
by DisCoDisCo). If the predicted relation is secondary then the DM is classified as an
orphan, and the secondary edge is added to the graph.

For the transformer embeddings we tested several options, trained on all true
examples in the training set, enriched with an equal number of negative examples, and
halting on dev set performance for early stopping. We compared base-sized versions
of BERT, DeBERTa v3, XLNet, and Electra, and chose Electra-base-discriminator as the
highest performing model on the dev set.

5.3 Results

Table 8 gives results for eRST graph structures in seven scenarios. In the first row, we
provide gold primary trees, syntax trees, and connective positions, and the transformer
model only predicts secondary edges and signal associations (RST = gold, NLP = gold).
This is an upper bound for the system performance, when no cascading errors from
other components affect its accuracy.

In the other scenarios, we use AMALGUM tools for automatic syntax parsing and
coreference resolution, and vary how primary trees and DMs are predicted. RST trees
are either gold, or predicted using one of two RST parsers: the state of the art top-
down parser DMRST (Liu, Shi, and Chen 2021) and, for comparison, the slightly less
accurate, best bottom–up parser from Guz and Carenini (2020) (abbreviated G&C). DMs
are predicted either using a DM lexicon as a baseline (LX), or DisCoDisCo (DD), the
SOTA system for DM detection. For the lexicon-based DM detection baseline we simply
create a lexicon containing any string which is a DM in the training set more than 50%
of the time and assume that it should always be predicted to be a DM, regardless of
context (including multi-token DMs).

In the bottom four scenarios in the table, only EDU segmentation and word-
tokenization are given as inputs.25 All tools are trained on the official GUM V9 train-
ing partition (165 documents), using the development partition for early stopping

25 If these are not provided, numbers become very hard to compare due to segmentation conflicts; however
we assume that both tasks can be performed automatically with high accuracy in production settings.
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(24 documents) and the test set for the final scores (24 documents). As the table shows,
secondary edge prediction is challenging even when gold RST trees and NLP pre-
processing are given, especially for the FULL metric. This is because correct prediction
of a secondary edge requires the identification not only of a discourse relation (e.g., that
two parts of the text stand in CONTRAST), but also that there is not already a primary
edge corresponding to the relation, and that there is a sufficient trigger, such as an
orphan DM or syntactic environment allowing for the secondary edge. Even with this
information correctly recognized, the system must still choose the correct attachment
points for the edge source and target in the hierarchical tree, as well as the edge
direction and the label. Seen from this perspective, and considering the little training
data available (fewer than 1K secondary edges), the SPAN score of 0.389 is actually
rather high, while the Relation score of 0.205 is not much less than half the R score
of a primary predicted parse 0.492 (using DMRST, rows 4–5). This is despite the fact
that primary parses gain score from easy wins, such as correct attachment of relative
clauses and other explicit intrasentential relations—secondary edges can be expected to
be trickier cases.

Turning to the impact of predictions by baselines or previous SOTA tools, we see
that automatically predicted NLP, including connective detection, does not produce
substantial degradation in secondary edge predictions when DD is used, since the gold
primary tree is still just as useful in determining whether a secondary edge is missing
given existing primary ones, and connective detection is a relatively high performance
task, often scoring over 90% for English (Braud et al. 2023). Using the LX baseline
produces a very substantial degradation of almost half the score (second row). Predicted
syntax trees could mainly impact prediction of syntactically motivated secondary edges
(missing ATTRIBUTIONS from complement clauses, or ELABORATION relative clauses),
yet these are not only rare, but also easy to predict correctly using a SOTA syntax parser.

The situation in the last four rows is very different: Switching to predicted RST
trees is catastrophic for secondary edge prediction, since, even if a relation missing from
the primary tree is recognized, it could very well be an error in the primary parse: If
the secondary edge detector correctly identifies and adds a real relation, the score will
actually be impacted worse if that relation was a primary one in the gold data, since
the detector then incurs both a precision and a recall error. Using a slightly less good
parser does not matter as much as it does for the primary tree, but still degrades the Full
metric (F). Switching to the LX baseline for DM detection is unsurprisingly catastrophic,
especially when compounded with automatic primary RST parsing.

