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Abstract
Fine-tuning Pre-trained Language Models (PLMs) is a popular Natural Language Processing (NLP) paradigm for
addressing Named Entity Recognition (NER) tasks. However, neural network models often demonstrate poor
generalization capabilities due to significant disparities between the knowledge learned by PLMs and the distribution
of the target dataset, as well as data scarcity issues. In addition, token omission in predictions due to insufficient
learning remains a challenge in NER. In this paper, we propose a kNN retrieval enhancement algorithm (WkNER) that
incorporates word segmentation information to enhance the model’s generalization ability and alleviate the problem
of missing entity tokens in prediction. The introduction of word segmentation information is used to preliminarily
determine the boundaries of entities and alleviate the common prediction errors of missing tokens within entities
made by the fine-tuned model. Secondly, we find that non-entities in the retrieval table contain a large amount of
redundant information, and explore the effects of introducing non-entity information of different scales on the model.
Experimental results show that our proposed method significantly improves the performance of baseline models, and
achieves better or compared recognition accuracy than previous state-of-the-art models in multiple public Chinese
and English datasets. Especially in low-resource scenarios, our method achieves higher accuracy on 20% of the
dataset than the original method on the full dataset.

Keywords: Named Entity Recognition, Knowledge Enhancement, Low-resource Scenarios

1. Introduction

Named Entity Recognition (NER) aims to identify
and locate entities in text, and is one of the hot
research tasks in Natural Language Processing
(NLP). NER can be used to handle structured and
unstructured data, and is an important foundational
tool for many advanced semantic analysis tasks,
such as Relation Extraction, Knowledge Graphs,
and more. NER requires detecting the span and
category of the entity from the text block, and only
when the detected boundaries and categories are
consistent with the label can the entity be consid-
ered correctly identified.

Most existing works formalize the NER task as
a sequence labeling problem (Knight et al., 2016;
Tang et al., 2018; Straková et al., 2019a), where
each token is assigned a specific label to indicate
its belonging to a certain entity category (such as
person names, locations, organization names, etc.).
However, due to the presence of boundary words
like articles or labeling errors, the boundaries of
entities can be ambiguous, making the judgment of
boundaries prone to confusion in sequence label-
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Figure 1: Two types of common errors in entity pre-
diction in sequence labeling models are illustrated.
(a) represents inaccurate entity type recognition,
and (b) represents inaccurate boundary delineation
of entities.

ing methods. Additionally, in the training scenarios
of low-resource or long-tail datasets, it is common
for the model to have insufficient learning for certain
entity categories, which easily leads to the model’s
missing predictions for tokens in that category. As
shown in Figure 1, (a) represents a case where one



17652

entity is mistakenly identified as two different en-
tity types; (b) demonstrates inaccurate recognition
of entity boundaries, where tokens that should be
recognized as ‘I-ORG’ are wrongly identified as ‘O’,
resulting in missing token predictions. Therefore,
some works suggest that incorrect boundaries are
the main reason of entity recognition errors (Wang
et al., 2019; Eberts and Ulges, 2020).

Conditional Random Fields (CRF) (Collobert
et al., 2011) is a probabilistic graphical model used
for sequence labeling and structured prediction,
often used to enforce label transitions. CRF im-
proves the modeling and prediction capabilities of
structured data by considering the contextual rela-
tionships in the input data and label dependencies.
Typically, constraint rules of CRF are set, such as:
assuming that if a token is predicted as ‘B-ORG’
type, then the next token is likely to be ‘I-ORG’, and
the first token of an entity cannot start with ‘I-’, etc.,
to enhance the accuracy of the model. Although
the two error scenarios in Figure 1 satisfy the label
dependency of the CRF mentioned above, they do
not conform to the true labels. We believe this is
due to the model having too little exposure to such
entity samples during the learning phase, and the
training of the CRF introduces more training param-
eters, resulting in poor generalization of the model
towards the boundaries of entities. This paper pro-
poses an initial segmentation of the input sentence
to obtain word segmentation information that can
effectively constrain entity boundaries and solve
these two common issues.

