
LREC-COLING 2024, pages 14186–14203
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

14186

RoCoIns: Enhancing Robustness of Large Language Models
through Code-Style Instructions

Yuansen Zhang1∗ Xiao Wang1∗† Zhiheng Xi1 Han Xia1

Tao Gui2† Qi Zhang1† Xuanjing Huang31

1 School of Computer Science, Fudan University, Shanghai, China
2 Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China

3 International Human Phenome Institutes, Shanghai, China
zhangys22@m.fudan.edu.cn, {xiao_wang20,tgui,qz}@fudan.edu.cn

Abstract
Large Language Models (LLMs) have showcased remarkable capabilities in following human instructions. However,
recent studies have raised concerns about the robustness of LLMs when prompted with instructions combining
textual adversarial samples. In this paper, drawing inspiration from recent works that LLMs are sensitive to the design
of the instructions, we utilize instructions in code style, which are more structural and less ambiguous, to replace
typically natural language instructions. Through this conversion, we provide LLMs with more precise instructions and
strengthen the robustness of LLMs. Moreover, under few-shot scenarios, we propose a novel method to compose
in-context demonstrations using both clean and adversarial samples (adversarial context method) to further boost the
robustness of the LLMs. Experiments on eight robustness datasets show that our method consistently outperforms
prompting LLMs with natural language instructions. For example, with gpt-3.5-turbo, our method achieves an
improvement of 5.68% in test set accuracy and a reduction of 5.66 points in Attack Success Rate (ASR).

Keywords: Large Language Models, Robustness, Code-style Instructions

1. Introduction

Large language models (LLMs) have shown in-
creasing power in following human instructions
and solving various NLP tasks. (Sanh et al., 2022;
Chung et al., 2022; Ouyang et al., 2022a; Wang
et al., 2023c,b; Xi et al., 2023).

However, recent evaluations in terms of LLMs
have revealed their insufficient robustness when
prompted with instructions containing textual adver-
sarial samples, raising concerns about their real-
world applications (Liu et al., 2023; Wang et al.,
2023a; Ye et al., 2023; Chen et al., 2023). By in-
serting slight perturbations into clean samples at
the character, word, or sentence level (Gao et al.,
2018; Ren et al., 2019a; Li et al., 2019), the outputs
of LLMs occasionally deviate from the expected re-
sults. For example, in Aspect-based sentiment
analysis tasks, when inverting the sentiment po-
larity of the target aspects, the performance of
gpt-3.5-turbo falls by nearly 35% under zero-shot
scenarios (Ye et al., 2023).

In response to textual adversarial attacks, vari-
ous adversarial defense methods have been pro-
posed, such as adversarial training (Jiang et al.,
2020), interval bound propagation (Dvijotham et al.,
2018) and randomized smoothing (Cohen et al.,
2019). However, all these methods require param-
eters update of models, which can be infeasible
when it comes to powerful modern LLMs such as

∗Equal contribution.
† Corresponding Author

GPT-3 (Brown et al., 2020) with only APIs pro-
vided. Consequently, limited research has been
conducted on enhancing the robustness of such
closed source black-box LLMs.

To alleviate this problem, we explore enhancing
the robustness of LLMs through instructions de-
sign. Typically, instructions are formulated using
natural language. However, the inherent ambiguity
of natural language can make LLMs extremely sen-
sitive to instructions, as even slight modifications
to the instructions can result in a significant drop
in performance (Zhao et al., 2021; Holtzman et al.,
2022). Besides, we believe that introducing adver-
sarial samples into the instructions aggravates this
phenomenon and leads to low robustness. There-
fore, it is important to design an instruction format
that overcomes these shortcomings.

In this paper, we introduce a novel approach Ro-
CoIns: Enhancing Robustness of LLMs through
Code-Style Instructions. The overall framework
is shown in Figure 1. We convert the instruction
formats from natural language to code style. The
advantages of code, such as being more structural
and less ambiguous, provide LLMs with clearer
and more concise instructions (Mishra et al., 2023;
Wang et al., 2022b; Li et al., 2023a), which lead to
robustness improvement. Additionally, we propose
the adversarial context method to further boost
the robustness of LLMs. Inspired by (Dai et al.,
2023; von Oswald et al., 2022) that in-context learn-
ing (ICL) can be considered as implicit finetuning,
we hypothesize that by incorporating both clean

14187

LLM

NL Instructions
Are the following two questions equivalent or not?

Concat Concat

Clean Input Adversarial Input

Correct Answer
"equivalent"

Wrong Answer
"not equivalent"

Clean Sample
sentence1:"What are the procedures for •••? ".
sentence2:"What is the procedure of •••? ".

Adversarial Sample
sentence1:"What are the trails for •••? ".
sentence2:"What is the procedure of •••? ".

(a) Prompt LLMs with natural language instructions

LLM

Code Instructions
class semantics_similarity:

def __init__(self, sent1, sent2):
...

def forward(self):
...

Concat Concat

Clean Input Adversarial Input

Correct Answer
"equivalent"

Correct Answer
"equivalent"

Clean Sample
classifier = semantics_similarity (
" What are the procedures for •••? ",
" What is the procedure of •••? ").forward()

Adversarial Sample
classifier = semantics_similarity (
" What are the trails for •••? ",
" What is the procedure of •••? ").forward()

(b) Prompt LLMs with code-style instructions

Figure 1: An illustration of prompting LLMs with
natural language instructions and code-style in-
structions for the semantics consistent judgment
tasks. The input sample contains a sentence pair.
We show a clean sample and an adversarial sam-
ple, respectively. This code-style instruction can be
applied to arbitrary tasks with task-specific design.

and adversarial samples to compose the in-context
demonstrations can be viewed as a type of implicit
adversarial training. We verify the effectiveness
of the method on eight datasets and decrease the
average Attack Success Rate (ASR) by 5.66 points
with gpt-3.5-turbo. We conduct further analysis to
demonstrate the advantages of using code-style
instructions.

To sum up, our contributions are as follows:

• We introduce RoCoIns, a novel approach to
enhance the robustness of LLMs against tex-
tual adversarial attacks by utilizing code-style
instructions.

• Moreover, we propose the adversarial con-
text method to further boost the robustness of
LLMs.

• We conduct experiments on eight robustness
datasets and verify the effectiveness of our
method, which outperforms prompting LLMs
with natural language instructions.

2. Background

2.1. Textual Adversarial Attack

Textual adversarial attacks commonly generate ex-
plicit adversarial samples by substituting compo-
nents of sentences with their equivalents while pre-
serving a high degree of semantic similarity (Ren
et al., 2019a; Wang et al., 2021a). Given a clean
sentence x = (t1, t2, . . . , tn), where ti, 1 ≤ i ≤ n
denotes each token in the sentence. l repre-
sents its ground truth label. Textual adversarial
attacks replace some original tokens with their
counterparts to fool the objective model. For ex-
ample, substituting ti with t̂i creates an adversary:
x̂ = (t1, t2, . . . , t̂i, . . . , tn). For an adversary, the
objective model F generates its label as follows:

l̂ = argmaxF (·|x̂) (1)

where l̂ ̸= l means a successful attack.
In this paper, we mainly focus on attack-

ing samples rather than instructions. The de-
tailed difference with other attack formats, such as
prompt attacks, can be found in Section 6.

2.2. In-context learning with LLMs

Due to the remarkable ICL abilities of LLMs, by
providing LLMs with a few demonstration input-
output pairs, they can predict the label for an un-
seen input without parameter updates. Formally,
we randomly select k sample pairs {(xi, yi)}ki=1

from the training set and concatenate them as a
string to compose the in-context demonstrations
D = x1 ⊕ y1 · x2 ⊕ y2 · ... · xk ⊕ yk, where ⊕ means
concatenation between the input and output within
a sample and · means concatenation between dif-
ferent samples. During inference, a new test in-
put xtest is appended to the demonstrations, and
D · xtest is fed into the model for completion and
thereby generates an answer y

′

test.

3. Method

In this section, we first describe how we recast the
instructions from natural language to code style
(Section 3.1). Then we introduce the adversarial
context method (Section 3.2).

3.1. Formulating Instructions into Code
Style

Considering an example in a task with the form
(T ,S,L), where T denotes the task instruction, S
refers to input sample and L represents the corre-
sponding label to be generated. Typically, both T
and L are expressed in the natural language for-
mat. However, due to the inherent ambiguity, LLMs

14188

class Aspect_Based_Sentiment_Analysis:
"""
Base class for aspect-based sentiment analysis task.