Moving on to the second part of the eRST graph prediction task, Table 9 shows per-
formance on signal detection (identifying the signal types associated with each relation
in the graph) and signal anchoring (also identifying the exact token span of each signal)
broken down by major signal types, in the same scenarios. In each predicted scenario,
the same scripts are used to identify the non-DM signal types for which automatic
prediction is feasible, but the inputs are changed, for example, a syntactic relative clause
signal is still predicted based on the syntax annotation, but in the predicted syntax
setting, it uses automatic dependency parses, unlike in the gold data which we release
with this article.

As the table shows, here too DM results are quite good as long as the gold RST tree
is provided and DD is used; the LX baseline produces substantially worse numbers
for DMs/orphans and overall. With predicted primary RST trees, DM and orphan
identities can again be swapped (if a primary/secondary relation pair are swapped
in the prediction, what should be an orphan becomes a DM and vice versa), and in
general, orphan prediction is challenging, since it only has a chance of being correct if
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Table 9
eRST signal type detection and anchoring scores per signal category.

SIGNAL DETECTION

RST NLP all dm orphan graph morph num lex sem ref syn

gold gold 0.925 0.915 0.176 1.000 0.936 0.429 0.992 0.845 0.991 0.989
gold LX+AM 0.756 0.724 0.080 0.886 0.957 0.0 0.870 0.686 0.802 0.961
gold DD+AM 0.824 0.915 0.188 0.886 0.957 0.429 0.881 0.687 0.802 0.961
DMRST LX+AM 0.450 0.351 0.030 0.416 0.500 0.0 0.435 0.271 0.137 0.838
DMRST DD+AM 0.483 0.433 0.044 0.416 0.500 0.286 0.436 0.272 0.137 0.838
G&C-RST LX+AM 0.431 0.334 0.005 0.408 0.571 0.0 0.411 0.242 0.119 0.822
G&C-RST DD+AM 0.459 0.398 0.010 0.408 0.571 0.0 0.414 0.242 0.119 0.822

SIGNAL ANCHORING

gold gold 0.915 0.889 0.147 1.000 0.871 0.429 0.994 0.882 0.994 0.944
gold LX+AM 0.555 0.679 0.055 0.972 0.900 0.0 0.837 0.459 0.537 0.898
gold DD+AM 0.591 0.886 0.159 0.970 0.900 0.429 0.852 0.459 0.537 0.898
DMRST LX+AM 0.298 0.331 0.017 0.567 0.386 0.0 0.416 0.138 0.088 0.786
DMRST DD+AM 0.314 0.422 0.030 0.564 0.386 0.286 0.418 0.137 0.088 0.786
G&C-RST LX+AM 0.290 0.308 0.000 0.577 0.480 0.0 0.389 0.118 0.086 0.780
G&C-RST DD+AM 0.304 0.386 0.000 0.577 0.480 0.0 0.392 0.118 0.086 0.780

the secondary edge was predicted correctly as well. We can also see that the penalty for
switching to G&C as the RST parser is fairly limited, but noticeable, mainly for DMs.

For non-DM signals too, predicted primary trees mean that the required relation
for alignment may often not exist. This is especially clear for “easy” signal types, such
as graphical ones, which include unambiguous punctuation and layout factors, such as
bullet points marking a LIST relation—if the structure of a LIST is predicted correctly,
signal identification may be trivial, but an incorrect parse leads to a signal detection
error as well.

Beyond these findings, we note that some signal types are challenging to get right
even for gold trees, such as numerical signals, which require matching numerical ex-
pressions to quantities of things mentioned, or morphological ones, such as sequence of
tenses. The latter signal type is predicted for any sequential temporal relation when
units in sequence have succeeding tenses (past then present, present then future, etc.),
but these morphological cues somewhere within the span of a sequence of events do
not always indicate the sequence itself, as shown in Example (15), where a present tense
direct speech predicate is uttered after a past tense narrative sentence, but the tense
change is not actually a signal of the sequence.