In addition, when facing long-tailed datasets or
limited samples, the performance of sequence la-
beling models is often unsatisfactory and prone
to overfitting (Wang et al., 2022; Das et al., 2022).
Existing research has found that kNN can achieve
excellent unconditional language modeling during
the inference stage (Khandelwal et al., 2020; He
and Choi, 2021). According to the definition given
by Hastie et al. (2009), kNN is a lazy learner, which
can avoid overfitting of parameters and effectively
smooth the influence of isolated noisy training data
(Boiman et al., 2008). The kNN-NER (Wang et al.,
2022) mitigates the long-tail problem to some ex-
tent by introducing kNN retrieval enhancement,
but requires a large amount of computational re-
sources during the retrieval process due to the use
of both entity and non-entity information. In fact, in
a dataset, the non-entity information accounts for a
significant proportion, while the entity information
in a dataset is very sparse. Therefore, introduc-
ing excessive non-entity information does not bring
gain, but rather affects the enhancement effect of
the basic model to a certain extent. Secondly, kNN-
NER does not make full use of prior knowledge in
the dataset and fails to solve the problem of entity
boundary ambiguity shown in Figure 1.

In this paper, we propose WkNER to address
the issues mentioned above, which combines word
segmentation information with the kNN retrieval
enhancement algorithm to provide a label proba-
bility distribution containing entity word segmen-
tation boundary information for the basic model.
We use existing word segmentation tools to extract
entity word segmentation information, which can
help the fine-tuned model initially determine the
boundaries of entities, thus mitigating the common
issue of missing token predictions for entities in
the basic model. Additionally, regarding the issue
of significant resource consumption caused by the
introduction of all non-entities, we believe that non-
entity information should be appropriately pruned to
reduce the interference of redundant non-entity in-
formation. Our method can offer more efficient data
distribution information to the basic model, allowing
it to achieve equivalent results without training on
the complete dataset, which further enhances the
model’s performance in low-resource scenarios. To
validate the superiority of our WkNER, we conduct
a series of experiments on widely used baseline
models and datasets, and the experimental results
demonstrate that our method achieves optimal per-
formance on multiple quantitative indicators.

In summary, our contributions are as follows:

• We propose WkNER, which introduces word
segmentation information during the inference
phase, providing the model with entity bound-
ary information, enhancing the basic model’s
ability to predict entity boundaries, and im-
proving generalization performance under low-
resource scenarios.

• We explore the construction of retrieval tables
using non-entity information of different scales
to effectively utilize entity information in the
dataset. The experiments have shown that
by introducing an appropriate amount of non-
entity information, the performance of retrieval
enhancement algorithms can be significantly
improved, which proves that the presence of
excessive non-entity information in the dataset
is redundant.

• Our method significantly improves the perfor-
mance of the baseline model on widely used
Chinese and English datasets, achieving state-
of-the-art results on the Chinese OntoNotes
4.0 and MSRA datasets. Importantly, our al-
gorithm can enhance the performance of the
model trained on a 20% training set to the
level equivalent to the model trained on the
complete dataset.
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2. Related Work

2.1. Named Entity Recognition
Research on NER tasks in the field of NLP has a
long history and is a fundamental task in informa-
tion extraction. The tasks in this field are mainly
divided into flat NER tasks and nested NER tasks,
which are usually solved by three types of methods:
token-based methods, span-based methods, and
generation-based methods. The token-based ap-
proaches typically assign a maximum confidence la-
bel to each token. Hammerton (2003) were the first
to use a sequence tagging model for NER tasks, in
which they attempted to use a unidirectional Long
Short-Term Memory Network (LSTM) to solve the
task. Collobert et al. (2011) introduced CRF into
neural network-based sequence tagging models,
enabling explicit encoding of the transition possi-
bilities between adjacent labels. The use of PLMs
(e.g., ELMo (Peters et al., 2018), BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019))) for fea-
ture extraction has been widely accepted and has
further improved the performance of NER. Token-
based methods are applicable for flat NER tasks.
For nested NER tasks, existing works suggest us-
ing span-based and generation-based methods as
solutions. For the span-based methods, Li et al.
(2020b) transformed NER tasks into a Machine
Reading Comprehension (MRC) problem, which
provides a unified solution for both nested NER
and flat NER tasks, achieving good results. Zheng
et al. (2019) and Shen et al. (2021b) proposed span
classification with boundary detection and bound-
ary regression strategies, respectively, to address
nested NER tasks. Generation-based methods
(Yan et al., 2021; Lu et al., 2022; Zhang et al., 2022)
are also commonly used to tackle both flat NER
and nested NER tasks, by generating text contain-
ing recognized entities and label sequences as the
detection results. However, the exhaustive search
in span-based methods (Li et al., 2020b) and the
generation processing in generation-based meth-
ods (Yan et al., 2021; Lu et al., 2022; Zhang et al.,
2022) require a large amount of sample resources
and have significant time consumption during the in-
ference stage. Therefore, in this article, we mainly
focus on flat NER tasks in low-resource scenarios,
leaving nested NER tasks for our future work.