Parameters
aspect : str
The target aspect term of the given sentence.
sentence : str
The input text that contains the aspect.
"""
def __init__(self, sentence: str, aspect: str):

self.sentence = sentence
self.aspect = aspect

def sentiment_classification(self):
if is_positive(self.sentence, self.aspect):

print("positive")
elif is_negative(self.sentence, self.aspect):

print("negative")

"""
create an instance of Aspect_Based_Sentiment_Analysis
class based on the given sentence
"""

Adversarial Sentence
sentence = "Great food, great waitstaff, bad atmosphere, and best of all GREAT beer!”
aspect = "atmosphere"
Aspect_Based_Sentiment_Analysis(sentence, aspect).sentiment_classification()
”negative"

Optional

In-context Demonstrations

Clean Sentence
sentence = "Great food, great waitstaff, great atmosphere, and best of all GREAT beer!”
aspect = "atmosphere"
Aspect_Based_Sentiment_Analysis(sentence, aspect).sentiment_classification()
"positive"

Test Sentence
sentence = "Probably my worst dining experience in New York, and I'm a former waiter
so I know what I'm talking about"
aspect = "dining experience"
Aspect_Based_Sentiment_Analysis(sentence, aspect).sentiment_classification()

Task Prompt

Figure 2: Components of code-style instructions. (1) Class definition mainly contains the class name,
annotation, initial function and implementation function. (2) In-context demonstrations consist of k
(adversarial) samples in the corresponding code style. (3) Task prompt follows the same format as
demonstrations without a ground truth label.

have shown extreme sensitivity to these natural lan-
guage instructions, as even slight modifications to
the instructions can lead to a substantial decrease
in performance (Zhao et al., 2021; Holtzman et al.,
2022). In contrast, code-style instructions, which
are less ambiguous and more structural, can serve
as an alternative to natural language instructions
and provide LLMs with more concise instructions.
The primary idea of our method is to convert T
from its original natural language format to a se-
mantically equivalent non-executable pseudo-code
format. In this work, we mainly define a Python
class to achieve this conversion. To illustrate our
method, we utilize the aspect-based sentiment
analysis (ABSA) task as a running example (Figure
2). ABSA aims to determine the sentiment polarity
("positive", "neutral" or "negative") of an aspect pre-
sented in a sentence. Our code-style instruction
mainly consists of the following components:

Class Name First, we convert the explanation of
the task into the class name. The class name can
be viewed as a summary of the task.

Annotation The annotations provide task de-
scriptions that are typically rephrased versions of
natural language instructions. Besides, the annota-
tions also contain descriptions of the parameters,
including their types and explanations.

Initial Functions The initial function defines the
input components of this task. For example, in the
ABSA task (Figure 2), we define two class instance

variables sentence and aspect, which will be uti-
lized in the subsequent implementation functions.

Implementation Functions The implementation
functions detail the solution process for the task.
This part is typically constructed based on the an-
notations and serves as a pseudo-code alterna-
tive version of the annotations. Following (Mishra
et al., 2023), the implementation function may in-
clude sub-task functions, which are usually not
explicitly defined and convey their functionalities
through descriptive names and parameters. For
example, in the ABSA task (Figure 2), is_positive
and is_negative are two sub-task functions to de-
termine the sentiment polarity of an aspect word.

Task Prompt Once the class is defined, we can
utilize it by creating an instance object. These ob-
jects, accompanied by their properties definitions,
compose the task prompt. Figure 2 provides an
example of the task prompt. Typically, we compose
an in-context demonstration by concatenating the
task prompt with its ground truth label. Finally,
we concatenate the class definition with several
in-context demonstrations and a task prompt con-
taining a test sample to construct the model input
and expect the model to generate final outputs.

3.2. Adversarial Context Method

In this work, we propose the adversarial context
method to further boost the robustness of LLMs.

14189

Recent studies have shown that ICL can be re-
garded as a form of implicit fine-tuning (Dai et al.,
2023; von Oswald et al., 2022). (Dai et al., 2023)
theoretically prove that Transformer attention has
a dual form of gradient descent and demonstrate
that ICL behaves similarly to explicit finetuning from
multiple perspectives. Thus, we hypothesize that
utilizing both clean and adversarial samples
to compose in-context demonstrations can be
regarded as a type of implicit adversarial train-
ing. Formally, following the definitions in Section
2.1 and 2.2, we first transform the clean sample
pair (xi, yi) and adversarial sample pair (x̂i, ŷi) into
their corresponding code-style format (xc

i , y
c
i) and

(x̂c
i , ŷ

c
i). Then we compose the demonstrations

D = xc
1 ⊕ yc1 · x̂c

1 ⊕ ŷc1 · ... · xc
m ⊕ ycm · x̂c

m ⊕ ŷcm
by concatenating both clean and adversarial sam-
ples. We keep the total number of sample pairs
unchangeable.

4. Experiments

4.1. Experimental setup

Model We conduct experiments mainly using
the GPT-3.5 Series models with text-davinci-003
and gpt-3.5-turbo from OpenAI 1. We choose
these two models because GPT-3.5 Series models
have shown remarkable code understanding abil-
ities, making them better suited to our proposed
method (White et al., 2023). These two models
support an input length of up to 8k and 4k tokens,
respectively.

Hyperparameters We acquire the predictions
of the models through OpenAI API 2. We prompt
LLMs with greedy decode by setting the sampling
temperature t = 0. Besides, we set the max num-
ber of generated tokens to 128 tokens.

Datasets In this paper, we mainly conduct ex-
periments on two adversarial datasets: AdvGLUE
(Wang et al., 2022) and Restaurant (Xing et al.,
2020). AdvGLUE is an adversarial version of the
GLUE (Wang et al., 2018) dataset, consisting of
SST-2, QQP, MNLI, QNLI and RTE. We use the test
set of AdvGLUE. Restaurant is an aspect-based
sentiment analysis robustness dataset generated
from SemEval 2014 Restaurant dataset (Pontiki
et al., 2014) by infusing three types of transforma-
tions (RevNon, RevTgt and AddDiff) into it (Xing
et al., 2020). We randomly select 300 samples
from the test set of Restaurant for each transfor-
mation to compose our test set Restaurant-T.

1https://platform.openai.com/docs/models/
gpt-3-5

2https://openai.com/api

Few-shot Setting For each task, we randomly
select k samples from the dataset. The choice of
k is varied between different tasks according to its
number of classes and we explain the reason in
Section 5.2.2. The detailed value of k for each task
can be found in Table 1.

Instructions Design The natural language in-
structions for AdvGLUE are the same with (Wang
et al., 2023a) and for Restaurant-T, we choose
the same prompts following (Chen et al., 2023).
For code-style instructions, we follow Figure 2 to
construct instructions for different tasks.

Evaluation Following (Wang et al., 2023a), we
use Attack Success Rate (ASR) as the evaluation
metric for robustness. ASR is formally defined as :

ASR =
∑

(x,y)∈T

1[f(A(x)) ̸= y]

1[f(x) = y]
(2)

where dataset T = {(xi, yi)}Ni=1 consists of N sam-
ples and A refers to an adversarial attack method,
which generates adversarial samples. In general,
the model’s robustness against adversarial attacks
is inversely proportioned to ASR. All experiments
in this paper are conducted 3 times with different
demonstrations and we report the mean results.

Baselines

1) Zero-shot NL Prompting To evaluate the im-
pact of few-shot prompting on enhancing the
robustness of language models (LLMs), we
consider zero-shot natural language prompt-
ing as a baseline for comparison. The zero-
shot results of AdvGLUE are from (Wang et al.,
2023a).

2) Few-shot NL Prompting Under few-shot set-
tings, we compare our approach with natu-
ral language prompting. By using the same
natural language instructions with zero-shot
prompting, we additionally provide LLMs with
a few [Problem, Answer] samples to help LLMs
better understand the tasks and standardize
output formats.

3) Few-shot CoT Prompting Since Chain-of-
Thought (CoT) (Wei et al., 2023b) has verified
its effectiveness in improving performance on
various tasks, we also incorporate CoT as a
baseline to explore its effectiveness in robust-
ness improvement. Specifically, we provide
LLMs with a set of [Problem, Rational, An-
swer] samples to encourage LLMs to think
step-by-step and generate final answers.

