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Preface

The Sixth Conference on Machine Translation (WMT 2021) took place on Wednesday, November 10
and Thursday, November 11, 2021 immediately following the 2021 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2021).

This is the sixth time WMT has been held as a conference. The first time WMT was held as a conference
was at ACL 2016 in Berlin, Germany, the second time at EMNLP 2017 in Copenhagen, Denmark, the
third time at EMNLP 2018 in Brussels, Belgium, the fourth time at ACL 2019 in Florence, Italy, and
the fifth time at EMNLP-2020, which was held as an online event due to the COVID-19 pandemic.
Prior to being a conference, WMT was held 10 times as a workshop. WMT was held for the first
time at HLT-NAACL 2006 in New York City, USA. In the following years the Workshop on Statistical
Machine Translation was held at ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus, Ohio,
USA, EACL 2009 in Athens, Greece, ACL 2010 in Uppsala, Sweden, EMNLP 2011 in Edinburgh,
Scotland, NAACL 2012 in Montreal, Canada, ACL 2013 in Sofia, Bulgaria, ACL 2014 in Baltimore,
USA, EMNLP 2015 in Lisbon, Portugal.

The focus of our conference is to bring together researchers from the area of machine translation and
invite selected research papers to be presented at the conference.

Prior to the conference, in addition to soliciting relevant papers for review and possible presentation,
we conducted 13 shared tasks. These consisted of 10 translation tasks: Machine Translation of News,
Similar Language Translation, Biomedical Translation, Multilingual Low-Resource Translation for Indo-
European Languages, Large-Scale Multilingual Machine Translation, Triangular MT: Using English to
Improve Russian-to-Chinese Machine Translation, Translation Efficiency, Machine Translation using
Terminologies, Unsupervised and Very Low Resource Supervised Translation, and Lifelong Learning for
Machine Translation, two evaluation tasks: Quality Estimation of Translation and Metrics for Machine
Translation, and the Automatic Post-Editing task.

The results of all shared tasks were announced at the conference, and these proceedings also include
overview papers for the shared tasks, summarizing the results, as well as providing information about the
data used and any procedures that were followed in conducting or scoring the tasks. In addition, there
are short papers from each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submissions than we could accept for
presentation. WMT 2021 has received 49 full research paper submissions (not counting withdrawn
submissions). In total, WMT 2021 featured 18 full research paper presentations and 96 shared task
presentations.

The event hosted a panel discussion led by Markus Freitag (Google) on evaluation with Nitika Mathur
(Univ. Melbourne), Benjamin Marie (NICT), Ricardo Rei (Unbabel), Tom Kocmi (Microsoft).

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Loic Barrault, Ondiej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussa, Christian
Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz,
Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Tom Kocmi,
André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri,
Aurélie Névéol, Mariana Neves, Martin Popel, Matt Post, Marco Turchi, and Marcos Zampieri
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Findings of the WMT 2021 Shared Tasks in Unsupervised MT and Very Low Re-
source Supervised MT
Jindfich Libovicky and Alexander Fraser

Results of the WMT21 Metrics Shared Task: Evaluating Metrics with Expert-based
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Graeme Nail, Qiangian Zhu, Svetlana Tchistiakova, Jelmer van der Linde, Pinzhen
Chen, Sidharth Kashyap and Roman Grundkiewicz
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Hengchao Shang, Ting Hu, Daimeng Wei, Zongyao Li, Jianfei Feng, ZhengZhe Yu,
Jiaxin Guo, Shaojun Li, Lizhi Lei, ShiMin Tao, Hao Yang, Jun Yao and Ying Qin

The NiuTrans System for the WMT 2021 Efficiency Task
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Toms Bergmanis and Marcis Pinnis

CUNI Systems for WMT21: Terminology Translation Shared Task
Josef Jon, Michal Novék, Jodo Paulo Aires, Dusan Varis and Ondfej Bojar
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HW-TSC’s Submissions to the WMT21 Biomedical Translation Task

Hao Yang, Zhanglin Wu, Zhengzhe Yu, Xiaoyu Chen, Daimeng Wei, Zongyao Li,
Hengchao Shang, Minghan Wang, Jiaxin Guo, Lizhi Lei, chuanfei xu, Min Zhang
and Ying Qin
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Abstract task was designed to deal with the transla-
tion of documents in the cultural heritage do-
This paper presents the results of the news main for relatively low-resourced languages.
translation task, the multilingual low-resource In the automatic post-editing (APE) task, par-
translation for Indo-European languages, the ticipants were asked to develop systems capa-
triangular translation task, and the automatic ble to correct the errors made by an unknown
post-editing task organised as part of the Con- machine translation systems.
ference on Machine Translation (WMT) 2021.
In the news task, participants were asked to 1 Introduction
build machine translation systems for any of
10 language pairs, to be evaluated on test The Sixth Conference on Machine Translation
sets consisting mainly of news stories. The (WMT21)" was held online with EMNLP 2021
task was also opened up to additional test and hosted a number of shared tasks on various as-
suites to probe specific aspects of transla- pects of machine translation. This conference built

tion. In the Similar Language Translation
(SLT) task, participants were asked to de-
velop systems to translate between pairs of
similar languages from the Dravidian and Ro-

on 15 previous editions of WMT as workshops and
conferences (Koehn and Monz, 2006; Callison-
Burch et al., 2007, 2008, 2009, 2010, 2011, 2012;

mance family as well as French to two sim- Bojar et al., 2013, 2014, 2015, 2016, 2017, 2018a;
ilar low-resource Manding languages (Bam- Barrault et al., 2019, 2020).

bara and Maninka). In the Triangular MT This year we conducted several official tasks. In
translation task, participants were asked to this paper we report on the news task, the multilin-
build a Russian to Chinese translator, given gual low-resource translation for Indo-European

parallel data in Russian-Chinese, Russian-
English and English-Chinese. In the mul-
tilingual low-resource translation for Indo-
European languages task, participants built i
multilingual systems to translate among Ro- ceedings:

mance and North-Germanic languages. The "http://www.statmt.org/wmt21/

languages task, the triangular translation task, and
the automatic post-editing task. Additional shared
tasks are described in separate papers in these pro-

1
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* biomedical translation (Yeganova et al.,
2021)

* efficiency (Heafield et al., 2021)

* large-scale multilingual machine translation
(Wenzek et al., 2021)

* machine translation using terminologies
(Alam et al., 2021)

* metrics (Freitag et al., 2021b)

* quality estimation (Specia et al., 2021)

 unsupervised and very low-resource transla-
tion (Libovicky and Fraser, 2021)

In the news translation task (Section 2), partic-
ipants were asked to translate a shared test set,
optionally restricting themselves to the provided
training data (“constrained” condition). We in-
cluded 20 translation directions this year, with
translation between English and each of Chinese,
Czech, German, Japanese and Russian, as well as
French<+German being repeated from last year,
and English to and from Hausa and Icelandic be-
ing new for this year, along with Bengali<+>Hindi
and Xhosa<+Zulu. The translation tasks covered
a range of language families, and included both
low-resource and high-resource pairs. System out-
puts for each task were evaluated both automati-
cally and manually, but we only include the man-
ual evaluation here.

The human evaluation (Section 3) involves ask-
ing human judges to score sentences output by
anonymized systems. We obtained large numbers
of assessments from researchers who contributed
evaluations proportional to the number of tasks
they entered. We collected additional assessments
from a pool of linguists, as well as crowd-workers.
This year, the official manual evaluation metric is
again based on judgments of adequacy on a 100-
point scale, a method (known as “direct assess-
ment”, DA) that we explored in the previous years
with convincing results in terms of the trade-off
between annotation effort and reliable distinctions
between systems. In addition, other golden stan-
dards with this year’s systems were collected. The
human-in-the-loop GENIE leaderboard (Khashabi
et al., 2021) conducted de—en evaluations inde-
pendently in a Likert scale (Section 3.5). We refer
the reader to Freitag et al. (2021b) for MQM scor-
ing of en—de, en—ru, and zh—en.

The primary objectives of WMT are to evalu-
ate the state of the art in machine translation, to
disseminate common test sets and public train-
ing data with published performance numbers, and

to refine evaluation and estimation methodologies
for machine translation. As before, all of the
data, translations, and collected human judgments
are publicly available.> We hope these datasets
serve as a valuable resource for research into data-
driven machine translation, automatic evaluation,
or prediction of translation quality. News transla-
tions are also available for interactive visualization
and comparison of differences between systems at
http://wmt.ufal.cz/ using MT-ComparEval
(Sudarikov et al., 2016), and also on Explain-
aBoard® (Liu et al., 2021b).

In order to gain further insight into the perfor-
mance of individual MT systems, we again orga-
nized a call for dedicated “test suites”. Test suites
are custom additions to the inputs. Anyone can
provide a test suite for any subset of news trans-
lation task languages and we ensure that the test
suite is requested from all participating MT sys-
tems. The MT outputs are delivered back to test
suite authors for evaluation, which can be manual,
automatic or both, focusing on any possible aspect
of the MT systems. This year, five test suites were
acquired and translated by participating MT sys-
tems but only two were then analyzed in time for
these proceedings:

* Freitag et al. (2021b), the metrics task paper,
used TED talks as additional domain, scored
them with MQM, and further used these out-
puts and scores to assess domain-dependence
of MT evaluation metrics.

e Macketanz et al. (2021) reports on the
fourth application of a fine-grained test suite
for German«+English linguistic phenomena.
The previous instances (Macketanz et al.,
2018; Avramidis et al., 2019, 2020) use the
same underlying collection of sentences and
thus allow to observe the overall development
of MT systems in clear categories. This year,
the major jump was observed in the cate-
gory of idioms, especially due to a few excep-
tional MT systems. Many phenomena are be-
ing solved almost perfectly, the difficult cat-
egories remain false friends, ambiguity and
multi-word expressions.

The goal of the Similar Language Translation
(SLT) task (Section 4) is to evaluate the perfor-

Zhttp://statmt.org/wmt21/results.html
*http://explainaboard.nlpedia.ai/
leaderboard/task-mt/index.php



mance of MT systems taking into account the sim-
ilarity between pairs of closely-related languages
from the same language family. Following the
interest of the community in this topic (Costa-
jussa et al., 2018; Popovi¢ et al., 2020) and the
success of the past two editions of the SLT task
task at WMT 2019 and WMT 2020, we orga-
nize a third iteration of the task at WMT 2021.
SLT 2021 features a pair of similar Dravidian lan-
guages, namely Tamil - Telugu, and multiple pairs
of Romance languages involving Catalan, Span-
ish, Portuguese, and Romanian in all possible
combinations. A new track with French and two
similar low-resource Manding languages: Bam-
bara and Maninka was also included to encour-
age participants to take advantage of the similar-
ity between Bambara and Maninka and explore
data augmentation techniques, a typical scenario
of low-resource languages. Finally, translations
were evaluated in both directions using three au-
tomatic metrics: BLEU, RIBES, and TER.

The primary goals of the Triangular MT task
(Section 5) are to promote translation between
non-English languages, to optimally mix di-
rect and indirect parallel resources and exploit
noisy web data sources to build an MT sys-
tem. Specifically, the task was Russian to Chi-
nese machine translation, given parallel data com-
prising of direct (Russian-Chinese) and indirect
(Russian-English and English-Chinese) sources.
The submitted systems were evaluated on a (se-
cret) mixed-genre test set, drawn from the web and
curated manually for high-quality segment pairs.

The multilingual low-resource translation for
Indo-European languages task (MLLR, Sec-
tion 6) aims to investigate the best approaches
to deal with multilingual translation.  Usu-
ally, multilingual translation is done with the
help of a high-resourced language, e.g. En-
glish. In MLLR, we evaluate translation qual-
ity for Icelandic—Norwegian Bokmal-Swedish
(North-Germanic) and Catalan—Italian—Occitan—
Romanian (Romance). Higher resourced lan-
guages (Danish, German, English, Spanish,
French and Portuguese) are allowed for training
but not evaluated. We focus on a specific domain:
cultural heritage documents are extracted from Eu-
ropeana and Wikipedia, a domain where named
entities may also play a role in translation qual-
ity. The evaluation is done at language family level
with a combination of automatic metrics (BLEU,

TER, chrF, BertScore and COMET) and comple-
mented by a manual evaluation on a subset of lan-
guage pairs.

The automatic post-editing (APE) task (Sec-
tion 7) focuses on another MT-related problem:
the correction of machine-translated text gener-
ated by an unknown system. In continuity with
last year, in this seventh iteration of the task at
WMT we focused on two language pairs (English-
German and English-Chinese), using data drawn
from English Wikipedia articles and translated
with neural MT systems. The evaluation was car-
ried out both automatically — with TER and BLEU
respectively used as primary and secondary metric
- and manually — with the same direct assessment
method used for the news translation task.

2 News Translation Task

This recurring WMT task assesses the quality
of MT on text from the news domain. As in
the previous year, we included Chinese, Czech,
German, Japanese and Russian (to and from En-
glish) as well as French<>German. New language
pairs for this year were Icelandic and Hausa (to
and from English) as well as Bengali<+Hindi and
Xhosa++Zulu.

2.1 Test Data

As in previous years, the test sets consist of un-
seen translations prepared specially for the task.
The test sets are publicly released to be used as
translation benchmarks in the coming years. Here
we describe the production and composition of the
test sets.

The source texts for the test sets were all ex-
tracted from online news sites, with the exception
of Bengali<+»Hindi and Xhosa«>Zulu, which were
part of the FLORES-101 benchmark (Goyal et al.,
2021) and extracted from Wikipedia. The sources
used for the online news are shown in Table 1,
and all articles are from the second half of 2020.
For the French<+German task, we specifically se-
lected financial and economic news, whereas for
the other news sources, we randomly selected arti-
cles from general online news, including politics,
sports, international and local events.

For all language pairs, we aimed for a test set
size of 1000 sentences, and to ensure that the test
sets were “‘source-original”, in that the source text
is the original article and the target text is the trans-
lation. This is to avoid “translationese” effects on



the source language, which can have a detrimental
effect on the accuracy of evaluation (Freitag et al.,
2019; Laubli et al., 2020; Graham et al., 2020).
The exceptions were Chinese—English, where we
used a larger test set of 1948 sentences, and the
FLORES-101 test sets which were around 500
sentences, and derived from English source docu-
ments. For language pairs that were new this year
(i.e. Icelandic<+English and Hausa<+English) we
prepared development sets using the same process
as the test set, but concatenating both translation
directions into the same set. For each translated ar-
ticle in the development set, the direction of trans-
lation is clearly identified.

For WMT20, we experimented with using test
sources with line (segment) boundaries at para-
graphs (not sentences) for some language pairs,
but we found no evidence that translators used
their new freedom to reorganise sentences, and the
longer lines possibly made evaluation more diffi-
cult, so we reverted to a sentence-per-line format
this year. For selected language sources (Czech,
German and English, when translated into the
recurring languages) we retained the paragraph
boundaries from the original articles, but within
the paragraphs, the sentences were in separate seg-
ments. It was up to the participating systems to
make use of the paragraph breaks or not, but the
systems were expected to preserve the segment
boundaries.

The test sets for WMT21 were released using
a new XML format, replacing the “pseudo xml”
SGML format which had been used for many
years. The advantages of the new format are: (i)
it can be processed with standard XML tools, and
there is no longer any doubt about how to treat spe-
cial XML characters such as the ampersand (“&”);
(i1) the source, all references and all submissions
can be contained in one convenient XML file; (iii)
the metadata better matches the needs of the task,
and can be extended as necessary. We created sim-
ple tools for converting from text-based files to the
new XML format.*

The translation of the test sets was performed by
professional translation agencies, according to the
brief supplied in Appendix B. Several language
pairs got special attention. For Chinese<+English,
Russian<+English and German<>English, we ob-
tained a second reference in each direction from

“https://github.com/wmt-conference/
wmt- format-tools

a different translation agency, labelled “B”. For
German<>English, the “B” reference was found to
be a post-edited version of one of the participating
online systems, so we had to discard it. Microsoft
then sponsored a third independent translation, la-
belled “C”, and the metrics task organizers with
the support from Google later provided yet another
German<>English reference, discussed only in
Freitag et al. (2021b) as “D”. For Czech«+English,
the first reference (labelled “A”) which served in
reference-based manual evaluations, was provided
by a translation agency in both directions. The
second Czech<>English reference (labelled “B”)
which served as another system in the competi-
tion was provided by professional translators re-
cruited from teachers and students of translation
studies into Czech and three students and gradu-
ates of translation studies and one translator, En-
glish native speaker, into English.

2.2 Training Data

As in past years we provided a selection of parallel
and monolingual corpora for model training, and
development sets to tune system parameters. Par-
ticipants were permitted to use any of the provided
corpora to train systems for any of the language
pairs. As well as providing updates on many of the
previously released data sets, we included several
new data sets, mainly to support the new language
pairs.

Our training data includes the latest version
of ParaCrawl (Banén et al.,, 2020) for all lan-
guage pairs where it is available. New for this
year is a ParaCrawl corpus for Chinese<«+English,
which contains 14M sentences, as well as a small
Hausa«+English ParaCrawl. The JParaCrawl cor-
pus (for Japanese<+English) is constructed in a
similar way to ParaCrawl, but by a different group
(Morishita et al., 2020).

For Icelandic<+English we used the recently
released Parlce (Barkarson and Steingrimsson,
2019) a source of parallel data, and the Icelandic
Gigaword corpus for monolingual data (Stein-
grimsson et al., 2018).

For Hausa<+English, the data was mainly
drawn from Opus (Tiedemann and Nygaard,
2004), which is mostly religious and IT localisa-
tion text. We added a small (< 6000) parallel sen-
tence corpus extracted from the website of Aya-
tollah Khamenei,” now only accessible using the

5https://english.khamenei.ir/



English

ABC News (5), Al Jazeera (1), All Africa (2), BBC (4), Brisbane Times (3), CBS LA (1), CBS
News (3), CNBC (1), CNN (1), Daily Express (4), Daily Mail (1), Egypt Independent (3), Fox News (2),
Guardian (6), LA Times (1), London Evening Standard (2), Metro (1), NDTV (7), New York Times (2),
RTE (1), Russia Today (5), Seattle Times (4), Sky (1), The Independent (1), The Sun (2), UPI (1),
VOA (1), news.com.au (1), novinite.com (1),

Chinese

China News (76), Hunan Ribao (5), Jingji Guancha Bao (3), Macao Government (2), Nhan Dan (3),
RFI Chinese (6), VOA Chinese (3), Xinhua (57), tsrus.cn (1),

Czech

Aktudlné (4), Blesk (5), Denik (3), Dnes (1), E15 (1), Halé noviny (5), Hospodarské Noviny (1),
Idnes (2), Lidovky (7), Mediafax (6), Novinky (6), Tyden (1), Tydenek Homer Mostecka (1), CT24 (4),
Ceska Pozice (6), Ceska Televize (4), Ceské Noviny (4), Cesky Rozhlas (1),

German

Aachener Nachrichten (1), Abendzeitung Miichen (1), Abendzeitung Niirnberg (1), Allgemeine
Zeitung (1), Augsburger-allgemeine (1), Braunschweiger Zeitung (1), Das Bild (3), Dresdner Neueste
Nachrichten (1), Euronews (1), Frankfurter Allgemeine Zeitung (1), Freie Presse (1), Handels-
blatt (1), Hessische/Niedersaechsische Allgemeine (1), Infranken (3), Kurier (2), Lampertheimer
Zeitung (3), Landeszeitung (1), Main-Netz (1), Mainpost (1), Mittelbayerische Zeitung (2), Mit-
teldeutsche Zeitung (2), Morgenpost (2), Neue Presse (Coburg) (2), Nordbayerischer Kurier (3),
OE24 (1), Passauer Neue Presse (2), Peiner Allgemeine Zeitung (2), Pforzheimer Zeitung (1), Pots-
damer Neueste Nachrichten< (1), Rhein Zeitung (2), Rundschau online (1), Soster Anzeiger (1),
Salzburger Nachrichten (1), Schwibische (2), Schwibische post (2), Schwarzwilder Bote (2), Tiroler
Tageszeitung (2), Usinger Anzeiger (1), Westfélische Nachrichten (2), Wienerzeitung (1),

Hausa

Deutsche Welle (7), Freedom radio (22), Leadership (19), Premium Times (20), RFI Hausa (10), VOA
Hausa (18), VON Hausa (4),

Japanese

Fukui Shimbun (1), Hokkaido Shimbun (5), Iwate Nippo (3), Saga Shimbun (3), Sanyo Shimbun (4),
Shizuoka Shimbun (11), Ube nippo Shimbun (2), Yaeyama mainichi shimbun (1), Yahoo (49), Yama-
gata Shimbun (2),

Russian

Altapress (1), Altyn-orda (1), Argumenti Nedely (5), Argumenty i Fakty (6), Armenpress (1), BBC
Russian (1), Delovoj Peterburg (1), ERR (5), Gazeta (4), Interfax (3), Izvestiya (11), Kommersant (1),
Komsomolskaya Pravda (7), Lenta (6), Lgng (2), Moskovskij Komsomolets (9), Novye Izvestiya (1),
Ogirk (1), Parlamentskaya Gazeta (3), Rossiskaya Gazeta (5), Russia Today (8), Russkaya Planeta (1),
Sovsport (2), Sport Express (9), Tyumenskaya Oblast Segodnya (1), VOA Russian (1), Vedomosti (2),
Vesti (6), Xinhua (3),

German (economic)

Aachener Nachrichten (1), Abendzeitung Miichen (1), Das Bild (1), Der Spiegel (2), Epoch Times (1),
Frankfurter Allgemeine Zeitung (6), Handelsblatt (17), Haz (2), Kurier (4), Liibecker Nachrichten (1),
Mindener Tageblatt (1), Mittelbayerische Zeitung (1), NZZ (1), Neue Westfilische (1), Onetz (1), Pas-
sauer Neue Presse (2), Rheinische Post (1), Russia Today (3), Siiddeutsche Zeitung (8), Salzburger
Nachrichten (2), Tiroler Tageszeitung (1), Volksstimme (1), Yahoo (1), come-on.de (1),

French (econmic)

Algérie Presse Service (3), Aujourd’hui le Maroc (5), Derniere Heure (4), Dernieres Nouvelles
d’Alsace (1), Euronews (2), L’Independant (1), L’express (2), La Croix (4), La Meuse (3), La Tri-
bune (4), La Venir (1), Le Devoir (3), Le Figaro (17), Le Monde (5), Le Quotidien (1), Les Echos (1),
Liberté Algerie (1), Libre Belgium (1), Madagascar tribune (1), Metro Canada (1), Nice Matin (1),
Nouvel Obs (6), Russia Today (4), VOA Afrique (2),

Table 1: Composition of the test sets. The economic arcticles were used for French«+>German only. We did not record the
sources for the Icelandic articles, and the Bengali, Hindi, Xhosa and Zulu articles were from Wikipedia.



Europarl Parallel Corpus

Czech <> English German <> English German <> French
Sentences 645,241 1,825,745 1,801,076
Words 14,948,900 | 17,380,340 | 48,125,573 | 50,506,059 | 47,517,102 | 55,366,136
Distinct words 172,452 63,289 371,748 113,960 368,585 134,762

News Commentary Parallel Corpus

Czech <> English | German <> English | Russian <+ English
Sentences 253,456 388,813 331,596

Words 5,674,011 6,270,051 | 9,921,515 | 9,840,910 | 8,469,701 | 8,820,805

Distinct words | 176,403 70,774 | 215,101 86,518 | 207,701 82,938

Chinese <> English Japanese <+ English | German <> French
Sentences 313,934 1,851 296,022
Words - 7,982,550 | — 45,438 17,671,513 9,346,818
Distinct words | — 76,372 | — 6,280 | 185,348 87,481
Common Crawl Parallel Corpus
German <> English Czech < English Russian <> English French <+ German
Sentences 2,399,123 161,838 878,386 622,288

Words 54,575,405 | 58,870,638 | 3,529,783 | 3,927,378 | 21,018,793 | 21,535,122 | 13,991,973 | 12,217,457
Distinct words | 1,640,835 823,480 | 210,170 | 128,212 764,203 432,062 676,725 932,137

ParaCrawl Parallel Corpus

German < English Czech <> English Chinese < English
Sentences 82,638,202 14,083,311 14,170,585
Words 1,543,410,882 | 1,613,780,145 | 240,233,151 | 260,801,934 | — 253,776,811
Distinct Words 15,256,769 7,765,311 | 2,655,118 1,972,030 | - 1,871,639
Japanese <> English Russian <> English French <> German
Sentences 10,120,013 12,654,509 7,222,574
Words — 274,368,443 | 232,950,488 | 266,368,340 | 145,190,707 | 123,205,701
Distinct Words | — 2,051,246 | 2,913,181 1,816,590 1,534,068 | 2,368,682

Icelandic <+ English Hausa < English
Sentences 2,392,422 158,968
Words 39,528,080 | 42,454,372 | 4,041,027 | 3,957,605
Distinct Words 709,945 416,986 | 102,962 | 101,049

EU Press Release Parallel Corpus

Czech <> English German <> English
Sentences 452,411 1,631,639
Words 7,214,324 17,748,940 | 26,321,432 | 27,018,196
Distinct words | 141,077 83,733 402,533 197,030

Yandex 1M Parallel Corpus CzEng v2.0 Parallel Corpus
Russian <> English Czech <> English
Sentences 1,000,000 Sentences 60,980,645
Words | 24,121,459 | 26,107,293 Words | 757,316,261 | 848,016,692
Distinct 701,809 387,646 Distinct 3,684,081 | 2,493,804

WikiTitles Parallel Corpus

Chinese <> English | Czech <> English | German <> English | Hausa <> English
Sentences 922,194 410,977 1,474,196 7,501

Words |- 2,549,611 (990,191 | 1,065,417 | 3,219,123 | 3,763,461 | 14,285 14,629

Distinct | — 380,234 (218,992 | 186,375| 674,927 | 573,280| 7,855 7,827
Icelandic <> English | Japanese <> English | Russian <+ English German <> French

Sentences 50,181 757,052 1,189,097 1,006,563

Words | 90,620 100,847 | - 2,016,400 | 3,244,102 | 3,261,299 | 2,142,193 | 2,543,265
Distinct | 40,570 34,440 281,880 | 534,392 | 457,933 | 503,342 | 444,330

Figure 1: Statistics for the training sets used in the translation task. The number of words and the number of distinct words
(case-insensitive) is based on the Moses tokenizer and IndicNLP (https://github.com/anoopkunchukuttan/indic_nlp_
library).



CCMT Corpus

casia2015 | casict2011 | casict2015 | datum2011 | datum2017 neu2017
Sentences 1,050,000 1,936,633 2,036,834 1,000,004 999,985 2,000,000
Words (en) 20,571,578 | 34,866,598 | 22,802,353 24,632,984 25,182,185 | 29,696,442
Distinct words (en) 470,452 627,630 435,010 316,277 312,164 624,420
Extra Japanese-English Parallel Data
Subtitles Kyoto TED
Sentences 2,801,388 443,849 223,108
Words — | 23,933,060 | — | 11,622,252 4,554,409
Distinct - 161,484 | — 191,885 | — 60,786
Extra Hausa-English Parallel Data
Khamenei Opus
Sentences 5,837 584,004
Words 217,543 | 167,466 | 8,385,179 | 8,994,622
Distinct 6,075 7,942 219,203 193,518
CC-Aligned
Bengali<> Hindi Xhosa<«>Zulu
Sentences 3,365,142 94,323
Words 40,782,432 | 45,609,689 | 1,689,086 | 1,658,266
Distinct 996,612 860,033 186,070 173,148

United Nations Parallel Corpus

Russian <+ English Chinese <+ English

Sentences 23,239,280 15,886,041
Words 570,099,284 | 601,123,628 | — 425,637,920
Distinct 1,446,782 1,027,143 | - 769,760

Synthetic parallel data (both directions combined)

Czech <+ English Russian <+ English Chinese <> English

Sentences 126,828,081 76,133,209 19,763,867
Words 2,351,230,606 | 2,655,779,234 | 1,511,996,711 | 1,698,428,744 | — 416,567,173
Distinct 5,745,323 3,840,231 5,928,141 3,889,049 | — 1,188,933

Wikimatrix Parallel Data

Czech <> English German <> English Japanese <> English Icelandic <> English
Sentences 2,094,650 6,227,188 3,895,992 313,875
Words 34,801,119 | 39,197,172 | 113,445,806 | 118,077,685 | — 72,320,248 | 5,395,042 | 6,475,011
Distinct 1,068,844 798,095 2,855,263 1,827,785 | — 1,106,529 328,369 231,192
Russian <> English Chinese <> English German <> French
Sentences 5,203,872 2,595,119 3,350,816
Words 93,828,313 | 102,937,537 | - 58,615,891 | 68,249,384 | 59,422,699
Distinct 2,233,043 1,592,190 | - 1,059,537 1,067,450 1,844,533

Figure 2: Statistics for the training sets used in the translation task. The number of words and the number of distinct words
(case-insensitive) is based on the Moses tokenizer and IndicNLP (https://github.com/anoopkunchukuttan/indic_nlp_
library).



News Language Model Data

English German Czech Russian Japanese
Sentences 274,929,980 386,987,716 97,396,609 111,118,861 | 14,389,733
Words 6,782,988,670 | 7,951,191,279 | 1,760,715,133 | 2,010,171,968 —
Distinct words 8,329,647 39,524,377 5,960,637 5,679,507 -
Icelandic Chinese French Hausa Hindi Bengali
Sentences 534,647 | 10,771,382 96,402,399 272,966 46,187,245 10,101,626
Words 9,653,929 — | 2,338,364,059 | 7,305,501 | 872,106,937 | 148,586,981
Distinct words 308,924 - 3,975,116 125,350 2,752,071 1,091,788

Document-Split News LM Data (not dedudped)

Czech English German
Sentences 142,478,129 531,904,913 739,041,709
Words 2,221,995,079 | 11,472,609,712 | 12,524,314,673
Distinct words 5,744,574 8,595,778 26,849,693
Common Crawl Language Model Data
English German Czech Russian
Sent. | 3,074,921,453| 2,872,785,485| 333,498,145| 1,168,529,851
Words | 65,104,585,881 | 65,147,123,742 | 6,702,445,552 | 23,332,529,629
Dist. 342,149,665 338,410,238 48,788,665 90,497,177
Chinese Icelandic Hausa French
Sent. | 1,672,324,647 | 24,627,579 | 1,467,326 4,898,012,445
Words —1595,998,326 | 20,082,665 | 126,364,574,036
Dist. -| 7,483,421 688,610 363,878,959

Figure 3: Statistics for the monolingual training sets used in the translation task. The number of words and the number of dis-
tinct words (case-insensitive) is based on the Moses tokenizer and IndicNLP (https://github.com/anoopkunchukuttan/
indic_nlp_library).

Test Sets
Czech — EN EN — Czech German — EN EN — German
Lines. 1000 1002 1000 1002
Words 17,914 | 22,080 | 22,570 | 27,454 | 25,907 | 27,190 | 18,190 | 20,668 | 20,541 | 27,454 | 28,273 | 28,673
Distinct words | 6,457 | 4,032 | 4,425 | 5,374 | 87295 8577 | 5,115 | 4,012 | 3,980 | 5374 | 6,841 6,697
Chinese — EN | EN — Chinese Russian — EN EN — Russian
Lines. 1948 1002 1000 1002
Words - 72,334 | 27,454 | — | — | 17,796 | 21,400 | 21,185 | 27,454 | 26,413 | 26,253
Distinct words | — 8290 | 5374 | - | - | 6,315 | 4214 | 4230 | 5,374 | 8,591 8,377
Icelandic — EN | EN — Icelandic | Japanese — EN | EN — Japanese | Hausa <> EN
Lines. 1000 1000 1005 1000 997
Words 19,930 | 22,749 | 26,467 | 25,557 | - 28,846 | 26,467 - | 31,362 | 27,519
Distinct words | 5,282 3,773 | 5,258 6,614 | — 5,001 5,258 - | 4,032 | 4,240
EN <> Hausa | Bengali — Hindi | Hindi — Bengali | Xhosa — Zulu | Zulu <+ Xhosa
Lines. 1000 503 509 503 509
Words 26,467 | 33,915 | 11,439 14,133 | 14,286 11,136 | 9,180 9,314 | 9,320 9,065
Distinct words | 5,258 | 4,713 | 4,514 3,686 | 3,402 4,091 | 5,499 5,265 | 4,961 5,093
French — German | German — French
Lines. 1026 1000
Words 30,143 26,353 | 18,801 26,407
Distinct words 5,395 6,021 5,198 4,613

Figure 4: Statistics for the test sets used in the translation task. In the cases that there are three word counts, these are
for source, first target translation, and second target translation. The number of words and the number of distinct words
(case-insensitive) is based on the Moses tokenizer and IndicNLP (https://github. com/anoopkunchukuttan/indic_nlp_

library).



Wayback Machine.®

For the two FLORES-101 language pairs (i.e.
Bengali<+»Hindi and Xhosa<+Zulu) all training
data is from the CC-Aligned corpus (El-Kishky
et al., 2020).

Other language pairs used the same data sets as
last year, with updates wherever available.

The monolingual data we provided was similar
to last year’s, with a 2020 news crawl’ added to
all the news corpora. Note that news crawl now in-
cludes 59 languages, so is not limited to languages
used in WMT. In addition, we provided versions of
the news corpora for Czech, English and German,
with both the document and paragraph structure
retained. In other words, we did not apply sen-
tence splitting to these corpora, and we retained
the document boundaries and text ordering of the
originals.

Some statistics about the training and test mate-
rials are given in Figures 1, 2, 3 and 4.

2.3 Submitted Systems

In 2021, we received a total of 173 submissions.
The participating institutions are listed in Table 2
and detailed in the rest of this section. Each sys-
tem did not necessarily appear in all translation
tasks. We also included online MT systems (orig-
inating from 5 services), which we anonymized as
ONLINE-A,B,G,W,Y. All submissions, sources
and references are made available via github®.

