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Abstract
We investigate the behavior of methods that use linear projections to remove information about a concept from a
language representation, and we consider the question of what happens to a dataset transformed by such a method.
A theoretical analysis and experiments on real-world and synthetic data show that these methods inject strong
statistical dependencies into the transformed datasets. After applying such a method, the representation space
is highly structured: in the transformed space, an instance tends to be located near instances of the opposite la-
bel. As a consequence, the original labeling can in some cases be reconstructed by applying an anti-clustering method.
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1. Introduction

While most research in representation learning for
NLP focuses on what information is encoded in a
representation, in several scenarios it is important
to be able to control what is not encoded. Most of
the discussion in the NLP community has focused
on demographic attributes (Bolukbasi et al., 2016).
Another area of application is in domain adapta-
tion: intuitively, if representations are uninformative
about which domain a data point was sampled from,
learned predictors based on those representations
should generalize more robustly across domains
(Ganin and Lempitsky, 2015).

A wide range of methods have been developed
to learn a transformation of representations to try to
enforce invariance with respect to a given concept
while training machine learning models. While early
approaches were mainly based on adversarial train-
ing (Ganin and Lempitsky, 2015), a number of re-
cent methods have used linear projections for con-
cept removal. For instance, the Iterative Nullspace
Projection (INLP) method (Ravfogel et al., 2020)
projects into a nullspace orthogonal to a set of
linear models trained to predict the concept we
wish to remove. Compared to adversarial meth-
ods, projection-based methods are mathematically
more stable, more efficient, easier to implement,
and have performed better in comparative evalua-
tions.

We focus here on the use case where we want
to transform the representations in a given dataset
to make a given concept impossible to recover. For
instance, for a given set of word embeddings, we
may want to create a transformed set where the
gender variable is impossible to predict, and then
distribute this transformed set to the public. Other
application areas include those where we want to

carry out a statistical analysis on a dataset and
ensure that some concept does not influence the
analysis; for instance, Daoud et al. (2022) discuss
the challenges to text-based causal inference meth-
ods caused by treatment leakage, that is when
texts are contaminated by the treatment variable.
Naively, a user could think that the direct application
of projection-based concept removal would lead to
a processed dataset resembling one sampled from
a distribution where the concept is statistically inde-
pendent of the representations: projection-based
methods are claimed to “remove the linear informa-
tion” about the undesired concept. To what extent
is it actually true that the information about the con-
cept is removed from the dataset?

In this paper, we investigate properties of
datasets where a projection-based concept re-
moval method has been applied to a dataset as a
whole. The main takeaway is that the transformed
representation space is highly structured: the as-
sumption of independent and identically distributed
(i.i.d.) instances does not hold after applying the
method. Instead of resulting in statistical indepen-
dence between the representation and the concept,
we show that the concept is reflected in dependen-
cies between rows (instances) in the transformed
datasets. This injected row-wise dependence is
present even in cases where there was no statisti-
cal dependence between the representations and
the concept in the first place. We discuss the tech-
nical reasons for why this is the case, and then
carry out a series of experiments to investigate the
consequences of this observation. Our findings
include the following:

• Cross-validation accuracies for predicting the
removed concept in transformed datasets are
lower than chance.

• The distribution of prediction probabilities for
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cross-validated classifiers trained on projected
representations are significantly different from
those trained on i.i.d. data.

• In the transformed dataset, instances tend to
be near those of the opposite category.

• The original labels can sometimes be decoded
from the transformed dataset by applying anti-
clustering methods.

We finally discuss the implications of these findings
for practitioners using projection-based concept
removal methods to process datasets.

2. Concept Removal Methods

Most early work on methods that remove a concept
was based on adversarial methods originally devel-
oped for learning domain-invariant representations
(Ganin and Lempitsky, 2015). Adversarial meth-
ods have, among other use cases, been applied
for the removal of demographic attributes (Raff and
Sylvester, 2018; Li et al., 2018; Barrett et al., 2019).

Adversarial training is often unstable in practice
and can be difficult to train because of the minimax
objective. A mathematically more straightforward
approach is to use a linear projection, originally
introduced by Xu et al. (2017). Although recent
progress in NLP highlights the importance of repre-
sentations computed using nonlinear functions, it
seems that in practice linear projections work well
for concept removal even when nonlinear predic-
tors are used. Ravfogel et al. (2020) proposed the
Iterative Nullspace Projection (INLP) method that
is one of the methods we consider in this paper.
INLP iteratively trains a linear classifier to predict
the concept, and then projects into the subspace
orthogonal to the normal vector of the classifier’s
separating hyperplane.