2.2. External Knowledge Enhancement
Neural network models often face issues such as
data scarcity and poor feature extraction during the
training process, which can result in decreased gen-
eralization performance when encountering rare
entities. To enhance the model’s generalization
performance in low-resource scenarios, incorporat-
ing external information through retrieval or fusion

can provide valuable prior knowledge. Sun et al.
(2021) introduced the visual and phonetic informa-
tion of text into PLMs, integrating these details in the
word embedding stage. This approach effectively
addresses ambiguity and enriches the represen-
tation of word embeddings. On the other hand,
Rei (2017) added lexical feature information to the
NER task model and improved the handling of entity
boundaries, resulting in a significant improvement
in model performance. Character-level represen-
tations of lexical features are commonly used for
English tasks (Huang et al., 2015; Knight et al.,
2016), while lexical information is helpful in the Chi-
nese NER domain (Ma et al., 2020; Li et al., 2020a).
Previous research has also employed other exter-
nal sources of information as features to formulate
hybrid representations, such as morphological fea-
tures (Xu et al., 2019) and toponyms of named
entities (Gu et al., 2018). Moreover, leveraging the
distributional information of training data through
retrieval has become a popular approach in recent
years. Wang et al. (2022) and Khandelwal et al.
(2020) enhanced the performance of models in low-
resource scenarios by utilizing the distributional in-
formation of training data. They combined kNN with
sequence labeling models and used the probability
distribution obtained from kNN retrieval to enhance
the performance of the fine-tuned model.

3. Methodology

In this section, we provide detailed descriptions of
the backbone and our proposed algorithm. In sec-
tion 3.1, we introduce the basic model architecture,
which is utilized as a text feature extractor in our
algorithm. In section 3.2, we describe the overall
process of our algorithm, including the construction
of the retrieval sets, the introduction of word seg-
mentation information in the inference stage, and
the retrieval enhancement of the fine-tuned model.

3.1. Fine-tuning Language Model
We treat NER as a sequence labeling task,
use a fine-tuned model to convert tokens into
high-dimensional vectors, and then obtain the
probability distribution of tokens on the labels
through a Softmax layer. The process can
be formalized as follows: for an input sen-
tence x= {x1, x2, · · · , xN−1, xN} with a length
of N , where xi (1 ≤ i ≤ N) represents the i-
th token in the sentence. Therefore, all the
tokens in the training set can be defined as
X=

{
xk
i |1 ≤ k ≤ K, 1 ≤ i ≤ Nk

}
, where xk

i repre-
sents the i-th token in the k-th training sample. K
is the number of samples in the training set, and Nk

is the length of the k-th sample. To classify each
token in the input sentence into M labels, the M
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Figure 2: Illustration of the overall process of WkNER. The part of Feature Representation describes the
extraction of text feature vectors and word segmentation information by the fine-tuned model. The part of
k-Nearest Neighbor Retrieval describes the retrieval enhancement using kNN to obtain the probability
distribution of PkNN . The right part describes the enhancement of the probability distribution PM of the
fine-tuned model using probability distributions PkNN and PW . PW is obtained by combining PkNN with
word segmentation information to assign a word segmentation probability distribution PW for each token
in the word segmentation boundary.

labels can be represented as Y= {yj |1 ≤ j ≤ M},
where yj represents the j-th category. The task
of sequence labeling is to assign a category yj to
each token xi in x, which is a multi-classification
task for each token xi. We use PLMs (such as
BERT (Devlin et al., 2019) and RoBERTa (Liu et al.,
2019)) as an encoder to extract features hi from the
i-th token xi in the sentence, where hi ∈ RD and
D represents the dimension of the vector space,
then hi can be represented as follows:

hi = f(xi,x) (1)

where f(·, ·) is the fine-tuned PLM; hi is the feature
vector of token xi in the context x, and the acqui-
sition of the query vector in the subsequent kNN
algorithm also follows the above equation.

Therefore, the fine-tuned model predicts the prob-
ability distribution of token xi on each label as fol-
lows:

PM (yj |xi,x) = Softmax(MLP (hi)) (2)

where xi is the token in the input sentence x, and
MLP refers to the multi-layer perceptron connected
after the PLMs.

3.2. WkNER
The overall process of WkNER is shown in Figure 2.
To articulate the algorithmic idea introduced by the
word segmentation information more clearly, we

first introduce the construction of the kNN retrieval
table in section 3.2.1. Then, section 3.2.2 describes
the extraction of word boundary information and the
computation process of the probability distribution
PW of word segmentation information. Finally, sec-
tion 3.2.3 presents how to enhance the fine-tuned
model using the distribution of word segmentation
information PW and the data augmentation distri-
bution PkNN .