The collect submissions, we used the submis-
sion tool, OCELoT,’ replacing the matrix that has
been used up until 2019. Using OCELoT gives us
more control over the submission and scoring pro-
cess, for example we are able to limit the number
of test submissions by each team, and we also dis-
play the submissions anonymously to avoid pub-
lishing any automatic scores.

For presentation of the results, systems are
treated as either constrained or unconstrained.
When the system submitters report that they were
only trained on the provided data, we class them as
constrained. The online systems are treated as un-
constrained during the automatic and human eval-
uations, since we do not know how they were built.

In Appendix C, we provide brief details of the
submitted systems, for those where the authors

®https://archive.org/web/

7http ://data.statmt.org/news-crawl

8https://github.com/wmt-conference/
wmt21l-news-systems

9https ://github.com/AppraiseDev/0OCELoT

provided such details.

3 Human Evaluation

A human evaluation campaign is run each year to
assess translation quality and to determine the of-
ficial ranking of systems taking part in the news
translation task. This section describes how data
for the human evaluation is prepared, the process
of collecting human assessments, and computation
of the official results of the shared task.

3.1 Direct Assessment

We have employed Direct Assessment (DA, Gra-
ham et al., 2013, 2014, 2016) as the primary mech-
anism for evaluating systems since running a com-
parison of DA and relative ranking in 2016 (Bo-
jar et al., 2016). DA has several important fea-
tures including accurate quality control of crowd-
sourcing. With DA human evaluation, human as-
sessors are asked to rate a given translation by how
adequately it expresses the meaning of the corre-
sponding reference translation or source language
input on an analogue scale, which corresponds to
an underlying absolute 0~100 rating scale.'’

3.1.1 Source and Reference-based
Evaluations

The original definition of DA provides human as-
sessors with a reference translation. The bene-
fit of this reference-based evaluation is that only
speakers of the target language are needed, but the
quality of the reference translation becomes criti-
cal and even if flawless, evaluating against a single
reference translation could bias evaluators towards
that reference.

In 2018, we trialled source-based (or “bilin-
gual”) evaluation for the first time, for English
to Czech translation. In this configuration, the
human assessor is shown the source input and
system output only (with no reference translation
shown). The assessor thus has to understand both
the source and target languages very well but the
quality of the reference is no longer vital. In fact,
the human-generated reference can be included in
the evaluation as an additional system to provide
an estimate of human performance.

"No sentence or document length restriction is ap-
plied during manual evaluation. Direct Assessment is also
employed for evaluation of video captioning systems at
TRECvid (Graham et al., 2018; Awad et al., 2019, 2021) and
multilingual surface realisation (Mille et al., 2018, 2019).



Team | Language Pairs | System Description
AFRL ru-en (Erdmann et al., 2021)
ALLEGRO.EU en-is,is-en (Koszowski et al., 2021)
AMU ha-en,en-ha (Nowakowski and Dwojak, 2021)
BITU-NMT en-zh (no associated paper)
BORDERLINE en-zh,de-en,zh-en (Wang et al., 2021)
BUPT-RUSH en-zh,en-ja,en-de (no associated paper)
CAPITALMARVEL en-zh,en-ja,ja-en (no associated paper)
CUNI-DOCTRANSFORMER en-cs,cs-en (Gebauer et al., 2021)
CUNI-MARIAN-BASELINES | en-cs (Gebauer et al., 2021)
CUNI-TRANSFORMER2018 en-cs,cs-en (Gebauer et al., 2021)
DIDI-NLP zh-en (no associated paper)
EPHEMERALER en-zh,en-ja (no associated paper)

ETRANSLATION

fr-de,en-cs,en-de

(Oravecz et al., 2021)

FACEBOOK-AI

ha-en,en-zh,en-ha,en-is,en-ja,de-en,
zh-en,en-ru,en-cs,cs-en,ru-en,en-de,

(Tran et al., 2021)

ja-en,is-en
FIDMATH xh-zu (Martinez, 2021)
GTCOM ha-en,bn-hi,en-ha,zu-xh,hi-bn,xh-zu (Bei and Zong, 2021)
HAPPYNEWYEAR en-zh,zh-en (no associated paper)
HAPPYPOET en-zh,de-en,en-de (no associated paper)
HW-TSC ha-en,en-zh,bn-hi,en-ha,en-is,en-ja, (Wei et al., 2021)

zu-xh,de-en,zh-en,hi-bn,xh-zu,en-de,

ja-en,is-en
ICL en-zh,de-en,zh-en,en-de (no associated paper)
[IE-MT zh-en,ja-en (no associated paper)
ILLINI en-ja,ja-en (Le et al., 2021)
KWwAINLP zh-en,ja-en (no associated paper)
LAN-BRIDGE-MT en-zh,en-is (no associated paper)
LISN fr-de,de-fr (Xu et al., 2021)
MACHINE-TRANSLATION en-zh,zh-en (no associated paper)

MANIFOLD ha-en,en-ha,en-is,de-en,en-ru,de-fr, (no associated paper)
ru-en,en-de,is-en

MIDEIND en-is,is-en (Jonsson et al., 2021)

MiSS en-zh,en-ja,zh-en,ja-en (Liet al., 2021b)

MOVELIKEAJAGUAR en-zh,en-ja,ja-en (no associated paper)

MS-EGDC ha-en,bn-hi,en-ha,zu-xh,hi-bn,xh-zu (Hendy et al., 2021)

NIUTRANS ha-en,en-zh,en-ha,en-is,en-ja,zh-en, (Zhou et al., 2021)
en-ru,ru-en,ja-en,is-en

NJUSC-TSC en-zh,zh-en (no associated paper)

NUCLEAR-TRANS en-zh,en-de (no associated paper)

NVIDIA-NEMoO

de-en,en-ru,ru-en,en-de

(Subramanian et al., 2021)

P3AI

ha-en,en-zh,en-ha,fr-de,de-en,zh-en,
de-fr,en-de

(Zhao et al., 2021)

SMU en-zh,de-en,zh-en (no associated paper)

TALP-UPC fr-de,de-fr (Escolano et al., 2021)
TRANSSION ha-en,bn-hi,en-ha,zu-xh,hi-bn,xh-zu (no associated paper)

TWB ha-en,en-ha (no associated paper)

UEDIN ha-en,bn-hi,en-ha,de-en,hi-bn,en-de (Chen et al., 2021; Pal et al., 2021)
UF en-zh,de-en,zh-en,en-de (no associated paper)

VOLCTRANS-AT de-en,en-de (Qian et al., 2021)
VOLCTRANS-GLAT de-en,en-de (Qian et al., 2021)
WATERMELON de-en (no associated paper)
WECHAT-AI en-zh,en-ja,en-de,ja-en (Zeng et al., 2021)
WINDFALL en-zh (no associated paper)
XMU zh-en,ja-en (no associated paper)
YYDS en-zh,zh-en (no associated paper)
ZENGHUIMT en-zh,zh-en (Zeng, 2021)

ZMT ha-en,en-ha (no associated paper)

Table 2: Participants in the shared translation task. The translations from the online systems were not submitted by their
respective companies but were obtained by us, and are therefore anonymized in a fashion consistent with previous years of the
workshop.
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For both reference and source-based evalua-
tion, we require human assessors to only evalu-
ate translation info their native language. Follow-
ing WMT19 and WMT20, we thus again use the
source-based evaluation only for out-of-English
language pairs. This is especially relevant since
we have a large group of volunteer human asses-
sors with native language fluency in non-English
languages and high fluency in English, while we
generally lack the reverse, i.e. native English
speakers with high fluency in non-English lan-
guages.

We use different implementation and human an-
notators for into-English and out-of-English. We
describe the approaches separately. Reference-
based (monolingual) into-English human evalu-
ation is described in Section 3.2, while source-
based (bilingual) out-of-English and non-English
human evaluation is described in Section 3.3.
A third, simplified annotation was used for
Bengali<+Hindi and Xhosa<>Zulu, Section 3.4.

3.1.2 Translationese

Prior to WMT19, all the test sets included a
mix of sentence pairs that were originally in the
source language, and then translated to the tar-
get language, and sentence pairs that were orig-
inally in the target language but translated to
the source language. The inclusion of the latter
“reverse-created” sentence pairs has been shown
to introduce biases into the evaluations, particu-
larly in terms of BLEU scores (Graham et al.,
2020). Therefore we have avoided it for all
language pairs, apart from Bengali<+Hindi and
Xhosa<+Zulu, where the texts are all translated
from English.

3.1.3 Document Context

As mentioned already in our discussion in
WMT18 and as also established within the com-
munity (Laubli et al., 2018b; Toral et al., 2018a),
evaluating sentences out of their document con-
text can skew the results. The effect is particularly
pronounced when comparing human and machine
translation, where it is observed that evaluators
tend to rate the human translation higher (relative
to the machine translation) when the translations
are viewed in context. Human translators always
have access to the document context when trans-
lating to create the references.

In WMT19, we experimented with a DA style
that considers document context in a simple way.

11

Language Pair Sys.  Assess. Assess/Sys
Czech—English 9 10,651 1,183.4
German—English 20 25,718 1,285.9
Hausa—English 14 17,321 1,237.2
Icelandic—English 10 11,124 1,112.4
Japanese— English 16 17,055 1,065.9
Russian—English 11 11,499 1,045.4
Chinese—English 24 44,268 1,844.5
Total to-English 104 137,636 1,3234

Table 3: Amount of data collected in the WMT21 man-
ual evaluation campaign for evaluation into-English; after re-
moval of quality control items.

Dubbed “SR+DC” (segment rating with docu-
ment context), this method presents one segment
at a time but the segments are no longer shuffled
(as in “SR—DC”, segment rating without docu-
ment context). Instead, they are provided in the
order in which they appear in the document. The
implementation still has the limitation that the as-
sessors cannot go back to the previous segment.

An improved alternative to “SR+DC” is to of-
fer the full document and allow the assessors to
review their segment-level ratings. We call this
setup “SR+FD” (segment ranking in a full docu-
ment) and illustrate the user interface in Appraise
in Figure 5.!

This year, for all language pairs for which doc-
ument context was available, we include it when
evaluating translations. Note that the ratings are
nevertheless collected on the segment level, moti-
vated by the power analysis described in Graham
et al. (2019) and Graham et al. (2020). The par-
ticular details on how document context is made
available to assessors depends on the translation
direction, as described in more detail in Sec-
tions 3.2 to 3.4.

3.2 Human Evaluation of Translation
into-English

In terms of the News translation task manual eval-
uation for into-English language pairs, a total of
589 turker accounts were involved.!? 488,396
translation assessment scores were submitted in
total by the crowd, of which 170,194 were pro-
vided by workers who passed quality control.!3
System rankings are produced from a large set
of human assessments of translations, each of
which indicates the absolute quality of the out-

""Compare with Figures 3 and 4 in Bojar et al. (2019).

’Numbers do not include the 1,078 workers on Mechani-
cal Turk who did not pass quality control.

BNumbers include quality control segments.



1/12 documents, 4 items left in document

WMT20DocSrcDA #214: Doc. #seattle_times.7674-2

English — German (deutsch)

Below you see a document with 6 sentences in English and their corresponding candidate transiations in German (deutsch). Score each candidate translation in the

document context, answering the question.

How accurately does the candidate text (right column, in bold) convey the original semantics of the source text (leff column) in the document context?

You may revisit already scored sentences and update their scores at any time by clicking at a source fext.

~ Man gets prison after woman finds bullet in her skull

v A Georgia man has been sentenced to 25 years in prison for shooting his
girlfriend, who didn't realize she survived a bullet to the brain until she went to the
hospital for treatment of headaches.

A News outlets report 39-year-old Jerrontae Cain was sentenced Thursday on
charges including being a felon in possession of a gun in the 2017 attack on 42-
year-ald Nicole Gordon

— Notatall |

Reset

v Suffering from severe headaches and memory loss, Gordon was examined last
year by doctors who found a bullet lodged in her skull

“ Gordon told police she didn't remember being shot, but did remember an
argument with Cain during which her car window shattered and she passed out
She thought she was hurt by broken glass, and she was patched up at the home of
Cain's mother.

Der Mann wird gefangen, nachdem die Frau in ihrem Schédel

Expand all ilems Expand unannotated Collaps all items

v

geschossen ist

Ein georgischer Mann wurde zu 25 Jahren Gefangnis verurteilt,

weil er seinen Freund geschossen hat, der nicht gewusst hatte,
dass er eine Kugel ins Gehirn lberlebte, bis er in das
Krankenhaus zur Behandlung

Nachrichtenagenturen-Bericht 39-jahrige Jerrontae Cain wurde

am Donnerstag wegen Anklage verurteilt, darunter ein Felon im
Besitz einer Waffe beim Angriff auf 42-jahrige Nicole Gordon im
Jahr 2017.

Perfectly —

Gordon, das an schweren Kopfschmerzen und
Gedéchtnisverlusten leidet, wurde im vergangenen Jahr von
Arzten untersucht, die ein in ihren Schidel eingesetztes
Geschoss gefunden haben.

Gordon teilte der Polizei mit, dass sie sich nicht daran erinnere,
geschossen zu werden, sondern sich an ein Argument mit Cain
erinnerte, in dem ihr Autofenster erschitterte und sie ausging.

Sie dachte, sie sei von zerbrochenem Glas verletzt worden, und

sie wurde in der Heimat der Mutter von Cain aufgesteckt.

Flease score the document translafion above answering the question (you can score the entire document only after scoring all previous sentences):

How accurately does the entire candidate document in German (deutsch) (right column) convey the original semantics of the source document in English (left column)?

— Notatall

Perfectly —

@ This is the GitHub version sumtoadev of the Appraise evaluation system. % Some rights reserved. & Developed and maintained by Christian Federmann

Figure 5: Screen shot of the document-level DA (SR+FD, segment rating within the full document) configuration in the
Appraise interface for an example assessment from the human evaluation campaign. The annotator is presented with the entire
translated document randomly selected from competing systems (anonymized) and is asked to rate the translation of individual

segments and then entire document on sliding scales.

put of a system. Table 3 shows total numbers of
human assessments collected in WMT?21 for into-
English language pairs contributing to final scores
for systems. '

3.2.1 Crowd Quality Control

Collection of segment-level ratings with document
context (SR+DC, Segment Rating + Document
Context) involved constructing HITs so that each
sentence belonging to a given document (produced
by a single MT system) was displayed to and rated
in turn by the human annotator.

“Number of systems for WMT21 includes four “human”
systems comprising human-generated reference translations
used to provide human performance estimates.
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We then injected the three kinds of quality con-
trol translation pairs described in Table 4: we re-
peat pairs expecting a similar judgment (Repeat
Pairs), damage MT outputs expecting significantly
worse scores (Bad Reference Pairs) and use refer-
ences instead of MT outputs expecting high scores
(Good Reference Pairs). For each of these three
types, we include the MT output, along with its
corresponding control item.

HIT's were then constructed as follows, with as
close as possible to 100 segments in a single HIT:

1. All documents produced by all systems are
pooled;

I5Tf a “human” system is included to provide a human per-



Repeat Pairs:
Bad Reference Pairs:
Good Reference Pairs:

Original System output (10)
Original System output (10)
Original System output (10)

An exact repeat of it (10);
A degraded version of it (10);
Its corresponding reference translation (10).

Table 4: Standard DA HIT structure quality control translation pairs hidden within 100-translation HITs, numbers of items

are provided in parentheses.

2. Documents are then sampled at random
(without replacement) and assigned to the
current HIT until the current HIT contains
close to (but less than) 70 segments

. Once documents amounting to close to 70
segments have been assigned to the current
HIT, we select a subset of these documents
to be paired with quality control documents;
this subset is selected by repeatedly checking
if the addition of the number of the segments
belonging to a given document (as quality
control items) will keep the total number of
segments in the HIT below 100; if this is the
case, it is included; otherwise it is skipped
until the addition of all documents has been
checked. In doing this, the HIT is structured
to bring the total number of segments as close
as possible to 100 segments.

Once we have selected a core set of origi-
nal system output documents and a subset of
them to be paired with quality control ver-
sions for each HIT, quality control documents
are automatically constructed by altering the
sentences of a given document into a mix-
ture of three kinds of quality control items
used in the original DA segment-level quality
control: bad reference translations, reference
translations and exact repeats (see below for
details of bad reference generation and Table
5 for numbers of words replaced in document
segments);

Finally, the documents belonging to a HIT
are shuffled.

Construction of Bad References As in previ-
ous years, bad reference pairs were created au-
tomatically by replacing a phrase within a given
translation with a phrase of the same length, ran-
domly selected from n-grams extracted from the
full test set of reference translations belonging to
that language pair. This means that the replace-
ment phrase will itself comprise a mostly fluent

formance estimate, it is also considered a system during qual-
ity control set-up.
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Translation # Words Replaced

Length (N) in Translation
1 1
2-5 2
6-8 3
9-15 4
16-20 5
>20 | N/4 |

Table 5: Number of words replaced when constructing qual-
ity control items.

sequence of words (making it difficult to tell that
the sentence is low quality without reading the en-
tire sentence) while at the same time making its
presence highly likely to sufficiently change the
meaning of the MT output so that it causes a no-
ticeable degradation. The length of the phrase to
be replaced is determined by the number of words
in the original translation, as listed in Table 5.

Quality Filtering When an analogue scale (or
0-100 point scale, in practice) is employed, agree-
ment cannot be measured using the conventional
Kappa coefficient, ordinarily applied to human as-
sessment when judgments are discrete categories
or preferences. Instead, to measure consistency
we filter crowd-sourced human assessors by how
consistently they rate translations of known dis-
tinct quality using the bad reference pairs de-
scribed previously. Quality filtering via bad ref-
erence pairs is especially important for the crowd-
sourced portion of the manual evaluation. Due to
the anonymous nature of crowd-sourcing, when
collecting assessments of translations, it is likely
to encounter workers who attempt to game the ser-
vice, as well as submission of inconsistent evalu-
ations and even robotic ones. We therefore em-
ploy DA’s quality control mechanism to filter out
low quality data, facilitated by the use of DA’s ana-
logue rating scale.

Assessments belonging to a given crowd-source
worker who has not demonstrated that he/she can
reliably score bad reference translations signifi-
cantly lower than corresponding genuine system



(A) (A)

Sig. Diff. & No Sig. Diff.

All Bad Ref. Exact Rep.
Czech—English 290 73 (25%) 68 (93%)
German—English 605 162 (27%) 150 (93%)
Hausa—English 423 109 (26%) 101 (93%)
Icelandic—English 273 75 (27%) 67 (89%)
Japanese—English 315 103 (33%) 91 (88%)
Russian—English 187 84 (45%) 77 (92%)
Chinese—English 617 195 (32%) 178 (91%)
Total 1,694 589 (35%) 544 (92%)

Table 6: Number of crowd-sourced workers taking part
in the reference-based SR+DC campaign; (A) those whose
scores for bad reference items were significantly lower than
corresponding MT outputs; those of (A) whose scores also
showed no significant difference for exact repeats of the same
translation; note: many workers evaluated more than one lan-
guage pair.

output translations are filtered out. A paired sig-
nificance test is applied to test if degraded transla-
tions are consistently scored lower than their orig-
inal counterparts and the p-value produced by this
test is used as an estimate of human assessor re-
liability. Assessments of workers whose p-value
does not fall below the conventional 0.05 thresh-
old are omitted from the evaluation of systems,
since they do not reliably score degraded transla-
tions lower than corresponding MT output transla-
tions.

Table 6 shows the number of workers partic-
ipating in the into-English translation evaluation
who met our filtering requirement in WMT21 by
showing a significantly lower score for bad refer-
ence items compared to corresponding MT out-
puts, and the proportion of those who simultane-
ously showed no significant difference in scores
they gave to pairs of identical translations. We re-
moved data from the non-reliable workers in all
language pairs.

3.2.2 Producing the Human Ranking

This year all rankings (for to-English transla-
tion) were arrived at via segment ratings presented
one at a time in their original document order
(SR+DC).

In order to iron out differences in scoring strate-
gies of distinct human assessors, human assess-
ment scores for translations were first standard-
ized according to each individual human asses-
sor’s overall mean and standard deviation score.

Average standardized scores for individual seg-
ments belonging to a given system were then com-
puted, before the final overall DA score for a given
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system is computed as the average of its segment
scores (Ave z in Table 7). Results are also reported
for average scores for systems, computed in the
same way but without any score standardization
applied (Ave % in Table 7).

Human performance estimates arrived at by
evaluation of human-produced reference transla-
tions are denoted by “HUMAN” in all tables.

Clusters are identified by grouping systems to-
gether according to which systems significantly
outperform all others in lower ranking clusters, ac-
cording to Wilcoxon rank-sum test. Rank ranges
are based on the same head-to-head statistical sig-
nificance tests. For instance, if a system is statisti-
cally significantly worse than 2 other systems, and
not statistically different from 4 other systems, its
rank is reported as 3-6 (the top of the rank range
is 2+1, the bottom 2+4).

All data collected during the human evalua-
tion is available at http://www.statmt.org/wmt21/
results.html. Appendix A shows the underlying
head-to-head significance test official results for
all pairs of systems and also reports BLEU, chrF,
and COMET scores.

3.3 Bilingual Human Evaluation

Human evaluation for nine out-of-English and
non-English translation directions used a source-
based (sometimes called “bilingual”) direct as-
sessment of individual segments in the full docu-
ment context (SR+FD), as established in WMT20
(Barrault et al., 2020).

In an attempt to break more ties among the par-
ticipating systems, we also ran a second stage of
annotation using segment-level contrastive source-
based DA ignoring document context (labelled
“contr:SR—DC”) for top-10 systems (plus human
references) for 3 out-of-English language pairs.
Details on the second stage are in Section 3.3.5.

In the source-based DA campaign, we collected
303,627 assessments in total after excluding qual-
ity control items and users who did not pass
the quality control. The contrastive source-based
DA campaign provided 64,031 translation assess-
ments. The total numbers of collected assess-
ments per language pair are presented in Table 8.
For data collection, we used the open-source Ap-
praise Evaluation Framework (Federmann, 2012)
for both assessment types.



Czech—English Hausa— English Russian— English
Rank Ave. Ave.z System Rank Ave. Ave.z System Rank Ave. Ave.z System
1-2 77.8 0.111 Facebook-Al 1 74.4  0.248 Facebook-Al 1-5 77.5 0.137 NVIDIA-NeMo
1-2 78.4 0.081 Online-A 2-4 68.8 0.118 Online-B 1-4 739 0.130 Online-W
3-6 72.0 0.008 CUNI-DocTransf 3-7 66.6 0.062 TRANSSION 3-7 73.1 0.108 Online-B
3-6 74.0 —0.005 Online-B 2-6 665 0.059 ZMT 1-7 733 0.089 HUMAN-B
3-8 71.5 —0.008 CUNI-Trf2018 3-6 69.0 0.059 GTCOM 2-7 71.7 0.060 Manifold
3-8 74.5 —0.032 Online-W 3-9 653 0.029 HW-TSC 1-7 704 0.056 Facebook-Al
5-9 67.2 —0.039 Online-G 5-19 652 0.002 MS-EgDC 3-8 68.5 0.044 NiuTrans
7-9 744 —0.084 Online-Y 6-10 60.1 —0.031 P3AI 7-10 65.1 0.016 Online-G
5-9 75.6 —0.085 HUMAN-B 6-10 62.4 —0.032 NiuTrans 8-11 65.5 —0.014 AFRL
8-11 63.5 —0.090 Online-Y 8-11 63.9 —0.022 Online-A
German—sEnglish 10-12 59.6 —0.112 Manifold 9-12 69.1 —0.123 Online-Y
Rank Ave. Ave.z System B_B ggg 78;(7)2 ngiU
-5 71.9 0.126 Borderline 1 569 —0267 TW];“ Chinese—English
1-6 735 0.124 Online-A ’ ’ Rank Ave. Ave.z System
1-4 78.6 0.122 Online-W 1-5 75.0 0.042 NiuTrans
4 795 0.113 UF Icelandic— English 1-6 77.0 0.039 KwaiNLP
3-8 732 0.106 VolcTrans-AT Rank Ave. Ave.z System 1-6 75.6 0.031 DIDI-NLP
4-9 77.5 0.100 Facebook-Al 1 745 0.293 Facebook-Al 1-9 74.1 0.019 HUMAN-B
5-12 758 0.068 ICL 2 748 0.112 Manifold 1-9 717 0.016 HappyNew Year
4-12 734 0.048 Online-G 37 751 0.045 NiuTrans 2-19 74.0 —0.001 P3AI
8-17 69.7 0.016 Online-B 3-8 713 0.028 Online-B 4-18 70.5 —0.023 Borderline
7-17 713 0.016 Online-Y 3-7 76.6 0.013 HW-TSC 4-19 72.6 —0.026 ICL
7-17 71.6  0.010 VolcTrans-GLAT 3-7 69.7 0.009 Mideind 6-17 70.1 —0.029 MiSS
5-16 69.6 0.007 P3AI 3-9 754 0.003 Online-A 3-24 73.1 —0.031 HE-MT
9-19 70.6 —0.008 SMU 6-9 70.1 —0.037 Allegro.eu 9-22 72.8 —0.032 Machine-Translation
9-17 73.1 —0.008 UEdin 7-9 71.7 —0.080 Online-Y 7-21 70.6 —0.034 SMU
9-17 69.1 —0.010 NVIDIA-NeMo 10 65.2 —0.256 Online-G 7-21 70.7 —0.036 yyds
10-19 69.9 —0.035 Manifold 6-20 70.1 —0.037 Facebook-Al
15-20 67.0 —0.043 Watermelon . 7-21 73.6 —0.042 Online-B
7-17 71.8 —0.061 happypoet Japanese—English 7-21 735 —0.050 ZengHuiMT
16-20 66.8 —0.081 HUMAN-C Rank Ave. Ave.z System 7-21 73.0 —0.062 HW-TSC
18-20 66.0 —0.120 HW-TSC 1 738 0.141 HW-TSC 7-22 67.6 —0.068 XMU
2-5 65.1 0.082 IIE-MT 12-24 76.0 —0.072 NJUSC-TSC
2-6 68.6 0.046 NiuTrans 11=24 72.1 —0.082 Online-G
2-9 678 0.033 KwaiNLP 822 729 —0.087 Online-W
2-6 662 0.032 Facebook-Al 17-24 70.1 —0.103 UF
5-11 635 0.025 XMU 20-24 66.7 —0.106 Online-A
3-10 66.8 0.011 capitalmarvel 20-24 69.0 —0.174 Online-Y
5-11 60.9 0.001 Online-B
6-11 61.5 —0.031 MiSS
5-11 66.7 —0.039 Online-W
7-12 59.3 —0.062 WeChat-Al
11-14 59.0 —0.080 Online-A
12-16 55.0 —0.140 Online-G
12-16 64.8 —0.157 movelikeajaguar
13-16 62.2 —0.189 Online-Y
13-16 55.4 —0.193 Illini

Table 7: Official results of WMT21 News Translation Task for translation into-English (SR+DC). Systems ordered by DA
score z-score; systems within a cluster are considered tied; lines indicate clusters according to Wilcoxon rank-sum test p <
0.05; rank ranges are based on the same test (for details, see Section 3.2.2); grayed entry indicates resources that fall outside

the constraints provided.
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Language Pair Sys.  Assess. Assess/Sys
English-Czech 12 50,491 4,207.6
English-German 22 24,689 1,122.2
English-Hausa 15 18,656 1,243.7
English-Icelandic 12 16,940 1,411.7
English-Japanese 16 43,991 2,749.4
English-Russian 11 31,632 2,875.6
English-Chinese 31 84,322 2,720.1
German-French 10 21,018 2,101.8
French-German 10 11,888 1,188.8
Total standard DA 139 303,627 2,184.4
English-Czech 12 19,279 1,606.6
English-German 12 23,212 1,934.3
English-Chinese 12 21,540 1,795.0
Total contrastive DA 36 64,031 1,778.6

Table 8: Amount of data collected in the WMT21 manual
document- and segment-level evaluation campaigns for bilin-
gual source-based evaluation out-of-English and non-English
language pairs. The system counts include the human refer-
ences (either 1 or 2 references, depending on language pair).

3.3.1 Sources of Human Annotators

We used three groups of annotators: participants
in the News Shared Task, crowd-workers from the
Toloka platform, and paid professional annotators
sponsored by Microsoft.

We asked participants of the news task to con-
tribute around 9 hours of annotation time (which
we estimated at 12 HITs) per each primary sys-
tem submitted, with each HIT including roughly
100 segment translations. Furthermore, we col-
lected information about the classification of their
annotators type. Unfortunately, only 65% of the
requested annotations were finished by participat-
ing teams.

The second annotator group was provided by
Toloka AI'® Toloka Al is a global data labeling
company that helps its customers generate ma-
chine learning data at scale by harnessing the wis-
dom of the crowd from around the world. It relies
on a geographically diverse crowd of several mil-
lion registered users (Pavlichenko et al., 2021).!7
Toloka tests proficiency of their annotator crowd
and excludes from future annotations anyone who
does not pass quality control in the Appraise tool.

The last part of annotations is sponsored by Mi-
crosoft, who contributed with their crowd of quali-
fied paid bilingual speakers experienced in the an-
notation process. Moreover, Microsoft tracks the
performance of the annotators, and those who fail

Yhttps://toloka.ai/
"https://hackernoon.com/
evolution-of-the-data-production-paradigm-in-ai
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quality control are permanently removed from the
pool of annotators. This increases the overall qual-
ity of the human assessment.

For bilingual human evaluation, Microsoft con-
tributed with 42%, WMT News participants con-
tributed with 37%, and Toloka platform with 21%
of all valid annotations (after removal of annota-
tors that do not pass quality control). The distri-
bution of individual groups of annotators per each
language is presented in Table 9.

3.3.2 Document-Level Assessment

This year’s human evaluation for out-of-English
and non-English language pairs features a
document-level direct assessment configuration
as presented last year (Barrault et al., 2020). We
again use the segment level rating but provide
the full document at once (SR+FD, segment
rating within a full document), for a more reliable
evaluation (Castilho et al., 2020; Laubli et al.,
2020).

Figure 5 above shows a screenshot of the fully
document-level interface. In the default scenario,
an annotator scores individual segments one by
one and, after scoring all of them, on the same
screen, the annotator then judges the translation
of the entire document displayed. Annotators
can, however, revisit and update scores of previ-
ously assessed segments at any point of the anno-
tation of the given document. It has been shown
that presenting the entire document context on a
screen may lead to higher quality segment- and
document-level assessments (Grundkiewicz et al.,
2021) improving the correlation between seg-
ment and document scores and increasing inter-
annotator agreement for document scores. A simi-
lar setup has been used by Popel et al. (2020) even
for more than two systems compared at once.

3.3.3 Quality Control

For the document-level evaluation of out-of-
English translations, HITs were generated using
the same method as described for the SR+DC
evaluation of into-English translations in Sec-
tion 3.2.1 with a minor modification: Since the
annotations are made by researchers and profes-
sional translators who ensure a better quality of
assessments than the crowd-sourced workers, only
bad references are used as quality control items.



Microsoft Toloka Participants

annotators | paid crowd | linguists annotators researchers students
English - Chinese 33% 11% 2% 20% 17% 17%
English - Czech 27% 18% - 54% - -
English - German 56% 29% 13% - 2% -
English - Hausa 63% 35% 3% - - -
English - Icelandic 82% 5% 13% - - -
English - Japanese 43% 20% 1% 26% 4% 8%
English - Russian 29% 39% 9% - 23% -
French - German 76% 14% 11% - - -
German - French 43% 45% 11% - - -
Total 42% 21% 37%

Table 9: Distribution of annotation crowds for each language pair in bilingual human evaluation. Annotator types are self-

classified by participants.

3.3.4 Including Human Translations

Source-based DA allows us to include human ref-
erences in the evaluation as another system to
provide an estimate of human performance. Hu-
man references were added to the pool of sys-
tem outputs prior to sampling documents for tasks
generation. Each reference is assessed individu-
ally if multiple references are available, which is
the case for English—German, English—Czech,
English—Russian, and English—Chinese.

3.3.5 Contrastive Direct Assessment

This year we extended the bilingual source-based
human evaluation with contrastive evaluation us-
ing segment-level pairwise direct assessments
(Novikova et al., 2018; Sakaguchi and Van Durme,
2018). It has been pointed out (Freitag et al.,
2021a) that standard direct assessment may not
be able to properly differentiate high-quality MT
system outputs. The contrastive approach to DA
can strengthen the discriminative power as anno-
tators judge translations in relation to each other.
When standard DA can likely provide better abso-
lute quality assessment, the contrastive evaluation
can provide better relative quality assessments be-
tween system pairs. This may help create a more
reliable ranking of systems if used on top of the
standard approach described in Section 3.3.

The contrastive evaluation is similar to the rel-
ative ranking used from WMTOS8 (Callison-Burch
etal., 2008) to WMT16 (Bojar et al., 2016), where
annotators were presented with up to five system
outputs and corresponding source and reference
sentence and asked to rank these systems between
each other. The main differences in this year’s

contrastive evaluation to the relative rankings are
that 1) the evaluation is source-based, i.e. without
the reference, 2) the continuous scale is used in-
stead of ranks, and 3) only two system outputs are
judged at the same time instead of five.

To reduce the cognitive load on annotators, we
decided to trial this contrastive approach evaluat-
ing individual sentences independent of their con-
text. This is a very important difference compared
to the the first stage (Section 3.3).

We ran the contrastive evaluation for
English—Chinese, English—Czech and
English—+German, and we selected top-10

best performing systems based on DA z-score
from the ranking created using standard direct
assessment for those languages (Table 10), and
two human references.