(15) [I pulled the bike to a halt (. . . )] [“I think I’ve got a fairy stuck up my
nose..”]<sequence>

NLP prediction quality, too, can matter considerably, even when gold RST trees are
provided, for types such as reference and semantics, since automatic coreference reso-
lution substantially underperforms the gold coreference information delivered in the
gold NLP scenario. The most reliably predictable signal type is unsurprisingly syntactic,
for two reasons: (1) it depends on form-based NLP inputs for which reliable tools exist
(syntactic dependency parsing), and (2) it is associated with some of the easiest relations
to infer in the RST tree: Relative and other adnominal clauses, which both RST parsers
usually parse correctly.
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In sum, these results demonstrate that while eRST parsing is a challenging task, it
is not a hopeless one, especially in an era in which computational linguistics takes on
increasingly complex tasks—our system is a very rough proof of concept, and we are
certain that better ones can be developed, even with current base-sized LMs, let alone
much larger sequence-based LLMs. At the same time, it is clear that signal detection and
secondary edge prediction is primarily feasible if we are confident we have the right
primary tree: Without that tree, scores on the remaining tasks suffer from cascading
errors very substantially. The same applies to a lesser extent to DM detection: With a
better system for this subtask, scores on signals and secondary edges will rise, as made
clear by the comparison between the LX baseline and DD.

6. Applications

Although eRST parsing will require further research before we can expect to leverage
reliable automatic analyses for practical applications, it is worth considering what
information the formalism exposes and how it could be used in practice. Since eRST
graphs can easily be reduced to primary unsignaled RST trees, it goes without saying
that they provide the same benefits as those trees, for example, proposition extraction
(=EDU segmentation); a built-in, recursive ability to extract the most prominent units
in any document (or subspan) for extractive summarization, central discourse unit
identification (Atutxa et al. 2019), topic segmentation (Xing, Huber, and Carenini 2022)
or related tasks; and identification of specific relations of interest (e.g., parsing all
speeches of a public figure or political party and extracting all CONCESSION relations
made by them for inspection), which can also be used for representation learning in
downstream tasks (Huber and Carenini 2022; Pu, Wang, and Demberg 2023). Since
relation spans and associated discourse markers are exposed by the graph, it is also
possible to extract shallow discourse parses and use them to disambiguate connective
senses or perform other tasks relying on shallow parsing, such as sentiment analysis
or opinion mining. In fact, we are planning to leverage the information in eRST to
generate training data compatible with current shallow discourse parsing frameworks
as an additional resource in appropriate formats.

However, eRST graphs go beyond these original applications of discourse parsing
to allow for additional, more fine-grained applications, for which we provide some
examples here.26 In this section we would like to start by considering how much added
value eRST brings to the core application of RST, namely, relation extraction, before
considering some of its more novel applications and implications.

Relation Extraction Compared to RST. At the most basic level, the addition of secondary
edges allows analysts to represent multiple concurrent or tree-breaking relations with-
out having to choose a single function label per unit in a text. Although secondary edges
are comparatively rare, they are not evenly distributed across labels, and for some label
types of interest, they may constitute over 10% of relation instances. Table 10 gives
counts and proportions for secondary edges by relation label for labels that have >5

26 A reviewer has asked whether LLMs make such analyses redundant in practice. We do not believe so, for
at least two reasons: (1) LLMs benefit from a variety of annotated data types for pre-training and
instruction fine-tuning, and eRST data could be used to generate such supervision; and (2) identifying
eRST relations with their associated signals is an end-task in itself, which can serve human analysts,
e.g., in computational social science (analyzing political speech), quantitative and qualitative humanities
research on rhetoric, and more, while offering evidence in support of the relations identified in each text.
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Table 10
Proportions of secondary edges for relations with >5 secondary instances.