3.2.1. Building Retrieval Table

The retrieval table stores data in the form of key-
value pairs (ki, vi). Here, the key ki refers to the
token vector hi of each token in the training dataset,
and the corresponding value vi represents the en-
tity type yj of that token. The retrieval table can be
represented mathematically as follows:

D = (K,V )

= {(f(xi,x), yj)|xi ∈ X, yj ∈ Y }
(3)

where f(xi,x) is equivalent to hi in Formula 1.

3.2.2. Enhancing with Word Segmentation
Information

To extract word segmentation information,
we use the existing word segmentation tool
Hanlp (He and Choi, 2021) to segment the
input sentence x= {x1, x2, · · · , xN−1, xN}. After
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segmentation, the sentence can be repre-
sented as x= {w1, w2, · · · , wK−1, wK}, where
wk= {xk,1, xk,2, · · · , xk,S−1, xk,S} (1 ≤ k ≤ K)
represents the k-th chunk in the input sentence
x, consisting of a sequence of S consecutive
tokens from x, which can be a noun phrase or
a combination sequence of numbers, such as
birthday. Detailed segmentation algorithm can be
found in Appendix A.1. By utilizing the probability
distribution obtained from kNN, we initially classify
the tokens within each word segmentation. Thus,
the set of category labels for the tokens in wk can
be represented as Tk:

Tk =
{
argmax

yj

PkNN (yj | xk,i,x)

| 1 ≤ i ≤ Sk

} (4a)

L = g (Tk) (4b)
where Sk is the length of the k-th chunk. The func-
tion g (·) represents obtaining the element with the
highest count in a set. Therefore, L is the most
frequent label in the set Tk. The probability distri-
bution of chunk wk across various labels can be
represented as follows:

PW (yj | wk,x) =

{
1, yj = L
0, yj ̸= L

(5)

where PW (yj | wk,x) is the initial word segmenta-
tion information, indicating the probability distribu-
tion of possible labels for the chunk wk. Further
processing is required to normalize this probabil-
ity distribution and expand it to each token xk,i

within the chunk wk. Mathematically, this can be
expressed as:

PW (yj | xk,i,x) = PW (yj | wk,x) , 1 ≤ i ≤ Sk (6)

where PW (yj | xk,i,x) is the final word segmenta-
tion boundary information for each token in wk.

3.2.3. Retrieval Enhancement for Fine-tuned
Model

During the inference stage of the model, for each
token xi in the input sentence x, the corresponding
token vector f(xi,x) is generated through the fine-
tuned PLM. This vector f(xi,x) is then used to re-
trieve the k elements with the highest similarity from
the retrieval table D. The similarity d (·, ·) in this
context is measured with the L2 norm. To improve
the retrieval speed of the model, we utilize the third-
party search library Faiss1 (Johnson et al., 2021) to
construct a nearest neighbor retrieval table for effi-
cient searching of the TopK similar records. Then,

1For more detailed usage instructions, please refer to
https://github.com/facebookresearch/faiss/wiki/Indexing-
1G-vectors

the similarity between the query vector f(xi,x) and
the retrieval elements is mapped to the probability
distribution of the corresponding labels:

PkNN (yj = val | xi,x) ∝∑
(key,val)∈D

Iyj=valexp

(
−d (f(xi,x), key)

τ

)
(7)

where τ is a hyperparameter used to control the
level of smoothness of the probability distribution.

Integrating word segmentation boundary infor-
mation and kNN retrieval probability distribution in-
formation to adjust the probability distribution of the
fine-tuned model, the final probability distribution
PFinal is gained.

PFinal(yj | xi,x) = λPM (yj | xi,x)+

(1− λ)[PkNN (yj | xi,x) + PW (yj | xi,x)]
(8)

where λ ∈ [0, 1] is a hyperparameter that balances
the enhanced probability distribution with the pre-
dicted distribution of the fine-tuned model.

The specific algorithm workflow is as follows:

Algorithm 1 Enhancement of Word Boundary In-
formation
Input: x= {x1, x2, ..., xN−1, xN}, PkNN (yj | xi,x)

and λ;
Output: PFinal(yj | xi,x);
1: PM (yj | xi,x) = Softmax(MLP (f(xi,x)));
2: Segment the input sentence x into

x= {w1, w2, ..., wK−1, wK} using the word
segmentation tool.