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://openai.com/api

14190

Model Method
Dataset(ASR)

Avg(ASR) Avg(Acc)AdvGLUE Restaurant-T
SST-2 QQP MNLI QNLI RTE RevTgt RevNon AddDiff

Random 50.0 50.0 66.7 50.0 50.0 66.7 66.7 66.7 58.35 41.67
Zero-Shot

davinci-003 NL 44.6 55.1 44.6 38.5 34.6 44.11 20.00 13.19 36.84 −
gpt-3.5-turbo NL 39.9 18.0 32.2 34.5 24.74 49.42 36.09 42.67 34.68 −

Few-Shot
Shot Number 4 6 6 4 4 6 6 6

davinci-003

NL 25.39 23.94 25 24.03 15.18 25.09 11.39 10.16 20.02 72.07
CoT 23.07 26.56 23.8 23.62 14.28 24.04 9.35 7.65 19.05 73.43

Code 23.97 25.35 22.54 21.73 12.65 23.52 5.79 5.08 17.58 75.82
Code+adv 20.93 22.53 22.33 20.21 12.65 21.97 6.52 4.66 16.47 77.20

gpt-3.5-turbo

NL 19.23 23.07 21.73 18.75 22.05 29.19 17.03 16.4 20.93 70.45
CoT 21.08 20.63 14.85 18.34 21.42 34.67 14.02 14.28 19.91 71.14

Code 17.83 18.46 18.55 14.28 21.43 23.35 14.4 10.08 17.29 74.73
Code+adv 16.43 9.23 14.4 10.71 22.85 22.43 13.4 12.71 15.27 76.13

Table 1: Experiments performances on AdvGLUE and Restaurant-T datasets. We report the ASR(↓)
for each method. We also report the average accuracy(Avg(Acc) ↑) in the last column. In this table,
Our methods and the best results are highlighted in bold. NL and Code refer to prompting with natural
language and code-style instructions, respectively. Code+adv refers to our proposed adversarial context
method.

Model Method Clean Adversarial

davinci-003
NL 86.78 72.07

Code 87.25(+0.47) 75.82(+3.75)
Code+adv - 77.20(+5.13)

gpt-3.5-turbo
NL 85.61 70.45

Code 86.13(+0.52) 74.73(+4.28)
Code+adv - 76.13(+5.68)

Table 2: Average Accuracy on the 8 clean and
adversarial datasets for NL, Code and Code+Adv
methods.

4.2. Results

NL instructions vs. Code-style instructions
As shown in Table 1, prompting LLMs with code-
style instructions consistently outperforms prompt-
ing with natural language instructions. Specifically,
code-style instructions result in a 2.44 and 3.64
point reduction in ASR on text-davinci-003 and
gpt-3.5-turbo, respectively. We also provide the
average accuracy in Table 2. We observe a slight
improvement by using code-style instructions when
prompting LLMs with clean samples(0.47 and 0.52),
but a relatively huge improvement with adversar-
ial samples(3.75 and 4.28), which indicates the
advantages of using code-style prompts when
faced with adversarial samples. A more detailed
analysis of the advantages of code-style instruc-
tions is provided in Section 5.

Adversarial context further enhances the ro-
bustness We further demonstrate the effective-
ness of our proposed adversarial context method.
Compared to natural language prompting, the
adversarial context method leads to a decrease
of 3.55 points in ASR for text-davinci-003 and

5.66 points for gpt-3.5-turbo. Besides, from
Tabel 2, incorporating our adversarial context
method results in a significant improvement in
accuracy. Specifically, there is an improvement
of 5.13 points with text-davinci-003 and 5.68
points with gpt-3.5-turbo. We hypothesize that
the improvement brought by adversarial samples
could be attributed to the implicit adversarial train-
ing through in-context learning. Additionally, in-
troducing adversarial samples prompts the LLMs
to recognize specific adversarial attacks, such as
spelling errors and word substitutions. The find-
ings also suggest that more advanced models,
like gpt-3.5-turbo, potentially benefit more from
code-style instructions and the adversarial context
method than text-davinci-003.

Zero-Shot vs. Few-shot As shown in Table 1,
zero-shot prompting exhibits low robustness on
both text-davinci-003 and gpt-3.5-turbo. In par-
ticular, for some tasks, the LLMs perform only
slightly better or even worse than random guessing
(for example, QQP on text-davinci-003). How-
ever, when prompting LLMs with additional in-
context demonstrations, the robustness of LLMs
improves by a large margin. By few-shot prompt-
ing, the average ASR of text-davinci-003 and
gpt-3.5-turbo decrease by 16.82 and 13.75
points, respectively. This indicates the strong few-
shot learning abilities of LLMs. By leveraging only
a few examples, LLMs can better understand
the task and yield stronger robustness.

Chain-of-thought helps with robustness We
then explore whether CoT can help improve the
robustness of LLMs. By promoting LLMs to

14191

SST-2 QQP MNLI QNLI RTE
0

5

10

15

20

pp
l

CodeT5-base+code
T5-base+nl
CodeT5-base+nl

Figure 3: Perplexity for AdvGLUE dataset on
T5-base with natural language instructions and
CodeT5-base with both natural language and code-
style instructions. We report the logarithm of their
initial values.

think step-by-step to generate final answers,
we find that for most tasks, LLMs showcase bet-
ter robustness than directly prompting LLMs
to generate the final answer. On average,
we present a decline in ASR by 0.97 and 1.02
points with text-davinci-003 and gpt-3.5-turbo,
respectively. However, we also observe a de-
crease in robustness on specific datasets, such
as RevTgt on gpt-3.5-turbo. By analyzing the
reasoning steps, we find that the over-complicated
and neutral-oriented reasoning process contributes
to the failure of CoT.

5. Analysis

5.1. Perplexity: Code vs NL

To take a closer look at the advantages of using
code-style instructions, we hypothesize that utiliz-
ing code-style instructions can provide LLMs pre-
trained on code data with more precise instruc-
tions, consequently resulting in performance im-
provement. To verify our hypothesis, we compare
the perplexity of a pre-trained language model on
the natural language instructions and a pre-trained
code model on both the natural language and code-
style instructions. Specifically, we calculate the
mean perplexity ppl of a dataset T consisting of N
samples using the following formula:

pplM (T) =
1

n

∑
(x,y)∈T

m∏
i=1

PM (yi|y1 . . . yi−1, x)
− 1

m

(3)
where m refers to the length of the generated to-
kens. For each sample (x, y) in T, we convert it to
both natural language format (xnl, ynl) and code-
style format (xc, yc) and then calculate the perplex-
ity with two models Mnl and Mc. A lower perplexity

suggests the models are less confused by the in-
structions and output format.

1 2 3 4 5 6
Shot Number

50

55

60

65

70

75

80

Ac
cu

ra
cy

SST-2+Code
SST-2+NL
MNLI+Code
MNLI+NL

Figure 4: Accuracy with the different number of
in-context demonstrations on SST-2 and MNLI ad-
versarial dataset. The experiment is conducted on
gpt-3.5-turbo.

Due to the black-box features of LLMs, obtaining
logits directly from LLMs is challenging. Therefore,
following (Li et al., 2023a), we use T5 (Raffel et al.,
2019a) and CodeT5 (Wang et al., 2021b), which
are further pre-trained on code data for T5, to com-
pute perplexities. We use the AdvGLUE dataset
to calculate the perplexity of T5-base with natural
language instructions and CodeT5-base with both
natural language and code-style instructions. As
shown in Figure 3, utilizing the pre-trained code
model with code-style instructions consistently re-
sults in the lowest perplexity, surpassing the per-
formance of using natural language instructions
in both the pre-trained language and code mod-
els. This observation suggests that converting
instructions into code style better align with
the pretraining data distribution for pre-trained
code models.

Prompt SST-2 MNLI QNLI
NL 19.23 21.73 18.75

NL(complicated) 19.45 21.64 18.97
Class Exec 17.83 18.55 14.28
Class Init 20.93 16.12 16.52

Func Exec 18.6 17.52 14.03

Table 3: ASR for different code-style instructions
design. "class exec" is the code format used in our
main experiments and is highlighted in light grey.
The experiment is conducted on gpt-3.5-turbo.