This contrastive evaluation was sponsored by
Microsoft and performed by the bilingual paid
annotator group as described in Section 3.3.1.
Assessments were collected using the open-
source Appraise Evaluation Framework (Feder-
mann, 2012). A screenshot of the user inter-
face used in this stage is shown in Figure 6.
Each annotator is presented with two randomly
selected translated segments from competing sys-
tems (anonymized) and asked to rate both of them
on a continuous scale of 0-100. Upon request
by the annotator, the differences between the two
translations were highlighted at the word level to
help avoid missing differences. This highlighting
may however reduced the effectiveness of control
items.
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0/10 blocks, 10 items left in block

WMT21CTRA #285:Segment #341

English — German (deutsch)

Fakhfakh stepped down the same day the party filed a no-confidence motion against him.

— Source text

How accurately does each of the candidate text(s) below convey the original semantics of the source text above?

Fakhfakh trat am selben Tag zuriick, an dem die Partei einen Misstrauensantrag gegen ihn einreichte.

«— Not at all

Perfectly —

Fachfakh trat am selben Tag zuriick, als die Partei ein Misstrauensvotum gegen ihn einreichte.

« Not at all

Reset Show/Hide diff.

Perfectly —

Match sliders

@ This is the GitHub version #umt21dev of the Appraise evaluation system. ® Some rights reserved. >3 Developed and maintained by Christian Federmann and the Appraise Dev team.

Figure 6: Screen shot of the contrastive DA configuration in the Appraise interface for an example assessment from the
2nd stage of human evaluation campaign. The annotator is presented with two translated segments randomly selected from
competing system outputs (anonymized) and is asked to rate both of them on sliding scales.

3.3.6 Human Rankings

Table 10 shows official news task results for trans-
lation out-of-English, where lines indicate clusters
according to Wilcoxon rank-sum test p < 0.05.

Source-based DA scores were collected based
on the document-level annotation interface, so
context was available during annotation. All sys-
tems are evaluated in isolation, based on the an-
notators’ perception of translation quality given
the source text and document context. Across
all language pairs, human reference translations
end up in the top-scoring cluster, indicative of a
(relatively) high quality of these references. For
language pairs with large numbers of submis-
sions, we observe little to no clustering. Notably
English—German has only two clusters, one of
which contains all but one of the submitted sys-
tems, and English—Chinese ends up with a huge
mono cluster containing all submissions. While
there are differences in average scores and z scores
these are not statistically significant enough for
effective clustering. As a substitute, rank ranges
give an indication of the respective system’s trans-
lation quality.

Table 11 shows contrastive news task results
for translation out-of-English, where lines indi-
cate clusters according to Wilcoxon rank-sum test
p < 0.05.

Contrastive, source-based DA scores
(contr:SR—DC) were collected using a segment-
level annotation interface, so context was not
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been available to annotators. Results for the
source-based DA annotation phase (SR+FD) in
Table 11 were computed on the subset of data
for the ten systems and two references for which
we have run the contrastive, source-based DA
annotation phase.

We generally observe better clustering for the
contr:SR—DC. This is especially noteworthy as
the number of annotations collected per system
is much higher for the first, SR+FD, DA phase
(for two of the three language pairs on which
contr:SR—DC was run). It seems that pairwise
comparison of system outputs is beneficial for de-
termining whether differences between systems
are statistically significant.

In contrast to the first annotation phase, we
find that human reference translations are scored
worse, and significantly worse than the top clus-
ter. We explain this by the fact that our contrastive
setup was run on segment-level while the source-
based DA annotators had access to the full docu-
ment context. A simple explanation that should
nevertheless be empirically validated is that the
wording of the sentence created for and within the
context of the document does not sound flawless
and natural when evaluated in isolation (L&ubli
et al., 2018a; Toral et al., 2018b). Some machine
translation systems do consider the surrounding
sentences but their capacity of ‘contextualizing’
the candidate sentences is probably limited.

Observing the striking difference in system



English— Czech English— Icelandic English— Chinese
Rank Ave. Ave.z System Rank Ave. Ave.z System Rank Ave. Ave.z System
1 90.2 0.397 HUMAN-A 1 88.1 0.872 HUMAN-A 1-3  82.5 0.325 HUMAN-B
24 879 0.284 HUMAN-B 2 845 0.594 Facebook-Al 2-14 749 0.284 HappyNewYear
24 87.6 0.263 Facebook-Al 3-4 682 0.277 NiuTrans 1-7  81.2 0.250 Facebook-Al
2-4 86.1 0.214 Online-W 34 727 0.240 Manifold 1-8 80.0 0.216 HUMAN-A
5-7 83.0 0.122 eTranslation 5-9 752 0.200 Online-A 4-19 753 0.164 Borderline
5-6 82.1 0.047 CUNI-Transformer2018 5-7 65.6 0.130 Lan-Bridge-MT 2-19 81.0 0.161 bjtu_nmt
6-8 79.2 -0.120 CUNI-DocTransformer 59 626 0.063 Mideind 3-14 755 0.151 Lan-Bridge-MT
7-9 79.3 -0.154 CUNI-Marian-Baselines 6-9 73.9 0.026 Online-B 4-21 79.3 0.124 BUPTfrugh
8-10 77.8 -0.183 Online-B 6-9 75.6 -0.034 HW-TSC 2-18 79.2 0.098 NiuTrans
9-10 74.6 -0.308 Online-A 10 62.0 -0.236 Online-Y 4-18 757 0.091 Machine_Translation
11 762 -0373 Online-Y 11 487 -0.470 Allegro.eu 2-15 809 0.078 SMU
12 65.6 -0.674 Online-G 12 339 -1.082 Online-G 6-22 81.4 0.064 -capitalmarvel
4-19 79.5 0.056 WeChat-Al
. . 622 78.1 0.026 Online-W
English—German English— Japanese 7-22 752 0.004 ICL
Rank Ave. Ave.z System Rank Ave. Ave.z System 9-23 759 -0.008 HW-TSC
1-17 833 0.266 Online-B 1-2 864 0.430 Facebook-Al 5-23 782 -0.025 ZengHuiMT
1-5 847 0.243 Online-W 1-2 853 0.314 HUMAN-A 11-22 81.2 -0.026 yyds
1-14 86.6 0.217 WeChat-Al 3-5 842 0.266 Online-W 1026 79.7 -0.050 P3AI
1-6  87.6 0.145 Facebook-Al 3-5 813 0.168 WeChat-Al 17-27 771 -0.061 windfall
1-10 894 0.116 UF 3-5 82.6 0.148 NiuTrans 624 789 -0.075 Online-B
2-17 852 0.089 HW-TSC 6-8 77.8 0017 HW-TSC 13-26 76.8 -0.080 NJUSC_TSC
3-17 86.8 0.072 UEdin 6-8 71.8 -0.042 MiSS 9-24 777 -0.100 MiSS
3-18 865 0.041 P3AI 8-13 78.5 -0.051 Online-Y 1927 77.0 -0.101 UF
3-18 86.4 0.030 HUMAN-A 6-10 77.8 -0.067 BUPT_rush 2228 727 -0.123 Online-A
5-19 833 0.013 happypoet 8-13 70.9 -0.129 Online-A 22-28 79.3 -0.160 happypoet
4-19 86.1 0.010 eTranslation 9-13 674 -0.184 Online-B 20-28 769 -0.185 nuclear_trans
4-19 844 0.001 Online-A 9-14 742 -0.284 ephemeraler 25-29 764 -0.247 ephemeraler
3-18 845 0.001 HUMAN-C 9-14 72.5 -0.339 capitalmarvel 28-31 67.5 -0.257 Online-G
5-19 788 -0.053 VolcTrans-AT 12-14 70.1 -0.373 movelikeajaguar 29-31 67.1 -0.463 Online-Y
5-19 867 -0.055 NVIDIA-NeMo 15-16 63.5 -0.440 Illini 29-31 683 -0.613 movelikeajaguar
8-21 83.1 -0.058 Manifold 15-16 65.7 -0.541 Online-G
4-20 84.3 -0.062 Online-G
12-20 84.5 -0.072 Online-Y ) ) French—German
1821 73.9 -0.130 ICL English— Russian Rank Ave. Ave.z Syst.em
4-20 850 -0.140 VolcTrans-GLAT Rank Ave. Ave.z System 1-5 877 0.088 Online-W
16-21 78.3 -0.179 nuclear_trans 1-3  86.0 0.317 HUMAN-B 1-7 892 0.052 Online-A
22 800 -0415 BUPT rush 1-3 833 0.277 Online-W 1-4 89.5 0.035 HUMAN-A
= 1-3 825 0.093 HUMAN-A 2-8 857 0.002 LISN
4-6 794 0.056 Online-B 1-8 86.9 -0.014 Online-B
English—Hausa 47 753 0032 Online-A 4-10 850 -0.021 talp_upc
Rank Ave. Ave.z System 4-7 80.1 -0.001 Facebook-Al 3-8 85.0 -0.064 eTranslation
1-2 841 0362 HUMAN-A 7-10 74.5 -0.123 NiuTrans 7-10 84.1 -0.154 Online-G
14 827 0.264 Facebook-Al 7-10 723 -0.153 Manifold 3-10 86.6 -0.210 Online-Y
2-5 80.8 0.263 NiuTrans 7-10 75.4 -0.161 NVIDIA-NeMo 7-10 86.4 -0.229 P3AI
3-6 81.2 0.175 Online-B 5-10 76.0 -0.180 Online-G
‘;g ggé 832 ;E/II}NSSION 11 627 -0.541 Online-Y German—sFrench
: : Rank Ave. Ave.z System
7-1078.0 - 0.018  P3AI 13 879 0.160 OnlineB
7-10 787 0.006 HW-TSC 1-3 865 0.126 HUMAN-A
8-12 752 -0.026 AMU 326 83.4 0.018 Mani
— . . anifold
7-10 78.8 -0.036 GTCOM -6 848 0.006 Online-W
9-12 75.0 -0.128 MS-EgDC 3.6 845 0.004 Online-A
12-15 70.2 -0.227 UEdin 6-10 83.0 -0.084 Online-G
11-15 734 -0.243 Manifold 310 835 -0.148 P3AI
12-15 70.5 -0.340 TWB 6-10 81.3 _0' 149 LISN
11-15 67.7 -0.448 Online-Y 6-10 837 -0.177 Online-Y
6-10 81.0 -0.190 talp_upc

Table 10: Official results of WMT21 News Translation Task for translation out-of-English (SR+FD). Systems ordered by
DA score z-score; systems within a cluster are considered tied; lines indicate clusters according to Wilcoxon rank-sum test
p < 0.05; rank ranges are based on the same test (for details, see Section 3.2.2); grayed entry indicates resources that fall
outside the constraints provided. DA scores are collected using a document-level annotation interface, so context is available to

annotators.
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ranking by SR+FD vs. contr:SR—DC, esp. the
discrepancy in the ranking of human transla-
tions, we conclude that evaluating MT systems
without document context is no longer reliable
for mid- and high-quality MT systems. This is
also supported by the surprising observation in
Czech—English in Table 7 where humans seemed
to be surpassed by all participating MT systems.
(Considering statistical significance, the claim is
arguably weaker: humans share the second cluster
with the majority of the systems.) We acknowl-
edge that it is possible that the Czech—English
HUMAN-B references are of much worse qual-
ity than the English—Czech ones,'® but we tend
to put more trust in the reference quality than in
the SR+DC method for two reasons: (1) The an-
notators did not see the whole document at once
and cannot go back in their annotation, so their
effective capability to consider context is limited.
(2) It is possible that other effects of reference-
based DA in the Czech— English start playing role
when both the candidate and reference are human
vs. when only the reference is human. One pos-
sibility would be a stronger confidence of asses-
sors when scoring human translations, leading e.g.
to more polarized scores. A detailed investigation
into manual evaluation methods that word reliably
for both human and machine translations is thus
still needed.

3.4 Human Evaluation of Bengali«<>Hindi
and Xhosa<«>Zulu Translation (Wikipedia
Data)

Translation quality for Bengali<+Hindi and
Xhosas+»Zulu was evaluated using Direct As-
sessment without considering document context
(SR—DC) with a scoring scale of 1-100 by vetted
human evaluators. The human evaluators were
asked to provide a judgment that they felt most
accurately reflected the perceived quality of each
corresponding translation of the give source
sentence. Definitions of translation quality within

'8The quality assurance for each of “A” and “B” references
for English<+>Czech was comparable; not that the same trans-
lators would be producing both directions. In fact, we ex-
pected the “B” translations to be better, because they were
created by experienced students and teachers of translation
studies, who are active translators themselves and who specif-
ically attempted to produce as good translations as possible.
As the to-Czech scores suggest, our annotators preferred the
translation agency “A” translations significantly more. But
even if the “A” translations were also better than “B” in from-
Czech, we see it as very unlikely that the translatologist trans-
lations would be worse than all systems.
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several scoring ranges were provided to assist
evaluators in providing consistent annotations.

A participating system translation was dis-
played on the right next to its corresponding
source sentence on the left. The sentence pairs
were then randomized and passed to a human eval-
uator for a single direct assessment. The evalua-
tion was performed on the sentence level and eval-
uators provided a direct assessment score for each
sentence-translation pair. The user interface was
simpler than the one shown in Figure 5: instead
of a slider, the annotators had to enter the scores
numerically.

Because evaluators were extremely difficult to
recruit for these language pairs and the evaluation
was thus low resource, no quality control items
were injected and we focused on the vetting pro-
cess of the evaluators prior to performing any as-
sessment. The only sanity check was that evalu-
ators enter an integer between 1 and 100 as the
scores.

All segments from the FLORES Wikimedia test
set were included for the evaluation. Each segment
was annotated and assessed by one evaluator only
once.

All four language directions were assessed by
trusted evaluators who have been vetted by a lo-
calization vendor specializing in translation eval-
uation services, to have native fluency of the tar-
get language, fluent to native understanding of the
source language, have lived in the target region for
at least five years recently, and have had at least
two to five years of professional translation expe-
rience. For Hindi—Bengali and Bengali—Hindi,
two human evaluators were used with the transla-
tion data being split in half and randomly assigned
to the respective evaluators. Two human evalua-
tors assessed for Xhosa—Zulu data and one eval-
uator assessed for Zulu—Xhosa. The number of
evaluators and judgments they made is provided
in Table 12.

The final scores for Bengali<»Hindi and
Xhosa¢>Zulu are provided in Table 13.

3.5 GENIE DE-EN Evaluation

This year, human evaluations for
German—English translation with the GE-
NIE leaderboard were also carried out. GENIE

is an ongoing effort that centralizes and facil-
itates human evaluations for natural language
generation tasks (Khashabi et al., 2021). In



Source-based DA Contrastive, source-based DA

(on document level) (segment level ignoring doc. context)
SR+FD contr:SR—DC
English—Czech English—Czech
Rank Ave. Ave.z System Rank Ave. Ave.z System
I 902 0.397 HUMAN-A 1-2  87.8 0.281 Facebook-Al
2-4 879 0.284 HUMAN-B 1-2 87.6 0.237 Online-W
2-4  87.6 0.263 Facebook-Al 3-5 856 0.091 CUNI-DocTransformer
2-4  86.1 0.214 Online-W 3-6 849 0.067 CUNI-Transformer2018
5-7 83.0 0.122 eTranslation 4-7 843 0.026 HUMAN-A
5-6  82.1 0.047 CUNI-Transformer2018 3-6 84.1 -0.003 HUMAN-B
6-8 79.2 -0.120 CUNI-DocTransformer 6-7 834 -0.057 eTranslation
7-9 793 -0.154 CUNI-Marian-Baselines 8-9 8277 -0.119 CUNI-Marian-Baselines
8-10 77.8 -0.183 Online-B 8-10 81.3 -0.219 Online-A
9-10 74.6 -0.308 Online-A 9-10 81.1 -0.238 Online-B
11 76.2 -0.373 Online-Y 11-12 77.7 -0.489 Online-Y
12 65.6 -0.674 Online-G 11-12 75.8 -0.630 Online-G
Five clusters Four clusters
English—German English—German
Rank Ave. Ave.z System Rank Ave. Ave.z System
1-10  83.3 0.209 Online-B 1-3  89.6 0.093 Facebook-Al
1-6 84.7 0.179 Online-W 1-3  88.5 0.067 WeChat-Al
1-10 86.6 0.109 WeChat-Al 1-3 884 0.035 Online-W
1-6 87.6 0.077 Facebook-Al 49 872 -0.044 NVIDIA-NeMo
3-11 86.8 0.008 UEdin 4-11 879 -0.058 HUMAN-C
1-11  86.5 -0.014 P3AI 4-10 86.7 -0.062 P3AI
3-11 864 -0.031 HUMAN-A 49 86.5 -0.080 UEdin
3-11 86.1 -0.038 eTranslation 4-10 87.1 -0.088 Online-B
1-11 845 -0.063 HUMAN-C 4-10 86.9 -0.102 eTranslation
10-12 84.5 -0.109 Online-Y 6-12 85.7 -0.190 happypoet
5-12 833 -0.131 happypoet 10-12 85.7 -0.192 Online-Y
3-12 86.7 -0.134 NVIDIA-NeMo 10-12 85.8 -0.226 HUMAN-A
Single cluster Two clusters
English— Chinese English— Chinese
Rank Ave. Ave.z System Rank Ave. Ave.z System
1-8 749 0.205 HappyNew Year 1-5 82.6 0.072 Borderline
1-5 825 0.186 HUMAN-B 1-5 823 0.071 bjtu_nmt
1-7 812 0.139 Facebook-Al 1-5 825 0.062 SMU
1-5 80.0 0.105 HUMAN-A 1-5 824 0.048 Facebook-Al
3-9 755 0.045 Lan-Bridge-MT 1-5 82,5 0.011 NiuTrans
2-11 81.0 0.019 bjtu_nmt 6-11 82.0 -0.016 HappyNew Year
29 809 -0.012 SMU 6-11 82.0 -0.016 Machine Translation
7-12  75.3 -0.066 Borderline 6-10 82.0 -0.056 Lan-Bridge-MT
4-12 7577 -0.068 Machine_Translation 6-11 81.6 -0.094 BUPT _rush
7-12 814 -0.074 capitalmarvel 6-11 81.2 -0.126 capitalmarvel
8-12 79.3 -0.090 BUPT_rush 6-11 81.7 -0.149 HUMAN-A
5-12  79.2 -0.105 NiuTrans 12 793 -0.393 HUMAN-B
Single cluster Three clusters

Table 11: Contrastive results of WMT21 News Translation Task for translation out-of-English. Systems ordered by DA score
z-score; systems within a cluster are considered tied; lines indicate clusters according to Wilcoxon rank-sum test p < 0.05;
rank ranges are based on the same test (for details, see Section 3.2.2); grayed entry indicates resources that fall outside the
constraints provided. DA scores collected using a segment-level annotation interface, so context is not available to annotators.
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Language Pair  Sys. Assess. Evaluators
Bengali—Hindi 9 4,461 2
Hindi—Bengali 9 4,512 2
Xhosa—Zulu 6 2,952 2
Zulu—Xhosa 5 2,502 1
Total 29 14,437 7

Table 12: Amount of data collected in the WMT21 man-
ual evaluation campaign for evaluation Hindi to/from Bengali
and Zulu to/from Xhosa

addition to all German—English submissions,
four original transformer baselines with varying
sizes and depths were trained and evaluated:
GENIE-large-6-6 (transformer large with a 6-layer
encoder and a 6-layer decoder), GENIE-base-6-6,
GENIE-base-3-3, and GENIE-base-1-1."° These
models were trained solely on the given training
data without ensembling, backtranslation, or any
other data augmentation method.

Similar to the official into-English evalua-
tions, evaluations are done monolingually where
Human-A is used as the reference. Each HIT con-
tains 5 segments that are randomly shuffled, and
no document context is considered during evalu-
ations. Turkers are asked to decide whether they
agree or disagree that the prediction adequately
expresses the meaning of the reference. Turkers
are given the following additional instructions: a
prediction is adequate if in the absence of the ref-
erence, the prediction perfectly conveys the mean-
ing intended by the reference. The user interface
for annotating one candidate segment in the HIT
is illustrated in Figure 7.

For quality control, we first selected Amazon
Mechanical Turkers who had completed at least
5000 HITs with a 99+% approval rate and had a
locale of US, GB, AU, or CA. They were then
asked to carefully read the instructions and fin-
ish 10 sample questions created from WMT 2019
submissions and references. They were allowed
to participate only when they correctly annotate
9 instances at least. In addition to this quality
control at the entry point, we kept monitoring to
detect spamming behavior. In particular, we ran-
domly replaced 5% of the model predictions with
sentences identical to the corresponding reference
(Perfect Ref., similar to good reference in Section
3.2.1), and 5% of the model predictions with the

“The leaderboard is public at https://leaderboard.
allenai.org/genie-mt21/submissions/public. All
models and code to reproduce are available at https://
github.com/jungokasai/GENIE_wmt2021-de-en.
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reference from a different question (Wrong Ref.).
We then randomly selected 800 examples from the
test set to annotate. During annotation, we moni-
tored how annotators labeled the Perfect Ref. and
Wrong Ref. questions. Annotators that failed to
both assign a high score to the Perfect Ref. and
a low score to the Wrong Ref. questions were re-
moved from the annotator pool, and all of their
annotations were discarded. This qualification re-
sulted in removing 5% of the participants. Since
spammers invest little effort into completing each
HIT, they can complete many more than other an-
notators (we found they would have completed
up to 50% of the HITs in our preliminary exper-
iments). Therefore, removing the 5% of partici-
pants that spammed annotations substantially im-
proved the quality of our assessment.

In summary, there are several major differences
from the setup used in the official evaluations:

* Turkers assess the adequacy by a five-
category Likert scale, which is later con-
verted to scalar values: strongly agree (1.0),
agree (0.75), neutral (0.5), disagree (0.25),
and strongly disagree (0.0).

* All 5 segments are randomly chosen for
each HIT, and the document context is dis-
regarded.

* For evaluating each system, we randomly
sample 800 segments from the test set. The
randomly selected instances are shared across
all systems.

* To maximize the number of segments an-
notated for a given budget, each segment is
annotated only once (unilabeling). Under a
fixed annotation budget, unilabeling results
are shown to be relatively stable compared
to multilabeling (i.e., evaluating one segment
by multiple annotators. See Section 5.1 of
Khashabi et al., 2021).

* The overall scores are calculated by averag-
ing raw numbers over the 800 segments. No
standardization is applied.

* Different quality controls are applied as dis-
cussed above.

Table 14 shows results from the GENIE evalua-
tion for German to English translation. There are
systems that are ranked highly, both in the offi-
cial and GENIE evaluations, such as Online-A and
VolcTrans-AT. Conversely, happypoet and Mani-
fold are given low scores consistently. Further, the



Bengali— Hindi Hindi— Bengali
Rank Ave. Ave.z System Rank Ave. Ave.z System
1-2 821 0.202 GTCOM 14 950 0245 HW-TSC
1-2 79.1  0.163 Online-B 1-4 948 0.236 Online-A
3-5 775 0.080 TRANSSION 14 945 0233 GTCOM
3-5 780 0.076 MS-EgDC 1-4 946 0214 UEdin
3-6 78.0 0.054 UEdin 5-6 923  0.080 Online-Y
4-8 76.1 —0.015 Online-Y 7 920 0.045 TRANSSION
6-8 757 —0.080 HW-TSC 6-7 913  0.029 Online-B
6-8 757 —0.107 Online-A 8 909 —0.008 MS-EgDC
9 70.8 —0.373 Online-G 9 735 —1.100 Online-G
Xhosa—Zulu Zulu—Xhosa
Rank Ave. Ave.z System Rank Ave. Ave.z System
1-3 684 0331 HW-TSC 1 80.7  0.502 TRANSSION
1-3 679 0.287 TRANSSION 2-3 743 0310 HW-TSC
1-3 637 0240 GTCOM 2-4 726  0.258 MS-EgDC
4-5 615 0.144 MS-EgDC 34 693 0.162 GTCOM
4-5 626 0.107 FIDMATH 5 219 —1.253 Online-G
6 194 —1.135 Online-G

Table 13: Official results of WMT21 Translation Task for Hindi to/from Bengali and Zulu to/from Xhosa translation
(Wikipedia data, SR—DC). Systems ordered by DA score z-score; systems within a cluster are considered tied; lines indicate
clusters according to Wilcoxon rank-sum test p < 0.05; rank ranges are based on the same test (for details, see Section 3.2.2);
grayed entry indicates resources that fall outside the constraints provided.

Reference: Only 8 percent of board members were female as of September 1, according to the report "The Power of Monoculture," officially
launched this Monday by the AllBright Foundation, an advance copy of which had been made available to the German Press Agency.
Prediction: As a result, only 8 percent of the board members were female as of 1 September, according to the report "The Power of
Monoculture," which will be officially presented this Monday by the Allbright Foundation and presented to the German Press Agency in

advance.
O Strongly Agree

O Agree

O Neutral

O Disagree

O Strongly Disagree

Figure 7: GENIE annotation interface for one segment.

transformer baselines are ranked in the expected
order: large-6-6, base-6-6, base-3-3, followed by
base-1-1. This confirms the validity of the evalua-
tions. Nonetheless, we see some noticeable dif-
ference from the official ranking. In particular,
HUMAN and the Watermelon systems are ranked
high in contrast to the official evaluations. It is left
to future work to analyze which parts of the crowd-
sourcing setup are contributing to the diverging
system rankings; these analyses would help us im-
prove our human evaluation method in the future.

4 Similar Language Translation

In this section we present the findings of the third
SLT shared task organized at WMT 2021. The
task follows the success of the two past SLT shared
tasks organized at WMT 2019 and WMT 2020.
SLT 2021 is motivated by the growing interest of
the community in translating between similar lan-
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guages, low-resource languages, dialects, and lan-
guage varieties, and the challenges faced by state-
of-the-art systems in these settings evidenced in
recent studies (Hassani, 2017; Costa-jussa et al.,
2018; Popovic et al., 2020; Tapo et al., 2020).

The main goal of the task is to evaluate the per-
formance of state-of-the-art MT systems on trans-
lating between closely-related language pairs of
languages from the same language family. Past
editions of the task (Barrault et al., 2019, 2020)
featured language pairs such as Spanish - Por-
tuguese, Czech - Polish, and Hindi - Nepali to
name a few. This year’s SLT features multiple
pairs of similar languages from the Indo-Aryan
and Romance family.

Finally, SLT 2021 also features a track includ-
ing French and two similar low-resource Manding
languages spoken in West Africa, namely Bam-
bara and Maninka, where participants were pro-



GENIE German— English

Ave. Score  Lower Upper System
0.757 0.737 0.776  Watermelon
0.752 0.732 0.772  VolcTrans-AT
0.752 0.732 0.772 HUMAN
0.743 0.724 0.764  Online-B
0.742 0.721 0.760  Online-A
0.740 0.720 0.759  Facebook-Al
0.738 0.721 0.756  Online-W
0.738 0.717 0.757  Online-G
0.737 0.717 0.757  VolcTrans-GLAT
0.735 0.714 0.756 UF
0.734 0.713 0.754  HuaweiTSC
0.733 0.710 0.753 NVIDIA-NeMo
0.712 0.691 0.734 ICL
0.704 0.684 0.723  GENIE-large-6-6
0.704 0.684 0.722 P3AI
0.700 0.680 0.721  UEdin
0.692 0.670 0.712 SMU
0.690 0.669 0.711  GENIE-base-6-6
0.685 0.664 0.705 Manifold
0.676 0.655 0.696 Borderline
0.665 0.645 0.684 Online-Y
0.653 0.630 0.676  GENIE-base-3-3
0.643 0.620  0.667 happypoet
0.507 0.483 0.530  GENIE-base-1-1

Table 14: GENIE DE-EN results. Lower and upper bounds
for 95% confidence intervals are calculated by bootstrapping
(Koehn, 2004; Khashabi et al., 2021). Grayed entries indicate
unconstrained settings.

vided with the opportunity to combine datasets of
the two Manding languages taking advantage of
their similarity. As in past editions of the task,
translations at SLT 2021 are evaluated in all di-
rections using three automatic evaluation metrics:
BLEU, RIBES, and TER.

4.1 Data

Training We have made available a number of
data sources for the SLT shared task. Some train-
ing datasets were used in the previous editions of
the WMT News Translation shared task and were
updated (News Commentary v16, Wiki Titles v3),
while some corpora were newly introduced. We
also used data collected from Opus (Tiedemann
and Nygaard, 2004; Tiedemann, 2012)20.

For the Spanish—Catalan language pair we
used parallel corpora: Wiki Titles v3, ParaCrawl
(Banén et al., 2020), DOGC v2, and monolingual:
Europarl v10 (Koehn, 2005), News Commentary
v16, News Crawl, caWaC (Ljubesi¢ and Toral,
2014) (see Table 15). Released corpora for the
Spanish—Portuguese language pair included paral-
lel datasets: Europarl v10 (Koehn, 2005), News
Commentary v16, Wiki Titles v3, Tilde MODEL
(Rozis and Skadins$, 2017), JRC-Acquis (Stein-

2Ohttp ://opus.nlpl.eu/
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berger et al., 2006), and monolingual corpora:
Europarl v10 (Koehn, 2005), News Commentary
v16, News Crawl (see Table 16). Moreover, cor-
pora for the Romanian—Spanish language pair (see
Table 17) and the Romanian—Portuguese language
pair (see Table 18) contained parallel datasets: Eu-
roparl v8 (Koehn, 2005), Wiki Titles v3, Tilde
MODEL (Rozis and Skadins, 2017), JRC-Acquis
(Steinberger et al., 2006), and monolingual data:
Europarl v10 (Koehn, 2005), News Commentary
v16, News Crawl, Common Crawl.

The released parallel Tamil-Telugu dataset was
collected from news (Siripragada et al., 2020),
PMlIndia (Haddow and Kirefu, 2020) and MKB
(Man Ki Baat) datasets. All data were initially
combined, tokenized using indic-nlp tokenizer
(Kunchukuttan, 2020) and randomly shuffled. A
subset of data extracted from the dataset are used
for test and development set. The remaining data
were considered as training set (cf. Table 21).

Finally, the parallel Bambara-French corpus is
a part of the Bambara Reference Corpus 2!.

Development and Test Data The development
and test sets for Spanish—Catalan, Spanish—
Portuguese, Romanian—Spanish and Romanian—
Portuguese language pairs were created from a
corpus provided by Pangeanic?’. Catalan transla-
tions were provided by the Directorate-General for
Language Policy at the Ministry of Culture, Gov-
ernment of Catalonia. Each dev and test dataset
was cleaned, deduplicated and shuffled, resulting
in 969 and 999 sentences in dev and test sets re-
spectively.

4.2 Participants and Approaches

SEBAMAT SEBAMAT submitted their system
for two language pairs, Spanish—Catalan and
Spanish—Portuguese, in both directions. The SE-
BAMAT approach is based on the Marian NMT
toolkit that leverages the Transformer architec-
ture. The systems were trained using only the
parallel corpora that were made available for the
participants. For all the language pairs and di-
rections, SEBAMAT submitted PRIMARY and
CONTRASTIVE systems with different vocabu-
lary sizes (40,000 and 85,000, respectively). Inter-
estingly, in all the cases, the PRIMARY systems
with a smaller vocabulary size performed better in
terms of BLEU scores.

http://cormand.huma-num.fr/index.html
22https ://www.pangeanic.com/



Corpus Sentences
Parallel Spanish <+ Catalan Wiki Titles v3 476,475
Spanish <+ Catalan ParaCrawl 6,870,183
Spanish <+ Catalan DOGC v2 10,933,622
Monolingual | Spanish Europarl v10 2,038,042
Spanish News Commentary v16 503,255
Spanish News Crawl 2007-2020 65,365,886
Catalan caWaC 24,745,986
Dev Spanish <> Catalan 969
Test Spanish <+ Catalan 999
Table 15: Corpora for the Spanish <> Catalan language pair.
Corpus Sentences
Parallel Spanish <+ Portuguese Europarl v10 1,801,845
Spanish <+ Portuguese News Commentary v16 48,259
Spanish <+ Portuguese Wiki Titles v3 649,833
Spanish <> Portuguese Tilde MODEL 13,464
Spanish <+ Portuguese JRC-Acquis 1,650,126
Monolingual | Spanish Europarl v10 2,038,042
Spanish News Commentary v16 503,255
Spanish News Crawl 2007-2020 65,365,886
Portuguese Europarl v10 2,016,635
Portuguese News Commentary v16 89,111
Portuguese News Crawl 2008-2020 10,900,924
Dev Spanish <+ Portuguese 969
Test Spanish <+ Portuguese 999
Table 16: Corpora for the Spanish <> Portuguese language pair.
Corpus Sentences
Parallel Romanian < Spanish Europarl v8 387,653
Romanian <> Spanish  Wiki Titles v3 253,770
Romanian < Spanish Tilde MODEL 3,770
Romanian <+ Spanish JRC-Acquis v2 451,849
Monolingual | Spanish Europarl v10 2,038,042
Spanish News Commentary v16 503,255
Spanish News Crawl 2007-2020 65,365,886
Romanian Common Crawl 288,806,234
Romanian News Crawl 2015-2020 29,538,472
Dev Romanian < Spanish 969
Test Romanian < Spanish 999

Table 17: Corpora for the Romanian <+ Spanish language pair.

T4T The T4T team participated in the SLT 2021
Romance languages track, submitting their sys-
tem for Spanish <+ Catalan and Spanish <+ Por-
tuguese. While their systems are built using out-
of-the-box OpenNMT toolkit, the team developed
custom cleaning scripts and an adhoc tokenizer.
SentencePiece library was used for pre-processing
and reducing the vocabulary size to 16,000 sym-
bols.