3: for all k = 1, 2, · · · ,K do
4: l = startIndex(wk);
5: r = endIndex(wk);
6: label_count[0 : M + 1] = {0};
7: for all k = l, l + 1, · · · , r − 1, r do
8: y = argmax

yj

PkNN (yj | xk,i,x);

9: Increment label_count[y].
10: end for
11: label = argmax

h
label_count[h];

12: for all j = 1, 2, · · · ,M do
13: if label = yj then
14: PW (yj | wk,x) = 1;
15: else
16: PW (yj | wk,x) = 0;
17: end if
18: for all i = 1, 2, · · · , Sk do
19: PW (yj | xi,x) = PW (yj | wk,x);
20: end for
21: end for
22: end for
23: PFinal(yj | xi,x) = λPM (yj | xi,x)+

(1− λ) [PkNN (yj | xi,x) + PW (yj | xi,x)];
24: return PFinal(yj | xi,x);

https://github.com/facebookresearch/faiss/wiki/Indexing-1G-vectors
https://github.com/facebookresearch/faiss/wiki/Indexing-1G-vectors
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Model CoNLL 2003 Ononotes 5.0
Pr. Re. F1 Pr. Re. F1

Base Model
BERT-Base (Devlin et al., 2019) 91.10 91.02 91.06 85.77 86.30 86.03

+kNN-NER (Wang et al., 2022) 91.50 91.58 91.54 85.89 86.49 86.19
+WkNER (our) 93.08 91.27 92.17 86.09 86.35 86.22

Large Model
BERT-Large (Devlin et al., 2019) 91.89 92.67 92.28 86.47 87.81 87.14

+kNN-NER (Wang et al., 2022) 92.26 92.43 92.40 86.49 88.10 87.29
+WkNER (our) 93.96 92.87 93.41 86.83 87.83 87.33

RoBERTa-Large (Liu et al., 2019) 91.12 91.82 91.47 86.68 87.98 87.32
+kNN-NER (Wang et al., 2022) 91.20 91.85 91.52 86.73 88.29 87.51
+WkNER (our) 93.44 91.87 92.65 87.16 87.98 87.57

Table 1: Comparison on English datasets: OntoNotes 5.0 and CoNLL 2003.

Model OntoNotes 4.0 MSRA Weibo NER
Pr. Re. F1 Pr. Re. F1 Pr. Re. F1.

Base Model
BERT-Base (Devlin et al., 2019) 78.32 82.27 80.25 94.95 94.64 94.79 67.21 69.81 68.48

+kNN-NER (Wang et al., 2022) 80.23 81.60 80.91 95.34 94.64 94.99 68.37 71.01 69.67
+WkNER (our) 81.14 82.81 81.97 95.77 95.32 95.54 71.71 69.81 70.75

RoBERTa-Base (Liu et al., 2019) 78.59 82.39 80.44 95.12 95.10 95.11 67.12 71.01 69.01
+kNN-NER (Wang et al., 2022) 78.67 82.73 80.65 95.61 94.93 95.27 67.97 71.26 69.58
+WkNER (our) 81.74 83.60 82.66 96.19 95.61 95.90 71.22 70.53 70.87

ChineseBERT-Base (Sun et al., 2021) 80.06 83.33 81.66 95.31 95.46 95.39 69.17 68.84 69.01
+kNN-NER (Wang et al., 2022) 81.43 82.58 82.00 95.73 95.27 95.50 68.97 73.71 71.26
+WkNER (our) 81.54 84.11 82.81 95.97 95.84 95.90 72.11 69.32 70.69

Large Model
RoBERTa-Large (Liu et al., 2019) 80.69 82.56 81.62 95.46 95.53 95.50 69.62 70.29 69.95

+kNN-NER (Wang et al., 2022) 80.60 82.78 81.68 96.16 95.07 95.61 69.63 71.98 70.78
+WkNER (our) 82.46 83.52 82.99 96.64 96.16 96.40 72.48 71.26 71.86

ChineseBERT-Large (Sun et al., 2021) 81.17 83.32 82.23 95.86 95.32 95.59 67.18 73.67 70.28
+kNN-NER (Wang et al., 2022) 80.75 84.98 82.81 95.83 95.68 95.76 68.69 74.64 71.53
+WkNER (our) 83.06 84.57 83.81 96.58 95.67 96.12 70.44 74.10 72.22

Table 2: Comparison on Chinese datasets: OntoNotes 4.0, MSRA, and Weibo NER.

4. Experiments

4.1. Datasets and Metrics
We use multiple publicly available Chinese and
English datasets to evaluate our method. The Chi-
nese datasets include: OntoNotes 4.0 (Pradhan
et al., 2011), MSRA (Levow, 2006), and Chinese
Weibo NER (Peng and Dredze, 2015); and the En-
glish datasets include: CoNLL 2003 (Sang and
Meulder, 2003) and OntoNotes 5.0 (Pradhan et al.,
2013). The above-mentioned datasets are all for
the flat NER tasks, and our evaluation criteria are
based on entity-level Precision, Recall, and micro
F1-score. The detailed information of the dataset
can be found in Appendix A.2.

