BD-SHS: A Benchmark Dataset for Learning to Detect Online Bangla Hate Speech in Different Social Contexts
Nauros Romim, Mosahed Ahmed, Md Saiful Islam, Arnab Sen Sharma, Hriteshwar Talukder, Mohammad Ruhul Amin
Abstract
Social media platforms and online streaming services have spawned a new breed of Hate Speech (HS). Due to the massive amount of user-generated content on these sites, modern machine learning techniques are found to be feasible and cost-effective to tackle this problem. However, linguistically diverse datasets covering different social contexts in which offensive language is typically used are required to train generalizable models. In this paper, we identify the shortcomings of existing Bangla HS datasets and introduce a large manually labeled dataset BD-SHS that includes HS in different social contexts. The labeling criteria were prepared following a hierarchical annotation process, which is the first of its kind in Bangla HS to the best of our knowledge. The dataset includes more than 50,200 offensive comments crawled from online social networking sites and is at least 60% larger than any existing Bangla HS datasets. We present the benchmark result of our dataset by training different NLP models resulting in the best one achieving an F1-score of 91.0%. In our experiments, we found that a word embedding trained exclusively using 1.47 million comments from social media and streaming sites consistently resulted in better modeling of HS detection in comparison to other pre-trained embeddings. Our dataset and all accompanying codes is publicly available at github.com/naurosromim/hate-speech-dataset-for-Bengali-social-media- Anthology ID:
- 2022.lrec-1.552
- Volume:
- Proceedings of the Thirteenth Language Resources and Evaluation Conference
- Month:
- June
- Year:
- 2022
- Address:
- Marseille, France
- Editors:
- Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Jan Odijk, Stelios Piperidis
- Venue:
- LREC
- SIG:
- Publisher:
- European Language Resources Association
- Note:
- Pages:
- 5153–5162
- Language:
- URL:
- https://aclanthology.org/2022.lrec-1.552
- DOI:
- Cite (ACL):
- Nauros Romim, Mosahed Ahmed, Md Saiful Islam, Arnab Sen Sharma, Hriteshwar Talukder, and Mohammad Ruhul Amin. 2022. BD-SHS: A Benchmark Dataset for Learning to Detect Online Bangla Hate Speech in Different Social Contexts. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages 5153–5162, Marseille, France. European Language Resources Association.
- Cite (Informal):
- BD-SHS: A Benchmark Dataset for Learning to Detect Online Bangla Hate Speech in Different Social Contexts (Romim et al., LREC 2022)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-2/2022.lrec-1.552.pdf
- Code
- naurosromim/hate-speech-dataset-for-bengali-social-media
- Data
- Hate Speech