UBC-NLP The UBC-NLP team submitted their
Spanish <> Portuguese, Catalan — Spanish and
French <+ Bambara systems to the SLT 2021 task.
Their systems are built using Transformers from
the HuggingFace library. The UBC-NLP team ex-
perimented with tokenized (PRIMARY) and un-
tokenized (CONTRASTIVE) systems and com-
pared them with models developed by fine-tuning
pre-trained models as well as models trained from
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Corpus Sentences
Parallel Romanian > Portuguese Europarl v8 381,404
Romanian <> Portuguese Wiki Titles v3 251,834
Romanian <+ Portuguese Tilde MODEL 3,860
Romanian < Portuguese JRC-Acquis v2 451,737
Monolingual | Portuguese Europarl v10 2,016,635
Portuguese News Commentary v16 89,111
Portuguese News Crawl 2008-2020 10,900,924
Romanian Common Crawl 288,806,234
Romanian News Crawl 2015-2020 29,538,472
Dev Romanian <> Portuguese 969
Test Romanian <> Portuguese 999
Table 18: Corpora for the Romanian <+ Portuguese language pair.
Corpus Sentences
Parallel | French <+ Bambara Dokotoro/Bible/SIL Dictionary 9,939
Sentences/Corpus Référence de Bambara
Dev French <> Bambara 5,972
Test French <+ Bambara 2,984
Table 19: Corpora for the French <+ Bambara language pair.
Corpus Sentences
Parallel | French <+ Maninka 3000 training sentences/Constitution of Guinea 3,243
Dev French <+ Maninka 540
Test French <+ Maninka 270

Table 20: Corpora for the French <> Maninka language pair.

Corpus  Sentences

Parallel | Tamil «» Telugu MKB 3,100
Tamil <+ Telugu News 11,038

Tamil < Telugu PM India 26,009

Dev Tamil < Telugu 1,261
Test Tamil <+ Telugu 1,735

Table 21: Corpora for the Tamil <> Telugu language pair.

scratch. The pre-trained models were developed
using Marian NMT by Helsinki-NLP on Hugging-
Face.

A3-108 The A3-108 team submitted 3 sys-
tems (one PRIMARY and two CONTRASTIVEs)
based on statistical machine translation for Tamil
<> Telugu language pair. The team explores var-
ious tokenization schemes for their submissions.
Their PRIMARY run achieved top rank in Telugu
— Tamil and ranked 3" in Tamil — Telugu trans-
lation task.

oneNLP oneNLP team participation on Tamil
> Telugu system is based on transformer based
NMT. The team explored different subword con-
figurations, script conversion and single model
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training for both directions. Their primary sub-
mission achieved 2.05 BLEU for Tamil — Telugu
and 5.03 for Telugu — Tamil.

CNLP-NITS The team submitted their run for
Tamil <+ Telugu similar language translation task.
The CNLP-NITS system used pre-train word em-
beddings from monolingual data and applied in
transformer based neural machine translation. The
model achieved BLEU score 4.05 for both Tamil
— Telugu and Telugu — Tamil.

NITK-UOH NITK-UoH’s submission system
is based on vanilla Transformer model initialized
with MultiBPEmb — a collection of multilingual
subword segmentation based pretrained embed-
dings. NITK-UoH performs top in Tamil — Tel-



ugu translation task.

4.3 Results

Similarly to the previous edition of the SLT
shared task, participants could submit systems for
the Spanish—Catalan and Spanish—Portuguese lan-
guage pairs (in both directions). The best systems
for Spanish-to-Portuguese (see Table 25) achieved
over 40 BLEU and around 85 RIBES. While
in the opposite direction (Portuguese-to-Spanish)
the best performing system reached 47.71 of
BLEU (see Table 24). As the Spanish—Catalan
dev and test sets were aligned with Spanish—
Portuguese ones, we noticed that the best results
for the Spanish—Catalan language pair are in gen-
eral much better than for Spanish-Portuguese. For
Spanish-to-Catalan the best system attained over
79 BLEU and below 15 TER (see Table 27).
However, its RIBES score (95.76) was lower than
the runner-up system’s (96.24). In the case of
Catalan-to-Spanish, the best system scored over
82 BLEU and less than 11 TER (see Table 26). As
there were no submissions for Romanian—Spanish
and Romanian—Portuguese, we do not provide any
evaluations for these language pairs.

44 Summary

This section presented the results and findings of
the third edition of the SLT shared task at WMT.
The third iteration of this competition featured
data from multiple language pairs from three dif-
ferent language families: Dravidian, Manding,
and Romance languages. We evaluated the sys-
tems translating in both directions of the lan-
guage pair using three automatic metrics: BLEU,
RIBES, and TER. Most teams this year partici-
pated in the Dravidian language pairs. Following
a trend observed in the past editions of the task,
we observed that the performance varies widely
between language pairs and domains.

S Triangular MT

This section presents an overview of the Triangu-
lar MT shared task. Given a low-resource lan-
guage pair (X/Y), the bulk of previous MT work
has pursued one of two strategies.

* Direct: Collect parallel X/Y data from the
web, and train an X-to-Y translator , OR

* Pivot (Utiyama and Isahara, 2007; Wu and
Wang, 2009): Collect parallel X/English and
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Y/English data (often much larger than X/Y
data), train two translators (X-to-English +
English-to-Y), and pipeline them to form an
X-to-Y translator

However, there are many other possible strate-
gies for combining such resources. These may
involve, for example, ensemble methods, multi-
source training methods, multi-target training
methods, or novel data augmentation methods.
For eg. (Zoph et al., 2016; Dholakia and Sarkar,
2014; Kim et al., 2019).

5.1 The Task

The goals of this shared task is to promote:
* translation between non-English languages,

* optimally mixing direct and indirect parallel
resources, and

* exploiting noisy, parallel web corpora

The task is Russian-to-Chinese machine trans-
lation. We provided parallel corpora to the par-
ticipating teams. We evaluate system transla-
tions on a (secret) mixed-genre test set, drawn
from the web and curated for high quality seg-
ment pairs. After receiving test data, participants
had one week to submit translations. After all
submissions are received, we posted a populated
leaderboard that will continue to receive post-
evaluation submissions.”> The evaluation met-
ric for the shared task is 4-gram character Bleu.
The script to be used for Bleu computation is
Moses multi-bleu-detok.perl. Instructions
to run the script were released as part of the shared
task.?* The participants indicated their intent to
participate via registration on the Codalab website
for the shared task? and obtained the instructions
and links to various resources.

5.2 Training Data
We provided three parallel corpora:

* Chinese/Russian: crawled from the web and
aligned at the segment level, and combined
with different public resources.

23https ://competitions.codalab.org/
competitions/30446#results

https://github.com/didi/wmt2021_
triangular_mt/tree/master/eval

Phttps://competitions.codalab.org/
competitions/30446#participate



Team Name | System Type BLEU1 RIBES1T TER]
NITK-UOH | PRIMARY 6.09 17.03 -
A3-108 CONTRASTIVEI 5.54 40.58 98.082
A3-108 PRIMARY 5.23 42.37 98.662
CNLP-NITS | PRIMARY 4.05 24.80 97.241
oneNLP CONTRASTIVE2 3.67 22.28 99.122
oneNLP CONTRASTIVE 3.57 23.54 99.034
A3-108 CONTRASTIVE2 3.32 34.42 -
oneNLP PRIMARY 2.05 21.68 -
NITK-UOH | CONTRASTIVE 0.00 0.03 -
Table 22: Evaluation results for Tamil to Telugu.
Team Name | System Type BLEU1T RIBEST TER|
A3-108 PRIMARY 8.37 43.55 95.884
A3-108 CONTRASTIVEI1 7.89 46.24 95.627
A3-108 CONTRASTIVE2 7.43 42.54 94.964
NITK-UOH | PRIMARY 6.55 19.61 98.356
oneNLP PRIMARY 5.03 23.98 97.551
CNLP-NITS | PRIMARY 4.05 24.80 97.241
oneNLP CONTRASTIVE 3.63 27.05 97.534
oneNLP CONTRASTIVE2 3.61 26.12 96.772
NITK-UOH | CONTRASTIVE 0.04 1.00 -
Table 23: Evaluation results for Telugu to Tamil.
Team Name | System Type BLEU{T RIBES{ TER]
UBC-NLP PRIMARY 47.71 87.11 39.213
SEBAMAT | PRIMARY 46.51 86.31 41.235
T4T PRIMARY 46.29 87.04 40.181
UBC-NLP CONTRASTIVE 43.86 85.10 43.801
SEBAMAT | CONTRASTIVE 43.12 84.99 45.068
Table 24: Evaluation results for Portuguese to Spanish.
Team Name | System Type BLEU{ RIBES{T TER]
T4T PRIMARY 40.74 85.69 43.343
SEBAMAT | PRIMARY 40.35 84.99 45.258
SEBAMAT | CONTRASTIVE 38.90 83.89 47.044
UBC-NLP PRIMARY 38.10 85.35 46.556
UBC-NLP CONTRASTIVE 35.61 82.48 52.612
Table 25: Evaluation results for Spanish to Portuguese.
Team Name | System Type BLEU1T RIBES1T TER|
UBC-NLP PRIMARY 82.79 96.98 10918
SEBAMAT | PRIMARY 78.65 94.76 15.805
T4T PRIMARY 77.93 96.04 16.502
UBC-NLP CONTRASTIVE 76.8 95.19 15.421
SEBAMAT | CONTRASTIVE 76.78 94.46 17.067

Table 26: Evaluation results for Catalan to Spanish.
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Team Name | System Type ‘ BLEU1T RIBES1T TER|
SEBAMAT | PRIMARY 79.69 95.76 14.632
T4T PRIMARY 78.60 96.24 16.133
SEBAMAT | CONTRASTIVE | 77.32 95.35 16.744
Table 27: Evaluation results for Spanish to Catalan.
Team Name | System Type | BLEU1 RIBES1 TER |
UBC-NLP | PRIMARY | 132 2479 97.899

Table 28: Evaluation results for French to Bambara.

* Chinese/English: combining several public
resources.

* Russian/English: combining several public
resources.

The details of the training resources provided
are shown in Table 30. The provenance of
the collected parallel data is as follows. We
used a parallel data harvesting pipeline devel-
oped at DiDi (Zhang et al., 2020) to harvest
Russian/Chinese parallel data on the Internet.
We downloaded parallel datasets available from
Opus (Tiedemann, 2009) for all the three lan-
guage pairs - Russian/Chinese, Russian/English
and English/Chinese. Since united nations data
and subtitles data (Ru/En) are very large sources
of parallel data, we report statistics on these two
types of Opus parallel sources. In addition to
Opus, we also curate parallel data from Wikima-
trix (Schwenk et al., 2019) in all three language
pairs and social media parallel data - Weibo and
Twitter (Ling et al., 2013). We also release the
provenance of each parallel segment, in case teams
want to use this information to filter noisy data
sources.

5.3 Creating the Test Dataset

We spent a considerable amount of time to cu-
rate high quality, parallel data online to be used
as development and evaluation datasets. This was
a completely manual process undertaken by a na-
tive speaker of Russian who consulted with a na-
tive Chinese speaker from our team to ensure good
quality translations (that does not contain tell-tale
signs of automatic translation). Our workflow en-
tailed finding websites and large chunks of paral-
lel text, not necessarily from the same pages. The
sources selected were also hard to be harvested
from a parallel data pipeline due to their differ-
ence in URL structure. The sources selected were
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from a diverse range of non-traditional sources,
and have a balance of different types of docu-
ments. The topics would be famous works of lit-
erature, or tourism related news stories, and so on.
We copied large chunks of text from such sources
and manually aligned the paragraphs, followed by
manual sentence alignment, each done manually
to ensure top quality parallel segments. This was
followed by a final filtering step to remove sen-
tences and entire sources which had a significant
overlap with training and development data. The
details of the development and test datasets are
shown in Tables 31 and 32.

5.4 Baselines and Final Results

We released a baseline system?® as part of the
shared task. This is based on the Google Ten-
sor2tensor?’ toolkit to train a Transformer-based
NMT system. We also provided the baseline bleu
score on the development dataset ahead of the
evaluation phase. We had 2 simple baselines -
(1) Direct - Transformer model trained on the en-
tire Russian/Chinese parallel dataset and decoded
with @ = 1.0 and beam_size=4. (2) Pivot model
- 2 MT systems - Russian-to-English and English-
to-Chinese - each trained with the corresponding
parallel data. Both the Russian-to-English and the
English-to-Chinese systems were decoded with
alpha=1.0 and beam_size=4. The baseline re-
sults on the development dataset as shown in Ta-
ble 33.

We had a total of six teams submitting their sys-
tem outputs on the test dataset. The evaluation
metric was 4-gram character bleu score. The final
evaluation results are shown in Table 34.

https://github.com/didi/wmt2021_
triangular_mt/

“Thttps://github.com/tensorflow/
tensor2tensor



Team Name ‘ System Type ‘ BLEUT RIBES1T TER|

UBC-NLP | PRIMARY |

3.62 36.17

Table 29: Evaluation results for Bambara to French.

Russian/Chinese parallel data Segment pairs | Characters (Chinese side)
DiDi parallel data harvesting pipeline 5,403,157 82,552,922
Opus (no UN) + Weibo + Wikimatrix 430,302 20,954,541
Opus (UN) 27,551,996 1,362,478,536
Total 33,385,455 1,465,985,999
Russian/English parallel data Segment pairs Words (Russian side)
Opus (no UN, no subtitles) + Twitter + Wikimatrix 6,340,245 97,537,275
Opus (UN, subtitles) 62,811,986 909,476,736
Total 69,152,231 1,007,014,011
English/Chinese parallel data Segment pairs | Characters (Chinese side)
Opus (no UN) + Twitter + Weibo + Wikimatrix 1,435,132 69,894,886
Opus (UN) 27,089,931 1,333,732,823
Total 28,525,063 1,403,627,709

Table 30: Triangular MT:

5.5 Overview of the Submitted Systems

Five out of the six participating systems submit-
ted system description papers. In this section we
briefly discuss the outline of these systems. For
more details please refer to the proceedings.

- istic-team-2021 (Guo et al., 2021) The team’s
system is based on the Transformer architecture.
They used several corpus pre-processing steps
such as special symbol filtering and filtering based
on segment length. In addition, they used context-
based system combination - which is a multi-
encoder to encode source sentence and contextual
information from the machine translation results
on the source sentence. They tried with both a
direct and pipeline-based pivot system and report
that the latter outperforms the former.

- HW_TSC (Li et al., 2021a) Huawei’s submis-
sion used a multilingual model which is a sin-
gle neural machine translation model to translate
among multiple languages. Upon adding more
parallel data, they report an increase in bleu score
of upto 2 points using the multilingual model com-
pared to the baseline model. In addition they used
several data pre-processing techniques to denoise
the training data and data augmentation techniques
such as back-translation to improve overall system
performance.

- Papago (Park et al., 2021) Naver’s system re-
ports that they get better performance by treating
this as a bilingual machine translation task rather
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Training data statistics

than as a multilingual translation task, based on
their early experiments. They use the transformer
model with extensive data pre-processing, filter-
ing and data augmentation. To augment the direct
bilingual data they synthetically generate bilingual
sentence pairs using monlingual Chinese back-
translated to Russian and the 2 sets of indirect par-
allel dataset provided.

- DUT-MT (Liu et al., 2021a) This team ex-
perimented with 2 different multilingual train-
ing models called mBART and mRASP, both of
them based on underlying Transformer architec-
ture. They report boosted performance especially
on rare words when using mRASP. In addition,
they also carry out data preprocessing and filter-
ing to improve system performance.

- CFILT-IITB (Mhaskar and Bhattacharyya,
2021) CFLIT-IITB team’s system used a pivot-
based transfer learning technique. In this
technique they have 2 encoder-decoder models,
source-pivot (Russian-to-English) and pivot-target
(English-to-Chinese), each of them trained on the
respective training datasets. They use the encoder
of the former and the decoder of the latter to ini-
tialize a third encoder-decoder for the actual task
of Russian-to-Chinese translation. They fine tune
this decoder using the given parallel data for Rus-
sian/Chinese. They report this system has a better
performance compared to either a direct or pivot-
based cascaded system. They do not experiment
much with data pre-processing and filtering.



Source Genre Parallel segments

Anna Karenina, dialog Literature 98
Art Academy Biography 67

Isaac Babel interview Literature 104
Master and Margarita Literature 106
MPMCMS International news 71

Potato system International news 97

Visit Amur Tourism 250
Chinese Embassy in Russia | International news 172
Total - 965

Table 31: Triangular MT: Development dataset details

Source Genre Parallel segments

Aeroflot Tourism 99

Isaac Babel - salt Literature 47

A Day Without Lies Literature 200
Everything is Normal, Everything is Fine Literature 98
Hujiang Language Learning 236
Kazinform Tourism 21

Lotos shopping centre Tourism 17
Alexandra Marinina novel Literature 55
Private Museum Catalog Tourism 196
Solzhenitsyn Nobel speech Literature 240
Russia Beyond Biography 329
Shenyang consulate International news 113
War and Peace Literature 3
Russian Embassy in China Tourism, International News 97
Total - 1751

Table 32: Triangular MT: Test dataset details

5.6 Conclusion

The triangular machine translation shared task
set out to explore various modeling possibilities
when building a machine translation system for
a non-English language pair. We received en-
thusiastic participation from the participants. Al-
most all of them performed data filtering and pre-
processing to denoise the training datasets and that
seemed to substantially help improve system per-
formance. The transformer model and its vari-
ants were used in all the system submissions con-
firming Transformer’s ubiquitous acceptance as
the model of choice for building machine transla-
tion systems. Many teams explored model ensem-
bling and model averaging in addition to model re-
ranking strategies. Several teams explored back-
translation as an effective data-augmentation strat-
egy. There was a wide variety of modeling archi-
tectures experimented by the participants. Almost
everyone used all the parallel datasets provided
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underlining the importance of using parallel data
in all directions to build a better machine transla-
tion system. Overall we are happy that the shared
task provided a platform to the participants to ex-
periment with different modeling strategies. We
hope practitioners will find these techniques use-
ful when working on machine translation between
non-English language pairs.

6 Multilingual Low-Resource
Translation for Indo-European
Languages Task

Massively multilingual machine translation has
shown impressive results, including zero and few-
shot translation of low-resource languages. How-
ever, these models are often evaluated from or into
English, where the most data is available, and one
assumes that the models would generalise to other
language pairs and low-resource languages. This
shared task focuses explicitly on checking this as-
sumption and aims to explore multilingual archi-



System

BLEU

Google Translate API
BASELINE-DIRECT
BASELINE-PIVOT

33.04
20.24
19.33

Table 33: Triangular MT: Baseline results on the development dataset

Team name BLEU

Google Translate API 30.2

Team 1 HW_TSC 27.7
Team 2 Papago 26.8
Team 3 DUT-MT 21.7
Team 4 istic-team-2021 19.2
Team 5 CFILT-IITB 18.8
- BASELINE-PIVOT 17.9

- BASELINE-DIRECT 17.0
Team 6 mcairt 16.6

Table 34: Triangular MT: Results on the test dataset

tectures for languages in a same family and evalu-
ate only low-resource pairs even if using the high-
resourced pairs in the same language family is not
forbidden. We work in the cultural heritage do-
main, where we can consider full documents, and
in two Indo-European language families: North-
Germanic and Romance. With these goals in mind
(multilinguality, specific domain and document-
level translation) we define two tasks, one per fam-

ily:

Task 1. Europeana thesis abstracts and de-
scriptions. North-Germanic languages: from/to
Icelandic (is), Norwegian Bokmal (nb) and
Swedish (sv). Danish (da), German (de) and En-
glish (en) data is allowed for training but transla-
tion quality is not evaluated.

Task 2. Wikipedia cultural heritage articles.
Romance languages: from Catalan (ca) to Occitan
(oc), Romanian (ro) and Italian (it). Spanish (es),
French (fr) and Portuguese (pt) data (+ English) is
allowed for training but translation quality is not
evaluated.

6.1 Data and Resources

6.1.1 Training Corpora

One of the purposes of the shared task is to ob-
tain state-of-the-art systems for the language pairs
in the domain involved. In principle, this would
imply an unconstrained data setting but, we also
want to be able to compare systems and architec-
tures among themselves. For this, we constrain the
amount of parallel and monolingual corpora to be
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used but we allow pretrained open-source systems
which might use more data than allowed for the
languages considered. All the sources listed below
apply to the following languages (except for pre-
trained models): Icelandic, Norwegian Bokmal,
Swedish, Danish, German and English (Task 1);
and Catalan, Italian, Occitan, Romanian, Spanish,
French, Portuguese and English (Task 2).

* Corpora available at ELRC.?® This data in-
cludes Paracrawl and Global voices.

e Europarl, JW300, WikiMatrix, MultiC-
CAligned, OPUS-100, Books, the Bible and
TED talks.

e Common Crawl, Wikipedia and Wikidata
dumps.

* Wordnets with open license, BabelNet.

e (Multiligual) pre-trained embeddings or
other models that can be found freely
available online (Hugging Face).

¢ Additional resources in Section 6.1.2 (multi-
lingual lexicons).

6.1.2 Additional Resources

Given the importance of named entities in the
cultural heritage domain, we provide participants
with parallel/multilingual lexicons from Wikidata,
Wikipedia titles and Wiktionary. The figures for

each source are summarised in Table 35.

28https ://elrc-share.eu/repository/search/



Wikidata Wikipedia Wiktionary
all cleaner all cleaner all
is2nb/nb2is 1,141,891 - - - 3,304/6,552
is2sv/sv2is 1,149,894 - - - 15,369/17,321
nb2sv/sv2nb 2,648,493 - - - 9,390/7,124
is-nb-sv 1,139,493 23,574 - - -
calit/it2ca 3,072,380 - 323,055 - 18,684/19,050
ca2oc/oc2ca 1,300,979 - 71,854 - 3,999/3,538
ca2ro/ro2ca 1,608,860 - 123,215 - 11,990/12,034
it2oc/oc2it 1,285,771 - 75,542 - 7,225/6,332
it2ro/ro2it 4,547,649 - 215,296 - 20,898/20,442
ro2oc/oc2ro 1,230,752 - 64,800 - 4,586/4,350
ca-it-ro 1,579,345 123,543 117,543 97,484 -

Table 35: Number of entries of the parallel/multilingual lexicons extracted from Wikidata, Wikipedia titles and Wiktionary

for the multilingual low-resource translation task.

Validation Test

Docs.  Sents.  Src toks.  Tgt toks. Docs.  Sents.  Src toks.  Tgt toks.
is2nb 26 467 6,096 6,932 24 563 8,256 9,301
is2sv 26 467 6,096 6,611 24 563 8,256 8,819
nb2is 19 502 7,673 7,495 16 540 9,218 8,867
nb2sv 19 502 7,673 7,499 16 540 9,218 8,804
sv2is 43 516 9,097 9,524 44 547 9,642 9,733
sv2nb 43 516 9,097 9,232 44 547 9,642 9,787
ca2it 41 1,269 30,363 29,725 42 1,743 38,868 37,649
ca2oc 41 1,269 30,363 30,184 42 1,743 38,868 38,662
ca2ro 41 1,269 30,363 29,842 42 1,743 38,868 37,379

Table 36: Statistics on the validation and test sets of the multilingual low-resource translation task. Source (Src) are original

documents and target (Tgt) are human translations.

Wikidata. We extract aligned lexicons from
the wikidata-20210301-all.json dump and provide
two versions. The complete ("all") version in-
cludes all the entries, including duplicates. The
"cleaner” version excludes duplicates, most of the
terms that are equal in all the languages, terminol-
ogy related to Wikimedia and a naive cleaning on
terms including years, parenthesis, and others.

Wikipedia titles. We extract aligned titles for
the languages in Task 2 from the May 2020
Wikipedia dumps using the Wikitailor Toolkit>
(Barrén-Cedeiio et al., 2015; Espafia-Bonet et al.,
2020). We also provide two versions: the com-
plete version ("all") includes all the entries. The
"cleaner” version results from a naive cleaning on
titles including years, dates, parenthesis, and oth-
ers.

Wiktionary. Each Wiktionary entry contains a
word, its translation into several languages and its
part of speech. We extract bilingual entries from
April 2021 dumps for adjectives, adverbs, nouns
and verbs from the Icelandic, Swedish, English

29github .com/cristinae/WikiTailor
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and German Wiktionaries (Task 1) and from the
Catalan and English ones (Task 2). The part of
speech is kept in the dictionaries. Since the xlm
dump contains the information in a text element
with different structure for different dictionaries,
we provide the extraction scripts for reproducibil-
ity. 30

6.1.3 Validation and Test Sets

The documents used for constructing the valida-
tion and test sets are obtained from the Europeana
collection (Task 1) and Wikipedia (Task 2).
Europeana kindly provided us with thesis ab-
stracts, descriptions of archaeological sites and
bibliographic entries for Icelandic, Norwegian
Bokmal and Swedish. These monolingual doc-
uments are available at the Europeana portal
but no intra-family parallel data exists and even
the monolingual extraction is not straightforward
for two main reasons: (i) collections with pan-
Scandinavian labels and descriptions are uncom-
mon, and (7i) language attributes in general are
uncommon. For documents tagged as Norwe-

9github.com/LeHarter/
Extracting-translations-from-wiktionary



gian there is no distinction between Bokmaél and
Nynorsk, so texts where classified according to
simple heuristics based on lexicons.

The original Europeana crawl obtained 1,192
documents (150,080 tokens) for Icelandic, 2,000
documents (166,303 tokens) for Norwegian Bok-
mal and 2,046 bilingual documents in English and
Swedish with 443,111 tokens for Swedish. From
these sets, we eliminate very similar documents
(specially for Icelandic) and split documents at
sentence level manually; we selected documents to
collect around 1,000 sentences per language. Doc-
uments are finally divided evenly to build a valida-
tion set and a test set (Table 36).

The Wikipedia sets were built from articles in
the Catalan edition. We selected original articles
in Catalan that have no comparable article in any
other language and that cover the cultural heritage
domain (food, locations, sport, literature, tradi-
tions, people and animals). We selected 83 arti-
cles which were sentence-split manually to gather
3,013 sentences and 69,231 tokens. Similarly
to the North-Germanic family, documents are di-
vided evenly to build a validation set and a test set
(Table 36). In this case, we also marked some en-
tities in the source test documents (dates and loca-
tions) for further analysis in the manual evaluation
(see Section 6.4).

Validation and test sets were sent to professional
translators. A first translation was done by a native
professional translator and afterwards there was a
quality evaluation check by a second native pro-
fessional translator. For the North-Germanic lan-
guages, we translated the source texts in Icelandic,
Norwegian Bokmal and Swedish into the other
two languages. For the Romance languages, we
translated the source texts in Catalan into Italian,
Romanian and Occitan. Translators were asked to
keep the same sentence division as in the source
and no indications were given on the translation of
named entities.

6.2 Baselines and Submitted Systems

Nine different teams downloaded the validation
data set but only five of them participated: BSC,
CUNI, EdinSaar, Tencent and UBCNLP. We al-
lowed two submissions per group and task, a pri-
mary (P) and a contrastive (C) system. With these
constraints, we received four submissions for Task
1 and seven submissions for Task 2. We also pre-
pared two baseline systems for comparison pur-
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poses.

6.2.1 M2M-100 (baseline)

We use M2M-100 without any modification, a
multilingual model trained on a data set with 7.5
billion sentences for 100 languages including all
the languages in our task (Fan et al., 2020). The
sequence-to-sequence system is trained with par-
allel data enriched with backtranslations. We use
the model with 1.2 B parameters available at the
Hugging Face site.?!

6.2.2 mT5-devFinetuned (baseline)

mT5 is a sequence-to-sequence model pretrained
on a masked language modeling span-corruption
objective with 8.5 billion monolingual sentences
from 101 languages (Xue et al., 2021). As base-
line, we use the model with 580 M parameters
from Hugging Face. We finetune mT5-base only
with the multilingual validation sets for each task
described in Section 6.1.3. For Task 1, that in-
volves 5,500 sentences, where we use the paral-
lel sentences L1—Logey in both directions Li2Lo
and Lo2L; (that is, we use is2nbg., sentences as
is2nb and nb2is, and nb2is4., sentences as nb2is
and is2nb because is2nbg., and nb2isye, are dif-
ferent; the same for the other pairs). We prepend
one of the extra_id tokens in mT5 vocabulary to
the source sentences to indicate the language of
the target sentences. The remaining 440 sentences
are used for validation. We repeat the process for
Task 2, but in this case the training is multilin-
gual but not bidirectional, so sentences are only
used in one direction with a total of 3,600 sen-
tences (1,200 ca2it, 1,200 ca2ro and 1,200 ca2oc)
for finetuning and 207 for validation.

6.2.3 BSC (Kharitonova et al., 2021) — Task 2

BSC submission is a multilingual semi-supervised
machine translation model. It is based on a pre-
trained language model, XLM-RoBERTa, that is
later finetuned with parallel data obtained mostly
from OPUS (5.1 M sentences). XLM-RoBERTa is
only used to initialize the encoder while the shal-
low decoder is randomly initialised.

6.2.4 CUNI (Jon et al., 2021) — Task 2

Multilingual supervised machine translation
model (primary) enriched with backtranslated
data (contrastive). = The multilingual systems

3ttps://huggingface.co/facebook/m2m100_1.
2B



Average Ranking BLEU TER chrF COMET BertScore
M2M-100 (baseline) 1.0£0.0 31,5 054 0.55 0.399 0.862
EdinSaar-Contrastive 22404 27.1 0.57 0.54 0.283 0.856
EdinSaar-Primary 2.8£0.4 275 058 0.52 0.276 0.849
UBCNLP-Primary 4.0£0.0 249  0.60 0.50 0.076 0.847
UBCNLP-Contrastive 5.0£0.0 240 061 049 -0.068 0.837
mT5-devFinetuned (baseline) 6.0£0.0 185 0.78 042 -0.102 0.810

Table 37: Official ranking according to the automatic metric average for the multilingual low-resource translation task of

Europeana documents for North-Germanic languages (Task 1).

Average Ranking BLEU TER chrFF COMET BertScore
CUNI-Primary 1.2+0.4 50.1 0401 0.694 0.566 0.901
CUNI-Contrastive 1.6£0.5 495 0404 0.693 0.569 0.901
TenTrans-Contrastive 3.0£0.0 43.5 0460 0.670 0.444 0.894
TenTrans-Primary 3.8+£0.4 433 0462 0.668 0.442 0.894
BSC-Primary 5.0£0.7 413 0402 0.647 0.363 0.884
M2M-100 (baseline) 5.8£0.4 40.0 0478 0.634 0.414 0.878
UBCNLP-Primary 7.24+0.4 354  0.528 0.588 0.007 0.854
mT5-devFinetuned (baseline) 8.0+0.7 29.3  0.592 0.553 0.059 0.850
UBCNLP-Contrastive 8.6£0.5 28.5 0.591 0529 -0374 0.825

Table 38: Official ranking according to the automatic metric average for the multilingual low-resource translation task of
Wikipedia articles in the cultural heritage domain for Romance languages (Task 2).

use 41 M original parallel sentences including
all language pairs in the task plus French and
English. Besides leveraging multilingual training
data, various subword granularities are explored
and phonemic representation of texts are added
via multi-task learning. For Catalan—Occitan,
character-level rescoring on the translations
n-best lists is applied and Apertium is used for
backtranslations when included.

6.2.5 EdinSaar (Tchistiakova et al., 2021) —
Task 1

Semi-supervised systems with multilingual pre-
training, backtranslation, finetuning and check-
point ensembling. The primary system is a semi-
supervised machine translation model. mT5 is
finetuned with 1.2 M parallel sentences in the lan-
guages of the task plus Danish, German and En-
glish. The contrastive system is a transformer base
architecture trained with 422 M parallel sentence
pairs in all 30 language directions (including Dan-
ish, German and English) and finetuned only with
pairs with the languages of the task as target lan-

guage.
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6.2.6 TenTrans (Yang et al., 2021) — Task 2

TenTrans submissions are semi-supervised multi-
lingual systems based on a transformer base ar-
chitecture. The basic system is an 8-to-4 mul-
tilingual model with Catalan—Italian—-Romanian—
Occitan as the target side and the inclusion of
the high resource languages Spanish, French, Por-
tuguese and English on the source side. In-domain
finetuning is done with data selected using a do-
main classifier trained with multilingual BERT.
Knowledge transfer is achieved with knowledge
distillation of the M2M 1.2B model previously
finetuned on the languages of the task. The pri-
mary submission is an ensemble between the in-
domain multilingual and the distilled M2M. The
contrastive submission adds a multilingual base
model enriched with backtranslations to the en-
semble and pivot-based methods to augment the
training corpus.

6.2.7 UBCNLP (Chen and Abdul-Mageed,
2021) — Task 1, Task 2

Supervised bilingual systems based on a trans-
former base architecture where the Helsinki-NLP
pretrained models available at the Hugging Face
site are finetuned to the languages of the shared
task.  The primary submission finetunes the



sv2nb is2nb
BLEU TER chrF COMET BertSc BLEU TER chrF COMET BertSc
M2M-100 56.8 0.29 0.77 1.048 0.935 19.3 0.67 042 -0.133 0.825
mT5-dFT 36.3 046 0.63 0.716 0.891 22.3 0.64 047 0.120 0.853
EdinSaar-C  48.2 035 0.73 0.980 0.923 13.0 0.71 041 -0.250 0.820
EdinSaar-P 454 038 0.70 0.919 0912 16.3 0.72 0.39 -0.287 0.812
UBCNLP-C 51.8 033 0.74 0.996 0.931 9.5 0.77 0.33 -0.827 0.778
UBCNLP-P 498 035 0.73 0.952 0.927 12.8 0.74 0.36 -0.628 0.799
nb2is sv2is
BLEU TER chrF COMET BertSc BLEU TER chrF COMET BertSc
M2M-100 21.5 0.64 047 0.259 0.833 19.0 0.66 048 0.501 0.832
mT5-dFT 3.6 1.26 0.21 -0.986 0.705 9.4 0.82 0.35 -0.138 0.777
EdinSaar-C 18.3 0.66 0.46 0.155 0.829 20.2 0.65 0.50 0.469 0.836
EdinSaar-P 19.5 0.65 046 0.258 0.829 224 0.64 0.51 0.509 0.836
UBCNLP-C 7.8 0.78 0.32 -0.924 0.771 20.5 0.66 0.49 0.348 0.838
UBCNLP-P 15.7 0.68 043 -0.074 0.822 14.8 0.71 045 0.144 0.825
nb2sv is2sv
BLEU TER chrF COMET BertSc BLEU TER chrF COMET BertSc
M2M-100 50.9 034 0.72 0.826 0.921 21.2 0.63 045 -0.110 0.826
mT5-dFT 18.6 0.82 040 -0.368 0.790 21.1 0.69 0.46 0.047 0.844
EdinSaar-C 454 0.37 0.69 0.690 0911 17.3 0.66 042 -0.348 0.815
EdinSaar-P 42.9 040 0.65 0.615 0.898 18.8 0.68 041 -0.357 0.805
UBCNLP-C 36.8 043 0.63 0.422 0.893 17.6 0.69 040 -0.425 0.810
UBCNLP-P 427 0.39 0.67 0.636 0.906 14.0 0.70 0.38 -0.572 0.804

Table 39: Automatic evaluation per language pair in the North-Germanic family of the multilingual low-resource translation
task (Task 1). Best scores boldfaced. Notice that the final ranking is done per family and not per language pair as shown in

Table 37.