4.2. Backbone Models
In order to evaluate whether the gain effect of
WkNER is effective on different backbone mod-
els. Similar to Wang et al. (2022), on the English
dataset, we use the base (768 hidden size, 12 lay-
ers) and large (1024 hidden size, 24 layers) size

of BERT (Devlin et al., 2019), and the large size
of RoBERTa (Liu et al., 2019). On the Chinese
dataset, we use the base size of BERT, the base
and large size of RoBERTa, and ChineseBERT
(Sun et al., 2021). ChineseBERT is an improved
model that integrates phonetic and character in-
formation, enhancing the model’s ability to model
Chinese language corpus better. The settings of
the hyperparameters involved in the experiment
can be found in Appendix A.3

4.3. Results and Analysis

4.3.1. Comparison on the Complete Datasets

Tables 1 and 2 present the experimental results on
the complete Chinese dataset and English dataset
respectively. On each dataset, we compare the per-
formance of our algorithm with the kNN-NER and
the baseline models on different PLMs. Specifically,
on the Chinese OntoNotes 4.0 dataset, based on
the RoBERTa PLM, our algorithm achieves a sig-
nificant improvement of +2.22% in F1-score com-
pared to the baseline model, and a notable im-
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Figure 3: Experimental results under low-resource settings on the Chinese OntoNotes 4.0 and English
CoNLL 2003 datasets.

Model CoNLL 2003
Pr. Re. F1

Devlin et al. (2019) – – 92.80
Li et al. (2020b) 92.33 94.61 93.04
Yu et al. (2020) 93.70 93.30 93.50

Shen et al. (2021a) 92.13 93.73 92.94
Zhu and Li (2022) 93.61 93.68 93.65
Shen et al. (2023) 92.96 93.18 93.08

WkNERBERT 93.96 92.87 93.41

Model OntoNotes 4.0
Pr. Re. F1

Ma et al. (2020) 83.41 82.21 82.81
Li et al. (2020b) 82.98 81.25 82.11

Chen and Kong (2021) 79.25 80.66 79.95
Zhu and Li (2022) 81.65 84.03 82.83

WkNERChineseBERT 83.06 84.57 83.81

Model MSRA
Pr. Re. F1

Ma et al. (2020) 95.75 95.10 95.42
Li et al. (2020b) 96.18 95.12 95.75
Wu et al. (2021) – – 96.24

Zhu and Li (2022) 96.37 96.15 96.26
WkNERRoBERTa 96.64 96.16 96.40

Model Weibo NER
Pr. Re. F1

Ma et al. (2020) – – 70.50
Li et al. (2020b) – – 68.55

Shen et al. (2021a) 70.11 68.12 69.16
Chen and Kong (2021) – – 70.14

Wu et al. (2021) – – 70.43
Zhu and Li (2022) 70.16 75.36 72.66

WkNERChineseBERT 70.44 74.10 72.22

Table 3: Results of Named Entity Recognition on
Chinese and English datasets.

provement of +2.01% compared to the kNN-NER.
Table 3 shows the comparison results between our
method and the previous state-of-the-art methods.

It is worth noting that on the Chinese OntoNotes
4.0 and MSRA datasets, compared to the previous
state-of-the-art methods, our algorithm achieves
F1-score improvements of +0.98% and +0.14%,
respectively.

From Tables 1 and 2, it can be seen that introduc-
ing segmentation information during the retrieval
process has a much better enhancement effect
on the baseline models than that of the kNN-NER,
proving the effectiveness of our proposed method
in improving model performance. This is because
the extracted word segmentation information pro-
vides the baseline models with more prior knowl-
edge and allows the models to better correct entity
boundaries, thereby addressing the issue of miss-
ing entity tokens in predictions. In addition, we find
that the improvement effect of the enhancement al-
gorithm on the baseline model is not very obvious in
the Chinese MSRA and the English OntoNotes 5.0
datasets. This is because the information on vari-
ous entity types in the Chinese MSRA and English
OntoNotes 5.0 datasets is abundant and balanced,
allowing the fine-tuned model to learn various entity
information well during the training process. In this
case, the model itself has a strong generalization
ability for entity boundary prediction, so it does not
rely heavily on the prior knowledge of the enhanced
model. However, in other datasets with less train-
ing data, due to the extremely imbalanced entity
types and overall smaller dataset scale, the model
is prone to overfitting and other issues, resulting
in poor prediction of entity boundaries. Therefore,
the enhancement algorithm needs to provide more
prior knowledge to improve performance, which is
also the reason why our algorithm performs well
on these datasets. This proves that our algorithm
not only improves the performance of the baseline
model on general datasets but also performs better
in low-resource scenarios.
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Figure 4: Ablation studies of non-entity information at different scales. The effect of utilizing non-entity
information of different scales on kNN-NER. The experimental parameter is set as k=128 and evaluated
under three different random seeds, with the average taken as the result.