5.2. Ablation Studies

5.2.1. Different Code-style Instructions

To explore whether using code-style instructions
can generally obtain better robustness, following
(Wang et al., 2022b) and (Li et al., 2023a), we de-
sign two different code-style instructions class init

14192

batterylogfastthewithdispleasedamI connectionon , WiFispeedy and the short life

batterylogfastthewithdispleasedamI connectionon , WiFispeedy and the short life

Code

NL

batterylogfastthewithpleasedamI connectionon , WiFispeedy and the long life

batterylogfastthewithpleasedamI connectionon , WiFispeedy and the long life

Clean

Adversarial

Code

NL
0

0.6

Figure 5: Visualization of a sample’s gradient on each word when fine-tuning CodeT5 with code-style
instruction and T5 with natural language instruction, respectively. The sample is selected from the
Restaurant-T dataset with both its clean and adversarial versions. The sample aims to determine the
sentiment polarity of the aspect "battery life" in the sentence with "positive" or "negative".

and func exec. The class init provides LLMs with
incomplete code with partial parameter input of the
class as triggers to prompt LLMs to complete the
code. The func exec converts the class definition
into function definition. We also design a more
complicated NL prompt for comparison. We report
the results in Table 3, from which we find that code-
style instructions almost always outperform natural
language instructions with lower ASR, showcas-
ing the overall superiority of code-style instructions.
Besides, using more complicated natural language
instructions does not help with the robustness of
LLMs.

5.2.2. Number of In-context Demonstrations

To investigate the influence of different numbers of
demonstrations, we perform experiments on SST-2
and MNLI, ranging from 1 to 6 shots. As shown
in Figure 4, we find that the completeness and
balance of labels are significant for the task perfor-
mance. For example, for SST-2 with two labels pos-
itive and negative, when prompting with an even
number of demonstrations (positive and negative
are both included and the number of each label
is equal), we consistently get better results than
those with incomplete labels (1-shot) or with imbal-
anced labels (3-shot, 5-shot). Therefore in Section
4.2, we choose shot number k according to the
number of labels for different tasks.

5.2.3. Different Part of Code Instructions

To assess the influence of different parts of our
code-style prompts, we conduct three transforma-
tions on the instructions. As shown in Table 4,
randomly replacing the Class Name and Sub-task
Name has minimal impact on performance while
removing the annotation leads to a slight decline
in performance. This shows the toughness of

our code-style instructions against different dis-
turbance.

Component SST-2 RTE
Code Instructions 83.1 74.07
- Class Name 82.43(−0.67) 72.83(−1.24)
- Sub-task Name 81.08(−2.02) 75.31(+1.24)
- Annotation 78.38(−4.72) 69.14(−4.93)

Table 4: Results for different parts of code-style
instructions. We report the Acc with gpt-3.5-torbo.
We conduct three separate experiments: randomly
replacing the Class Name, randomly replacing the
Sub-task Name and removing the Annotation.

5.3. Visualization Analysis

To further investigate which part the model focuses
on, we select a sample from the Restaurant-T
dataset with both its original and adversarial forms.
We then utilize natural language instructions and
code-style instructions to wrap the sample and
then fine-tuning them using T5-base and CodeT5-
base, respectively. We extract the gradients of
each token from the model embedding layer and
average them across dimensions. Moreover, we
normalize the gradients within the sentence and
obtain final gradients. We visualize the gradients
in Figure 5. Since the gradients can reflect how
much the model focuses on the token (Li et al.,
2016; Madsen et al., 2022), for clean sentence,
both natural language instruction and code-style
instruction focus on the right word "long". While for
adversarial sentence, code-style instruction with
CodeT5-base can still lead the model to pay at-
tention to the phrase "short battery life". However,
using natural language with T5-base, the model
focuses on irrelevant phrases such as "the". There-
fore, code-style prompts may help the model focus

14193

more on the important part of a sentence.

5.4. Discussion for User-friendliness

Although showing impressive performance with
code-style instructions, it may be difficult for non-
professional users to transform the prompts into
code. Actually, the code-style prompts we design
are straightforward and can be easily adapted to
arbitrary tasks with similar structures. Users can
follow our structure either manually or through LLM-
based methods (e.g., utilizing LLMs) to construct
task-specific code-style prompts. To verify the sim-
plicity of our method, we select several tasks (SST-
2, MNLI, RTE) and concatenate them to prompt
GPT-4 to generate code-style prompts for new
tasks. The results are shown in Table 5. We
observe that LLM-based prompts almost match
the performance of manually designed prompts.

New Task LLM-based Manual
QNLI 72.07±2.1 73.64

RevTgt 70.22±2.7 71.33

Table 5: Results for LLM(GPT-4)-based prompts
with gpt-3.5-turbo. We report the Acc of new tasks
QNLI and RevTgt. "LLM-based" refers to GPT-4
generated prompts. "Manual" refers to our manu-
ally designed prompts.

6. Related Work

Textual Adversarial Attacks/Defenses Textual
attacks typically generate explicit adversarial exam-
ples by adding small perturbations into clean exam-
ples while maintaining lexical correctness, gram-
matical correctness and semantic similarity (Ren
et al., 2019b; Wang et al., 2021a). These adver-
sarial methods can be divided into character-level
(Gao et al., 2018), word-level (Ren et al., 2019a)
and sentence-level (Li et al., 2019). In response
to adversarial attacks, various defense methods
have been proposed(Jiang et al., 2020; Wang et al.,
2022a). Adversarial training (Zhu et al., 2019a) is
a widely adopted approach that iteratively solves a
two-layered min-max optimization problem. Inter-
val bound propagation (Dvijotham et al., 2018) is
proposed to find worst-case adversaries. Besides,
randomized smoothing (Cohen et al., 2019) and
adversarial detection (Alshemali and Kalita, 2019;
Mozes et al., 2021) are also popular methods in
defending adversarial attacks. However, all these
methods require parameter updates and can be
unattainable when faced with closed source black-
box LLMs. Therefore, in this work, we propose
a novel approach to enhance the robustness of
LLMs through instructions design without the need
for parameter updates.

Robustness Concerns for LLMs While the
progress of LLMs has shown remarkable abili-
ties in following human instructions and gener-
ating safe content, recent works pose concerns
about the robustness of LLMs (Liu et al., 2023; Shi
et al., 2024)(Wang et al., 2022). Attacks based
on prompts have showcased the possibility of at-
tacking LLMs with adversarial prompts (Zhu et al.,
2023; Ni et al., 2023). For example, "jailbreak" at-
tempts to modify clean prompts to elicit undesirable
responses from LLMs (Wei et al., 2023a). (Zou
et al., 2023) find adversarial attacks on aligned
language models and prove their universal and
transferable attack ability. In this paper, our
attack aims at destroying the samples while
keeping the prompts clean, which is different
from prompts attacks that focus on destroying
prompts.

In-context Learning With the model scale grow-
ing, directly fine-tuning the model can be extremely
expensive due to storage and time complexities
(Rae et al., 2022; Chowdhery et al., 2022; Smith
et al., 2022). Alternatively, in-context learning (ICL)
has been verified to be an effective way for LLMs to
learn a new task by conditioning on a few training
examples (Brown et al., 2020). There are already
lots of works demonstrating the perfect ICL abilities
of LLMs in solving complex tasks, such as solv-
ing mathematical reasoning problems (Wei et al.,
2023b). On the other hand, plenty of studies have
investigated the mechanism behind ICL. (Xie et al.,
2022) explained ICL from the perspective of implicit
Bayesian inference. (Dai et al., 2023; von Oswald
et al., 2022) viewed ICL as implicit fine-tuning and
theoretically demonstrated that Transformer atten-
tion has a dual form of gradient descent. There-
fore, in this work, we hypothesize that incorporat-
ing adversarial samples as demonstrations can
be viewed as a form of adversarial training and
propose the adversarial context method.

Code-style Instructions for Different Tasks
Due to the advantages of code format, plenty of
works have used code-style instructions to tackle
complex tasks. (Gao et al., 2023) used programs
to split the decomposition and computation of a
mathematical problem. (Wang et al., 2022b) lever-
age LLMs text-to-structure translation capability to
solve structured prediction tasks. (Madaan et al.,
2022) frame structured commonsense reasoning
tasks as code generation tasks. (Li et al., 2023a)
recast the structured output of IE tasks in the form
of code instead of natural language. Besides, simi-
lar to our work, (Mishra et al., 2023) utilizes pseudo-
code instructions to prompt pre-trained models
such as CodeGen (Nijkamp et al., 2023) to improve
the performance of pre-trained language models.

14194

7. Conclusion

In this paper, we propose RoCoIns to utilize code-
style instructions instead of natural language in-
structions to enhance the robustness of closed
source black-box models against textual adversar-
ial attacks. Instructions in code style, which are
more structural and less ambiguous than natural
language instructions, provide LLMs with more pre-
cise instructions. Besides, we propose adversarial
context method to further boost the robustness.
Experiments show that our method consistently
outperforms prompting LLMs with natural language
instructions under the few-shot setting. We con-
duct further analysis to verify the advantages of
using code-style instructions.