Catalan—Spanish Helsinki-NLP model with Wiki-
Matrix data (1.1 M sentences for ca-it, 139k for
ca-oc and 490k for ca-ro). The same data is
used to finetune the Catalan—English Helsinki-
NLP model in the contrastive submission.

6.3 Automatic Evaluation

Recently, automatic metrics based on contextual
embeddings have been shown to correlate better
than string matching ones with human judgments
(Kocmi et al., 2021). COMET was shown to be the
best performing metric for languages with Latin
script and chrF the best performing string-based
method. Still, BLEU is used as de facto met-
ric in most papers. As we cannot perform hu-
man evaluation for the 9 language pairs involved
in this shared task, for the official ranking we use a
combination of several metrics including the ones
just mentioned plus BertScore as representative of
contextual embedding-based metrics and TER as
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representative of plain string methods.

We evaluate the submissions and the base-
line systems for the two tasks using BLEU,*?
TER,* chrF** (all with SacreBLEU) COMET,*
and BertScore.?® The final ranking is done accord-
ing to the average ranking of the individual metrics
per family, ties on individual metrics are consid-
ered.

We report the results for Task 1 in Table 37
and for Task 2 in Table 38. M2M-100 resulted
in a very strong baseline for North-Germanic lan-
guages. EdinSaar systems are second and third,
followed by UBCNLPs. The ranking is consistent

32BLEU+case.mixed+numrefs. 1 +smooth.exp+tok.13a+
+version.1.4.14

3TER+tok.tercom-nonorm-punct-noasian-
uncased-+version.1.4.14

34 chrF2+numchars.6+space.false+version.1.4.14

3 wmt-large-da-estimator-1719 model(comet=0.1.0)

3%bert-base-multilingual-cased_L9_no-
idf_version=0.3.9(hug_trans=4.9.0.dev0)



cait ca2oc
BLEU TER chrF COMET BertSc BLEU TER chrF COMET BertSc
M2M-100 46.6 0.390 0.694 0.743 0.913 40.2 0405 0.673 0.341 0.892
mT5-dFT 30.4 0.551 0.571 0.235 0.872 40.1  0.395 0.680 0.402 0.897
BSC-P 420 0420 0.670 0.651 0.908 57.1 0272 0.780 0.514 0.929
CUNI-C 49.5 0.366 0.714 0.813 0.916 67.1 0.201 0.832 0.724 0.952
CUNI-P 50.5 0.360 0.717 0.810 0.917 66.9 0.202 0.829 0.719 0.951
TenTrans-C = 44.1 0.410 0.680 0.667 0.912 56.1 0.309 0.813 0.617 0.941
TenTrans-P 432 0.418 0.671 0.640 0.910 56.5 0.304 0.817 0.640 0.944
UBCNLP-C 257 0.574 0.539 -0.263 0.844 51.7 0.316 0.736 0.259 0.905
UBCNLP-P 35.1 0477 0.622 0.391 0.886 59.9 0.254 0.787 0.538 0.928

ca2ro

BLEU TER chrF  COMET BertSc

M2M-100 331 0.640 0.535 0.159 0.831

mT5-dFT 173 0.830 0.407 -0.461 0.784

BSC-P 249 0.695 0.490 -0.076 0.814

CUNI-C 31.8  0.644 0.533 0.169 0.835

CUNI-P 32.8  0.640 0.535 0.168 0.834

TenTrans-C ~ 30.2 0.661 0.517 0.047 0.830

TenTrans-P 30.2  0.664 0.516 0.047 0.829

UBCNLP-C 8.6 0.884 0.311 -1.119 0.725

UBCNLP-P 11.2 0855 0.354 -0.908 0.749

Table 40: Automatic evaluation per language pair in the Romance family of the multilingual low-resource translation task
(Task 2). Best scores boldfaced. Notice that the final ranking is done per family and not per language pair as shown in Table 38.

across metrics. The quality of the second base-
line, the finetuned version of mT5, is low as com-
pared to the other systems because it has only been
trained for machine translation with 5,500 paral-
lel sentences for the 6 language pairs. EdinSaar-
Primary is also a version of mT5 finetuned with
1.2 M parallel sentences and that improves trans-
lation quality significantly, but still, it lies below
the multilingual baseline system trained with huge
amounts of parallel data, M2M-100.

A more fine-grained analysis (Table 39) shows
that translation into Icelandic is difficult for all the
systems, and also translation from Icelandic into
Swedish (Norwegian) is more difficult than trans-
lation from Norwegian (Swedish) into Swedish
(Norwegian). Systems do not behave consistently
across language pairs: mT5-devFinetuned (mT5-
dFT in the table) achieves top performance when
translating from Icelandic but performs poorly
for the remaining pairs; UBCNLP-Contrastive
(UBCNLP-C) is specially good for translating
from Swedish.

For Task 2, the Romance family, the CUNI sys-
tems are significantly better than the rest, both at
family and language pair levels (Tables 38 and

40). Only for ca2ro, M2M-100 is better according
to some metrics; however, this system performs
comparatively bad for ca2it. TenTrans and BSC
perform very close one to each other. Globally,
TenTrans performs better with BSC showing good
performance for ca2oc. For this language pair, the
reranking strategy via a character-based model by
CUNI achieves very good results.

6.4 Human Evaluation

In order to complement and corroborate the auto-
matic evaluation, we also perform human evalua-
tion on a subset of the languages. However, since
not all language pairs are covered, we cannot use
the manual evaluation results for the official rank-
ing of the systems.

The type of evaluation has been conditioned by
the number and expertise of the raters we could
attract. We hired a total of 14 raters: 5 Swedish
annotators to rate nb2sv and is2sv documents; 3
bilingual Catalan—Occitan annotators to rate ca2oc
documents and 6 bilingual Catalan—Italian annota-
tors to rate ca2it documents. With these numbers
in mind, we decided to do ratings on a Likert-like
scale but following the philosophy of direct assess-
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#eurs 023-0

Sentence palr )_beta #398:D

Below is the source document/context from which the source text which was translated

Swedlsh (svenska) — Norweglan (Bokmal)

Vara kyrkor ar en viktig del av samhallet, och &r en kulturskatt som maste vardas.
Kyrkorna anvénder dock véldigt mycket energi till uppvérmning varje ar.
Detta beror pa att de flesta av dem ar gamla och att energieffektivitet ej varit en prioriterad fraga i deras verksamhet.

Grinstad kyrka ar en kyrka med hog energianvandning som trots att den endast ar uppvarmd vid forrattningar anvander lika mycket energi

som tva medelvillor.

Kyrkan ar fran 1200-talet, ar byggd i tegel och varms idag upp av en oljepanna i ett vattenburet system samt nagra elradiatorer.

Det finns planer pa att byta ut oljiepannan mot narvarme.

Syftet med examensarbetet var att underséka och ge férsamlingen en inblick i vart den energi som tillférs kyrkan tar vagen, hur mangden
tillférd energi kan minskas genom energieffektiviseringsatgarder samt vilken miljgpaverkan varmekallan i dagens uppvarmningssystem har

jamfort med varmekallan i det planerade narvarmenétet.

For the pair of sentences below: Read the text and state how much you agree that:

The black text adequately expresses the meaning of the gray text In Norweglan (Bokmal).

Vara kyrkor ar en viktig del av samhallet, och &r en kulturskatt som maste vardas.

Vare kirker er en viktig del av samfunnet, og er en kulturell skatt som ma behandles.

— Candidate translation

()

For the pair of sentences below: Read the text and state how much you agree that:

The black text adequately expresses the meaning of the gray text In Romanlan (romana).

En aquesta data s
obriren també la p s0.

— Source text

ap que quatre manaies custodiaren "el misteri" del Sant Sepulcre a I'Església del Carme durant tot el Dijous Sant i que

in aceasta data se stie ca patru manevre au pazit "misterul” Sfantului Sepulcre in Biserica Carmei pe tot parcursul zilei de joi si

care au deschis, de asemenea, procesiunea.

— Candidate translation

If the source sentence has a phrase in bold:
O The phrase is not translated

O The phrase is well translated

O The phrase is mistranslated

@® There is no bold phrase

Reset

(b)

Figure 8: Modifications to the Appraise Evaluation Framework (Federmann, 2018) for the multilingual low-resource transla-
tion task. (a) We conduct reference document-level direct assessments on a discrete scale [1,5]. (b) For languages where we
can conduct source document-level assessments, we we also evaluate term translation (dates and locations).

ments (DAs). We do source DA for Italian and
Occitan, and reference DA for Swedish.

Following the conclusions in (Graham et al.,
2020) and (Castilho et al., 2020), we perform sen-
tence level evaluation with document context. Fig-
ure 8(a) shows that evaluators rate each sentence
in context and when all the sentences in document
are evaluated, the whole document is also scored.
The evaluation is done using the Appraise Evalu-
ation Framework (Federmann, 2018) with several
modifications. Appraise implements document di-
rect assessments as used in the WMT News Task
evaluation campaign (Barrault et al., 2020). In our
case, we have fewer annotators so we cannot ex-
pect > 15 ratings per sentence to get statistically
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significant results with a 100 points DA scale. To
tackle this limitation, we constrain the DA scale to
a 5 points Likert-like scale [1,5]. This resembles
an adequacy+fluency evaluation where raters still
answer the question "The black text adequately ex-
presses the meaning of the gray text.", but they do
not evaluate adequacy and fluency separately. Af-
ter a small pilot experiment (see below), the guide-
lines to the evaluators were the following:

Rank a sentence with a 5 if it completely ex-
presses the same meaning as the source/reference.
Notice that we do not ask for a literal transla-
tion but for a sentence that preserves the mean-
ing and it is grammatically correct. For a 3 score,
the sentence should convey part of the meaning



of the original sentence but some relevant parts
are missing or not well translated. For a 4, only
non-relevant parts are not OK. For a 2, most of
the sentence is wrong but still some bits, proba-
bly non-relevant, are well translated. Finally, rate
the sentence with a 1 if none of the content is pre-
served.

Bilingual raters allow us to do a small term
translation evaluation for Catalan to Italian and
Occitan. Figure 8(b) shows that we boldface some
terms in the source text and evaluators are asked
to say if (i) The phrase is not translated, (ii) The
phrase is well translated or (iii) The phrase is mis-
translated.

6.4.1 Data Preparation

We select test documents or parts of them to cover
100 sentences per language. Table 36 shows that
considering full documents would limit the evalu-
ation to very few texts so we select a subset of con-
tiguous sentences in documents to make the eval-
uation more heterogeneous. For Catalan to Ital-
ian and Occitan, we selected fragments in 9 doc-
uments with lengths between 5 and 15 sentences;
for Icelandic to Swedish fragments in 7 documents
with lengths between 8 and 20 sentences; and for
Norwegian to Swedish fragments in 7 documents
with lengths between 7 and 22 sentences.

We extract the same 100 sentences from the par-
ticipants primary submissions and from the ref-
erence. For source DA evaluation (Catalan and
Occitan), the reference is also rated and used to
establish human performance. For reference DA
(Swedish), the reference is just used for rating
translations.

Finally, we mark 60 of the source sentences in
Catalan with one term each. Selected terms’’ are

3List of terms which translation is evaluated manually:
Placa del Mercadal, segle XV, segle XIX i XX, la Casa
Pinyol, Festes de Maig, Rambla de Badalona, la Cremada, la
Segona Reptiblica, Josep Maria Cuyas, Baré de Malda, 11 de
maig de 1940, Francesc de Paula Gir6 i Prat, Aristeus anten-
natus, Productes de I’Emporda, 400 metres, mitjan segle XX,
Cany6 de Palamés, Confraria de Pescadors de Palamds, fi-
nals del segle XIX, Xat de Benaiges, comengaments del segle
XX, "salvitxada", la calgotada, Alt Camp, Congrés de Cultura
Catalana, Valls, Concurs de salsa de la "calgotada”, Fogueres
de Sant Antoni, Nadal, Sant Antoni, Quimica Organica, Uni-
versitat de Barcelona, Junta d’Energia Nuclear, Universitat de
Chicago, Universitat de Valéncia, Fisica Teorica, Mecanica
Teorica, Premi d’Investigaci6 Ramén y Cajal, Manaies de
Girona, any 1751, Dijous Sant, Setmana Santa, segles xviii
i xix, 1851, mitjans de segle XIX, finals del XVIII, port del
Masnou, dos quilometres i mig, Club Nautic del Masnou,
Creu Roja, festival Ple de Riure, Masnou, N-II, Premia de
Mar, any 2019, platja d’Ocata, Michelin, Ferran Adria, El
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nb2sv is2sv
System z-score raw z-score raw
M2M-100 0.7+0.6 4.2+0.8 0.1+1.0 2.0%1.1
EdinSaar 0.24+0.7 3.6%+1.1 -0.1£0.8 1.9+1.0
UBCNLP 0.24+0.8 3.5+1.2 -04+1.0 1.6%1.1
mT5-dFT -1.24+0.7 1.5+1.1 04+1.1 24412

Table 41: Average DA and standard deviation of raw- and
z-scores for all primary submissions of Task 1 in the language
pairs manually evaluated.

cait ca2oc

System z-score raw z-score raw

HUMAN 0.8+0.4 4.840.6 0.8+£0.7 4.0+1.0
CUNI 0.5+£0.7 4.4+£09 0.5+0.8 3.6+1.1
M2M-100 0.44+0.7 4.24+1.0 -0.7+0.8 2.0+1.0
TenTrans 0.0+0.8 3.841.1 03+0.8 3.4+1.2
BSC -0.1+0.8 3.7+1.1 0.3+09 3.4+1.2
UBCNLP -0.5+1.0 3.1£1.3 0.0+£09 3.0+1.2
mT5-dFT -1.2+09 23+1.2 -1.0+0.7 1.7+0.9

Table 42: Average DA and standard deviation of raw- and
z-scores for all primary submissions of Task 2 in the language
pairs manually evaluated. HUMAN refers to the evaluation
of the reference.

mostly named entities (dates, locations or titles)
and might be multi-word. Named entities that ap-
pear only a few times in training data are a chal-
lenge for neural systems, so the aim is to check the
quality of these translations. Since professional
translators did not receive any instructions on how
to translate these terms, we can observe a mix-
ture of untranslated and translated named entities,
which makes it difficult to assess its quality in an
automatic way.

6.4.2 Pilot Experiment

We prepared a pilot experiment with two goals: ()
provide some training to the raters and (i7) check
the feasibility of the task. For this, we prepared a
manual with instructions to work with the modi-
fied Appraise interface and the guidelines for rat-
ing the translations. We populate the task with 20
translated sentences from one of the submissions.
Sentences come from two test documents so that
the annotators go through the full document anno-
tation process twice.

After the pilot, we made the guidelines more
concrete to accommodate the raters questions.
These annotations are discarded for the final anal-
ysis described in the next section.

Celler de Can Roca, Can Fabes



6.4.3 Results

The results of the evaluation task are the average
DA scores per system. In order to take into ac-
count that some raters might be more strict than
others, we rank the systems according to the z-
score, where the DA score is mean-centered and
normalised per rater.

Inter-annotator agreement as measured by
Fleiss’ x (Fleiss, 1971) is moderate: 0.321+0.03
(nb2sv, fair agreement), 0.1640.04 (is2sv, slight
agreement), 0.284+0.03 (cat2it, fair agreement)
and 0.16£0.02 (ca2oc, slight agreement). These
values are in agreement with previous analy-
ses (Castilho, 2020). Intra-annotator agreement
ranges from 0.88+0.06 to 0.24£0.09 for the
North-Germanic languages and from 0.5640.09 to
-0.04£0.07 for the Romance family. We discard
raters with x~0 and report results with 4 raters for
Swedish, 3 for Catalan—Occitan and 4 for Catalan—
Italian. Tables 41 and Table 42 show the results for
Task 1 and Task 2 respectively.

For Task 1, we obtain very different scores de-
pending on the language pair. This is in line with
the automatic evaluation: translations from Ice-
landic do not behave in the same way as Swedish
and Norwegian which are closer languages. Base-
lines perform very well on this family, but not si-
multaneously. M2M-100 offers good translation
quality for nb2sv while mT5-dFT is specially good
for is2sv. For is2sv, systems are not statistically
significantly different, for nb2sv mt5-dTF is sig-
nificantly worse than the others and EdinSaar and
UBCNLP show similar performance.

For Task 2, the reference (HUMAN) is ranked
first in both language pairs, but the deviation is
large and it is not significantly better than the
CUNI system. For ca2it, HUMAN is not sig-
nificantly better than the baseline system M2M-
100 either. In some cases though, the distinction
seemed to be easy. Raters pointed out several rea-
sons: () mistranslations of very frequent words
—got in Catalan (cup, glass) translated into Ital-
ian as getto (jet), grigio (gray) or vetro (glass, the
material); (i7) bad translation in context of am-
biguous words —quarentena in Catalan translates
into Italian as quarantina (about fourty) or quar-
antena (quarantine); (i7) mistaken roots (this can
be related to BPE subunits as explained below) —
calcots (a local vegetable) translated as calzatura
(footwear); or changing words —un fisic catala (a
Catalan physicist) translated as un fisico spagnolo
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ca2it ca2oc
System well mis no X well mis no X
HUMAN 53 0 3 56 40 0o 2 42
CUNI 39 3 5 47 30 7 1 38
M2M-100 33 2 6 41 26 9 0 35
TenTrans 37 0 9 46 32 4 1 37
BSC 27 7 5 39 33 4 0 37
UBCNLP 29 16 1 46 19 1 0 20
mT5-dFT 20 17 10 47 25 11 4 40

Table 43: Number of well translated, mis-translated and not
translated terms for the language pairs manually evaluated
for Task 2. The last column per language shows the total
number of terms considered from the maximum of 60 bold
faced terms (see text).

(a Spanish physicist).

Similar to the automatic evaluation, TenTrans
and BSC are very close to each other according to
the human ratings although the two architectures
are completely different. The evaluation also con-
firms the bad performance of M2M-100 on ca2oc
but its good performance on ca2it. In general, all
the systems perform worse on ca2oc than ca2it ac-
cording to the raw scores in Table 42, but the trend
is reversed when analysing the z-scores. This re-
sult points to differences between the scale that an-
notators used in the two tasks even if they received
the same instructions. Notice that almost all au-
tomatic metrics but COMET tend to score higher
ca2oc than ca2it for most systems.

Term translation. The evaluation against the
source for the Romance languages allows us to
study the translation quality of selected terms. For
ca2it we use the annotations from 5 raters but
only 2 were considered for ca2oc as the remaining
raters did not do the task properly. The agreement
for this task is 0.344+0.05 (ca2it) and 0.19+0.05
(ca2oc). Table 43 shows the number of well trans-
lated, mis-translated and untranslated terms for
both pairs.

For each term, we sum the votes from all the
raters per class (well translated, mis-translated or
untranslated) and consider the winning class the
one with the majority of votes. In case there is a
tie with 2 or more classes, the term is not consid-
ered in the analysis, this is why the last columns
Y in Table 43 differ from 60. The disagreement
is high, and one of the causes is the ambigu-
ity in the annotation of toponyms. For instance,
the name of the city of "Valls" has been evalu-
ated 17 times: 7 times as well translated and 10
times as not translated being always the translation



"Valls". The same happens with other toponyms
and years. This ambiguity damages specially the
majority voting for Occitan (low ) since we only
consider 2 raters.

The systems with the largest number of mis-
translations are those with less access to the
task languages, that is, the baselines. mT5-
devFinetuned and M2M-100 (specially for Occ-
itan) do the most mistakes. A curious case is
UBNLP which only produces 1 mistranslation for
Occitan but 16 for Italian. Also BSC generates
more errors for Italian (7) than for Occitan (4) even
though translation quality into Italian is higher
than into Occitan. Looking at some examples,
we hypothesise that this can be related to the sub-
unit segmentation strategy. For instance, the word
"calgotada" is translated as calzotada, calzolata or
as we have seen before calzatura in Italian, where
no Italian word for this concept exists. For Occi-
tan, it is always translated by calcotada (BPE units
in Catalan and Occitan might be the same, but not
for Italian), only two times it is mistranslated as
escola.

Besides these errors that might be due to the
split in subunits, we also observe multi-word
named entities where one of the words has been
literally translated and the others have not. Also,
in few occasions, a number (specially centuries) is
translated by another one.

6.5 Discussion

This shared task faced three challenges: multi-
lingual translation, document translation and in-
domain (cultural heritage) translation. 60% of
the submissions approached multilinguality with
a single system while 40% used a combination
of several bilingual systems. None of the partic-
ipants focused on the document-level aspect of the
task, and those who dealt with the specific domain
did not use any of the in-domain multilingual lex-
icons but selected in-domain data from the avail-
able training corpus.

More details and comparisons among the sub-
missions can be found in Figures 9 and 10. Fig-
ure 9 focuses on the resources. Participants did
not use all the data available, probably because
of its heterogeneous nature and the difference
of language pairs available in the different cor-
pora. WikiMatrix is the favourite corpus, with
80% of the submissions trained on it. 90% of
the systems used some kind of pretrained model:
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Which monolingual/parallel data did you use?

Other in ELRC
Global voices
Paracrawl
TED talks
Bible

Books
OPUS-100
MultiCCAligned
WikiMatrix
JW300
Europarl
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XLM
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None
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data augmentation

related rich languages
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multilinguality

fine-tuning 10|

|
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Figure 9: Resources used by the participants to train the
systems submitted to the multilingual low-resource transla-
tion task (10 responses).

from language models such as mBERT (TenTrans,
EdinSaar) or XLM-RoBERTa (BSC) to machine
translation models such as M2M-100 (TenTrans)
or Helsinki’s NLP (UBCNLP). There is no clear
favourite system here, and each team followed a
different approach. In all cases, systems were
finetuned with language specific data, either data
made available for the task or backtranslations
made by themselves. 50% of the submissions
also used data from the related high resourced lan-
guages for training.

Figure 10 compares the architectures. As ex-
pected, neural systems dominate the number of
submissions. In fact, all of them where 100% neu-
ral, without any hybridisation with any non-neural
component. All participants used direct transla-
tion, either multilingual (60%) or bilingual (40%),
but none of them submitted translations done
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Figure 10: Main characteristics of the systems submitted to the multilingual low-resource translation task. Percentages are

over the sample of 10 submissions.

through a pivot language. One team, CUNI, tried
pivot through English for the Romance languages
but translation quality was significantly better with
direct systems. TenTrans used a pivot language
for creating a synthetic corpus using backtransla-
tion. Similarly to CUNI’s, the approach worked
well for ca2it and ca2ro but did not work at all for
the lowest resourced language, Occitan, damaging
the quality of the multilingual system as a whole.
In both cases, multilingual systems trained with
parallel data of the task languages plus additional
corpora with the related rich languages as source
gave the best performance.

Data augmentation via backtranslations and/or
parallel data including high-resourced languages
have been beneficial for all the systems. Two
teams also got improvements by selecting data
close to the domain of the validation set, but the
in-domain adaptation was not decisive to win the
shared task. TenTrans extracted in-domain sen-
tences with a domain classifier trained on mBERT
in Task 2 while EdinSaar used cross-entropy for
the same purpose in Task 1.

In this shared task, we have evaluated systems
per family, but differences among translation pairs
are significant and determine the final ranking.
The trends for the 2 families are similar. One
of the languages has a relatively large amount
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of data (Swedish/Italian), the second language in
terms of amount of data is the most distant one
within the family (Icelandic/Romanian) and the
lowest-resourced language is linguistically very
similar to the richest language (Norwegian Bok-
mal/Occitan). Icelandic is the bottleneck for Task
1 and Romanian for Task 2 showing that in this
case the distance between languages is more im-
portant than the amount of data.

It is interesting to see how the ranking depends
on the language pair. The most extreme case is our
baseline mT5-devFinetuned which performed the
best when translating from Icelandic and the worst
in the other cases (Task 1). Similarly but not so ex-
treme, UBCNLP-Contrastive performed very well
when translating from Swedish and significantly
worse on the other cases. In Task 2, Romance lan-
guages, the two baselines specially M2M-100, are
penalised by the bad performance on ca2oc show-
ing that the amount of Occitan text might be too
diluted in their multilingual training. M2M-100 is
the best for ca2ro, and this is the only pair where
the best system is not CUNI. For all the systems,
ca2ro is the most difficult pair.

Finally, we want to emphasise the correlation
between automatic and human evaluations among
systems even though standard deviations are high
and top performing systems are not significantly



different.

7 Automatic Post Editing

This section presents the results of the 7¢" round
of the WMT task on MT Automatic Post-Editing.
The task consists in automatically correcting the
output of a “black-box” machine translation sys-
tem by learning from human-revised machine-
translated output. In continuity with last year, the
challenge consisted of fixing the errors present in
English Wikipedia pages translated — into German
and Chinese — by state-of-the-art, not domain-
adapted neural MT (NMT) systems unknown to
participants. Despite a number of data down-
loads in line with the previous rounds, this year
we observed an unexpected drop in participation:
two teams participated in the English-German
task, submitting two runs each, while the English-
Chinese task had no participants. Most likely, this
setback can be ascribed to the difficulty to han-
dle the released test data, which are characterized
by NMT output of very high quality. This is re-
flected by much higher baseline results compared
to last year (18.05 TER / 71.07 BLEU for en-de,
22.73 TER / 69.2 BLEU for en-zh), which only
one run was able to improve according to both the
automatic metrics used (-0.77 for the primary TER
metric and +0.48 for the secondary BLEU metric).
Nevertheless, the outcomes of human evaluation
still reveal the ability of APE systems to improve
MT output quality: significant gains over the base-
line are indeed observed for all the participating
systems.

7.1 The Task

MT Automatic Post-Editing (APE) is the task
of automatically correcting errors in a machine-
translated text. As pointed out by (Chatterjee
et al., 2015), from the application point of view,
the task is motivated by its possible uses to:

* Improve MT output by exploiting informa-
tion unavailable to the decoder, or by per-
forming deeper text analysis that is too ex-
pensive at the decoding stage;

* Cope with systematic errors of an MT system
whose decoding process is not accessible;

* Provide professional translators with im-
proved MT output quality to reduce (human)
post-editing effort;
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* Adapt the output of a general-purpose MT
system to the lexicon/style requested in a spe-
cific application domain.

This 7** round of the WMT APE shared task
kept the same overall evaluation setting of the pre-
vious six rounds. Specifically, the participating
systems had to automatically correct the output of
an unknown “black box” (neural) MT system by
learning from training data containing human revi-
sions of translations produced by the same system.
The selected language pairs (English-German and
English-Chinese) and the data domain (Wikipedia
articles) were the same of last year (Chatterjee
et al., 2020), as well as the type of MT systems
(generic NMT systems not adapted to the target
domain).

7.2 Data, Metrics, Baseline
7.2.1 Data

In continuity with all previous rounds, participants
were provided with training and development
data consisting of (source, target, human post-
edit) triplets (7,000 for the training and 1,000 for
the development sets for both languages) where:

* The source (SRC) is a tokenized English sen-
tence;

* The target (TGT) is a tokenized Ger-
man/Chinese translation of the source, which
was produced by a generic, black-box NMT
system unknown to participants.’®

* The human post-edit (PE) is a tokenized
manually-revised version of the target, which
was produced by professional translators.

For the English-German sub-task, two additional
training resources were made available to par-
ticipants. These are: i) the corpus of 4.5 mil-
lion artificially-generated post-editing triplets de-
scribed in (Junczys-Dowmunt and Grundkiewicz,
2016), and ii) the 14.5 million artificially-
generated instances of the English-German section
of the eSCAPE corpus (Negri et al., 2018).

3%The NMT systems for both the languages are based
on the standard Transformer architecture (Vaswani et al.,
2017) and follow the implementation details described in (Ott
et al., 2018). They were trained on publicly available MT
datasets including Paracrawl (Baifién et al., 2020) and Eu-
roparl (Koehn, 2005), summing up to 23.7M parallel sen-
tences for English-German and 22.6M for English-Chinese.



Test data consisted of newly-released (source,
target) pairs (1,000 in total for each target lan-
guage), similar in nature to the corresponding ele-
ments in the train/dev sets (i.e. same domain, same
NMT architectures). The human post-edits of the
target elements were left apart to measure APE
systems’ performance both with automatic metrics
(TER, BLEU) and via manual assessments.

7.2.2 Metrics

Also this year, the participating systems were eval-
uated both by means of automatic metrics and
manually (see Section 7.5). Automatic evalua-
tion was carried out by computing the distance
between the automatic post-edits produced by
each system for the target elements of the test
set, and the human corrections of the same test
items. Case-sensitive TER (Snover et al., 2006)
and BLEU (Papineni et al., 2002) were respec-
tively used as primary and secondary evaluation
metrics. The official systems’ ranking is hence
based on the average TER calculated on the test set
by using the TERcom>® software: lower average
TER scores correspond to higher ranks. BLEU
was computed using the multi-bleu.perl package*’
available in MOSES. Automatic evaluation results
are presented in Section 7.5.1.

Manual evaluation was conducted via source-
based direct human assessment (Graham et al.,
2013). Complete details are provided in Section
7.5.3.

7.2.3 Baseline

Also this year, the official baseline results were
the TER and BLEU scores calculated by com-
paring the raw MT output with human post-edits.
This corresponds to the score achieved by a “do-
nothing” APE system that leaves all the test targets
unmodified. For each submitted run, the statistical
significance of performance differences with re-
spect to the baseline was calculated with the boot-
strap test (Koehn, 2004).

7.3 Complexity indicators

To get an idea of the difficulty of the task, in previ-
ous rounds we have focused on three aspects of the
released data, which provide us with information
about the possibility of learning useful correction
patterns during training and successfully applying

¥http://waw.cs.umd. edu/~snover/tercom/
“https://github.com/moses-smt/mosesdecoder/
blob/master/scripts/generic/multi-bleu.perl
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them at test time. These are: i) repetition rate, ii)
MT quality, and iii) TER distribution in the test
set. For the sake of comparison across the seven
rounds of the APE task (2015-2021), Table 44 re-
ports, for each dataset, information about the first
two aspects. The third one, instead, will be dis-
cussed by referring to Figure 11. Concerning this
year’s round, we only report information for the
English-German sub-task, the only one for which
we had participants; also the discussion henceforth
will exclusively focus on this sub-task.

7.3.1 Repetition Rate

The repetition rate, measures the repetitiveness in-
side a text by looking at the rate of non-singleton
n-gram types (n=1...4) and combining them us-
ing the geometric mean. Larger values indicate
a higher text repetitiveness that may suggest a
higher chance of learning from the training set cor-
rection patterns that are applicable also to the test
set. However, over the years, the influence of rep-
etition rate in the data on systems’ performance
was found to be marginal.*! For the sake of com-
pleteness, we hence just observe that, being drawn
from the same Wikipedia domain, this year’s data
feature very low repetitiveness values (i.e. 0.73,
0.78, and 0.76 respectively for the SRC, TGT and
PE elements), which are comparable to those from
last year (0.653, 0.823, and 0.656). In spite of this,
while last year’s gains over the baseline were the
highest ever observed in the APE task history, this
year’s results are significantly lower. This sug-
gests the higher importance of other complexity
factors, on which repetition rate might have an ad-
ditive effect that still has to be fully understood.

7.3.2 MT Quality

MT quality, that is the initial quality of the
machine-translated (TGT) texts to be corrected, is
indeed a much more reliable indicator of task dif-
ficulty. We measure it by computing, the TER ()
and BLEU (7) scores using the human post-edits
as reference. As discussed in (Bojar et al., 2017;
Chatterjee et al., 2018, 2019, 2020) higher qual-
ity of the original translations leaves to the APE
systems a smaller room for improvement since
they have, at the same time, less to learn during
training and less to correct at test stage. On one

“I'The analyses carried out over the years produced mixed
outcomes, with impressive final results obtained in spite of
low repetition rates (Chatterjee et al., 2020) and vice-versa
(Chatterjee et al., 2018, 2019).