More recently, a range of methods intended to
improve over INLP have been developed. Ravfogel
et al. (2022) unified the projection-based and adver-
sarial families, and presented a method called R-
LACE that finds a projection adversarially. Belrose
et al. (2023) presented a theoretical formalization of
conditions for linear guardedness and an approach
to finding optimal projections. Haghighatkhah et al.
(2022) described two variants of mean projection
(MP), where the difference vector between the class
centroids defines the projection, and they argued
that this method is more effective and less intrusive
than INLP.

3. Theoretical Analysis

We investigate the structure of datasets where
projection-based concept removal methods have
been applied, and we are interested in how such
datasets differ from a normal dataset where the

representation X is statistically independent of the
concept Y . In this section, we take an analytical per-
spective and explain theoretically the structured ar-
rangement of data points in the transformed space.
In the next section, we show the results of empir-
ical investigations complementing the theoretical
analysis.

Our main result shows that instances after projec-
tion have an adversarial arrangement where each
instance tends to be located close to those of the
opposite label. For simplicity of analysis, we limit
this analysis to MP (Haghighatkhah et al., 2022),
which is equivalent to applying INLP with a near-
est centroid classifier to find the projection vec-
tor. A full analysis of the general case is beyond
the scope of this work because it depends on the
data-generating distribution as well as the choice
of method used to define the projections.
Theorem. Let X ∈ Rm,n be a feature matrix and
Y ∈ {0, 1}m the class labels. MP is then applied to
X with respect to Y and we refer to the result as
XMP. We carry out a leave-one-out cross-validation
in the transformed dataset where we set a single
instance xi, yi aside and train a nearest-centroid
classifier on the remaining data. In this case, xi

cannot be classified with a positive margin by this
classifier: that is, xi is either misclassified or exactly
on the classifier’s decision boundary.

Proof. In MP, the vector used to define the projec-
tion is equal to the difference between the class
centroids in the original dataset X,Y . This means
that in the projected dataset XMP, the two class
centroids c0 and c1 are identical. For ease of ex-
position, assume that yi = 0 and that the number
of instances in class 0 is n0 > 1. The centroids of
the leave-one-out classifier are c′0 = n0c0−xi

n0−1 and
c′1 = c1. Now, we have one of two cases. If xi is
identical to c0, then c′0 = c0 = c1 so this instance is
exactly on the classifier’s decision boundary. Oth-
erwise, the removal of xi shifts the center of mass
of c′0 in the direction away from xi, so xi is closer to
c′1 than to c′0 and the instance is misclassified.

This shows that the transformed dataset is fun-
damentally different from one where the represen-
tation and the label are statistically independent: if
that were the case, the probability of an instance
being classified correctly should correspond to the
prior probability of its class.

It should be stressed that the first case (that the
instance is exactly on the decision boundary) hap-
pens only in the theoretical case that the instance
coincides exactly with its class centroid. In reality,
the probability of this to occur is small in practice
and we have never observed it experimentally: all
LOO cross-validation accuracies we have seen with
MP have been exactly 0. We imagine that the cor-
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ner case may occur more frequently in datasets
where many instances are identical.

4. Experiments

In the following, we carry out a set of experiments
illustrating the consequences of the observations
described in §3. We focus on INLP here to comple-
ment the theoretical analysis of MP in the previous
section. Tentative experiments indicate that the
tendencies are similar when applying R-LACE, but
we do not investigate this algorithm thoroughly be-
cause it is computationally more demanding.

4.1. Datasets
We carry out the experiments on synthetic and real-
world natural language datasets. The synthetic
data was used for investigating how INLP behaves
when applied to data that does not contain any
signal representing the concept. For the X vari-
ables, we generated instances from a standard
isotropic multivariate Gaussian. The labels Y were
balanced.