relation primary secondary total % secondary
causal-result 437 72 509 14.10%
explanation-justify 455 60 515 11.70%
adversative-concession 759 87 846 10.30%
mode-manner 273 30 303 9.90%
adversative-antithesis 375 35 410 8.50%
causal-cause 588 39 627 6.20%
elaboration-additional 2,326 136 2,462 5.50%
joint-sequence 1,868 87 1,955 4.50%
contingency-condition 446 19 465 4.10%
elaboration-attribute 2,182 85 2,267 3.70%
context-circumstance 968 35 1,003 3.50%
explanation-evidence 729 26 755 3.40%
adversative-contrast 887 28 915 3.10%
joint-other 1,866 51 1,917 2.70%
joint-list 3,707 88 3,795 2.30%
joint-disjunction 305 6 311 1.90%
attribution-positive 1,335 24 1,359 1.80%
restatement-partial 370 5 375 1.30%
context-background 1,071 7 1,078 0.60%

secondary instances in our data, in descending order of secondary edge percentage.
The proportions give an idea of the extent of information an eRST parse gains (or a plain
RST parse misses) out of the total possible relations recognized in our formalism. As the
numbers show, primary trees alone miss substantial amounts of labels like CAUSAL-
RESULT, EXPLANATION-JUSTIFY, and ADVERSATIVE-CONCESSION.

Signal-based Relation Subtypes. In addition to the word-sense disambiguation provided
by associating DMs with relations (we can tell a temporal since from a causal one,
as in PDTB), signals can be used to identify subclasses of relations which are more
fine-grained than the two-level taxonomy used in our data. For example, RST-DT
distinguishes a fine-grained relation OTHERWISE (normally collapsed under the coarse
CONDITION class) which is not distinguished in GUM. However, using our anchored
signals, it is easy to extract all relations marked by OTHERWISE and obtain their exact
satellite and nucleus scopes. It is also possible to define subtypes not found in any other
datasets. For example, the non-conditional explanatory if found in “I have oregano if
you want any” characterizes a subtype of EXPLANATION-JUSTIFY relation, which can
be retrieved directly using the relation and discourse marker combination, as shown in
Figure 12 with the discourse marker in red.

Non-DM signals can also be used to extract subclasses of relation instances, such as
identifying temporal relations signaled by explicit date or time expressions, ELABORA-
TIONs discussing meronyms of a nucleus entity, or CONTRAST signaled via antonyms.
In all of these cases, explicit signal annotations allow us to access sub-categories of
relations, and even extract specific, open-class words, which expose more fine-grained
semantic and pragmatic information. The potential of these possibilities is further
enhanced by the presence of secondary relations, which can be queried concurrently
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Figure 12
An EXPLANATION-JUSTIFY relation marked by if belongs to a special class of justifications which
can be retrieved using signals, despite not having a dedicated relation label.

to primary ones (finding all SEQUENCE relations which are also an ELABORATION, or
excluding cases that have a concurrent CONTRAST relation, etc.).

Attribution Scope, Source, Mode, and Polarity. Since attributions and their polarity are
already identifiable using the relations ATTRIBUTION-POSITIVE and ATTRIBUTION-
NEGATIVE (e.g., “officials did not say...”), and since the constituent tree expresses scope,
RST data already exposes the span of positively or negatively attributed content. How-
ever, the addition of signals for attribution source and the indicative word (or phrase)
instantiating the attribution predicate allow us to extract full information on the mode
of attribution: Via a speech verb such as say or cognitive predicate such as think, or no
predicate at all in “newspaper style” attribution giving just a quote and a name. The
source of the attribution can correspond to a named or non-named entity. Figure 13
illustrates the information exposed by the formalism for a comprehensive extraction of
attributions and their components: The attribution source is marked in green and lexical
predicate signal in cyan.

In the case of the multilayer GUM corpus, the existence of aligned lemmatization,
entity recognition, entity linking (Wikification), and coreference resolution layers allow

Figure 13
Attribution with anchored signals representing the attribution predicate in cyan and the
attribution source in green.
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Figure 14
Two evaluations whose scope is marked by the tree, with the evaluation content signaled using
indicative words and phrases: remarkable and a real threat.

us to link attributions not only to an attested verb form (e.g., said in the figure, indicating
the mode of attribution) and entity span (e.g., Bolden), but also to the predicate lemma
(say, substantially reducing the number of attribution mode predicate types) and the
underlying entity identifier if available (e.g., coreference cluster 3, the cluster containing
a mention NASA administrator Charles Bolden, and also linked to the Wikipedia identifier
https://en.wikipedia.org/wiki/Charles_Bolden).