Lang. | Domain | MT type || RR_SRC | RR_TGT | RR_PE || Baseline BLEU | Baseline TER | § TER
2015 | en-es News PBSMT 2.9 3.31 3.08 n/a 23.84 +0.31
2016 | en-de IT PBSMT 6.62 8.84 8.24 62.11 24.76 -3.24
2017 | en-de IT PBSMT 7.22 9.53 8.95 62.49 24.48 -4.88
2017 | de-en | Medical | PBSMT 5.22 6.84 6.29 79.54 15.55 -0.26
2018 | en-de IT PBSMT 7.14 9.47 8.93 62.99 2424 -6.24
2018 | en-de IT NMT 7.11 9.44 8.94 74.73 16.84 -0.38
2019 | en-de IT NMT 7.11 9.44 8.94 74.73 16.84 -0.78
2019 | en-ru IT NMT 18.25 14.78 13.24 76.20 16.16 +0.43
2020 | en-de Wiki NMT 0.65 0.82 0.66 50.21 31.56 -11.35
2020 | en-zh Wiki NMT 0.81 1.27 1.2 23.12 59.49 -12.13
2021 | en-de Wiki NMT 0.73 0.78 0.76 71.07 18.05 -0.77

Table 44: Basic information about the APE shared task data released since 2015: languages, domain, type of MT technology,
repetition rate and initial translation quality (TER/BLEU of TGT). The last row (§ TER) indicates, for each evaluation round,
the difference in TER between the baseline (i.e. the “do-nothing” system) and the top-ranked submission. For this year’s round
we report results for the only sub-task — English-German — for which we had participants.

side, training on good (or near-perfect) automatic
translations can drastically reduce the number of
learned correction patterns. On the other side,
testing on similarly good translations can i) dras-
tically reduce the number of corrections required
and the applicability of the learned patterns, and
ii) increase the chance to introduce errors, espe-
cially when post-editing near-perfect TGTs. The
findings of all previous rounds of the task support
this observation and, as discussed in Section 7.5,
this year is no exception. For English-German,
the quality of the initial translations (18.05 TER
/ 71.07 BLEU) is close the level of the “hard-
est” previous rounds (2017-2019), characterized
by baseline scores in the 15.5-16.8 TER inter-
val (and BLEU>70.0). Accordingly, this year’s
gains over the baseline amount to less than 1
TER/BLEU points. The strict correlation between
the quality of the initial translations and the actual
potential of APE is hence confirmed.

359
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Figure 11: TER distribution in the English-German test
set.
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7.3.3 TER Distribution

A third reliable complexity indicator is the TER
distribution (computed against human references)
for the translations present in the test sets. Al-
though TER distribution and MT quality can be
seen as two sides of the same coin, it’s worth
remarking that, even at the same level of over-
all quality, more/less peaked distributions can re-
sult in very different testing conditions. Indeed,
as shown by previous analyses, harder rounds of
the tasks were typically characterized by TER dis-
tributions particularly skewed towards low values
(i.e. alarger percentage of test items having a TER
between 0 and 10). On one side, the higher the
proportion of (near-)perfect test instances requir-
ing few edits or no corrections at all, the higher the
probability that APE systems will perform unnec-
essary corrections penalized by automatic evalua-
tion metrics. On the other side, less skewed dis-
tributions can be expected to be easier to handle
as they give to automatic systems a larger room
for improvement (i.e. more test items requiring -
at least minimal - revision). In the lack of more
focused analyses on this aspect, we can hypothe-
size that, in ideal conditions from the APE stand-
point, the peak of the distribution would be ob-
served for “post-editable” translations containing
enough errors that leave some margin for focused
corrections, but not too many errors to be so un-
intelligible to require a whole re-translation from
scratch.*?

Also with respect to this complexity indicator,
this year’s test set looks particularly difficult to
handle. As shown in Figure 11, more than 35%

“For instance, based on the empirical findings reported
in (Turchi et al., 2013), TER=0.4 is the threshold that, for

human post-editors, separates the “post-editable” translations
from those that require complete rewriting from scratch.



ID Participating team

PVIE
Netmarble

Amazon Prime Video, India (Sharma et al., 2021)
Netmarble Al Center, South Korea Korea (Oh et al., 2021)

Table 45: Participants in the WMT21 Automatic Post-Editing task.

of the test instances feature a TER between 0
and 5 and almost 50% of them have 0<TER<10.
This distribution, which is very different from last
year (where less than 7% of the test samples had
0<TER<S and ~55% of them had 15<TER<45),
is similar to the one featured by the most challeng-
ing datasets from previous rounds.

All in all, the small gains over the baseline men-
tioned above also confirm the strict correlation be-
tween TER distribution and task difficulty. This
goes hand in hand with the above considerations
about MT quality and, together with the possible
additive effect of very low repetition rate values in
raising the difficulty bar, might have discouraged
potential participants.

7.4 Submissions

As shown in Table 45, we received submissions
from two teams, which is indeed a significant drop
with respect to last year’s round. Moreover, as
anticipated, both teams participated only in the
English-German sub-task by submitting 2 runs
each.

Amazon Prime Video (PVIE). Amazon partic-
ipated with a model leveraging a state-of-the-art
MT system based on fairseq (Ott et al., 2019)
and pre-trained on data from the WMT ‘19 News
Translation task (Barrault et al., 2019). The ba-
sic model is first fine-tuned on the APE dataset,
by creating (source, target) pairs where the source
is a concatenation of the SRC and MT elements
of the APE data and the target is the correspond-
ing PE element. Then, to cope with the domain
mismatch between the initial training data and the
APE task ones, the model is fine-tuned on i) data
drawn from WikiMatrix (Schwenk et al., 2019)
(64k parallel sentences after cleaning), ii) addi-
tional APE samples (45k triplets) from previous
rounds (2016-2018) of the shared task, and iii) this
year’s APE data. The primary submission is ob-
tained by ensembling models built from different
combinations of the available data.

Netmarble AI Center (Netmarble). Netmar-
ble participated with a Transformer-based system
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(Vaswani et al., 2017) built using: i) the WMT21
News Translation data, ii) the additional artificial
synthetic data provided to the APE task partici-
pants, and iii) data augmentation techniques that
make use of an external MT component. These re-
sources are processed through a curriculum train-
ing procedure aimed to step-wise learn from eas-
ier problems to more complex ones. Multi-task
learning is also applied to alleviate data sparsity
issues by sharing knowledge across related tasks
(in this case part of speech recognition, named en-
tity recognition, masked language modeling and
keep/translate classification). All tasks are jointly
trained and, to cope with imbalanced data from the
selected tasks, task-specific losses — namely focal
loss (Lin et al., 2017) and class-balanced loss (Cui
et al., 2019) - are exploited in addition to standard
cross-entropy. Moreover, dynamic weight average
(Liu et al., 2019), which adapts the task weighting
over time by considering the rate of change of the
loss for each task, is applied to optimize the con-
tribution of each task in the multi-task framework.

7.5 Results

7.5.1 Automatic evaluation

Participants’ results are shown in Table 46. The
submitted runs are ranked based on the average
TER (case-sensitive) computed using human post-
edits of the MT segments as reference, which is
the APE task primary evaluation metric. We also
report the BLEU score, computed using the same
references, which represents our secondary evalu-
ation metric.

As it can be seen from the table, the two rank-
ings slightly differ: while the top submission
(17.28 TER, 71.55 BLEU) is the same, the BLEU-
based ranking presents few swaps, with the do
nothing baseline reaching the 2nd position. One
obvious observation is that these fluctuations are
due to the fact that all systems substantially per-
form on par: except for one case (i.e. the 0.77 TER
reduction achieved by the top submission), all the
results’ differences with respect to the baseline are
indeed not statistically significant.

Quite surprisingly, we also observe that the best



TER BLEU

en-de Netmarble. CURRICULUM-ENSEMBLE_CONTRASTIVE 17.28 71.55
PVIE_single CONTRASTIVE 17.74  70.54
PVIE_ensemble_ PRIMARY 17.85 70.5
Netmarble_ CURRICULUM-MTL_PRIMARY 17.97 70.53
Baseline 18.05 71.07

Table 46: Results for the WMT21 APE English-German — average TER ({), BLEU score (1) Statistically significant improve-

ments over the baseline are marked in bold.

submission for both participants is the contrastive
one. This highlights the difficulty to select the best
configuration during system development, and in-
directly confirms the difficulty to handle APE data
characterized by very high MT quality, TER distri-
bution skewed towards perfect/near-perfect trans-
lations and very low repetition rate values.

7.5.2 Systems’ behaviour

Modified, improved and deteriorated sen-
tences. In light of the hard conditions posed by
what seems to be the hardest APE dataset ever re-
leased, we now turn an eye toward the changes
made by each system to the test instances. To this
aim, Table 47 shows, for each submitted run, the
number of modified, improved and deteriorated
sentences, as well as the overall system’s precision
(i.e. the proportion of improved sentences out of
the total number of modified instances for which
improvement/deterioration is observed). It’s worth
noting that, as in the previous rounds, the num-
ber of sentences modified by each system is higher
than the sum of the improved and the deteriorated
ones. This difference is represented by modified
sentences for which the corrections do not yield
any TER variations. This grey area, for which
quality improvement/degradation can not be au-
tomatically assessed, contributes to motivate the
human evaluation discussed in Section 7.5.3.

As it can be seen from the table, systems’ be-
haviour reflects the difficulty to handle this year’s
test set. The quite low percentage of modified
sentences (50.2 on average, 46.2 for the top sub-
mission) is in line with our previous observations
about TER distribution (see Section 7.3.1). With
~50% of the test instances having 0< TER< 10, all
systems seem to have properly managed the small
room for intervention by not exceeding the num-
ber of expected corrections. Accordingly, different
from last year,*’ systems’ final scores are inversely

#0n the much simpler 2020 test set, featuring only
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Figure 12: Distribution of edit operations (insertions, dele-
tions, substitutions and shifts) performed by the two primary
submissions to the English-German task.

Netmarble
HW-PVIE

proportional to their aggressiveness.

Precision-wise, however, we are far from last
year’s values: despite lower aggressiveness, Sys-
tem’s precision is 51.12 on average (in 2020 it was
58.0) with the best run peaking at 53.96 (vs 69.0 in
2020). This is due to significant variations in the
percentage of improved (43.5 on average, 45.67
for the top submission) and deteriorated sentences
(41.6 on average, 38.96 for the winning system),
which are very different from last year where, on
a simpler test set, the average values were respec-
tively 58.2 and 23.6.

Edit operations. Similar to previous rounds, we
analysed systems’ behaviour also in terms of the
distribution of edit operations (insertions, dele-
tions, substitutions and shifts) done by each sys-
tem. This fine-grained analysis of how systems
corrected the test set instances is obtained by com-
puting the TER between the original MT output
and the output of each primary submission taken
as reference. Similar to last year, and in line
with the close TER/BLEU results obtained by the
two systems, differences in their behaviour are
barely visible. Both of them are characterised
~15.0% of instances with 0<TER<10, the modified sen-

tences were 69.2% on average, with the more aggressive be-
haviour of the top systems peaking to more than 90.5%.



Systems Modified Improved Deteriorated Prec.
Netmarble_ CURRICULUM-ENSEMBLE_CONTRASTIVE | 462 (46.2%) | 211 (45.67%) | 180 (38.96%) | 53.96
PVIE_single_ CONTRASTIVE 504 (50.4%) | 212 (42.06%) | 212 (42.06%) | 50.0

PVIE_ensemble_ PRIMARY 508 (50.8%) | 215 (42.32%) | 218 (42.91%) | 49.65
Netmarble_CURRICULUM-MTL_PRIMARY 533 (53.3%) | 235 (44.09%) | 227 (42.59%) | 50.87
Average 50.2 43.5 41.6 51.12

Table 47: Number (raw and proportion) of test sentences modified, improved and deteriorated by each run submitted to
the APE 2021 English-German sub-task. The “Prec.” column shows systems’ precision as the ratio between the number of
improved sentences and the number of modified instances for which improvement/deterioration is observed (i.e. Improved +

Deteriorated).

Avg Avgz
Netmarble_ CURRICULUM-MTL_PRIMARY 79.82 0.144
Netmarble_ CURRICULUM-ENSEMBLE_CONTRASTIVE 78.52 0.095
PVIE_ensemble_ PRIMARY 76.85 0.02
PVIE_single. CONTRASTIVE 76.67 0.011
test.mt 69.68 -0.27

Table 48: Results for the WMT21 APE English-German — human evaluation. Systems ordered by DA score; systems
within a cluster are considered tied; lines indicate clusters according to Wilcoxon rank-sum test p < 0.05.

by a large number of deletions (65.0% on aver-
age), followed by insertions (19.2%), shifts (9.2%)
and substitutions (6.5%). Although this year’s
test set turned out to be very different in terms
of difficulty, this distribution is practically iden-
tical to last year. More thorough future investiga-
tions would be needed to find clear explanations
for these observations. For the time being, to get
further insights about systems’ performance, we
now complement our analysis by discussing the
outcomes of human evaluation of the submitted
runs.

7.5.3 Human evaluation

In order to complement the automatic evaluation
of APE submissions, manual evaluation of the 4
submissions for English-German was conducted.
In this section, we present the evaluation proce-
dure, as well as the results obtained.

7.6 Evaluation procedure

We evaluated the overall quality of the MT and PE
output using source-based direct assessment (Gra-
ham et al., 2013; Cettolo et al., 2017; Bojar et al.,
2018b). We used the same instructions that are
used in the News Translation track of WMT2021.
Instead of using crowd-workers, we hired 2 pro-
fessional translators for English-German that are
native German speakers as suggested by Freitag
et al. (2021a).

Human evaluation results for English-German
are summarized in Table 48. Similar to last
year’s task (Chatterjee et al., 2020), all 4
submissions significantly improved the original

48

MT output. Furthermore, the APE system of
Netmarble_ CURRICULUM-MTL_PRIMARY sig-
nificantly outperforms all other submission and
can be declared as the single winner of this years’
APE task. Interestingly, the human evaluation
results show no correlation with the automatic
scores from Table 46 which confirms the findings
from Freitag et al. (2019) that automatic evalua-
tion is hard for post-edited systems.

7.7 Summary

We presented the results from the 7" shared

task on Automatic Post-Editing at WMT. This
round of the challenge featured the same over-
all setting of last year. Specifically, the language
directions were the same (English-German and
English-Chinese), as well as the domain of the
data (Wikipedia articles) and the neural MT sys-
tems used to produce the translations to be au-
tomatically post-edited. Also the evaluation pro-
cess was carried out in continuity with the past,
both with automatic metrics (TER and BLEU, re-
spectively the primary and secondary metrics) and
by means of human evaluation (via source-based
direct assessment, similar to the News Transla-
tion track but involving professional translators).
According to several complexity indicators (rep-
etition rate, original MT quality and TER distri-
bution), this year’s data can be safely considered
as the most difficult one ever released. On one
side, this might have discouraged potential par-
ticipants, which were only two for the English-
German sub-task. On the other side, it contributes
to explain the lower results compared to last year.



Indeed, only one submitted run was able to achieve
statistically significant improvements over the do-
nothing baseline in terms of our primary automatic
metric. Nevertheless, all submissions were con-
sistently ranked higher by human evaluators, indi-
cating the effectiveness of APE technology even
under such extremely challenging conditions.

8 Conclusion

The news translation task in 2021 covered 20
translation pairs, 14 of which had English on the
source or target side and 6 were without English.
Direct assessment (DA) was the main golden
truth again, although the style varied across lan-
guage pairs. Into-English translation was evalu-
ated against human reference translation, preserv-
ing the order of sentences in a document but not
presenting the whole document at once (SR+DC).
Out-of-English and some of non-English pairs of-
fered the full document context to the annota-
tors and allowed them to revisit the scores as-
signed to individual segments (SR+FD), eval-
uating against the source. Four non-English
pairs used a simpler evaluation without any doc-
ument context (SR—DC). For English—Czech,
English—+German and Chinese—English, a con-
trastive DA scoring was also tested, presenting in-
dividual sentences in pairs of candidate transla-
tions (contr:SR-DC), aimed at a more discerning
pairwise comparisons. And finally, an alternative
scoring style called GENIE was additionally ap-
plied to German—English.

Document context was found to be extremely
important for evaluation of high-quality MT sys-
tems. The ranking of participating systems differs
considerably between SR+FD and contr:SR-DC.
In particular, human reference is scored well if
full document context is available throughout the
annotation but tends to be surpassed by top sys-
tems when sentences are evaluated in isolation.
Surprising effects were also observed when us-
ing these evaluation methods on different human
translations.

The triangular machine translation task encour-
aged participants to use all the parallel data pro-
vided (involving direct and indirect sources) to
build a better machine translation system for the
particular language pair and direction (Russian-to-
Chinese). The participants explored several mod-
eling choices and data augmentation strategies
that would help practitioners when building ma-
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chine translation systems involving non-English
language pairs.

The multilingual low-resource translation task
dealt with two Indo-European language families:
North Germanic and Romance. The best per-
forming systems used multilingual supervised ma-
chine translation models enriched with backtrans-
lated data and additional sentences from higher-
resourced languages in the same family. Pivot
translation via these high-resourced counter-parts
and in-domain data selection was not beneficial for
the final performance.

The results of the task on automatic post-editing
were highly influenced by the difficulty of this
year’s data, which can also explain a drop in
participation (two teams, only in the English-
German sub-task). In light of the very high qual-
ity of the translation to be automatically corrected,
the very skewed TER distribution towards near-
perfect translations and the very low repetition
rate in the data, it comes as no surprise that only
one run was able to outperform the strong do-
nothing baseline with statistically significant im-
provements. Nevertheless, human evaluation re-
sults reveal significant gains by all runs, attesting
the difficulty to apply automatic evaluation proce-
dures to APE and, on a positive note, the effective-
ness of the proposed methods.

Acknowledgments

The organizers of the automatic post-editing task
would like to thank Apple and Google Research
for their support and sponsorship in organizing
this round of the APE challenge. The organizers
of the triangular machine translation task would
like to thank DiDi Chuxing for providing data and
research time to support this shared task.

The multilingual low-resource translation for
Indo-European languages task has been funded
by the European Language Resource Coordi-
nation ELRC (SMART 2019/1083) and LT-
BRIDGE (H2020, 952194), and supported by the
Directorate-General for Language Policy, Min-
istry of Culture. Government of Catalonia. We are
thankful to Europeana for providing source texts
in Icelandic, Norwegian and Swedish and to An-
tonio Toral for fruitful discussions on human eval-
uation.

For the news task, we are very grateful to
the sponsors of our test sets. Translation of
the tests sets received funding from the Eu-



ropean Union’s Horizon 2020 Research and
Innovation Programme under Grant Agree-

ment Nos. 825460 and 825303 (Elitr and
Bergamot, for Czech<English) and No.
825299 (GoURMET, for Hausa«>English).

The translation of the German<+English and
Chinese<+English test sets was funded by Mi-
crosoft, the Russian<+English test sets were
funded by Yandex, the Japanese<+English test
sets by University of Tokyo and NTT and the
French<+German test sets by LinguaCustodia.
The Icelandic+>English task was sponsored by the
Language Technology Programme for Icelandic
2019-2023. The programme, which is managed
and coordinated by Almannarémur, is funded by
the Icelandic Ministry of Education, Science and
Culture. The Bengali<+Hindi and Xhosa«>Zulu
test sets were sponsored by Facebook. The human
evaluation was co-funded by Microsoft, Toloka
Al, and Facebook. The effort that goes into
the manual evaluation campaign each year is
impressive, and we are grateful to all participating
individuals and teams for their work. We are also
grateful to the many workers who contributed to
the human evaluation via Mechanical Turk.

The organizers of the Similar Languages Task
would like to thank Pangeanic for the Spanish,
Catalan, Portuguese, and Romanian data and the
Directorate-General for Language Policy at the
Ministry of Culture, Government of Catalonia for
the Catalan translations. They further thank the
Al Journal - Funding Opportunities for Promoting
Al Research for supporting the French - Maninka
data collection. The French - Bambara dataset is
partially funded by a grant awarded by the Lacuna
Fund within the scope of the program “Datasets
for Languages in Sub-Saharan Africa”. We also
thank Andrij Rovenchak for the support on data
collection. Marta R. Costa-jussa would like to ac-
knowledge the support of the European Research
Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation program (grant
agreement No. 947657).

Ondrej Bojar would like to acknowledge the
grant no. 19-26934X (NEUREM3) of the Czech
Science Foundation for his time as well as co-
funding manual annotation.

Support was provided by Science Foundation
Ireland in the ADAPT Centre for Digital Con-
tent Technology (www.adaptcentre.ie) at Trin-
ity College Dublin funded under the SFI Re-

search Centres Programme (Grant 13/RC/2106)
co-funded under the European Regional Develop-
ment Fund.

References

Md Mahfuz Ibn Alam, Ivana Kvapilikovd, Anto-
nios Anastasopoulos, Laurent Besacier, Georgiana
Dinu, Marcello Federico, Matthias Gallé, Kweon-
woo Jung, Philipp Koehn, and Vassilina Nikoulina.
2021. Findings of the wmt shared task on machine
translation using terminologies. In Proceedings of
the Sixth Conference on Machine Translation, On-
line. Association for Computational Linguistics.

Eleftherios Avramidis, Vivien Macketanz, Ursula
Strohriegel, Aljoscha Burchardt, and Sebastian
Moller. 2020. Fine-grained linguistic evaluation for
state-of-the-art machine translation. In Proceedings
of the Fifth Conference on Machine Translation, On-
line. Association for Computational Linguistics.

Eleftherios Avramidis, Vivien Macketanz, Ursula
Strohriegel, and Hans Uszkoreit. 2019. Linguistic
Evaluation of German-English Machine Translation
Using a Test Suite. In Proceedings of the Fourth
Conference on Machine Translation, Florence, Italy.
Association for Computational Linguistics.

George Awad, Asad Butt, Keith Curtis, Jonathan Fis-
cus, Afzal Godil, Yooyoung Lee, Andrew Delgado,
Jesse Zhang, Eliot Godard, Baptiste Chocot, Lukas
Diduch, Jeffrey Liu, Alan Smeaton, Yvette Graham,
Gareth Jones, Wessel Kraaij, and Georges Quenot.
2021. Trecvid 2020: A comprehensive campaign
for evaluating video retrieval tasks across multiple
application domains.

George Awad, Asad Butt, Keith Curtis, Yooyoung Lee,
Jonathan Fiscus, Afzal Godil, Andrew Delgado,
Jesse Zhang, Eliot Godard, Luca Diduch, Alan F.
Smeaton, Yvette Graham, and Wessel Kraaij. 2019.
Trecvid 2019: An evaluation campaign to bench-
mark video activity detection, video captioning and
matching, and video search & retrieval. In Proceed-
ings of TRECVID, volume 2019.

Marta Bafién, Pinzhen Chen, Barry Haddow, Ken-
neth Heafield, Hieu Hoang, Miquel Espla-Gomis,
Mikel L. Forcada, Amir Kamran, Faheem Kirefu,
Philipp Koehn, Sergio Ortiz Rojas, Leopoldo
Pla Sempere, Gema Ramirez-Sanchez, Elsa Sar-
rias, Marek Strelec, Brian Thompson, William
Waites, Dion Wiggins, and Jaume Zaragoza. 2020.
ParaCrawl: Web-scale acquisition of parallel cor-
pora. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 4555-4567, Online. Association for Compu-
tational Linguistics.

Starkadur Barkarson and Steinpér Steingrimsson.
2019. Compiling and filtering Parlce: An English-
Icelandic parallel corpus. In Proceedings of the



22nd Nordic Conference on Computational Linguis-
tics, pages 140-145, Turku, Finland. Linkdping Uni-
versity Electronic Press.

Loic Barrault, Magdalena Biesialska, Ondfej Bojar,
Marta R. Costa-jussa, Christian Federmann, Yvette
Graham, Roman Grundkiewicz, Barry Haddow,
Matthias Huck, Eric Joanis, Tom Kocmi, Philipp
Koehn, Chi-kiu Lo, Nikola Ljubes$i¢, Christof
Monz, Makoto Morishita, Masaaki Nagata, Toshi-
aki Nakazawa, Santanu Pal, Matt Post, and Marcos
Zampieri. 2020. Findings of the 2020 conference on
machine translation (wmt20). In Proceedings of the
Fifth Conference on Machine Translation, Online.
Association for Computational Linguistics.

Loic Barrault, Ondfej Bojar, Marta R. Costa-jussa,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Miiller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 Conference on Machine Trans-
lation (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation, Florence, Italy. As-
sociation for Computational Linguistics.

Alberto Barrén-Cedefio, Cristina Espafia-Bonet, Josu
Boldoba, and Lluis Marquez. 2015. A Factory of
Comparable Corpora from Wikipedia. In Proceed-
ings of the Eighth Workshop on Building and Using
Comparable Corpora, pages 3—13.

Chao Bei and Hao Zong. 2021. Gtcom neural machine
translation systems for wmt21. In Proceedings of
the Sixth Conference on Machine Translation, On-
line. Association for Computational Linguistics.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Ales
Tamchyna. 2014. Findings of the 2014 Workshop on
Statistical Machine Translation. In Proceedings of
the Ninth Workshop on Statistical Machine Transla-
tion, pages 12-58, Baltimore, Maryland, USA. As-
sociation for Computational Linguistics.

Ondfej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck,
Philipp Koehn, Varvara Logacheva, Christof Monz,
Matteo Negri, Matt Post, Raphael Rubino, Lu-
cia Specia, and Marco Turchi. 2017. Findings
of the 2017 Conference on Machine Translation
(WMT17). In Proceedings of the Second Confer-
ence on Machine Translation, Copenhagen, Den-
mark. Association for Computational Linguistics.

Ondfej Bojar, Christian Federmann, Mark Fishel,

Yvette Graham, Barry Haddow, Philipp Koehn, and
Christof Monz. 2018a. Findings of the 2018 con-
ference on machine translation (WMT18). In Pro-
ceedings of the Third Conference on Machine Trans-
lation: Shared Task Papers, pages 272-303, Bel-
gium, Brussels. Association for Computational Lin-
guistics.

51

Ondrej Bojar, Christian Buck, Chris Callison-Burch,

Christian Federmann, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, Radu Soricut, and
Lucia Specia. 2013. Findings of the 2013 Work-
shop on Statistical Machine Translation. In Pro-
ceedings of the Eighth Workshop on Statistical Ma-
chine Translation, pages 1-44, Sofia, Bulgaria. As-
sociation for Computational Linguistics.

Ondrej Bojar, Rajen Chatterjee, Christian Federmann,

Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara
Logacheva, Christof Monz, Matteo Negri, Aure-
lie Neveol, Mariana Neves, Martin Popel, Matt
Post, Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 Conference
on Machine Translation. In Proceedings of the First
Conference on Machine Translation, pages 131-
198, Berlin, Germany. Association for Computa-
tional Linguistics.

Ondrej Bojar, Rajen Chatterjee, Christian Federmann,

Barry Haddow, Matthias Huck, Chris Hokamp,
Philipp Koehn, Varvara Logacheva, Christof Monz,
Matteo Negri, Matt Post, Carolina Scarton, Lucia
Specia, and Marco Turchi. 2015. Findings of the
2015 Workshop on Statistical Machine Translation.
In Proceedings of the Tenth Workshop on Statistical
Machine Translation, pages 1-46, Lisbon, Portugal.
Association for Computational Linguistics.

Ondfej Bojar, Rajen Chatterjee, Christian Feder-

mann, Mark Fishel, Yvette Graham, Barry Had-
dow, Matthias Huck, Antonio Jimeno Yepes, Philipp
Koehn, André Martins, Christof Monz, Matteo Ne-
gri, Aurélie Névéol, Mariana Neves, Matt Post,
Marco Turchi, and Karin Verspoor, editors. 2019.
Proceedings of the Fourth Conference on Machine
Translation. Association for Computational Lin-
guistics, Florence, Italy.

Ondrej Bojar, Jifi Mirovsky, Katefina Rysovd, and

Magdaléna Rysova. 2018b. EvalD Reference-Less
Discourse Evaluation for WMT18. In Proceedings
of the Third Conference on Machine Translation,
Brussels, Belgium. Association for Computational
Linguistics.

Chris Callison-Burch, Cameron Shaw Fordyce, Philipp

Koehn, Christof Monz, and Josh Schroeder. 2007.
(Meta-) Evaluation of Machine Translation. In Pro-
ceedings of the Second Workshop on Statistical Ma-
chine Translation, pages 136—158, Prague, Czech
Republic. Association for Computational Linguis-
tics.

Chris Callison-Burch, Cameron Shaw Fordyce, Philipp

Koehn, Christof Monz, and Josh Schroeder. 2008.
Further Meta-Evaluation of Machine Translation.
In Proceedings of the Third Workshop on Statisti-
cal Machine Translation, pages 70-106, Columbus,
Ohio. Association for Computational Linguistics.



Chris Callison-Burch, Philipp Koehn, Christof Monz,
Kay Peterson, Mark Przybocki, and Omar Zaidan.
2010. Findings of the 2010 Joint Workshop on Sta-
tistical Machine Translation and Metrics for Ma-
chine Translation. In Proceedings of the Joint Fifth
Workshop on Statistical Machine Translation and
MetricsMATR, pages 17-53, Uppsala, Sweden. As-
sociation for Computational Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Matt Post, Radu Soricut, and Lucia Specia. 2012.
Findings of the 2012 Workshop on Statistical Ma-
chine Translation. In Proceedings of the Seventh
Workshop on Statistical Machine Translation, pages
1048, Montreal, Canada. Association for Compu-
tational Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009. Findings of the 2009
Workshop on Statistical Machine Translation. In
Proceedings of the Fourth Workshop on Statistical
Machine Translation, pages 1-28, Athens, Greece.
Association for Computational Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Omar Zaidan. 2011. Findings of the 2011 Work-
shop on Statistical Machine Translation. In Pro-
ceedings of the Sixth Workshop on Statistical Ma-
chine Translation, pages 22—64, Edinburgh, Scot-
land. Association for Computational Linguistics.

Sheila Castilho. 2020. On the same page? compar-
ing inter-annotator agreement in sentence and doc-
ument level human machine translation evaluation.
In Proceedings of the Fifth Conference on Machine
Translation, pages 1150-1159, Online. Association
for Computational Linguistics.

Sheila Castilho, Maja Popovi¢, and Andy Way. 2020.
On context span needed for machine translation
evaluation. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 3735—
3742, Marseille, France. European Language Re-
sources Association.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,
Jan Niehues, Sebastian Stiiker, Katsuhito Sudoh,
Koichiro Yoshino, and Christian Federmann. 2017.
Overview of the iwslt 2017 evaluation campaign. In
Proc. of IWSLT, Tokyo, Japan.

Rajen Chatterjee, Christian Federmann, Matteo Negri,
and Marco Turchi. 2019. Findings of the WMT
2019 shared task on automatic post-editing. In
Proceedings of the Fourth Conference on Machine
Translation (Volume 3: Shared Task Papers, Day 2),
pages 11-28, Florence, Italy. Association for Com-
putational Linguistics.

Rajen Chatterjee, Markus Freitag, Matteo Negri, and
Marco Turchi. 2020. Findings of the WMT 2020
shared task on automatic post-editing. In Proceed-
ings of the Fifth Conference on Machine Translation,
pages 646-659, Online. Association for Computa-
tional Linguistics.

52

Rajen Chatterjee, Matteo Negri, Raphael Rubino, and
Marco Turchi. 2018. Findings of the WMT 2018
shared task on automatic post-editing. In Proceed-
ings of the Third Conference on Machine Trans-
lation: Shared Task Papers, pages 710-725, Bel-
gium, Brussels. Association for Computational Lin-
guistics.

Rajen Chatterjee, Marion Weller, Matteo Negri, and
Marco Turchi. 2015. Exploring the Planet of the
APEs: a Comparative Study of State-of-the-art
Methods for MT Automatic Post-Editing. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics), Beijing, China.

Pinzhen Chen, Jindfich Helcl, Ulrich Germann, Lau-
rie Burchell, Nikolay Bogoychev, Antonio Valerio
Miceli Barone, Jonas Waldendorf, Alexandra Birch,
and Kenneth Heafield. 2021. The University of Ed-
inburgh’s English-German and English-Hausa sub-
missions to the WMT21 news translation task. In
Proceedings of the Sixth Conference on Machine
Translation, Online. Association for Computational
Linguistics.

Wei-Rui Chen and Muhammad Abdul-Mageed. 2021.
Machine translation of low-resource indo-european
languages. In Proceedings of the Sixth Confer-
ence on Machine Translation, Online. Association
for Computational Linguistics.

Marta R. Costa-jussa, Marcos Zampieri, and Santanu
Pal. 2018. A Neural Approach to Language Variety
Translation. In Proceedings of VarDial.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and
Serge Belongie. 2019. Class-balanced loss based
on effective number of samples. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 9260-9269.

Rohit Dholakia and Anoop Sarkar. 2014. Pivot-based
triangulation for low-resource languages. In Pro-
ceedings of the Eleventh Conference of the Asso-
ciation for Machine Translation in the Americas
(AMTA), volume 1, pages 315-328.

Ahmed El-Kishky, Vishrav Chaudhary, Francisco
Guzman, and Philipp Koehn. 2020. CCAligned: A
massive collection of cross-lingual web-document
pairs. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 5960-5969, Online. Associa-
tion for Computational Linguistics.

Grant Erdmann, Jeremy Gwinnup, and Tim Anderson.
2021. Tune in: The afrl wmt21 news-translation
systems. In Proceedings of the Sixth Conference on
Machine Translation, Online. Association for Com-
putational Linguistics.

Carlos Escolano, Ioannis Tsiamas, Christine Basta,
Javier Ferrando, Marta R. Costa-jussa, and José
A. R. Fonollosa. 2021. The talp-upc participation
in wmt21 news translation task: an mbart-based nmt



approach. In Proceedings of the Sixth Conference on
Machine Translation, Online. Association for Com-
putational Linguistics.

Cristina Espafia-Bonet, Alberto Barrén-Cedefio, and
Lluis Marquez. 2020. Tailoring and Evaluating the
Wikipedia for in-Domain Comparable Corpora Ex-
traction.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,
Vishrav Chaudhary, Naman Goyal, Tom Birch, Vi-
taliy Liptchinsky, Sergey Edunov, Edouard Grave,
Michael Auli, and Armand Joulin. 2020. Beyond
english-centric multilingual machine translation.

Christian Federmann. 2012. Appraise: an open-source
toolkit for manual evaluation of mt output. The
Prague Bulletin of Mathematical Linguistics, 98:25—
35.

