A Generative Model for Lambek Categorial Sequents

Jinman Zhao, Gerald Penn


Abstract
In this work, we introduce a generative model, PLC+, for generating Lambek Categorial Grammar(LCG) sequents. We also introduce a simple method to numerically estimate the model’s parameters from an annotated corpus. Then we compare our model with probabilistic context-free grammars (PCFGs) and show that PLC+ simultaneously assigns a higher probability to a common corpus, and has greater coverage.
Anthology ID:
2024.lrec-main.50
Volume:
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Month:
May
Year:
2024
Address:
Torino, Italia
Editors:
Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
Venues:
LREC | COLING
SIG:
Publisher:
ELRA and ICCL
Note:
Pages:
584–593
Language:
URL:
https://aclanthology.org/2024.lrec-main.50
DOI:
Bibkey:
Cite (ACL):
Jinman Zhao and Gerald Penn. 2024. A Generative Model for Lambek Categorial Sequents. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 584–593, Torino, Italia. ELRA and ICCL.
Cite (Informal):
A Generative Model for Lambek Categorial Sequents (Zhao & Penn, LREC-COLING 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/nschneid-patch-2/2024.lrec-main.50.pdf