8. Limitations

Due to the limitation of closed source black-box
models, we cannot dig into the LLMs to explore
the reason for the effectiveness of using code-style
instructions. Furthermore, while we have investi-
gated various designs for code-style instructions,
there is still a need for further exploration of better
prompt design. Besides, querying the GPT-series
models can lead to economic expenses and cause
environmental pollution.

9. Acknowledgements

The authors wish to thank the anonymous re-
viewers for their helpful comments. This work
was partially funded by National Natural Science
Foundation of China (No. 62206057, 61976056,
62076069, 61906176), Shanghai Rising-Star Pro-
gram (23QA1400200), Natural Science Founda-
tion of Shanghai (23ZR1403500), Program of
Shanghai Academic Research Leader under grant
22XD1401100, CCF-Baidu Open Fund, and CCF-
Baichuan Fund. The computations in this research
were performed using the CFFF platform of Fudan
University.

10. Bibliographical References

Basemah Alshemali and Jugal Kalita. 2019. To-
ward mitigating adversarial texts. International
Journal of Computer Applications, 178(50):1–7.

Simran Arora, Avanika Narayan, Mayee F. Chen,
Laurel Orr, Neel Guha, Kush Bhatia, Ines Chami,
Frederic Sala, and Christopher Ré. 2022. Ask
me anything: A simple strategy for prompting
language models.

Yoshua Bengio, Yann Lecun, and Geoffrey Hinton.
2021. Deep learning for ai. Communications of
the ACM, page 58–65.

Tom B. Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language
models are few-shot learners.

BSI. 1973a. Natural Fibre Twines, 3rd edition.
British Standards Institution, London. BS 2570.

BSI. 1973b. Natural fibre twines. BS 2570, British
Standards Institution, London. 3rd. edn.

A. Castor and L. E. Pollux. 1992. The use of user
modelling to guide inference and learning. Ap-
plied Intelligence, 2(1):37–53.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea
Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski
Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-
Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike,
Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evalu-
ating large language models trained on code.

Xuanting Chen, Junjie Ye, Can Zu, Nuo Xu,
Rui Zheng, Minlong Peng, Jie Zhou, Tao Gui,
Qi Zhang, and Xuanjing Huang. 2023. How ro-
bust is gpt-3.5 to predecessors? a comprehen-
sive study on language understanding tasks.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettle-
moyer, Noah A. Smith, and Tao Yu. 2023. Bind-
ing language models in symbolic languages.

http://arxiv.org/abs/2210.02441
http://arxiv.org/abs/2210.02441
http://arxiv.org/abs/2210.02441
https://doi.org/10.1145/3448250
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2303.00293
http://arxiv.org/abs/2303.00293
http://arxiv.org/abs/2303.00293
http://arxiv.org/abs/2210.02875
http://arxiv.org/abs/2210.02875

14195

J.L. Chercheur. 1994. Case-Based Reasoning,
2nd edition. Morgan Kaufman Publishers, San
Mateo, CA.

Jonathan H Choi, Kristin E Hickman, Amy Mona-
han, and Daniel Schwarcz. 2023. Chatgpt goes
to law school. Available at SSRN.

N. Chomsky. 1973. Conditions on transformations.
In A festschrift for Morris Halle, New York. Holt,
Rinehart & Winston.

Aakanksha Chowdhery, Sharan Narang, Jacob
Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, and Sebastian Gehrmann. 2022.
Palm: Scaling language modeling with path-
ways.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha
Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen,
Aakanksha Chowdhery, Alex Castro-Ros, Marie
Pellat, Kevin Robinson, Dasha Valter, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent
Zhao, Yanping Huang, Andrew Dai, Hongkun Yu,
Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and
Jason Wei. 2022. Scaling instruction-finetuned
language models.

Jeremy Cohen, Elan Rosenfeld, and J.Zico Kolter.
2019. Certified adversarial robustness via ran-
domized smoothing.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shum-
ing Ma, Zhifang Sui, and Furu Wei. 2023. Why
can gpt learn in-context? language models
implicitly perform gradient descent as meta-
optimizers.

Krishnamurthy Dvijotham, Sven Gowal, Robert
Stanforth, Relja Arandjelovic, Brendan
O’Donoghue, Jonathan Uesato, and Push-
meet Kohli. 2018. Training verified learners with
learned verifiers.

Umberto Eco. 1990. The Limits of Interpretation.
Indian University Press.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yan-
jun Qi. 2018. Black-box generation of adversarial
text sequences to evade deep learning classi-
fiers.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. 2023. Pal: Program-aided lan-
guage models.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-
shot learners. In Proceedings of the 59th Annual
Meeting of the Association for Computational
Linguistics and the 11th International Joint Con-
ference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 3816–3830, Online.
Association for Computational Linguistics.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth
Garg. 2019. Badnets: Identifying vulnerabilities
in the machine learning model supply chain.

Dominik Hintersdorf, Lukas Struppek, and Kristian
Kersting. 2023. Balancing transparency and risk:
The security and privacy risks of open-source
machine learning models.

Paul Gerhard Hoel. 1971a. Elementary Statistics,
3rd edition. Wiley series in probability and math-
ematical statistics. Wiley, New York, Chichester.
ISBN 0 471 40300.

Paul Gerhard Hoel. 1971b. Elementary Statistics,
3rd edition, Wiley series in probability and mathe-
matical statistics, pages 19–33. Wiley, New York,
Chichester. ISBN 0 471 40300.

Ari Holtzman, Peter West, Vered Shwartz, Yejin
Choi, and Luke Zettlemoyer. 2022. Surface form
competition: Why the highest probability answer
isn’t always right.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras,
Logan Engstrom, Brandon Tran, and Aleksander
Madry. 2019. Adversarial examples are not bugs,
they are features.

Otto Jespersen. 1922. Language: Its Nature, De-
velopment, and Origin. Allen and Unwin.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
Smart: Robust and efficient fine-tuning for pre-
trained natural language models through princi-
pled regularized optimization. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019. Textbugger: Generating adversar-
ial text against real-world applications. In Pro-
ceedings 2019 Network and Distributed System
Security Symposium.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Juraf-
sky. 2016. Visualizing and understanding neural
models in nlp.

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan,
Yuanbin Wu, Xuanjing Huang, and Xipeng Qiu.
2023a. Codeie: Large code generation models
are better few-shot information extractors.

http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2212.10559
http://arxiv.org/abs/2212.10559
http://arxiv.org/abs/2212.10559
http://arxiv.org/abs/2212.10559
http://arxiv.org/abs/1801.04354
http://arxiv.org/abs/1801.04354
http://arxiv.org/abs/1801.04354
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2211.10435
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
http://arxiv.org/abs/1708.06733
http://arxiv.org/abs/1708.06733
http://arxiv.org/abs/2308.09490
http://arxiv.org/abs/2308.09490
http://arxiv.org/abs/2308.09490
http://arxiv.org/abs/2104.08315
http://arxiv.org/abs/2104.08315
http://arxiv.org/abs/2104.08315
http://arxiv.org/abs/1905.02175
http://arxiv.org/abs/1905.02175
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.14722/ndss.2019.23138
http://arxiv.org/abs/1506.01066
http://arxiv.org/abs/1506.01066
http://arxiv.org/abs/2305.05711
http://arxiv.org/abs/2305.05711

14196

Yingcong Li, M. Emrullah Ildiz, Dimitris Papailiopou-
los, and Samet Oymak. 2023b. Transformers
as algorithms: Generalization and stability in
in-context learning.

Stephanie Lin, Jacob Hilton, and Owain Evans.
2022. Truthfulqa: Measuring how models mimic
human falsehoods.

Yugeng Liu, Tianshuo Cong, Zhengyu Zhao,
Michael Backes, Yun Shen, and Yang Zhang.
2023. Robustness over time: Understanding ad-
versarial examples’ effectiveness on longitudinal
versions of large language models.

Li Lucy and David Bamman. 2021. Gender and rep-
resentation bias in GPT-3 generated stories. In
Proceedings of the Third Workshop on Narrative
Understanding, pages 48–55, Virtual. Associa-
tion for Computational Linguistics.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming
Yang, and Graham Neubig. 2022. Language
models of code are few-shot commonsense
learners.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu.
2019. Towards deep learning models resistant
to adversarial attacks.

Andreas Madsen, Siva Reddy, and Sarath Chandar.
2022. Post-hoc interpretability for neural NLP: A
survey. ACM Computing Surveys, 55(8):1–42.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022. Noisy channel lan-
guage model prompting for few-shot text clas-
sification.