Christian Federmann. 2018.  Appraise evaluation
framework for machine translation. In Proceedings
of the 27th International Conference on Computa-
tional Linguistics: System Demonstrations, pages
86—88, Santa Fe, New Mexico. Association for
Computational Linguistics.

Joseph L. Fleiss. 1971. Measuring nominal scale
agreement among many raters. Psychological Bul-
letin, 76(5):378-382.

Markus Freitag, Isaac Caswell, and Scott Roy. 2019.
APE at scale and its implications on MT evaluation
biases. In Proceedings of the Fourth Conference on
Machine Translation (Volume 1: Research Papers),
pages 34—44, Florence, Italy. Association for Com-
putational Linguistics.

Markus Freitag, George F. Foster, David Grang-
ier, Viresh Ratnakar, Qijun Tan, and Wolfgang
Macherey. 2021a. Experts, errors, and context: A
large-scale study of human evaluation for machine
translation. CoRR, abs/2104.14478.

Markus Freitag, Ricardo Rei, Nitika Mathur, Chi-kiu
Lo, Craig Stewart, George Foster, Alon Lavie, and
Ondrej Bojar. 2021b. Results of the wmt21 metrics
shared task: Evaluating metrics with expert-based
human evaluations on ted and news domain. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation, Online. Association for Computational Lin-
guistics.

Petr Gebauer, Ondiej Bojar, Vojtéch Svandelik, and
Martin Popel. 2021. Cuni systems in wmt21: Re-
visiting backtranslation techniques for english-czech
nmt. In Proceedings of the Sixth Conference on Ma-
chine Translation, Online. Association for Compu-
tational Linguistics.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Krish-
nan, Marc’ Aurelio Ranzato, Francisco Guzman, and

53

Angela Fan. 2021. The FLORES-101 Evaluation
Benchmark for Low-Resource and Multilingual Ma-
chine Translation. arXiv:2106.03193 [cs]. ArXiv:
2106.03193.

Yvette Graham, George Awad, and Alan Smeaton.
2018. Evaluation of automatic video captioning us-
ing direct assessment. PLOS ONE, 13(9):1-20.

Yvette Graham, Timothy Baldwin, Alistair Moffat,
and Justin Zobel. 2013. Continuous Measurement
Scales in Human Evaluation of Machine Transla-
tion. In Proceedings of the 7th Linguistic Annota-
tion Workshop and Interoperability with Discourse,
pages 33-41, Sofia, Bulgaria. Association for Com-
putational Linguistics.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2014. Is Machine Translation Get-
ting Better over Time? In Proceedings of the 14th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 443—
451, Gothenburg, Sweden. Association for Compu-
tational Linguistics.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2016. Can machine translation sys-
tems be evaluated by the crowd alone. Natural Lan-
guage Engineering, pages 1-28.

Yvette Graham, Barry Haddow, and Philipp Koehn.
2019. Translationese in Machine Translation Evalu-
ation. arXiv e-prints, page arXiv:1906.09833.

Yvette Graham, Barry Haddow, and Philipp Koehn.
2020. Statistical power and translationese in ma-
chine translation evaluation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 72-81, On-
line. Association for Computational Linguistics.

Roman Grundkiewicz, Marcin Junczys-Dowmunt,
Christian Federmann, and Tom Kocmi. 2021. On
user interfaces for large-scale document-level hu-
man evaluation of machine translation outputs. In
Proceedings of the Workshop on Human Evaluation
of NLP Systems (HumEval), pages 97-106, Online.
Association for Computational Linguistics.

Hangcheng Guo, Wenbin Liu, Yanqing He, Tian Lan,
Hongjiao Xu, Zhenfeng Wu, and You Pan. 2021.
Istic’s triangular machine translation system for
wmt2021. In Proceedings of the Sixth Conference
on Machine Translation, Online. Association for
Computational Linguistics.

Barry Haddow and Faheem Kirefu. 2020. Pmindia—a
collection of parallel corpora of languages of india.
arXiv preprint arXiv:2001.09907.

Hossein Hassani. 2017. Kurdish Interdialect Machine
Translation. Proceedings of VarDial.

Kenneth Heafield, Qianqian Zhu, and Roman Grund-
kiewicz. 2021. Findings of the wmt 2021 shared
task on efficient translation. In Proceedings of the



Sixth Conference on Machine Translation, Online.
Association for Computational Linguistics.

Amr Hendy, Esraa A. Gad, Mohamed Abdelghaffar,
Jailan S. ElMosalami, Mohamed Afify, Ahmed Y.
Tawfik, and Hany Hassan Awadalla. 2021. Ensem-
bling of distilled models from multi-task teachers for
constrained resource language pairs. In Proceedings
of the Sixth Conference on Machine Translation, On-
line. Association for Computational Linguistics.

Josef Jon, Michal Novak, Jodo Paulo Aires, Dusan
Varis, and Ondfej Bojar. 2021. Cuni systems for
wmt21: Multilingual low-resource translation for
indo-european languages shared task. In Proceed-
ings of the Sixth Conference on Machine Transla-
tion, Online. Association for Computational Lin-
guistics.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Log-linear Combinations of Monolingual and
Bilingual Neural Machine Translation Models for
Automatic Post-Editing. In Proceedings of the First
Conference on Machine Translation, pages 751-
758, Berlin, Germany. Association for Computa-
tional Linguistics.

Haukur Jonsson, Haukur Barri Simonarson, Vésteinn
Snabjarnarson, Pétur Orri Ragnarson, and Vilhjal-
mur Porsteinsson. 2021. Mideind’s wmt 2021 sub-
mission. In Proceedings of the Sixth Conference on
Machine Translation, Online. Association for Com-
putational Linguistics.

Ksenia Kharitonova, Ona de Gibert Bonet, Jordi
Armengol-Estapé, Mar Rodriguez i Alvarez, and
Maite Melero. 2021. Transfer learning with shal-
low decoders: Bsc at wmt2021’s multilingual low-
resource translation for indo-european languages
shared task. In Proceedings of the Sixth Confer-
ence on Machine Translation, Online. Association
for Computational Linguistics.

Daniel Khashabi, Gabriel Stanovsky, Jonathan Bragg,
Nicholas Lourie, Jungo Kasai, Yejin Choi, Noah A.
Smith, and Daniel S. Weld. 2021. GENIE: A leader-
board for human-in-the-loop evaluation of text gen-
eration.

Yunsu Kim, Petre Petrov, Pavel Petrushkov, Shahram
Khadivi, and Hermann Ney. 2019. Pivot-
based transfer learning for neural machine trans-
lation between non-english languages.  CoRR,
abs/1909.09524.

Tom Kocmi, Christian Federmann, Roman Grund-
kiewicz, Marcin Junczys-Dowmunt, Hitokazu Mat-
sushita, and Arul Menezes. 2021. To Ship or Not to
Ship: An Extensive Evaluation of Automatic Met-
rics for Machine Translation. arXiv e-prints, page
arXiv:2107.10821.

Philipp Koehn. 2004. Statistical Significance Tests for
Machine Translation Evaluation. In Proceedings of
EMNLP 2004, pages 388-395, Barcelona, Spain.

54

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of
Machine Translation Summit X: Papers, pages 79—
86, Phuket, Thailand.

Philipp Koehn and Christof Monz. 2006. Manual and
Automatic Evaluation of Machine Translation be-
tween European Languages. In Proceedings on the
Workshop on Statistical Machine Translation, pages
102-121, New York City. Association for Computa-
tional Linguistics.

Mikotaj Koszowski, Karol Grzegorczyk, and Tsimur
Hadeliya. 2021. Allegro.eu submission to wmt21
news translation task. In Proceedings of the Sixth
Conference on Machine Translation, Online. Asso-
ciation for Computational Linguistics.

Anoop Kunchukuttan. 2020. The IndicNLP Library.
https://github.com/anoopkunchukuttan/
indic_nlp_library/blob/master/docs/
indicnlp.pdf.

Samuel Laubli, Sheila Castilho, Graham Neubig,
Rico Sennrich, Qinlan Shen, and Antonio Toral.
2020. A set of recommendations for assessing hu-
man—-machine parity in language translation. Jour-
nal of Artificial Intelligence Research (JAIR), 67.

Samuel Liubli, Rico Sennrich, and Martin Volk. 2018a.
Has machine translation achieved human parity? a
case for document-level evaluation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 47914796,
Brussels, Belgium. Association for Computational
Linguistics.

Samuel Liubli, Rico Sennrich, and Martin Volk.
2018b. Has Neural Machine Translation Achieved
Human Parity? A Case for Document-level Evalua-
tion. In EMNLP 2018, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Giang Le, Shinka Mori, and Lane Schwartz. 2021.
Illinois Japanese <+ English News Translation for
WMT 2021. In Proceedings of the Sixth Confer-
ence on Machine Translation, Online. Association
for Computational Linguistics.

Zongyao Li, Daimeng Wei, Hengchao Shang, Xiaoyu
Chen, Zhanglin Wu, Zhengzhe Yu, Jiaxin Guo,
Minghan Wang, Lizhi Lei, Min Zhang, Hao Yang,
and Ying Qin. 2021a. Hw-tsc’s participation in the
wmt 2021 triangular mt shared task. In Proceedings
of the Sixth Conference on Machine Translation, On-
line. Association for Computational Linguistics.

Zuchao Li, Masao Utiyama, Eiichiro Sumita, and Hai
Zhao. 2021b. Miss@wmt21: Contrastive learning-
reinforced domain adaptation in neural machine
translation. In Proceedings of the Sixth Confer-
ence on Machine Translation, Online. Association
for Computational Linguistics.



Jindfich Libovicky and Alexander Fraser. 2021. Find-
ings of the wmt 2021 shared tasks in unsupervised
mt and very low resource supervised mt. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation, Online. Association for Computational Lin-
guistics.

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming
He, and Piotr Dollar. 2017. Focal loss for dense ob-
ject detection. 2017 IEEE International Conference
on Computer Vision (ICCV), pages 2999-3007.

Wang Ling, Guang Xiang, Chris Dyer, Alan Black, and
Isabel Trancoso. 2013. Microblogs as Parallel Cor-
pora. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 176—186, Sofia, Bul-
garia. Association for Computational Linguistics.

Huan Liu, Junpeng Liu, Kaiyu Huang, and Degen
Huang. 2021a. Dutnlp machine translation system
for wmt21 triangular translation task. In Proceed-
ings of the Sixth Conference on Machine Transla-
tion, Online. Association for Computational Lin-
guistics.

Pengfei Liu, Jinlan Fu, Yang Xiao, Weizhe Yuan,
Shuaicheng Chang, Junqgi Dai, Yixin Liu, Zihuiwen
Ye, and Graham Neubig. 2021b. Explainaboard:
An explainable leaderboard for nlp. arXiv preprint
arXiv:2104.06387.

Shikun Liu, Edward Johns, and Andrew J. Davison.
2019. End-to-end multi-task learning with attention.
In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Nikola Ljubesi¢ and Antonio Toral. 2014. caWaC
— a web corpus of Catalan and its application to
language modeling and machine translation. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 1728-1732, Reykjavik, Iceland. European
Language Resources Association (ELRA).

Vivien Macketanz, Eleftherios Avramidis, Aljoscha
Burchardt, and Hans Uszkoreit. 2018. Fine-grained
evaluation of German-English Machine Translation
based on a Test Suite. In Proceedings of the Third
Conference on Machine Translation, Brussels, Bel-
gium. Association for Computational Linguistics.

Vivien Macketanz, Eleftherios Avramidis, Shushen
Manakhimova, and Sebastian Moller. 2021. Lin-
guistic evaluation for the 2021 state-of-the-art ma-
chine translation systems for german to english and
english to german. In Proceedings of the Sixth Con-
ference on Machine Translation, Online. Associa-
tion for Computational Linguistics.

Ander Martinez. 2021. The fujitsu dmath submissions
for wmt21 news translation and biomedical trans-
lation tasks. In Proceedings of the Sixth Confer-
ence on Machine Translation, Online. Association
for Computational Linguistics.

55

Shivam Mhaskar and Pushpak Bhattacharyya. 2021.
Pivot based transfer learning for neural machine
translation: Cfilt iitb @ wmt 2021 triangular mt.
In Proceedings of the Sixth Conference on Machine
Translation, Online. Association for Computational
Linguistics.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The first
multilingual surface realisation shared task (sr’18):
Overview and evaluation results. In Proceedings of
the First Workshop on Multilingual Surface Reali-
sation, pages 1-12. Association for Computational
Linguistics.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, and Leo Wanner. 2019. The second mul-
tilingual surface realisation shared task (SR’19):
Overview and evaluation results. In Proceedings of
the 2nd Workshop on Multilingual Surface Realisa-
tion (MSR 2019), pages 1-17, Hong Kong, China.
Association for Computational Linguistics.

Makoto Morishita, Jun Suzuki, and Masaaki Na-
gata. 2020. JParaCrawl: A large scale web-based
English-Japanese parallel corpus. In Proceedings of
The 12th Language Resources and Evaluation Con-
ference, pages 3603—-36009.

Matteo Negri, Marco Turchi, Rajen Chatterjee, and
Nicola Bertoldi. 2018. eSCAPE: a Large-scale
Synthetic Corpus for Automatic Post-Editing. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Jekaterina Novikova, Ondfej DuSek, and Verena Rieser.
2018. RankME: Reliable human ratings for natu-
ral language generation. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 72-78, New Orleans, Louisiana. Association
for Computational Linguistics.

Artur Nowakowski and Tomasz Dwojak. 2021. Adam
mickiewicz university’s english-hausa submissions
to the wmt 2021 news translation task. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation, Online. Association for Computational Lin-
guistics.

Shinhyeok Oh, Sion Jang, Hu Xu, Shounan An, and In-
soo Oh. 2021. Netmarble AI Center’s WMT21 Au-
tomatic Post-Editing Shared Task Submission. In
Proceedings of the Sixth Conference on Machine
Translation, Online.

Csaba Oravecz, Katina Bontcheva, David Kolovratnik,
Bhavani Bhaskar, Michael Jellinghaus, and Andreas
Eisele. 2021. etranslation’s submissions to the wmt
2021 news translation task. In Proceedings of the
Sixth Conference on Machine Translation, Online.
Association for Computational Linguistics.



Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48—53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. In Proceedings of the Third Conference on
Machine Translation (WMT).

Proyag Pal, Alham Fikri Aji, Pinzhen Chen, and
Sukanta Sen. 2021. The University of Edinburgh’s
Bengali-Hindi submissions to the WMT21 news
translation task. In Proceedings of the Sixth Confer-
ence on Machine Translation, Online. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL *02, pages 311-318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Jeonghyeok Park, Hyunjoong Kim, and Hyunchang
Cho. 2021. Papago’s submissions to the wmt21 tri-
angular translation task. In Proceedings of the Sixth
Conference on Machine Translation, Online. Asso-
ciation for Computational Linguistics.

Nikita Pavlichenko, Ivan Stelmakh, and Dmitry
Ustalov. 2021. Crowdspeech and vox DIY: Bench-
mark dataset for crowdsourced audio transcription.
In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track
(Round 1).

Martin Popel and Ondfej Bojar. 2018. Training Tips
for the Transformer Model. The Prague Bulletin of
Mathematical Linguistics, 110(1):43-70.

Martin Popel, Marketa Tomkova, Jakub Tomek,
Lukasz Kaiser, Jakob Uszkoreit, Ondiej Bojar, and
Zden&k Zabokrtsky. 2020. Transforming machine
translation: a deep learning system reaches news
translation quality comparable to human profession-
als. Nature Communications, 11(4381):1-15.

Maja Popovi¢, Alberto Poncelas, Marija Brkic, and
Andy Way. 2020. Neural machine translation for
translating into Croatian and Serbian. In Proceed-
ings of the Seventh Workshop on NLP for Similar
Languages, Varieties and Dialects (VarDial).

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang,
Lin Qiu, Weinan Zhang, Yong Yu, and Lei Li.
2020. Glancing transformer for non-autoregressive
neural machine translation. arXiv preprint
arXiv:2008.07905.

56

Lihua Qian, Yi Zhou, Zaixiang Zheng, Yaoming ZHU,
Zehui Lin, Jiangtao Feng, Shanbo Cheng, Lei
Li, Mingxuan Wang, and Hao Zhou. 2021. The
volctrans glat system: Non-autoregressive transla-
tion meets wmt21. In Proceedings of the Sixth Con-
ference on Machine Translation, Online. Associa-
tion for Computational Linguistics.

Roberts Rozis and Raivis Skadins. 2017.  Tilde
MODEL - multilingual open data for EU languages.
In Proceedings of the 21st Nordic Conference on
Computational Linguistics, pages 263-265, Gothen-
burg, Sweden. Association for Computational Lin-
guistics.

Keisuke Sakaguchi and Benjamin Van Durme. 2018.
Efficient online scalar annotation with bounded sup-
port. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 208-218, Melbourne,
Australia. Association for Computational Linguis-
tics.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun,
Hongyu Gong, and Francisco Guzman. 2019. Wiki-
Matrix: Mining 135M Parallel Sentences in 1620
Language Pairs from Wikipedia. arXiv e-prints,
page arXiv:1907.05791.

Abhishek Sharma, Prabhakar Gupta, and Anil
Nelakanti. 2021. Adapting Neural Machine Transla-
tion for Automatic Post-Editing. In Proceedings of
the Sixth Conference on Machine Translation, On-
line.

Shashank Siripragada, Jerin Philip, Vinay P. Nambood-
iri, and C V Jawahar. 2020. A multilingual par-
allel corpora collection effort for Indian languages.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 3743-3751, Mar-
seille, France. European Language Resources Asso-
ciation.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of association for machine transla-
tion in the Americas, pages 223-231.

Lucia Specia, Frédéric Blain, Marina Fomicheva,
Chrysoula Zerva, Zhenhao Li, Vishrav Chaudhary,
and André F. T. Martins. 2021. Findings of the
wmt 2021 shared task on quality estimation. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation, Online. Association for Computational Lin-
guistics.

Ralf Steinberger, Bruno Pouliquen, Anna Widiger,
Camelia Ignat, TomaZz Erjavec, Dan Tufig, and
Daniel Varga. 2006. The JRC-Acquis: A multilin-
gual aligned parallel corpus with 20+ languages. In
Proceedings of the Fifth International Conference
on Language Resources and Evaluation (LREC’06),
Genoa, Italy. European Language Resources Asso-
ciation (ELRA).



Steinpér Steingrimsson, Sigrin Helgadéttir, Eirikur
Rognvaldsson, Starkadur Barkarson, and J6n Gud-
nason. 2018. Risamadlheild: A very large Icelandic
text corpus. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2018), Miyazaki, Japan.

Sandeep Subramanian, Oleksii Hrinchuk, Virginia
Adams, and Oleksii Kuchaiev. 2021. Nvidia nemo’s
neural machine translation systems for english-
german and english-russian news and biomedical
tasks at wmt21. In Proceedings of the Sixth Confer-
ence on Machine Translation, Online. Association
for Computational Linguistics.

Roman Sudarikov, Martin Popel, Ondiej Bojar,
Aljoscha Burchardt, and Ondfej Klejch. 2016. Us-
ing MT-ComparEval. In Translation Evaluation:
From Fragmented Tools and Data Sets to an Inte-
grated Ecosystem, pages 76-82.

Allahsera Auguste Tapo, Bakary Coulibaly, Sébastien
Diarra, Christopher Homan, Julia Kreutzer, Sarah
Luger, Arthur Nagashima, Marcos Zampieri, and
Michael Leventhal. 2020. Neural machine transla-
tion for extremely low-resource african languages:
A case study on bambara. In Proceedings of the 3rd
Workshop on Technologies for MT of Low Resource
Languages, pages 23-32.

Svetlana Tchistiakova, Jesujoba Alabi, Koel
Dutta Chowdhury, Sourav Dutta, and Dana
Ruiter. 2021. Edinsaar@wmt21: North-germanic
low-resource multilingual nmt. In Proceedings
of the Sixth Conference on Machine Translation,
Online. Association for Computational Linguistics.

Jorg Tiedemann. 2009. News from OPUS - a collection
of multilingual parallel corpora with tools and inter-
faces. In Proceedings of the Conference on Recent
Advances in Natural Language Processing, pages
237-248. John Benjamins.

Jorg Tiedemann and Lars Nygaard. 2004. The opus
corpus-parallel and free: http://logos.uio.no/opus.
In Proceedings of LREC.

Jorg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Proceedings of the Eight Interna-
tional Conference on Language Resources and Eval-
uation (LREC’12), Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Antonio Toral, Sheila Castilho, Ke Hu, and Andy Way.
2018a. Attaining the Unattainable? Reassessing
Claims of Human Parity in Neural Machine Trans-
lation. In Proceedings of the Third Conference on
Machine Translation, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Antonio Toral, Sheila Castilho, Ke Hu, and Andy Way.
2018b. Attaining the unattainable? reassessing
claims of human parity in neural machine transla-
tion. In Proceedings of the Third Conference on

57

Machine Translation: Research Papers, pages 113—
123, Belgium, Brussels. Association for Computa-
tional Linguistics.

Chau Tran, Shruti Bhosale, James Cross, Philipp
Koehn, Sergey Edunov, and Angela Fan. 2021.
Facebook ai’s wmt21 news translation task submis-
sion. In Proceedings of the Sixth Conference on Ma-
chine Translation, Online. Association for Compu-
tational Linguistics.

Marco Turchi, Matteo Negri, and Marcello Federico.
2013. Coping with the subjectivity of human judge-
ments in MT quality estimation. In Proceedings of
the Eighth Workshop on Statistical Machine Trans-
lation, pages 240-251, Sofia, Bulgaria. Association
for Computational Linguistics.

Masao Utiyama and Hitoshi Isahara. 2007. A Com-
parison of Pivot Methods for Phrase-Based Statisti-
cal Machine Translation. In Human Language Tech-
nologies 2007: The Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics; Proceedings of the Main Conference,
pages 484-491, Rochester, New York. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998—6008. Curran As-
sociates, Inc.

Longyue Wang, Mu Li, Fangxu Liu, Shuming Shi,
Zhaopeng Tu, Xing Wang, Shuangzhi Wu, Jiali
Zeng, and Wen Zhang. 2021. Tencent translation
system for the wmt21 news translation task. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation, Online. Association for Computational Lin-
guistics.

Daimeng Wei, Zongyao Li, Zhanglin Wu, Zhengzhe
Yu, Xiaoyu Chen, Hengchao Shang, Jiaxin Guo,
Minghan Wang, Lizhi Lei, Min Zhang, Hao Yang,
and Ying Qin. 2021. Hw-tsc’s participation in the
wmt 2021 news translation shared task. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation, Online. Association for Computational Lin-
guistics.

Guillaume Wenzek, Vishrav Chaudhary, Angela Fan,
Sahir Gomez, Naman Goyal, Somya Jain, Douwe
Kiela, Tristan Thrush, and Francisco Guzman. 2021.
Findings on the wmt 2021 shared task on large-scale
multilingual machine translation. In Proceedings of
the Sixth Conference on Machine Translation, On-
line. Association for Computational Linguistics.

Hua Wu and Haifeng Wang. 2009. Revisiting Pivot
Language Approach for Machine Translation. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International



Joint Conference on Natural Language Processing
of the AFNLP, pages 154-162, Suntec, Singapore.
Association for Computational Linguistics.

Jitao Xu, Minh Quang Pham, Sadaf Abdul Rauf, and
Frangois Yvon. 2021. LISN @ WMT 2021. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation, Online. Association for Computational Lin-
guistics.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mT5: A massively
multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483-498, Online. Association for Computa-
tional Linguistics.

Han Yang, Bojie Hu, Wanying Xie, ambyera han, Pan
Liu, Jinan Xu, and Qi Ju. 2021. Tentrans multi-
lingual low-resource translation system for wmt21
indo-european languages task. In Proceedings of the
Sixth Conference on Machine Translation, Online.
Association for Computational Linguistics.

Lana Yeganova, Dina Wiemann, Mariana Neves, Fed-
erica Vezzani, Amy Siu, Inigo Jauregi Unanue,
Maite Oronoz, Nancy Mah, Aurélie Névéol,
David Martinez, Rachel Bawden, Giorgio Maria
Di Nunzio, Roland Roller, Philippe Thomas, Cris-
tian Grozea, Olatz Perez-de Vifaspre, Maika Vi-
cente Navarro, and Antonio Jimeno Yepes. 2021.
Findings of the wmt 2021 biomedical translation
shared task: Summaries of animal experiments as
new test set. In Proceedings of the Sixth Confer-
ence on Machine Translation, Online. Association
for Computational Linguistics.

Hui Zeng. 2021. Small model and in-domain data are
all you need. In Proceedings of the Sixth Confer-
ence on Machine Translation, Online. Association
for Computational Linguistics.

Xianfeng Zeng, Yijin Liu, Ernan Li, Qiu Ran, Fan-
dong Meng, Peng Li, Jinan Xu, and Jie Zhou.
2021. Wechat neural machine translation systems
for wmt21. In Proceedings of the Sixth Confer-
ence on Machine Translation, Online. Association
for Computational Linguistics.

Boliang Zhang, Ajay Nagesh, and Kevin Knight. 2020.
Parallel corpus filtering via pre-trained language
models. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 8545—
8554. Association for Computational Linguistics.

Shiyu Zhao, Xiaopu Li, Minghui Wu, and Jie Hao.
2021. The mininglamp machine translation system
for wmt21. In Proceedings of the Sixth Confer-
ence on Machine Translation, Online. Association
for Computational Linguistics.

58

Shuhan Zhou, Tao Zhou, Binghao Wei, Yingfeng Luo,

Yongyu Mu, Zefan Zhou, Chenglong Wang, Xuan-
jun Zhou, Chuanhao Lv, Yi Jing, Laohu Wang, Jing-
nan Zhang, Canan Huang, Zhongxiang Yan, Chi Hu,
Bei Li, Tong Xiao, and Jingbo Zhu. 2021. The ni-
utrans machine translation systems for wmt21. In
Proceedings of the Sixth Conference on Machine
Translation, Online. Association for Computational
Linguistics.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin

Knight. 2016. Transfer learning for low-resource
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1568—1575, Austin,
Texas. Association for Computational Linguistics.



A Differences in Human Scores

Tables 49-59 show differences in average standardized human scores for all pairs of competing sys-
tems for each language pair. The numbers in each of the tables’ cells indicate the difference in average
standardized human scores for the system in that column and the system in that row.

Because there were so many systems and data conditions the significance of each pairwise compar-
ison needs to be quantified. We applied Wilcoxon rank-sum test to measure the likelihood that such
differences could occur simply by chance. In the following tables % indicates statistical significance
at p < 0.05, t indicates statistical significance at p < 0.01, and } indicates statistical significance at
p < 0.001, according to Wilcoxon rank-sum test.

Each table contains final rows showing the average score achieved by that system and the rank range
according according to Wilcoxon rank-sum test (p < 0.05). Gray lines separate clusters based on non-
overlapping rank ranges.

Tables 49-68 provide automatic metric scores (COMET, BLEU, chrF) for all competing systems.
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FACEBOOK-AI| - 0.03  0.10x 0.12% 0.12% 0.14f 0.15f 0.20% 0.20%
ONLINE-A [-0.03 - 0.071 0.09f 0.09f 0.11% 0.12f 0.17f 0.17%
CUNI-DOCTRANSFORMER [-0.10  -0.07 - 0.01 0.02 0.04 0.05f 0.097 0.09%
ONLINE-B [-0.12 -0.09 -0.01 - 0.00 0.03 0.03%x 0.08t 0.08f
CUNI-TRANSFORMER2018 |-0.12 -0.09 -0.02 0.00 - 0.02 0.03 0.08x 0.08
ONLINE-W [-0.14 -0.11 -0.04 -0.03 -0.02 - 0.01  0.05x 0.05
ONLINE-G [-0.15 -0.12 -0.05 -0.03 -0.03 -0.01 - 0.05 0.05
ONLINE-Y [-0.20 -0.17 -0.09 -0.08 -0.08 -0.05 -0.05 - 0.00
HUMAN|-0.20 -0.17 -0.09 -0.08 -0.08 -0.05 -0.05 0.00 -
score| 0.1 008 001 -0.01 -0.01 -0.03 -0.04 -0.08 -0.09
rank | 1-2 1-2 36 36 38 38 59 79 59
bleu-A| 31.1 283 302 31.7 262 289 286 246 -
chrF-A| 599 569 585 593 551 576 575 549 -
comet-A| .628 534 592 557 510 595 517 459 358
bleu-B| 264 235 247 248 217 248 228 203 -
chr-B| .549 520 532 531 504 534 520 502 -
comet-B| 513 411 466 431 391 486 383 322 414

Table 49: Head to head comparison for Czech—English systems
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NEMO| - 001 003% 005 008 008 009 0.12f 0.15f 0.16% 0.26f
ONLINE-W [-0.01 - 002« 004 007« 007 0.09f 0.11%f 0.14% 0.15f 0.25%
ONLINE-B[-003 002 - 002 005 005 006 009 0.12f 0.13f 023%
HUMAN [-0.05 -0.04 -0.02 - 003 003 004 007t 0.10f 0.11% 021%
MANIFOLD [-0.08 -0.07 -0.05 -0.03 - 000 002 004« 007t 0.08% 0.18%
FACEBOOK-AI[-0.08 -0.07 -0.05 -0.03 0.00 - 001 0041 007t 008 0.18%
NIUTRANS|[-0.09 -0.09 -0.06 -0.04 -002 -0.01 - 003 006« 0.07% 0.17f
ONLINE-G|-0.12 -0.11 -0.09 -0.07 -0.04 -0.04 -003 - 003 004 0.14x
AFRL|[-0.15 -0.14 -0.12 -0.10 -007 -0.07 -0.06 -0.03 - 001 0.1
ONLINE-A [-0.16 -0.15 -0.13 -0.11 -0.08 -0.08 -0.07 -0.04 -0.01 - 0.0
ONLINE-Y |-026 -0.25 -023 -021 -0.18 -0.18 -0.17 -0.14 -0.11 -0.10 -
score| 0.14 0.3 0.1 009 006 006 004 002 -0.01 -002 -0.12
rank| 1-5 14 37 17 27 1-7 3-8 710 811 811 9-11
bleu-A| 402 370 406 - 411 423 418 412 388 387 328
cheF-A| 660 631 661 - 659 661 .658 .668 .635 652 .600
comet-A| .625 610 624 619 619 .656 632 635 .595 595 .524
bleu-B| 40.1 372 400 - 405 416 412 407 396 388 332
chrF-B| .663 .635 .663 - 661 663 .661 .671 .640 .657 .602
comet-B| .619 606 621 619 614 .647 623 629 589 591 .523
Table 52: Head to head comparison for Russian—English systems
£
o = : . E
2 I ER = s v &g oz
= = é z o ;t‘ m m < m m 5 m _
z s i = 2 ) E Z «» Z = Z Z ) z z
S & oz £ ¢ 5 2z 2 £ 2z B 3z 2 3 2z 13
Z = z & & % § &6 22 &6 1 &6 &6 = & 2
HUAWEITSC| - 0.06%x 009« 0.11f 0.11x 0.12f 0.3t 0.14% 0.7t 0.18f 020f 022f 028t 0.30f 0.33% 0.33%
LE-MT|-006 - 004 005 005 006f 0.07% 008f 0.11f 0.12f 0.14f 0.16% 022% 024t 027 027%
NIUTRANS [-0.09 -0.04 - 001 001 002« 003 004x 0.08% 0.08x 0.11% 0.13% 0.19% 020f 023f 0.24f
KWAINLP|-0.11 005 -0.01 - 000 001 002 003 006%x 007 0.10f 0.11f 0.17f 0.19f 022} 023%
FACEBOOK-AI[-0.11 -0.05 -0.01 0.00 - 00lx 002 003% 006+ 007% 0.09% 0.11f 0.7t 0.19f 022% 0.22f
XMU|-0.12 -006 -0.02 -001 -001 - 00l 002 006 006 009 O0.1lx 0.17f 0.18% 021} 0.22%
CAPITALMARVEL [-0.13  -0.07 -0.03 -0.02 -0.02 -001 - 001 004 005 007f 0.09% 0.15& 0.7t 0.20% 0.20%
ONLINE-B|-0.14 -0.08 -004 -0.03 -003 -0.02 -001 - 003 004 006 008% 0.14f 0.161 0.19% 0.19%
MISS|-0.17 -0.11 -0.08 -006 -0.06 -0.06 -004 -0.03 - 001 003 005« 0.11Ff 0.13% 0.16f 0.16%
ONLINE-W [-0.18 -0.12 -0.08 -0.07 -007 -006 -0.05 -004 -0.01 - 002 004f 0.10f 0.12f 0.5 0.15f
WECHAT-AL[-0.20 -0.14 -0.11 -0.10 -0.09 -0.09 -0.07 -0.06 -0.03 -002 - 002 008« 009« 0.13% 0.13}
ONLINE-A [-022  -0.16 -0.13 -0.11 -0.11 -0.11 -009 -008 -005 -0.04 -0.02 - 006 008 O0.1lx 0.11%
ONLINE-G [-0.28 022 -0.19 -0.17 -0.17 -0.17 -0.5 -0.14 -0.11 -0.10 -0.08 -0.06 - 002 005 005
MOVELIKEAJAGUAR [-0.30  -0.24 -0.20 -0.19 -0.19 -0.18 -0.17 -0.16 -0.13 -0.12 -0.09 -0.08 -002 - 003 004
ONLINE-Y|-033 027 -0.23 -022 -022 -021 -020 -0.19 -0.16 -0.15 -0.13 -0.11 -005 -0.03 -  0.00
ILLINI[-0.33 027 -024 -023 -022 -022 -020 -0.19 -0.16 -0.15 -0.13 -0.11 -0.05 -0.04 000 -
score| 0.14 0.08 0.05 003 003 0.03 001 000 -0.03 -0.04 -006 -0.08 -0.14 -0.16 -0.19 -0.19
rank| 1 25 26 29 26 S5-11 3-10 5-11 611 5-11 7-12 11-14 12-16 12-16 13-16 13-16
bleu| 265 254 272 258 277 258 237 272 270 228 278 210 206 212 173 186
chrf| 528 521 532 524 536 524 496 526 529 489 535 455 476 476 482 453
comet| 348 314 371 307 392 307 236 270 294 270 361 167 145 182 061 .073
Table 53: Head to head comparison for Japanese—English systems
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FACEBOOK-AI| -  0.18% 025§ 026f 0.28f 028f 029f 033% 037f 0.55%
MANIFOLD |-0.18 - 007« 0.08f 0.10f 0.10f 0.11f 0.15f 0.19% 0.37%
NIUTRANS |-025 -0.07 - 002 003 004 004 008 0.12f 030f
ONLINE-B [-026 008 -0.02 - 002 002 003 007 0.1l 028t
HUAWEITSC [-028 -0.10 -0.03 -002 - 000 00l 005% 0.09f 027%
MIDEIND |-0.28 -0.10 -0.04 -0.02 000 - 001 005« 0.09% 0.26%
ONLINE-A |-029 -0.11 -004 -003 -001 -001 - 004 008 026f
ALLEGRO |-033 -0.15 -0.08 -0.07 -0.05 -0.05 -004 - 004 022%
ONLINE-Y |-037 -0.19 -0.12 -0.I1 -009 -009 -008 -004 -  0.8%
ONLINE-G|-055 -0.37 -030 -028 -027 -026 -026 -022 -0.18 -
score| 029 0.1 004 003 001 001 000 -0.04 -008 -026
rank| 1 2 37 38 7 37 39 69 79 10
bleu| 417 398 392 406 384 335 336 333 30 237
chiF| 623 621 610 .624 611 578 574 574 559 492
comet| 683 629 619 645 604 552 512 467 422  -071