Evaluation Content. Similarly to attributions, the relation EVALUATION-COMMENT pro-
vides scope for what is being evaluated. However in a regular RST tree, it is not possible
to know whether the evaluation is negative or positive (or neither), nor what evaluative
terms were being used with respect to the content. The eRST graph improves on this
whenever an indicative word (or phrase) is available, as illustrated in Figure 14 in yellow.

The signaling annotations combined with the tree itself allow us to know that the
entire span of units 40–44 is being evaluated as remarkable, while a nested evaluation
from 43 scoping over 41–42 speaks of a real threat. This information is substantially more
detailed than what a basic RST tree can provide. Our data indicates that for 62.3% of
EVALUATION relations, an associated indicative item is available, amounting to nearly
1,200 tokens with over 200 lemma types. The most common items are in Table 11.
Although top adjectives like “good” and intensifiers like “very” dominate the top of
the table (amounting to nearly 14% of tokens), frequencies quickly drop to around 1%,
reaching a frequency of 5 at rank 56, and single attestations (a.k.a. hapax legomena) at
rank 145. This shows the long tailed distribution of evaluative items, which are much
less predictable or limited compared with DMs.

Reliability and Explainability. A major challenge for current neural NLP systems lies in
reliability and explainability: When predicting structured outputs without a rationale,
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Table 11
Frequency-ranked lemmas in lexical indicative signals for EVALUATION.

rank lemma frequency % signals
1 good 90 0.076
2 very 74 0.062
3 feel 57 0.048
4 great 30 0.025
5 important 27 0.022
6 look 27 0.022
7 bad 23 0.019
8 seem 23 0.019
9 mean 22 0.018
10 beautiful 20 0.016

...
56 fundamental 5 0.004

...
145 inaccurate 1 0.001

downstream applications and users have little way of knowing which predictions are
likely to be correct or incorrect, what the rationale is for the prediction, and what we
could do to filter out mistakes or improve systems. A complete automatic parse in eRST
includes a built-in rationalization mechanism in the form of signals, which can be used
for filtering (only use explicitly-signaled relations, or just ones signaled by a DM) and to
better understand the predictions being outputted. Even though signal predictions can
of course be wrong in themselves, especially explicit connective detection is now a fairly
reliable task, and can be used by human analysts to better understand discourse parsing
outputs, or as part of the input for downstream tasks which should be made aware of the
strength and type of evidence for a system’s predictions. By contrast, investigating cases
of totally unsignaled relations in gold annotated data can help us to understand the
limitations of our signaling annotation scheme, and try to address how human analysts
arrive at an analysis in the absence of instances of anchorable, or even any signals of
any kind.

7. Conclusion

In this article we presented eRST, a comprehensive theoretical framework representing
discourse relations and structure, which expands on the existing Rhetorical Structure
Theory, but incorporates insights from previous work in alternative frameworks, such
as PDTB and SDRT. In particular, our proposal addresses weaknesses in RST, such as
inability to handle tree-breaking and potentially multiple concurrent relations, as well
as the failure to address the role of discourse relation marking devices, including, but
not limited to, connectives. Going beyond PDTB’s model, which is focused on mor-
phosyntactically defined connectives and some additional highly constrained marker
types, eRST adopts the view of the RST Signaling Corpus (Das and Taboada 2017) by
aspiring to a more exhaustive inventory of discourse relation signals, which we attach
directly to relevant tokens in each text. The resulting representation retains advantages
of RST, such as a strong commitment to recursive nuclearity and a hierarchical tree
structure spanning entire documents, while enabling a more complete analysis covering
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previously disregarded relations, as well as the rationale for their identification in text-
based terms.