For experiments using natural data, we used six
domains from the sentiment classification corpus
collected by Blitzer et al. (2007). This corpus asso-
ciates each document with a positive or negative
polarity label; the label distribution is balanced. We
did not use the domain information. In the experi-
ments, the representations X were tfidf-weighted
bag of words (BoW) and the output of a BERT
model (Devlin et al., 2019) at the [CLS] token. We
considered different values of the number n of in-
stances, and set the number d of features to 210

for random and BoW representations. (The overall
picture is similar with other values of d.) For BERT,
the number of dimensions is 768.

For all datasets, we applied the INLP algorithm.
As described above, the algorithm iteratively trains
a linear classifier, and we used a L2-regularized
logistic regression model for this purpose. We ran
INLP for several iterations and the result after each
iteration will be considered in the experiments.

4.2. Prediction Accuracy
We applied INLP to the datasets and computed 32-
fold cross-validation accuracy scores for predicting
the removed concept. In all experiments, we used
a L2-regularized logistic regression model (C = 1)
applied to the L2-normalized output of the INLP
algorithm. Figure 1 shows the accuracies over the
INLP iterations for the BoW and BERT representa-
tions. We show the results for different sizes n of
the dataset.

Clearly, the behavior of the model is different from
what would have been expected if the instances
were i.i.d. and X independent of Y . Even after just
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Figure 1: Cross-validated accuracy scores for pre-
dicting the removed concept over INLP iterations.
Each curve corresponds to a size n of the dataset.

a few iterations of INLP, accuracies fall far below
the chance level. This tendency is strongest for
the BoW representation, which falls to zero almost
immediately. For BERT, we see the same overall
picture although INLP requires more iterations, in
particular when the dataset grows larger. Presum-
ably, this is because the information represented
by BERT is more difficult to express using a linear
model.

4.3. Predicted Probabilities
To further illustrate the behavior of predictive mod-
els trained on projected representations, we con-
sidered how probabilities predicted by the models
are distributed. Figure 2 shows the distributions
of predicted probabilities for the sentiment dataset.
We show the outputs of a model trained on the
unprocessed BERT representations and on pro-
jected representations (10 iterations of INLP). To
compare with a situation where representations are
independent of the labels, we also include probabil-
ities predicted by a model trained on random labels
independent of the text, and we see a clear differ-
ence between the projected and the independent
settings.

0.0 0.2 0.4 0.6 0.8 1.0

(a) Original.
0.0 0.2 0.4 0.6 0.8 1.0

(b) Projected.
0.0 0.2 0.4 0.6 0.8

(c) Independent.

Figure 2: Distribution of predicted probabilities for
the positive (orange) and negative classes (blue).

4.4. Neighborhood Structure
To investigate the arrangement of instances in the
projected feature space, we carried out an exper-
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iment where we look at how frequently the Eu-
clidean nearest neighbors are of the opposite value
of the target concept. Intuitively, one would expect
that when X and Y are unrelated and the instances
i.i.d., this proportion should be around 0.5, while
it would be expected to be close to 0 if there is a
strong association between X and Y .
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Figure 3: Proportion of instances whose nearest
neighbor is of the opposite label, for different n.

Figure 3 shows these proportions for different
data set sizes n, and the tendency to place in-
stances near those of the opposite label is clearly
visible. This again illustrates the non-i.i.d. distribu-
tion of the projected representations. This tendency
is most pronounced when d ≫ n.

It is important to note that group-based statistical
measures that quantify the strength of association
between X and Y can be misleading because the
effects discussed here are discernible for individual
instances. To illustrate, we computed the MMD
(Gretton et al., 2012) of BERT representations be-
tween the positive and negative groups, and we
saw that the estimates steadily decrease as we ap-
ply INLP iterations, despite the projected dataset
becoming more informative about the labels.

4.5. Recovering the Original Grouping

The theoretical result in §3 and the empirical obser-
vation from §4.4 that instances tend to be located
close to instances of the opposite label gives an
intuition for a procedure that recovers the groups
defined by the original labeling. Intuitively, we can
partition the data points into groups selected so that
each instance is maximally dissimilar to the other in-
stances in the same group. This reverses the logic
of regular clustering models and has been referred
to as anti-clustering (Späth, 1986). For instance,
we can adapt Lloyd’s algorithm for k-means cluster-
ing to the anti-clustering setup, simply by changing
the algorithm to assign an instance to the cluster it
is least similar to.