4.3.2. Comparison under Low-resource
Scenarios

Figure 3 demonstrates the performance of our al-
gorithm, kNN-NER, and the baseline model on
training sets of different scales. On the Chinese
OntoNotes 4.0 dataset, our algorithm achieves a
performance improvement of +4.77% on the base-
line model by fine-tuning the BERT PLM with only
5% of the data, which is a +2.77% higher improve-
ment compared to kNN-NER. Moreover, our algo-
rithm surpasses the performance of the model fine-
tuned on the full dataset when only 20% of the
data is used. On datasets of other scales, the
enhancement effect of our algorithm outperforms
kNN-NER’s enhancement effect on the baseline
models. This demonstrates the significance of the
word segmentation information extracted by our al-
gorithm as a crucial form of prior knowledge, greatly
improving the fine-tuned model’s generalization per-
formance. It also reflects that models fine-tuned
on low-resource datasets are prone to errors in
missing entity tokens during the entity prediction
process, as shown in Figure 1. This issue is caused
by the sparsity of entities in the data, as the lack of
data hinders the model from effectively learning the
distribution of different entity categories. Therefore,
it is necessary to introduce word segmentation in-
formation into the fine-tuned model through the en-
hancement algorithm to improve its performance.

4.4. Ablation Study
We perform ablation studies on the Chinese
OntoNotes 4.0, Weibo NER and English CoNLL
2003 datasets to separately analyze the effects
of introducing word segmentation information in
WkNER and using non-entity information of differ-
ent scales within WkNER.

4.4.1. Word Segmentation Information

In this section, we investigate the effect of adding
word segmentation information to kNN-NER. From
Table 4, we can observe that with the introduction
of complete non-entity information in WkNER, the
algorithm achieves a certain performance improve-
ment on both the Chinese and English datasets
used. Significant enhancements can be observed.
This proves that the introduced word segmenta-
tion information can enhance the model’s ability to
predict entity boundaries.

Model Weibo NER OntoNotes 4.0 CoNLL 2003
BERT-Base 68.48 80.25 91.06

+kNN 69.67 80.91 91.54
+WkNER (CN) 70.33 81.80 91.93

RoBERTa-Base 69.01 80.44 –
+kNN 69.58 80.65 –
+WkNER (CN) 69.95 82.47 –

RoBERTa-Large 69.95 81.62 91.47
+kNN 70.78 81.68 91.52
+WkNER (CN) 71.53 82.64 92.44

Table 4: Ablation studies of word segmentation
information. F1-scores are reported. kNN means
kNN-NER (Wang et al., 2022) with hyperparameter
setting of k=256. CN means the use of complete
non-entity construction retrieval tables by WkNER.

4.4.2. Impact of Non-entity Information at
Different Scales

We further investigated the impact of using different
proportions of non-entity information to construct
retrieval tables on the enhancement effect of the
model. From Figure 4, we can observe that at 80%
and below, the kNN-NER algorithm often achieves
equal or better model enhancement effects, ex-
cessive introduction of non-entity information will
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instead reduce the algorithm’s enhancement ef-
fect. In addition, from Table 5, it can be observed
that the number of non-entity category tokens in
each dataset is far greater than the number of en-
tity category tokens. This indicates that there is a
large amount of redundant information in the non-
entity category information, and the existence of
this redundant information will interfere with the
performance of the enhanced model. Therefore,
appropriately pruning the scale of non-entity infor-
mation when constructing retrieval tables, and in-
creasing the proportion of entity information in the
retrieval table, can not only better improve model
performance but also reduce spatial complexity.

Dataset Entity Non-entity Total
Chinese

OntoNotes 4.0 41203 481910 523113
MSRA 227630 1811065 2038695
Weibo NER 4951 71527 76478

English
CoNLL 2003 58415 232385 290800
OntoNotes 5.0 329046 2426430 2755476

Table 5: The distribution of entity and non-entity
information in the complete Chinese and English
datasets.