Beyond the potential of eRST data to support more detailed theoretical studies of
how discourse structure and meaning are constructed in natural language, we have
also demonstrated some of the potential practical applications of eRST. These include
not only classic uses of RST, such as searching for discourse relations (e.g., finding
CAUSE and RESULT in a parsed collection of texts, or EVIDENCE for a particular claim
etc., now including tree-breaking cases), Central Discourse Unit detection, or extractive
summarization, but also unique possibilities supported by the availability of signal
annotations. The latter include tasks such as detailed ATTRIBUTION extraction, analysis
of components of EVALUATION relations, and more.

The introduction and definition of a parsing task for eRST, including revised evalu-
ation metrics, a publicly available scorer, and a baseline implementation, provide a new
and more comprehensive benchmark for discourse parsing, enriched by the presence
of a more complete representation of the total relations available in each document. In
particular, we hypothesize that the explicit presence of multiple concurrent relations in
our data can shed more light on at least a subclass of parser errors in traditional RST
parsing, in cases where parsers fail to predict the primary tree relations, but turn out to
predict relations encoded as secondary ones, making errors that are not entirely wrong.
We note that some recent initial work in this direction using double annotations in RST-
DT seems to suggest that this hypothesis is correct (Liu, Aoyama, and Zeldes 2023).

Additionally, we see potential for using data with the rich annotations present in
eRST in probing and improving current LLMs, which can harness textual representa-
tions of the relations and signals exposed in our discourse parses for either pre-training
tasks or for instruction fine-tuning. Zero or few-shot successes and failures in solving
eRST tasks may also teach us about what specific LLMs do more or less well, and what
levels of discourse awareness they possess. Conversely, we are optimistic that LLMs can
be used to predict aspects of eRST parses, or eventually even complete parses, as some
recent work on relation classification using sequence to sequence models has indicated
(Anuranjana 2023; Chan et al. 2023). Parsers built on top of LLM outputs may allow us
to analyze larger datasets using increasingly accurate automatic parses, and to bootstrap
data to tackle difficult, out-of-domain, or perhaps even multilingual scenarios in which
manually annotated discourse parsing data is scarce.