We applied the anticlust R package (Papen-
berg and Klau, 2021) using two clusters, the di-
versity criterion and 100 repetitions of the search
method by Brusco et al. (2020). The clusters were
then compared to the original labels of the datasets.
Figure 4 shows the cluster purity scores.
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Figure 4: Cluster purity scores comparing the origi-
nal labeling to the anti-clustering result.

We observe that the anti-clustering algorithm ap-
plied to the projected representations often per-
fectly reconstructs the grouping defined by the
concept we wanted to remove, in particular when
d ≫ n. As we have already argued, projection in-
scribes the training labels into the data, and a re-
construction is possible even if the original dataset
was random and unrelated to the training labels.

5. Related Work

This investigation falls into the category of work that
analyzes the behavior of concept removal methods.
Most of the early discussions focused on the pros
and cons of adversarial methods. For instance,
Elazar and Goldberg (2018) claimed that these
methods leak information; their conclusions were
later challenged by Barrett et al. (2019).

The work that is most similar in spirit to ours is
arguably the investigation by Gonen and Goldberg
(2019), which analyzed the geometric structure of
word embedding models processed by gender de-
biasing methods. They argued that debiasing does
not remove the gender information, but only stores
it a less obvious way, and they showed that this
information could be recovered by considering dis-
tances in the processed space.

6. Implications and Conclusion

How much does it matter in practice that instances
in a projected dataset are not i.i.d.? Projection-
based concept removal methods are useful for the
purpose for which they were originally developed:
transforming a dataset to make sure that a ML
model trained on the transformed data does not
rely on the target concept. However, a naive prac-
tictioner may get the misguided impression that
the projection “removes information” about the con-
cept from the dataset itself, when the opposite is
in fact true. Clearly, one needs to be careful if we
want to use projection for the purpose of scrubbing
some signal from a dataset before distributing it.
We should also stress that the effects discussed
here are not problematic in case one can afford to
set aside a subset of the data reserved for the pur-
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pose of training the projection: the case we focus
on assumes that we want to use the whole dataset.

A consequence of the i.i.d violation is that any
statistical analysis requiring strict i.i.d. assumptions
is likely to be invalid if applied to representations
computed by a projection-based method. For in-
stance, text-based causal inference methods (Keith
et al., 2020) involving the text representation and
the removed concept may be affected if projection
is applied: such causal inference methods typically
rely on predicted probabilities or representation sim-
ilarity, which as we have seen in §4.3 and §4.4 are
strongly affected. Daoud et al. (2022) and Gui and
Veitch (2023) highlight the problem for causal in-
ference when the text encodes information about a
variable of interest, and our results suggest that it
could be risky to try to apply projection to remove
this undesired information. Effects on predictions
in cross-validations (§4.2) are visible already in
moderately low-dimensional settings.

7. Limitations

There are a number of ways in which this work
could be put on firmer ground theoretically. In §3,
we limited the theoretical analysis to MP (or equiv-
alently, INLP based on a nearest centroid classi-
fier), and in future work we would like to find a
more general formal justification for why the ad-
versarial arrangement emerges. In the empirical
section, we would also like to take a more general
approach in the future and investigate additional
concept removal methods, such as more recent
projection-based methods as well as adversarial
representation learning methods.

Furthermore, we do not have a clear understand-
ing of the role played by the dimensionality d in
relation to the dataset size n. The experiments
(§4.4 and §4.5) indicate that that such effects play
a role, but this is currently not taken into account in
the theoretical analysis.

8. Ethical Discussion

Whether the behaviors investigated here matter
in practice depend on the application, and as dis-
cussed above, the consequences are likely to be
limited if the only purpose of the processed repre-
sentations is for training a model. In other cases,
in particular when the intention is for the projected
dataset to be distributed, the effects may be more
problematic. For instance, if projection is applied
to a set of word embeddings in order to make them
invariant to a demographic attribute, we may ac-
cidentally encode information about the attribute
into the embedding geometry, so that it can later
be decoded from representations.

Furthermore, the fact that in many cases the orig-
inal groups can be reconstructed from the projected
data (§4.5), even if the original dataset did not
encode any information about the target concept,
shows that projection-based methods should not
be viewed as privacy-preserving (Coavoux et al.,
2018). To be clear, the inventors of the methods
we have considered did not claim that they are in-
tended to ensure privacy,1 but again it is important
for users to understand that projection is not equiv-
alent to information removal in a dataset.
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