5. Conclusion

In this study, we propose WkNER which combines
word segmentation information to improve the per-
formance of the fine-tuned model. We experiment
with the original kNN-NER framework and our pro-
posed algorithm on several publicly available Chi-
nese and English datasets, and our algorithm can
achieve comparable or even better performance
than previous state-of-the-art models. Moreover,
in low-resource scenarios, our algorithm trained
on only 20% of the dataset outperforms models
trained on the complete dataset. We also explore
the influence of using retrieval tables constructed
from different scales of non-entity information on
enhancing model performance. Experiments show
that compared to using complete non-entity infor-
mation, WkNER improves the performance of fine-
tuned models more when using appropriate scale
non-entity information of 80% or less. It can be
seen that the addition of word segmentation infor-
mation can significantly enhance the effectiveness
of the baseline model.

6. Limitations

We discuss here the limitations of proposed
WkNER. Firstly, as mentioned in the paper, al-
though WkNER performs well on flat NER tasks,

it cannot recognize nested and discontinuous en-
tities. This is because each chunk obtained from
our word segmentation operation is a continuous
token sequence. Secondly, in the construction of
the retrieval table phase, how to selectively trim
non-entity information is also an important research
challenge. The proportion of non-entity information
in the retrieval table can to some extent affect the
gain effect of WkNER. Future research can focus
on optimizing the construction of retrieval tables
to minimize resource consumption. Also, one can
consider using a multi-granularity word segmen-
tation method to improve our method and explore
solutions for nested NER tasks.
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A. Appendix

A.1. Segmentation Algorithm
Hanlp (He and Choi, 2021) can be directly used for
Chinese data. For English data, it is necessary to
first utilize the part-of-speech (POS) tagging func-
tion of Hanlp, and then customize a POS combi-
nation for each token to merge those tokens that
can form entities into a single chunk. For example,
neighboring words of a noun lexeme usually be-
long to the same entity, etc. The specific algorithm
implementation is as follows:

Algorithm 2 Segmetation Algorithm
Input: Input sentence x= {x1, x2, ..., xN−1, xN};
Output: Output the segmented index widx;
1: pos = Hanlp.POS(x);
2: i = 0;
3: widx = ∅;
4: e = {“PROPN ", “NOUN ", “NUM ", “ADJ"}
5: while i < len(x) do
6: if pos[i] ̸∈ e then
7: i = i+ 1;
8: continue;
9: end if

10: j = i;
11: while True do
12: j = j + 1;
13: if j >= len(pos) or (pos[j] ̸∈

e − {“ADJ"} and (pos[j] ̸=
“PUNCT " or x[j] ̸= ‘ − ’)) then

14: widx = widx ∪ {[i, j − 1]};
15: break;
16: end if
17: end while
18: i = j;
19: end while
20: return widx;

A.2. Datasets
Chinese OntoNotes 4.0 OntoNotes 4.0 (Prad-
han et al., 2011) is a Chinese dataset, covering
a variety of domain-specific language resources,
including entity types: person, organization,
location, etc.

Chinese MSRA MSRA (Levow, 2006) is a
Chinese dataset collected from news domain texts.
It contains three types of named entities and is
used as shared task on SIGNAN backoff 2006.

Chinese Weibo NER Weibo NER (Peng
and Dredze, 2015) is a Chinese dataset drawn
from the social media website Sina Weibo and
includes four types of named entities.

English CoNLL 2003 CoNLL 2003 (Sang
and Meulder, 2003) is a English dataset used for
named entity recognition tasks, with four named
entity categories: person, organization, location,
and others.

English OntoNotes 5.0 OntoNotes 5.0 (Pradhan
et al., 2013) is a widely used English dataset in
various fields, containing text data from different
domains such as news reports, blog articles, social
media posts, etc., which can be used to evaluate
named entity recognition task models. It contains
18 types of named entities.

A.3. Hyperparameters
There are several hyperparameters involved
in the experiment, that is, k, λ, τ , lr and
warmup_proportion. Among them, k represents
the top k labels with the highest similarity to the to-
ken vectors in the kNN-NER and WkNER. And the
method we utilize to select k is same as the experi-
ment in Wang et al. (2022), so we based on their
experimental results to directly choose parameters
from the set {128, 256, 512} for experimentation. λ
is hunted in [0, 1], indicating the influence degree of
the model distribution with respect to the partition
distribution and the kNN retrieval distribution in the
final probability distribution. τ is a hyperparameter
used to control the smoothness of the probabil-
ity distribution, and we search for it between (0, 1].
The learning rate lr is usually chosen in {1e-5, 2e-5,
3e-5, 4e-5, 5e-5}, and warmup_proportion is cho-
sen in the parameter set {1e-1, 1e-2, 1e-3}. The
random seed in the experiment is selected from
{42, 1204, 1660}.
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