Mayank Mishra, Prince Kumar, Riyaz Bhat, Rudra
Murthy V au2, Danish Contractor, and Srikanth
Tamilselvam. 2023. Prompting with pseudo-code
instructions.

Maximilian Mozes, Pontus Stenetorp, Bennett
Kleinberg, and Lewis D. Griffin. 2021. Frequency-
guided word substitutions for detecting textual
adversarial examples.

Yuansheng Ni, Sichao Jiang, Xinyu wu, Hui Shen,
and Yuli Zhou. 2023. Evaluating the robustness
to instructions of large language models.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. 2023. Codegen: An open large
language model for code with multi-turn program
synthesis.

OpenAI. 2022. Introducing chatgpt. https://
openai.com/blog/chatgpt.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. 2022a. Training language models
to follow instructions with human feedback.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. 2022b. Training language models
to follow instructions with human feedback.

XiPeng Qiu, TianXiang Sun, YiGe Xu, YunFan
Shao, Ning Dai, and XuanJing Huang. 2020.
Pre-trained models for natural language process-
ing: A survey. Science China Technological Sci-
ences, 63(10):1872–1897.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai,
Katie Millican, Jordan Hoffmann, Francis Song,
John Aslanides, Sarah Henderson, Roman Ring,
and Susannah Young. 2022. Scaling language
models: Methods, analysis & insights from train-
ing gopher.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and PeterJ. Liu. 2019a. Ex-
ploring the limits of transfer learning with a uni-
fied text-to-text transformer. arXiv: Learning.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and PeterJ. Liu. 2019b.
Exploring the limits of transfer learning with a
unified text-to-text transformer. arXiv: Learn-
ing,arXiv: Learning.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang
Che. 2019a. Generating natural language ad-
versarial examples through probability weighted
word saliency. In Proceedings of the 57th An-
nual Meeting of the Association for Computa-
tional Linguistics, pages 1085–1097, Florence,
Italy. Association for Computational Linguistics.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang
Che. 2019b. Generating natural language ad-
versarial examples through probability weighted
word saliency. In Proceedings of the 57th Annual
Meeting of the Association for Computational
Linguistics.

Joshua Robinson, Christopher Michael Rytting,
and David Wingate. 2023. Leveraging large

http://arxiv.org/abs/2301.07067
http://arxiv.org/abs/2301.07067
http://arxiv.org/abs/2301.07067
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2308.07847
http://arxiv.org/abs/2308.07847
http://arxiv.org/abs/2308.07847
https://doi.org/10.18653/v1/2021.nuse-1.5
https://doi.org/10.18653/v1/2021.nuse-1.5
http://arxiv.org/abs/2210.07128
http://arxiv.org/abs/2210.07128
http://arxiv.org/abs/2210.07128
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1706.06083
https://doi.org/10.1145/3546577
https://doi.org/10.1145/3546577
http://arxiv.org/abs/2108.04106
http://arxiv.org/abs/2108.04106
http://arxiv.org/abs/2108.04106
http://arxiv.org/abs/2305.11790
http://arxiv.org/abs/2305.11790
http://arxiv.org/abs/2004.05887
http://arxiv.org/abs/2004.05887
http://arxiv.org/abs/2004.05887
http://arxiv.org/abs/2308.14306
http://arxiv.org/abs/2308.14306
http://arxiv.org/abs/2203.13474
http://arxiv.org/abs/2203.13474
http://arxiv.org/abs/2203.13474
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/p19-1103
https://doi.org/10.18653/v1/p19-1103
https://doi.org/10.18653/v1/p19-1103
http://arxiv.org/abs/2210.12353

14197

language models for multiple choice question
answering.

Victor Sanh, Albert Webson, Colin Raffel,
Stephen H. Bach, Lintang Sutawika, Zaid
Alyafeai, Antoine Chaffin, Arnaud Stiegler,
Teven Le Scao, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Tae-
woon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian
Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Baw-
den, Thomas Wang, Trishala Neeraj, Jos Rozen,
Abheesht Sharma, Andrea Santilli, Thibault
Fevry, Jason Alan Fries, Ryan Teehan, Tali Bers,
Stella Biderman, Leo Gao, Thomas Wolf, and
Alexander M. Rush. 2022. Multitask prompted
training enables zero-shot task generalization.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie
Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François
Yvon, and Matthias Gallé. 2023. Bloom: A 176b-
parameter open-access multilingual language
model.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun
Shen, and Yang Zhang. 2023a. "do anything
now": Characterizing and evaluating in-the-wild
jailbreak prompts on large language models.

Yiqiu Shen, Laura Heacock, Jonathan Elias,
Keith D Hentel, Beatriu Reig, George Shih, and
Linda Moy. 2023b. Chatgpt and other large lan-
guage models are double-edged swords.

Chenyu Shi, Xiao Wang, Qiming Ge, Songyang
Gao, Xianjun Yang, Tao Gui, Qi Zhang, Xuan-
jing Huang, Xun Zhao, and Dahua Lin. 2024.
Navigating the overkill in large language models.
arXiv preprint arXiv:2401.17633.

Charles Joseph Singer, E. J. Holmyard, and A. R.
Hall, editors. 1954–58. A history of technology.
Oxford University Press, London. 5 vol.

Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, Elton Zhang, Rewon
Child, Reza Yazdani Aminabadi, Julie Bernauer,
Xia Song, Mohammad Shoeybi, Yuxiong He,
Michael Houston, Saurabh Tiwary, and Bryan
Catanzaro. 2022. Using deepspeed and mega-
tron to train megatron-turing nlg 530b, a large-
scale generative language model.

Jannik Strötgen and Michael Gertz. 2012. Tem-
poral tagging on different domains: Challenges,
strategies, and gold standards. In Proceedings

of the Eight International Conference on Lan-
guage Resources and Evaluation (LREC’12),
pages 3746–3753, Istanbul, Turkey. European
Language Resource Association (ELRA).

S. Superman, B. Batman, C. Catwoman, and
S. Spiderman. 2000. Superheroes experiences
with books, 20th edition. The Phantom Editors
Associates, Gotham City.

Johannes von Oswald, Eyvind Niklasson, Ettore
Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov.
2022. Transformers learn in-context by gradient
descent.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP.

Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen,
Runkai Zheng, Yidong Wang, Linyi Yang, Haojun
Huang, Wei Ye, Xiubo Geng, Binxin Jiao, Yue
Zhang, and Xing Xie. 2023a. On the robustness
of chatgpt: An adversarial and out-of-distribution
perspective.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia,
Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
Xuanjing Huang. 2023b. Orthogonal subspace
learning for language model continual learning.
arXiv preprint arXiv:2310.14152.

Xiao Wang, Shihan Dou, Limao Xiong, Yicheng
Zou, Qi Zhang, Tao Gui, Liang Qiao, Zhanzhan
Cheng, and Xuanjing Huang. 2022a. Miner: Im-
proving out-of-vocabulary named entity recog-
nition from an information theoretic perspective.
arXiv preprint arXiv:2204.04391.

Xiao Wang, Qin Liu, Tao Gui, Qi Zhang, Yicheng
Zou, Xin Zhou, Jiacheng Ye, Yongxin Zhang, Rui
Zheng, Zexiong Pang, et al. 2021a. Textflint:
Unified multilingual robustness evaluation toolkit
for natural language processing. In Proceed-
ings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the
11th International Joint Conference on Natural
Language Processing: System Demonstrations,
pages 347–355.

Xiao Wang, Weikang Zhou, Can Zu, Han Xia,
Tianze Chen, Yuansen Zhang, Rui Zheng, Junjie
Ye, Qi Zhang, Tao Gui, et al. 2023c. Instructuie:
Multi-task instruction tuning for unified informa-
tion extraction. arXiv preprint arXiv:2304.08085.

http://arxiv.org/abs/2210.12353
http://arxiv.org/abs/2210.12353
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2308.03825
http://arxiv.org/abs/2308.03825
http://arxiv.org/abs/2308.03825
http://arxiv.org/abs/2201.11990
http://arxiv.org/abs/2201.11990
http://arxiv.org/abs/2201.11990
http://arxiv.org/abs/2212.07677
http://arxiv.org/abs/2212.07677
https://doi.org/10.18653/v1/w18-5446
https://doi.org/10.18653/v1/w18-5446
http://arxiv.org/abs/2302.12095
http://arxiv.org/abs/2302.12095
http://arxiv.org/abs/2302.12095

14198

Xingyao Wang, Sha Li, and Heng Ji. 2022b.
Code4struct: Code generation for few-shot struc-
tured prediction from natural language.