Finally, we believe that the data and tools released with this article represent a
substantial resource for research. The GUM corpus is now larger than the seminal RST-
DT corpus for English (Carlson, Marcu, and Okurowski 2001), with 12 written and
spoken genres, showing the applicability of the framework to a broad range of text
types. Since GUM continues to grow and cover new genres, we anticipate challenges
but also opportunities in applying eRST to new kinds of data. We are also keenly aware
of the limitation of richly annotated corpora primarily to English, and hope to be able to
extend eRST to more languages in the future, with obvious first targets in the languages
that already have RST treebanks which could be extended with eRST—for example, the
Georgetown Chinese Discourse Treebank (GCDT) (Peng, Liu, and Zeldes 2022) follows
the same RST annotation scheme as GUM, and many of the tools and scripts used for
this article could be adapted to enrich it with relative ease (see Appendix B). We hope
that the release of the new eRST annotated GUM will encourage others to experiment
with the framework and tools, and invite researchers working on discourse relations
and representations to test the theory and provide feedback to evolve it further. For
updates, annotation samples, and discussion we also refer interested readers to the eRST
website at https://gucorpling.org/erst.
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Table A.12
Relation labels in the GUM corpus.
relation name nuclearity definition
ADVERSATIVE-ANTITHESIS →← R is meant to prefer N as an alternative to S
ADVERSATIVE-CONCESSION →← R is meant to look past an incompatibility of N with S
ADVERSATIVE-CONTRAST Λ W presents multiple Ns as incompatible, but of equal prominence
ATTRIBUTION-NEGATIVE →← S states that a potential source is NOT a source of the information in N
ATTRIBUTION-POSITIVE →← S states a source for the information in N
CAUSAL-CAUSE →← S is the cause of N and N is more prominent)
CAUSAL-RESULT →← S is the result of N or: N is the cause of S, and N is more prominent)
CONTEXT-BACKGROUND →← S provides information to increase R’s understanding of N
CONTEXT-CIRCUMSTANCE →← S details circumstances often spatio-temporal) under which N applies
CONTINGENCY-CONDITION →← N occurs depending on S
ELABORATION-ADDITIONAL ← is used in all other cases, when S is an elaboration on N as a whole
ELABORATION-ATTRIBUTE ← is used when S elaborates on a participant within N, rather than on the entire proposition in N
EVALUATION-COMMENT →← S provides an assessment of N by W R does not have to share this assessment)
EXPLANATION-EVIDENCE →← S provides evidence which increases R’s belief in N
EXPLANATION-JUSTIFY →← S increases R’s acceptance of W’s right to say N
EXPLANATION-MOTIVATION →← S is meant to influence R’s willingness to act according to N
JOINT-DISJUNCTION Λ W presents multiple Ns which can be regarded as interchangeable alternatives
JOINT-LIST Λ W presents multiple Ns in parallel which can be regarded as additive to one another
JOINT-OTHER Λ any other collection of unlike discourse units of equal prominence at the same level of hierarchy
JOINT-SEQUENCE Λ Multiple Ns form a temporally ordered sequence of events in order
MODE-MANNER →← S indicates the manner in which N happens
MODE-MEANS →← S indicates the means by which N happens
ORGANIZATION-HEADING → explicit text organizing device such as a heading
ORGANIZATION-PHATIC →← W holds the floor, without contributing propositional content
ORGANIZATION-PREPARATION → covers all other forms of S units primarily used to signal an upcoming N
PURPOSE-ATTRIBUTE →← is used when S gives the purpose of a participant in N, rather than on the entire proposition in N
PURPOSE-GOAL →← the proposition in N as a whole is initiated or exists in order to realize S
RESTATEMENT-PARTIAL ← S partly realizes the same role and content as a previous N
RESTATEMENT-REPETITION Λ Multiple Ns realize the same role and content
SAME-UNIT Λ indicates a discontinuous discourse unit this is not a discourse relation)
TOPIC-QUESTION → N is the answer to the question posed by S
TOPIC-SOLUTIONHOOD →← N is a solution to a problem presented by S

Figure B.15
GCDT example gcdt_interview_falkvinge.
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Appendix A. Relation Labels in GUM

Table A.12 gives the full list of rela-
tion labels in GUM. Note that SAME-
UNIT is not a proper discourse relation,
but rather a technical device used to
connect multiple parts of a discontinu-
ous EDU. For a fuller description of the
labels and the most current GUM an-
notation guidelines, see https://wiki.
gucorpling.org/gum/rst/. All defini-
tions refer to the Reader (or hearer) as R,
the Writer (or speaker) as W, a nucleus
as N, and a satellite as S. The nuclear-
ity of the direction is either← (for satel-
lite relations that only go left-to-right),
→ (the opposite), →← (a satellite rela-
tion in either direction), or Λ (multinu-
clear relation). Relation names all have
the form <coarse-class>-<fine-grained>,
that is, the first three relations in the table
belong to the coarse class ADVERSATIVE.

Appendix B. GCDT Example

Figure B.15 provides a sample eRST
annotation in Mandarin Chinese using
GCDT (Peng, Liu, and Zeldes 2022),
along with translations of each EDU.
We can observe several discourse sig-
nals in this sample, for instance, a dis-
course marker 但 dàn “but”, a seman-
tic lexical chain 没有 . . . 没有. . . méi
yǒu... méi yǒu “not have . . . not have”,
an instance of semantic repetition 挨饿
. . . 挨饿 āi è . . . āi è “starve . . . starv-
ing”, and a semantic antonym 吃饱 . . .
挨饿 chı̄ bǎo . . . āi è “full/eat enough . . .
starving”. These function quite similarly
to the equivalent examples from our En-
glish data, though the inventory and dis-
tribution of different signal types leaves
much to study.

On top of these signals on primary
relations, we also note the secondary
edge between EDUs 93 and 94, which
occurs in circumstances similar to Eng-
lish environments with multiple DMs, in
this case, where an orphan 也 yě “also”
marks a secondary list relation.
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