Improving Vietnamese-English Medical Machine Translation

Nhu Vo, Dat Quoc Nguyen, Dung D. Le, Massimo Piccardi, Wray Buntine


Abstract
Machine translation for Vietnamese-English in the medical domain is still an under-explored research area. In this paper, we introduce MedEV—a high-quality Vietnamese-English parallel dataset constructed specifically for the medical domain, comprising approximately 360K sentence pairs. We conduct extensive experiments comparing Google Translate, ChatGPT (gpt-3.5-turbo), state-of-the-art Vietnamese-English neural machine translation models and pre-trained bilingual/multilingual sequence-to-sequence models on our new MedEV dataset. Experimental results show that the best performance is achieved by fine-tuning “vinai-translate” for each translation direction. We publicly release our dataset to promote further research.
Anthology ID:
2024.lrec-main.784
Volume:
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Month:
May
Year:
2024
Address:
Torino, Italia
Editors:
Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
Venues:
LREC | COLING
SIG:
Publisher:
ELRA and ICCL
Note:
Pages:
8955–8962
Language:
URL:
https://aclanthology.org/2024.lrec-main.784
DOI:
Bibkey:
Cite (ACL):
Nhu Vo, Dat Quoc Nguyen, Dung D. Le, Massimo Piccardi, and Wray Buntine. 2024. Improving Vietnamese-English Medical Machine Translation. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 8955–8962, Torino, Italia. ELRA and ICCL.
Cite (Informal):
Improving Vietnamese-English Medical Machine Translation (Vo et al., LREC-COLING 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/nschneid-patch-2/2024.lrec-main.784.pdf