Yue Wang, Weishi Wang, Shafiq Joty, and
StevenC.H. Hoi. 2021b. Codet5: Identifier-aware
unified pre-trained encoder-decoder models for
code understanding and generation. Cornell Uni-
versity - arXiv.

Alexander Wei, Nika Haghtalab, and Jacob Stein-
hardt. 2023a. Jailbroken: How does llm safety
training fail?

Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. 2023b. Chain-of-
thought prompting elicits reasoning in large lan-
guage models.

Jules White, Sam Hays, Quchen Fu, Jesse
Spencer-Smith, and Douglas C. Schmidt. 2023.
Chatgpt prompt patterns for improving code qual-
ity, refactoring, requirements elicitation, and soft-
ware design.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei
He, Yiwen Ding, Boyang Hong, Ming Zhang,
Junzhe Wang, Senjie Jin, Enyu Zhou, et al.
2023. The rise and potential of large language
model based agents: A survey. arXiv preprint
arXiv:2309.07864.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-
context learning as implicit bayesian inference.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai
Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou,
Chao Gong, Yang Shen, Jie Zhou, Siming Chen,
Tao Gui, Qi Zhang, and Xuanjing Huang. 2023.
A comprehensive capability analysis of gpt-3 and
gpt-3.5 series models.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan
Liu, Meng Zhang, Qun Liu, and Maosong Sun.
2020. Word-level textual adversarial attacking
as combinatorial optimization. In Proceedings
of the 58th Annual Meeting of the Association
for Computational Linguistics. Association for
Computational Linguistics.

Li Zhang, Liam Dugan, Hainiu Xu, and Chris
Callison-Burch. 2023. Exploring the curious case
of code prompts.

Shuai Zhao, Zhuoqian Liang, Jinming Wen, and
Jie Chen. 2022. Sparsing and smoothing for the
seq2seq models. IEEE Transactions on Artificial
Intelligence, pages 1–10.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein,
and Sameer Singh. 2021. Calibrate before use:
Improving few-shot performance of language
models.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom
Goldstein, and Jingjing Liu. 2019a. Freelb: En-
hanced adversarial training for natural language
understanding. Cornell University - arXiv.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom
Goldstein, and Jingjing Liu. 2019b. Freelb: En-
hanced adversarial training for natural language
understanding.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen
Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei
Ye, Neil Zhenqiang Gong, Yue Zhang, and Xing
Xie. 2023. Promptbench: Towards evaluating
the robustness of large language models on ad-
versarial prompts.

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt
Fredrikson. 2023. Universal and transferable
adversarial attacks on aligned language models.

11. Language Resource References

Pontiki, Maria and Galanis, Dimitris and Pavlopou-
los, John and Papageorgiou, Harris and Androut-
sopoulos, Ion and Manandhar, Suresh. 2014.
SemEval-2014 Task 4: Aspect Based Sentiment
Analysis. Association for Computational Linguis-
tics.

Rajpurkar, Pranav and Zhang, Jian and Lopyrev,
Konstantin and Liang, Percy. 2016. SQuAD:
100,000+ Questions for Machine Comprehen-
sion of Text . Association for Computational Lin-
guistics.

Socher, Richard and Perelygin, Alex and Wu, Jean
and Chuang, Jason and Manning, Christopher
D. and Ng, Andrew and Potts, Christopher. 2013.
Recursive Deep Models for Semantic Composi-
tionality Over a Sentiment Treebank . Association
for Computational Linguistics.

Boxin Wang and Chejian Xu and Shuohang Wang
and Zhe Gan and Yu Cheng and Jianfeng Gao
and Ahmed Hassan Awadallah and Bo Li. 2022.
Adversarial GLUE: A Multi-Task Benchmark for
Robustness Evaluation of Language Models.
Conference on Neural Information Processing
Systems.

Williams, Adina and Nangia, Nikita and Bowman,
Samuel. 2018. A Broad-Coverage Challenge

http://arxiv.org/abs/2210.12810
http://arxiv.org/abs/2210.12810
http://arxiv.org/abs/2307.02483
http://arxiv.org/abs/2307.02483
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2303.07839
http://arxiv.org/abs/2303.07839
http://arxiv.org/abs/2303.07839
http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2020.acl-main.540
http://arxiv.org/abs/2304.13250
http://arxiv.org/abs/2304.13250
https://doi.org/10.1109/TAI.2022.3207982
https://doi.org/10.1109/TAI.2022.3207982
http://arxiv.org/abs/2102.09690
http://arxiv.org/abs/2102.09690
http://arxiv.org/abs/2102.09690
http://arxiv.org/abs/2306.04528
http://arxiv.org/abs/2306.04528
http://arxiv.org/abs/2306.04528
http://arxiv.org/abs/2307.15043
http://arxiv.org/abs/2307.15043
https://doi.org/10.3115/v1/S14-2004
https://doi.org/10.3115/v1/S14-2004
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/2111.02840
http://arxiv.org/abs/2111.02840
https://doi.org/10.18653/v1/N18-1101

14199

Corpus for Sentence Understanding through In-
ference. Association for Computational Linguis-
tics.

Xing, Xiaoyu and Jin, Zhijing and Jin, Di and Wang,
Bingning and Zhang, Qi and Huang, Xuanjing.
2020. Tasty Burgers, Soggy Fries: Probing As-
pect Robustness in Aspect-Based Sentiment
Analysis. Association for Computational Linguis-
tics.

Appendices

A. Datasets

The statistics of the datasets in our paper have
been presented in Table 6.

A.1. AdvGLUE

AdvGLUE (Wang et al., 2022) is a multi-task
benchmark to evaluate modern language mod-
els. The benchmark contains SST-2, QQP, MNLI,
QNLI and RTE. It incorporates diverse forms of
attacks at the word level, sentence level and also
contains human-written samples. SST-2 (Socher
et al., 2013) consists of movie reviews with human-
annotated sentiments. The task is to predict the
sentiment of given sentences. QQP is a collec-
tion of question pairs from the community question-
answering website Quora. The task is to determine
whether the given two questions are semantics
equivalent. MNLI (Williams et al., 2018) consists
of a set of sentence pairs accompanied by anno-
tations indicating textual entailment. The objec-
tive of this task is to determine whether a given
premise sentence implies the hypothesis (entail-
ment), contradicts it (contradiction), or has no clear
relationship with it (neutral). QNLI (Rajpurkar et al.,
2016) is a question-answering dataset consisting
of question-paragraph pairs. The goal is to deter-
mine whether the paragraph contains the answer to
the question. RTE datasets come from a series of
annual textual entailment challenges. The goal is
to judge the relationships between two sentences,
which include entailment and not entailment

A.2. Restaurant

The Restaurant dataset is an Aspect-based sen-
timent analysis sourced from SemEvall 2014
dataset (Pontiki et al., 2014) and in this work,
we use its adversarial version from (Xing et al.,
2020). The adversarial transformation contains
three parts: RevTgt, RevNon and AddDiff. RevTgt
is to generate sentences that reverse the original
sentiment of the target aspect. RevNon aims to
perturb the sentiments of the non-target aspects.

Specifically, for all the non-target aspects with the
same sentiment as the target aspects, we reverse
their sentiments. AddDiff further investigates if
adding more non-target aspects can confuse the
model. We add extra aspects that possess senti-
ments opposite to the target aspect. In this work,
we random select 300 samples from each transfor-
mation to conduct our experiments.

B. Prompt Design

B.1. Natural Language Prompts

The natural language prompts of AdvGLUE are the
same as (Wang et al., 2023a). We present all the
natural language prompts in Table 7.

B.2. Code-style Prompts

All prompts for the tasks in our paper will be pre-
sented in this section.

Prompts for SST-2:

class Sentiment_Classification:
"""
Base class for judging whether the sentiment

of the given sentence is "positive" or
"negative".

Parameters

input_text : str

The input sentence.

"""
def __init__(self, input_text):

self.input_text = input_text

def sentiment_classification(self):
polarity =

self.input_text.sentiment.polarity

if polarity > 0:
print(’positive’)

elif polarity < 0:
print(’negative’)

Prompts for QQP:

class Semantics_Consistent_Judgement:
"""
Base class for judging whether the semantics

of the two sentences are consistent.

Parameters

input_text1 : str

The first input sentence.
input_text2 : str

The second input sentence.
"""
def __init__(self, input_text1, input_text2):

https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-main.292
https://doi.org/10.18653/v1/2020.emnlp-main.292
https://doi.org/10.18653/v1/2020.emnlp-main.292

14200

Dataset Task Sample Class
SST2 sentiment classification 148 2
QQP quora question pairs 78 2
MNLI multi-genre natural language inference 121 3
QNLI question-answering NLI 148 2
RTE textual entailment recognition 81 2

Restaurant-T aspect-based sentiment analysis 900 3

Table 6: Statistics of test sets in this paper. For the Restaurant-T dataset, we randomly select 300
samples from each transformation (RevNon, RevTgt and AddDiff) and lead to a total of 900 samples.

Dataset Prompt
SST-2 Please classify the following sentence into either positive or negative. Answer

me with "positive" or "negative", just one word.
QQP Are the following two questions equivalent or not? Answer me with "equivalent"

or "not_equivalent".
MNLI Are the following two sentences entailment, neutral or contradiction? Answer

me with "entailment", "neutral" or "contradiction".
QNLI Are the following question and sentence entailment or not_entailment? Answer

me with "entailment" or "not_entailment".
RTE Are the following two sentences entailment or not_entailment? Answer me with

"entailment" or "not_entailment".
Restaurant-T What is the sentiment towards ’sentence’ in terms of ’aspect word’? Are they

viewed positively, negatively, or neutrally?

Table 7: natural language prompts

self.input_text1 = input_text1
self.input_text2 = input_text2

def semantics_similarity(self):

similarity =
cosine_similarity(self.input_text1,
self.input_text2)

if similarity > 0:
print("equivalent")

elif similarity < 0:
print("not_equivalent")

Prompts for MNLI:

class Entailment_Judgement:
"""
Base class for judging whether the premise

and the hypothesis are "entailment",
"neutral" or "contradiction".

Parameters

premise : str

The input premise.
hypothesis : str

The input hypothesis.
"""
def __init__(self, premise: str, hypothesis:

str):
self.premise = premise

self.hypothesis = hypothesis

def determine_relationship(self):
if is_entailment(self.premise,

self.hypothesis):
print("entailment")

elif is_contradiction(self.premise,
self.hypothesis):
print("contradiction")

else:
print("neutral")

Prompts for QNLI:

class Answer_Verification:
"""
Given a question, determines whether the

provided text contains the correct
answer to the question.

The relationship consists of "entailment"
and "not entailment".

Parameters

question : str

The input question.
text : str

The input text.
"""
def __init__(self, question, text):

self.question = question
self.text = text

14201

def determine_relationship(self):
if is_entailment(self.question,

self.text):
print("entailment")

else:
print("not_entailment")

Prompts for RTE:

class Entailment_Judgement:
"""
Base class for judging whether the two

sentences are "entailment" or
"not_entailment".

Parameters

sentence1 : str

The first input sentence.
sentence2 : str

The second input sentence.
"""
def __init__(self, premise: str, hypothesis:

str, relationship: str):
self.sentence1 = sentence1
self.sentence2 = sentence2

def determine_relationship(self):
if is_entailment(self.sentence1,

self.sentence2):
print("entailment")

else:
print("not_entailment")

Prompts for Restaurant-T:

class Aspect_Based_Sentiment_Analysis:
"""
Base class for aspect-based sentiment

analysis task.

Parameters

aspect : str

The target aspect term of the given
sentence.

sentence : str
The input text that contains the aspect.

"""
def __init__(self, sentence: str, aspect:

str):
self.sentence = sentence
self.aspect = aspect

def sentiment_classification(self):
if is_positive(self.sentence, self.aspect):

print("positive")
elif is_negative(self.sentence, self.aspect):

print("negative")

B.3. Other Code-style prompts Design

In Section 5.2.2, we design two other different
code-style prompts: class init and func exec.
Specifically, the "class init" prompt provides LLMs
with incomplete code with partial parameter input
of the class as triggers to prompt LLMs to com-
plete the code. The "func exec" converts the class
definition into a function definition. The detailed
results of these two designs can be found in Ta-
ble 2. Besides, following your advice, we will also
add other ablation experiments with regard to the
prompt design in the subsequent version of our
paper, such as the influence of certain parts of the
prompt (Class name, annotation etc.) We use the
QNLI task as an example to present the different
prompts.

Prompts for class init :

class Answer_Verification:
"""
Given a question, determines whether the

provided text contains the correct
answer to the question.

The relationship consists of "entailment"
and "not entailment".

Parameters

question : str

The input question.
text : str

The input text.
"""
def __init__(self, question, text,

relationship):
self.question = question
self.text = text
self.relationship = relationship

Prompts for func exec:

def Answer_Verification(question: str, text:
str):
"""
Given a question, determines whether the

provided text contains the correct
answer to the question.

The relationship consists of "entailment"
and "not entailment".

Args:
question (str): The input question.
text (str): The input text.

Returns:
str: "entailment", or "not entailment".

"""

if is_entailment(question, text):
print("entailment")

else:
print("not_entailment")

14202

C. Detailed Experiments Results

The detailed experiments of accuracy can be found
in this section. Table 8 and Table 10 present
the accuracy of datasets before (Original) and af-
ter adversarial transformations (Adversarial) with
text-davinci-003. Moreover, Table 10 and Table
11 present the results of gpt-3.5-turbo. All the re-
sults are under few-shot settings. From Tabel 8
and Table 9, we can conclude that using code-
style prompts only acquire little improvement on
the original datasets. Specifically, using code-
style instructions outperforms using natural lan-
guage instructions by 5.13 and 5.68 points in ac-
curacy with text-davinci-003 and gpt-3.5-turbo,
respectively. However, when employing adver-
sarial samples in the instructions, using code-
style instructions acquires a relatively larger im-
provement. Specifically, we get 3.02 and 5.68
points with text-davinci-003 and gpt-3.5-turbo,
respectively, showcasing the advantages of code-
style instructions in resisting adversarial attacks.

14203

Method
Dataset

AVGAdvGLUE Restaurant-T
SST-2 QQP MNLI QNLI RTE RevTgt RevNon AddDiff

NL 96.18 82.05 79.33 79.72 92.59 91.66 92.67 80 86.78
Code 98.47 83.33 84.2 77.7 92.59 91 92 78.67 87.25

Table 8: Original datasets results with text-davinci-003

Method
Dataset

AVGAdvGLUE Restaurant-T
SST-2 QQP MNLI QNLI RTE RevTgt RevNon AddDiff

NL 70.94 67.95 61.15 63.51 82.72 67 86 76 72.07
CoT 74.32 71.79 70.25 67.57 81.48 70.66 82 69.33 73.43

Code 75 73.07 68.59 66.21 87.65 70.67 88 77.33 75.82
Code+adv 78.38 75.64 72.72 64.86 87.65 72.66 87.33 78.33 77.20

Table 9: Adversarial datasets results of text-davinci-003

Method
Dataset

AVGAdvGLUE Restaurant-T
SST-2 QQP MNLI QNLI RTE RevTgt RevNon AddDiff

NL 99.23 83.33 76.03 75.67 83.95 91.33 92 83.33 85.61
Code 98.47 83.33 80.16 75.67 86.42 91.33 92 81.67 86.13

Table 10: Original datasets results of gpt-3.5-turbo

Method
Dataset

AVGAdvGLUE Restaurant-T
SST-2 QQP MNLI QNLI RTE RevTgt RevNon AddDiff

NL 79.05 76.92 60.33 62.83 67.9 67.3 77.3 72 70.45
CoT 78.37 73.07 74.38 64.18 69.13 62 79 69 71.14

Code 83.1 74.35 69.42 73.64 74.07 71.33 79.6 72.33 74.73
Code+adv 83.78 82.05 72.73 74.32 72.83 72.33 80 71 76.13

Table 11: Adversarial datasets results of gpt-3.5-turbo

	Introduction
	Background
	Textual Adversarial Attack
	In-context learning with LLMs

	Method
	Formulating Instructions into Code Style
	Adversarial Context Method

	Experiments
	Experimental setup
	Results

	Analysis
	Perplexity: Code vs NL
	Ablation Studies
	Different Code-style Instructions
	Number of In-context Demonstrations
	Different Part of Code Instructions

	Visualization Analysis
	Discussion for User-friendliness

	Related Work
	Conclusion
	Limitations
	Acknowledgements
	Bibliographical References
	Language Resource References
	Datasets
	AdvGLUE
	Restaurant

	Prompt Design
	Natural Language Prompts
	Code-style Prompts
	Other Code-style prompts Design

	Detailed Experiments Results