Table 54: Head to head comparison for Icelandic—English systems
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FACEBOOK-AI| -  0.13f 0.19%f 0.19f 0.19f 022f 025% 028f 028f 0.34f 0.36f 042% 045f 0.51f
ONLINE-B |-0.13 - 0.06%x 006 006 009t 0.12f 0.15% 0.15f 021% 023% 029f 032% 0.39%
TRANSSION [-0.19  -0.06 - 000 000 003 006 0.09f 009% 0.15f 0.17f 0.24f 027 0.33%f
ZMT|-0.19 -0.06 0.00 - 000 003 006« 0.09F 0.09« 0.15% 0.17% 023 0261 0.33%
GTCOM [-0.19  -0.06 0.00  0.00 - 003 006 009 0.09% 0.15% 0.17% 023% 0.26% 0.33%
HUAWEITSC [-0.22 -0.09 -0.03 -0.03 -0.03 - 003 006 006 0.2 0.14f 020f 0231 0.30%
MS-EGDC [-0.25 -0.12 -0.06 -0.06 -0.06 -0.03 - 003 003 009« 0.11f 0.18f 021% 0.27%f
P3AI|-028 -0.15 -0.09 -0.09 -0.09 -0.06 -0.03 - 000 006 008« 0.14F 0.17f 0.24f
NIUTRANS [-0.28 -0.15 -0.09 -0.09 -0.09 -0.06 -0.03 0.00 - 006 0.08% 0.14f 0.17% 0.24%
ONLINE-Y [-0.34 -021 -0.15 -0.15 -0.15 -0.12 -0.09 -0.06 -0.06 - 002 0.08x« 0.12f 0.18%
MANIFOLD [-0.36 -0.23 -0.17 -0.17 -0.17 -0.14 -0.11 -0.08 -0.08 -0.02 - 006 0.09% 0.16%
AMU|-042 -029 -024 -023 -023 -020 -0.18 -0.14 -0.14 -0.08 -0.06 - 003 009}
UEDIN |-045 -032 -027 -026 -026 -023 -021 -0.17 -0.17 -0.12 -0.09 -0.03 - 0.06%
TWB|-051 -039 -033 -033 -033 -030 -027 -024 -024 -0.18 -0.16 -0.09 -0.06 -
score| 025 0.12 006 006 006 003 000 -003 -003 -0.09 -0.11 -0.17 -020 -0.27
rank| 1 224 37 26 36 39 519 6-10 6-10 811 10-12 11-13 12-13 14
bleu| 21.0 187 188 188 178 175 171 178 165 139 169 141 149 123
chiF| 487 467 472 472 467 468 453 463 447 448 456 413 422 403
comet| 422 335 345 344 345 253 148 245 174 124 127 070 076 -0.046

Table 55: Head to head comparison for Hausa—English systems
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GTCOM| - 0.04 0.12% 0.13f 0.15f 0.22%f 0.28% 0.31%f 0.58%
ONLINE-B [-0.04 - 0.08x 0.09% 0.111 0.18% 0.24f 0.27f 0.54%
TRANSSION|-0.12 -0.08 - 0.00 0.03 0.09%« 0.16f 0.191 0.45%
MS-EGDC|-0.13 -0.09 0.00 - 0.02 0.09 0.16f 0.181 0.45%
UEDIN|-0.15 -0.11 -0.03 -0.02 - 0.07 0.13% 0.16F1 0.43%
ONLINE-Y |-0.22 -0.18 -0.09 -0.09 -0.07 - 0.07 0.09 0.36%
HUAWEITSC|-0.28 -0.24 -0.16 -0.16 -0.13 -0.07 - 0.03 0.291
ONLINE-A|-0.31 -0.27 -0.19 -0.18 -0.16 -0.09 -0.03 - 0.27%

ONLINE-G |-0.58 -0.54 -045 -045 -043 -036 -0.29 -0.27 -
score| 0.20 0.16 0.08 0.08 0.05 -0.01 -0.08 -0.11 -0.37

rank| 1-2  1-2 35 35 36 48 68 68 9

bleu| 242 24.1 245 21.1 217 215 219 21.1 16.7

chrF| 517 512 512 486 489 488 488 483 433
comet| .692 670 .637 532 .584 501 528 494 116

Table 56: Head to head comparison for Bengali—Hindi systems
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HUAWEITSC
ONLINE-A

GTCOM

UEDIN

ONLINE-Y

TRANSSION
ONLINE-B

MS-EGDC

ONLINE-G

HUAWEITSC| - 0.01
ONLINE-A [-0.01 -
GTCOM |-0.01 0.00
UEDIN [-0.03 -0.02
ONLINE-Y |-0.17 -0.16
TRANSSION|-0.20 -0.19
ONLINE-B|-0.22 -0.21
MS-EGDC|-0.25 -0.24
ONLINE-G|-1.35 -1.34
0.24 0.24

score
rank

bleu
chrF
comet

13.0
457
523

13.4
465
552

0.03
0.02
0.02

-0.13
-0.17
-0.19
-0.22
-1.31

0.21
12.5

454
.545

0.17%
0.16%
0.15
0.13x

-0.04
-0.05
-0.09
-1.18

10.6
432
.386

0.20%
0.19%
0.19%
0.17%
0.04%

0.22%
0.21%
0.207
0.19%
0.05
- 0.02
-0.02%
-0.05
-1.14

-0.04
-1.13

0.04
15.0

478
.537

15.3
480
.535

0.25%
0.24%
0.24%
0.22%
0.09%
0.05%
0.04t

-1.09

-0.01
8

10.9
434
411

Table 57: Head to head comparison for Hindi—Bengali systems
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TRANSSION - 0.19f 0.241 0.341 1.75%
HUAWEITSC |-0.19 - 0.05 0.15f 1.56%
MS-EGDC|-0.24 -0.05 - 0.10 1.51%
GTCOM|-0.34 -0.15 -0.10 - 1.41%
ONLINE-G[-1.75 -1.56 -1.51 -1.41 -
score| 0.50 0.31 026 0.16 -1.25
rank 1 2-3 2-4 34 5
bleu| 14.5 99 9.2 11.9 3.6
chrF| 503 486 476 475 .361
comet| .290 315 .299 .199 -.606

Table 58: Head to head comparison for Zulu— Xhosa systems
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1.34%
1.33%
1313
1.18%
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1.13}
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-1.10
9
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HUAWEITSC| - 004 009 0.19f 022 147%
TRANSSION |-0.04 - 0.05 0.147 0.18% 1.42%
GTCOM|-0.09 -0.05 - 0.10x 0.137 1.38%
MS-EGDC|-0.19 -0.14 -0.10 - 0.04 1.28%
FIDMATH|-0.22 -0.18 -0.13 -0.04 - 1.24%
ONLINE-G|-1.47 -1.42 -1.38 -1.28 -1.24 -
score| 0.33 029 0.24 0.14 0.11 -1.14
rank| 1-3 1-3 1-3 4-5 4-5 6
bleu| 11.8 11.8 11.5 9.9 9.8 3.9
chrF| 504 497 493 477 479 370
comet| .233 206 .192 .180 .197 -.582

Table 59: Head to head comparison for Xhosa—Zulu systems

Rank Ave. Ave. z System Comets BLEU4 g BLEU4 BLEUg chrF4 chrFp
1 90.2 0.397 HUMAN-A - - - - - -
2-4 879 0.284 HUMAN-B - - - - - -
2-4  87.6 0.263 Facebook-Al 0.775 36.1 24.8 22.7 0.536 0.506
2-4  86.1 0.214 Online-W 0.751 33.6 23.0 21.6 0.528 0.500
5-7 83.0 0.122 eTranslation 0.625 30.8 21.0 19.4 0.506 0.478
5-6  82.1 0.047 CUNI-Transformer2018  0.671 31.5 21.6 19.7 0.509 0.482
6-8 79.2 -0.120 CUNI-DocTransformer 0.680 32.1 222 19.8 0.517 0.485
79 79.3 -0.154 CUNI-Marian-Baselines  0.621 28.9 20.1 18.3 0.499 0.472
8-10 77.8 -0.183 Online-B 0.586 28.9 20.0 17.9 0.496 0.466
9-10 74.6 -0.308 Online-A 0.585 29.0 20.2 18.2 0.499 0.468
11 76.2 -0.373 Online-Y 0.456 26.2 18.1 16.1 0.481 0.451
12 65.6 -0.674 Online-G 0.293 22.0 153 13.9 0.457 0.431

Table 60: Automatic metric scores for English—Czech systems
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Rank Ave. Ave. z System Comety Cometc BLEU4,c BLEU4 BLEU¢ chrF4 chrFeo
1-17 83.3 0.266 Online-B 0.502 0.568 473 28.4 37.2 0.588 0.650
1-5 84.7 0.243 Online-W 0.546 0.616 51.0 29.7 41.3 0.602 0.678
1-14 86.6 0.217 WeChat-Al 0.548 0.610 51.2 313 40.0 0.607 0.668
1-6  87.6 0.145 Facebook-Al 0.567 0.630 52.5 31.3 42.0 0.606 0.676
1-10 89.4 0.116 UF 0.507 0573 473 28.5 37.2 0.589 0.650
2-17 852 0.089 HW-TSC 0.516 0.576  48.9 29.8 38.6 0.597 0.658
3-17 86.8 0.072 UEdin 0.517 0574 484 29.9 38.0 0.595 0.650
3-18 86.5 0.041 P3AI 0.498 0.560 46.3 28.3 36.5 0.584 0.639
3-18 86.4 0.030 HUMAN-A - 0.554 - - - - -

5-19 83.3 0.013 happypoet 0.452 0.511 44.6 27.6 35.4 0.582 0.634
4-19 86.1 0.010 eTranslation 0.506 0.568 48.7 29.6 38.5 0.594 0.653
4-19 84.4 0.001 Online-A 0.511 0.573 47.6 29.0 37.9 0.594 0.653
3-18 84.5 0.001 HUMAN-C 0.540 - - - - - -

5-19 78.8 -0.053 VolcTrans-AT 0.518 0.580 47.8 29.3 38.0 0.595 0.653
5-19 86.7 -0.055 NVIDIA-NeMo 0.531 0.592 49.8 30.0 39.2 0.598 0.660
8-21 83.1 -0.058 Manifold 0.497 0.557 475 294 37.2 0.592 0.644
4-20 84.3 -0.062 Online-G 0.439 0497 434 27.1 33.5 0.577 0.627
12-20 84.5 -0.072 Online-Y 0.465 0.522 452 27.9 35.3 0.582 0.636
18-21 73.9 -0.130 ICL 0.196 0246 39.0 24.5 30.4 0.552 0.595
4-20 85.0 -0.140 VolcTrans-GLAT 0.542 0.616 53.6 31.3 432 0.608 0.683
16-21 78.3 -0.179 nuclear_trans 0.386 0445 443 27.7 34.5 0.578 0.626
22 80.0 -0.415 BUPT _rush 0371 0428 420 26.4 32.6 0.571 0.618

Table 61: Automatic metric scores for English—German systems

Rank Ave. Ave. z System Comets BLEU4 chrFa

1-2  84.1 0362 HUMAN-A - - -

1-4  82.7 0.264 Facebook-Al 0.329  20.1 0.511
2-5 80.8 0.263 NiuTrans 0304 197 0.532
3-6 81.2 0.175 Online-B 0224 189 0.504
4-6  80.1 0.128 TRANSSION 0.228  18.9 0.504

2-6 792 0.124 ZMT 0.230 18.8 0.504
7-10 78.0 0.018 P3AI 0273 204 0.517
7-10 78.7 0.006 HW-TSC 0.307  20.3 0.512
8-12 75.2 -0.026 AMU 0.092 16.2 0.465

7-10 78.8 -0.036 GTCOM 0.197 179 0.499
9-12 75.0 -0.128 MS-EgDC ~ 0.086  16.1 0.465

12-15 70.2 -0.227 UEdin -0.061 14.8 0.453
11-15 73.4 -0.243 Manifold 0.175 18.0 0.495
12-15 70.5 -0.340 TWB 0.000 17.1 0.483

11-15 67.7 -0.448 Online-Y 0.083 15.0 0.469

Table 62: Automatic metric scores for English—Hausa systems
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Rank Ave. Ave. z System Comety BLEU4 chrFa
1 88.1 0.872 HUMAN-A - - -
2 84.5 0.594 Facebook-AI  0.776  33.3 0.596

3-4  68.2 0.277 NiuTrans 0.694  30.6 0.575
3-4 727 0.240 Manifold 0.648  28.6 0.562
5-9 752 0.200 Online-A 0.550 25.5 0.545
5-7 65.6 0.130 Lan-Bridge-MT 0.589  24.9 0.538
5-9 62.6 0.063 Mideind 0.542 243 0.531
6-9 739 0.026 Online-B 0.583  25.7 0.543
6-9 75.6 -0.034 HW-TSC 0.560  27.5 0.554
10 62.0 -0.236 Online-Y 0.351 224 0.513
11 48.7 -0.470 Allegro.eu 0.323 227 0.510
12 33.9 -1.082 Online-G -0.327 122 0.421

Table 63: Automatic metric scores for English—Icelandic systems

Rank Ave. Ave. z System Cometa BLEU4 chrFa
1-2  86.4 0.430 Facebook-Al 0.652 46.8 0.407
1-2  85.3 0.314 HUMAN-A - - -

3-5 842 0.266 Online-W 0.602 42.1 0.366
3-5 81.3 0.168 WeChat-Al 0.615 469 0.404
3-5 82.6 0.148 NiuTrans 0.619 46.2 0.399
6-8 77.8 0.017 HW-TSC 0.614 454 0.392
6-8  71.8 -0.042 MiSS 0.517 426 0.370
8-13 78.5 -0.051 Online-Y 0.386  39.5 0.341
6-10 77.8 -0.067 BUPT_rush 0.549 429 0.372
8-13 709 -0.129 Online-A 0.421 40.8 0.350
9-13 67.4 -0.184 Online-B 0.488 41.6 0.360
9-14 74.2 -0.284 ephemeraler 0.414  39.6 0.343

9-14 725 -0.339 capitalmarvel 0.460 41.0 0.355
12-14 70.1 -0.373 movelikeajaguar 0.379  38.5 0.334

15-16 63.5 -0.440 Illini 0.189 343 0.294
15-16 65.7 -0.541 Online-G 0.143 335 0.287

Table 64: Automatic metric scores for English—Japanese systems

Rank Ave. Ave. z System Comety Cometg BLEU4,p BLEU4 BLEUp chrF4 chrFp
1-3 86.0 0.317 HUMAN-B 0.600 - - - - - -

1-3  83.3 0.277 Online-W 0.664 0.660 45.0 31.8 29.9 0.576 0.571
1-3  82.5 0.093 HUMAN-A - 0.599 - - - - -

4-6 79.4 0.056 Online-B 0.604 0.601 435 29.8 29.2 0.568 0.567
4-7 75.3 0.032 Online-A 0.576  0.559 412 28.8 27.2 0.561 0.556
4-7 80.1 -0.001 Facebook-AI  0.650 0.644  46.0 32.2 30.4 0.576 0.571
7-10 74.5 -0.123 NiuTrans 0.512 0510 405 28.4 27.1 0.546 0.543
7-10 72.3 -0.153 Manifold 0.566 0.566 41.5 29.2 27.6 0.554 0.551
7-10 75.4 -0.161 NVIDIA-NeMo 0.582 0.578 41.6 29.3 27.6 0.562 0.558
5-10 76.0 -0.180 Online-G 0.600 0.595 42.8 30.1 28.6 0.570 0.564
11 62.7 -0.541 Online-Y 0.474 0470 37.7 25.8 25.3 0.538 0.538

Table 65: Automatic metric scores for English—Russian systems
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Rank Ave. Ave. z System Comety Cometg BLEU4,p BLEU4 BLEUp chrF4 chrFp
1-3  82.5 0.325 HUMAN-B 0427 - - - - - -

2-14 749 0.284 HappyNew Year 0.468 0.403 48.0 35.7 32.1 0.300 0.278
1-7  81.2 0.250 Facebook-Al 0499 0425 499 35.9 353 0.343 0.331
1-8 80.0 0.216 HUMAN-A - 0421 - - - - -

4-19 75.3 0.164 Borderline 0.473 0403 492 36.5 332 0.313 0.289
2-19 81.0 0.161 bjtu_nmt 0.474 0409 46.9 34.8 32.5 0.295 0.274
3-14 755 0.151 Lan-Bridge-MT 0.463 0406 44.6 32.6 31.3 0.320 0.300
4-21 79.3 0.124 BUPT _rush 0.425 0.368 44.7 33.1 31.1 0.296 0.278
2-18 79.2 0.098 NiuTrans 0.483 0411 48.1 35.8 32.9 0.305 0.282
4-18 757 0.091 Machine_Translation 0.467 0.403 47.7 35.5 32.3 0.294 0.275
2-15 80.9 0.078 SMU 0.474 0402 479 35.8 32.5 0.306 0.280
6-22 81.4 0.064 capitalmarvel 0378 0.299 439 32.2 30.5 0.268 0.261
4-19 79.5 0.056 WeChat-Al 0.501 0.437 492 36.9 334 0.337 0.305
6-22 78.1 0.026 Online-W 0.468 0.391 448 334 30.9 0.303 0.277
7-22 75.2 0.004 ICL 0.463 0396 47.5 34.8 333 0.317 0.300
9-23  75.9 -0.008 HW-TSC 0447 0380 474 35.1 323 0.298 0.279
5-23 78.2 -0.025 ZengHuiMT 0.448 0.386 48.5 35.9 32.6 0.304 0.282
11-22 81.2 -0.026 yyds 0474 0407 48.1 35.9 324 0.302 0.278
10-26 79.7 -0.050 P3AI 0436 0375 47.0 34.0 333 0.318 0.308
17-27 77.1 -0.061 windfall 0395 0313 442 32.6 30.3 0.282 0.269
6-24 78.9 -0.075 Online-B 0.458 0.381 48.5 36.0 33.1 0.321 0.299
13-26 76.8 -0.080 NJUSC_TSC 0.439 0381 46.3 34.2 31.9 0.312 0.291
9-24  77.7 -0.100 MiSS 0.468 0404 49.0 36.2 332 0.304 0.286
19-27 77.0 -0.101 UF 0413 0.361 453 33.1 314 0.288 0.277
22-28 72.7 -0.123 Online-A 0.340 0292 433 31.6 30.1 0.264 0.261
22-28 79.3 -0.160 happypoet 0.364 0.307 435 32.5 29.7 0.277 0.259
20-28 76.9 -0.185 nuclear_trans 0.428 0361 44.7 334 30.5 0.284 0.261
25-29 76.4 -0.247 ephemeraler 0.382 0.311 440 32.6 30.2 0.287 0.273
28-31 67.5 -0.257 Online-G 0.301 0.238 432 31.1 29.7 0.304 0.288
29-31 67.1 -0.463 Online-Y 0317 0.254 439 32.0 30.9 0.281 0.271
29-31 68.3 -0.613 movelikeajaguar 0.371 0.309 43.7 32.7 29.7 0.280 0.260

Table 66: Automatic metric scores for English—Chinese systems

Rank Ave. Ave. z System

Comety BLEU4 chrF 4

bk Ly

\lb)\lw-llk»—l\)»—_t»—-

|
— e — OO0 = OO CO

87.7 0.088 Online-W
89.2 0.052 Online-A
89.5 0.035 HUMAN-A
85.7 0.002 LISN

86.9 -0.014 Online-B
85.0 -0.021 talp_upc
85.0 -0.064 eTranslation
84.1 -0.154 Online-G
86.6 -0.210 Online-Y
86.4 -0.229 P3AI

0.714
0.566
0.505
0.576
0.481
0.595
0.454

0.503
0.583

60.4 0.788
40.6 0.670

37.3 0.644
43.8 0.689
36.3 0.641
40.6 0.666
36.9 0.653
39.5 0.659
39.3 0.654

Table 67:

Automatic metric scores for French— German systems

Rank Ave. Ave. z System

Comety BLEU4 chrF 4

— = e = = N QN N WD WD

87.9 0.160 Online-B
86.5 0.126 HUMAN-A
83.4 0.018 Manifold
84.8 0.006 Online-W
84.5 0.004 Online-A
83.0 -0.084 Online-G
83.5 -0.148 P3AI

81.3 -0.149 LISN

83.7 -0.177 Online-Y
81.0 -0.190 talp_upc

0.544

0.586
0.622
0.561
0.449
0.512
0.426
0.463
0.466

29.7 0.584

32.5 0.606
29.9 0.591
35.7 0.613
28.6 0.577
31.7 0.626
28.1 0.563
28.3 0.568
27.5 0.565
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B Translator Brief: Sentence-Split News Test Sets

Translator Brief

In this project we wish to translate online news articles for use in evaluation of Machine
Translation (MT). The translations produced by you will be compared against the translations
produced by a variety of different MT systems. They will be released to the research
community to provide a benchmark, or “gold-standard” measure for translation quality. The
translation therefore needs to be a high-quality rendering of the source text into the target
language, as if it was news written directly in the target language. However there are some
constraints imposed by the intended usage:

e All translations should be “from scratch”, without post-editing from MT. Using
post-editing would bias the evaluation, so we need to avoid it. We can detect
post-editing so will reject translations that are post-edited.

e Translation should preserve the sentence boundaries. The source texts are
provided with exactly one sentence per line, and the translations should be the same,
one sentence per line.

e Translators should avoid inserting parenthetical explanations into the translated
text and obviously avoid losing any pieces of information from the source text.

We will check a sample of the translations for quality, and we will check the entire set for
evidence of post-editing.

The source files will be delivered as text files (sometimes known as “notepad” files), with one
sentence per line. We need the translations to be returned in the same format. If you prefer
to receive the text in a different format, then please let us know as we may be able to
accommodate it.
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C News Task System Submission Summaries
This appendix lists self-reported details on MT systems participating in the News Translation Task.

C.1 AFRL (Erdmann et al., 2021)
No brief description provided.

C.2 ALLEGRO.EU (KoszowskKi et al., 2021)

Allegro news translation system is based on the transformer-big architecture, it makes use of corpora
filtering and backtranslation both applied to parallel and monolingual data alike.

ALLEGRO.EU common Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece)
Vocabulary Size: 32000
Toolkit Used: OpenNMT-py
Batch size: 8192 tokens
Features of your model structure: Dropout, Tied source and target word embeddings
Document-level training: No document-level: Our system processes each segment independently.
Number of GPUs Used Concurrently: 1x A100
Wallclock training time: 13h
Number of contrastive configurations used: 4
Other comments: fp16 was used

ALLEGRO.EU en-is True Parallel Training Data Size in Sentence Pairs: 3935903 parallel.en-is
True Parallel Training Data Size in Words: 60185218 parallel.en 55419088 parallel.is
Synthetic Parallel Training Data Size in Sentence Pairs: 2953528 synt.en-is
Synthetic Parallel Training Data Size in Words: 47082741 synt.en 44441374 synt.is
Monolingual Training Data in Sentences: 4044137 mono.en-is
Monolingual Training Data in Words: 81559107 mono.en 72315845 mono.is
Processing Tools Used: Language detection (e.g. for data cleanup)
Features of your model development: Data filtering, Data selection, Iterative back-translation,
Oversampling
Number of Systems Ensembled/Averaged: 1

ALLEGRO.EU is-en True Parallel Training Data Size in Sentence Pairs: 3935903 parallel.is-en
True Parallel Training Data Size in Words: 55419088 parallel.is 60185218 parallel.en
Synthetic Parallel Training Data Size in Sentence Pairs: 2907611 synt.is-en
Synthetic Parallel Training Data Size in Words: 43642048 synt.is 47392565 synt.en
Monolingual Training Data in Sentences: 3991420 mono.is-en
Monolingual Training Data in Words: 78481284 mono.is 81693347 mono.en
Processing Tools Used: Tokenizer, Language detection (e.g. for data cleanup)
Features of your model development: Data filtering, Data selection, Iterative back-translation,
Oversampling, Ensembling
Number of Systems Ensembled/Averaged: 2

C.3 AMU (Nowakowski and Dwojak, 2021)

AMU submission for the low-resource English-Hausa language pair involved data filtering and cleaning,
transfer learning from the pretrained unrelated high-resource language pair (German-English) and itera-
tive backtranslation. The initial iteration of backtranslation was performed with a PB-SMT model, while
the subsequent iterations were performed with NMT Transformer models.

C.4 BITU-NMT (no associated paper)
No brief description provided.

C.5 BORDERLINE (Wang et al., 2021)
No brief description provided.
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C.6 BUPT-RUSH (no associated paper)
No brief description provided.

C.7 CAPITALMARVEL (no associated paper)
No brief description provided.

C.8 CFILT

We train our DE-DSB system using transfer learning from DE-HSB model. Our DE-HSB model is using
monolingual data of HSB and DE and train an unsupervised system first using MASS objective, then
finetune it with iterative back-translation and then finetune it for translation using parallel data of DE-
HSB. This system is then trained using monolingual data of DE and DSB with iterative back-translation.
We use shared encoder and decoder with 6 layers in both encoder and decoder.

CFILT common Multilingual MT System: No.

CFILT  de-dsb Basic System Classification: Masked sequence to sequence pretraining (Song et al 2019)+ Transfer
learning
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt), Moses Tokenizer
Vocabulary Size: 33678
True Parallel Training Data Size in Sentence Pairs: de-hsb 147521 de-dsb 0
Processing Tools Used: Tokenizer
Other Processing Tools Used: fastBPE
Toolkit Used: Moses, fastBPE, MASS
Features of your model development: Iterative back-translation, Unsupervised (i.e. not involving
parallel data), Language model pretraining with MASS objective
Pre-trained parts of models: Masked Sequence to Sequence Pre-training (MASS)
Document-level training: No document-level: Our system processes each segment independently.
Other Features of Your Training: Transfer learning

CFILT de-hsb Basic System Classification: MASS pretraining (song et al)
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece), Moses Tokenizer
Toolkit Used: Moses, fastBPE, MASS
Pre-trained parts of models: Masked Sequence to Sequence Pre-training (MASS)
Document-level training: No document-level: Our system processes each segment independently.

CFILT dsb-de Basic System Classification: MASS pretraining, Transfer learning
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt), Moses Tokenizer

CFILT hsb-de Basic System Classification: MASS pretraining (song et al 2019), Transfer learning
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt)
Pre-trained parts of models: Masked Sequence to Sequence Pre-training (MASS)

C.9 CUNI (Gebauer et al., 2021)

CUNI-DOCTRANSFORMER CUNI-DocTransformer is similar to the sentence-level version called
CUBBITT (Popel et al., 2020), but trained on sequences with multiple sentences of up to 3000 char-
acters. This year, a better sentence detection and number/unit conversion post-processing have been
applied.

CUNI-TRANSFORMER2018 CUNI-Transformer2018, also called CUBBITT, is exactly the same sys-
tem as in WMT2018. It is the Transformer model trained according to Popel and Bojar (2018) plus a
Block Back-translation (Popel et al., 2020).
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CUNI common Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type  Used: SubwordTextEncoder  of  Tensor2Tensor (as in
https://github.com/tensorflow/tensor2tensor)
Vocabulary Size: 32k
Monolingual Training Data in Sentences: see synthetic
Monolingual Training Data in Words: see synthetic
Processing Tools Used: Tokenizer
Toolkit Used: Tensor2Tensor
Features of your model development: Data filtering, Data selection, Block-backtranslation as in
Martin Popel, Marketa Tomkova, Jakub Tomek et al. (2020), Iterative back-translation, Oversam-
pling, Averaging
Features of your model structure: Dropout, Tied source and target word embeddings, Weight tying
(other than word embeddings)
Number of Systems Ensembled/Averaged: 8 checkpoints
Wallclock training time: 8 days (without iterated backtranslation)

CUNI-DOCTRANSFORMER  cs-en, True Parallel Training Data Size in Sentence Pairs: 61000000
en-cs True Parallel Training Data Size in Words: en=617000000, cs=702000000
Synthetic Parallel Training Data Size in Sentence Pairs: en=76000000, cs=51000000
Synthetic Parallel Training Data Size in Words: en=1296000000, cs=833000000
Batch size: 1800*10 subwords
Document-level training: Overlapping windows: A window is moved over segments, receiving
multiple translations of each of them, with some voting or combination afterwards.
Number of GPUs Used Concurrently: 10 GTX 1080 Ti
Number of contrastive configurations used: 4

CUNI-TRANSFORMER2018  cs-en, True Parallel Training Data Size in Sentence Pairs: 58000000
en-cs True Parallel Training Data Size in Words: en=642000000, cs=563000000
Synthetic Parallel Training Data Size in Sentence Pairs: en=47000000, cs=65000000
Synthetic Parallel Training Data Size in Words: en=935000000, cs=927000000
Batch size: 2900*8 subwords
Document-level training: No document-level: Our system processes each segment independently.
Number of GPUs Used Concurrently: 8 GTX 1080 Ti
Number of contrastive configurations used: Now only one. In 2018, I trained hundreds of models
on smaller data or less GPUs, as described in Training Tips for the Transformer Model (Popel and
Bojar, 2018).

C.10 DIDI-NLP (no associated paper)
No brief description provided.

C.11 EPHEMERALER

We use Transformer big model and ensembling.

EPHEMERALER common Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)

EPHEMERALER  en-ja Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt)

EPHEMERALER  en-zh —

C.12 ETRANSLATION (Oravecz et al., 2021)

eTranslations’s En-De system is an ensemble of 4 big transformers, trained from all available parallel
data (cleaned up and filtered with heuristic rules and with a language model built from the German
NewsCrawl data) and with additional tagged, back-translated data generated from the monolingual news
corpora. The original parallel data is upsampled to a 1:1 ratio. Each transformer model is then tuned on
a 10M top subset of original parallel data scored and ranked by the monolingual news language model
and then fine-tuned further on previous year’s test sets. The models use a 36k SentencePiece vocabulary.
The SentencePiece module as built in the Marian toolkit is used for end-to-end text processing, without
the standard pre- and postprocessing steps of truecasing, or (de)tokenization.

The Fr-De system is an ensemble of 4 big transformers. Three of them are trained on original parallel
(OP) data and back-translated (BT) data in a 1:1 ratio. The 4th big transformer was additionally fine-
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tuned for 7 epochs on 2M of the OP data scored by a domain language model. BT data and data for the
domain language model were selected using topic modelling techniques to tune the model towards the

domain defined in the task.

The En-Cs system is an ensemble of two big transformer models from last year’s submission, trained
on the WMT 2020 data, both original parallel and back-translated. Training on the 2021 data had not
finished until the submission deadline and intermediate models scored worse than the 2020 models.

ETRANSLATION

ETRANSLATION

ETRANSLATION

ETRANSLATION

common Multilingual MT System: No.

en-de

fr-de

en-cs

Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece)

Toolkit Used: Marian

Document-level training: No document-level: Our system processes each segment independently.

Vocabulary Size: 36000

True Parallel Training Data Size in Sentence Pairs: 32077088

True Parallel Training Data Size in Words: 637753194; 603406453

Synthetic Parallel Training Data Size in Sentence Pairs: 226375233

Synthetic Parallel Training Data Size in Words: 3514437534; 3007895939

Monolingual Training Data in Sentences: BT: 226375233; En LM: 133385694; De LM:
167110102;

Monolingual Training Data in Words: BT: 3514437534; 3007895939 En LM: 2891767899; De
LM: 3012152905

Processing Tools Used: Tokenizer, Language detection (e.g. for data cleanup)

Batch size: 1500-5000

Features of your model development: Data filtering, Data selection, Back-translation with greedy
decoding, Oversampling, Ensembling, Fine-tuning for domain adaptation

Features of your model structure: Dropout, Tied source and target word embeddings

Other Features of Your Training: continued training on LM scored subset of OP data

Number of Systems Ensembled/Averaged: 4

Number of GPUs Used Concurrently: 4-8 V100

Wallclock training time: 10 days

Number of contrastive configurations used: 16

Other comments: described in the system paper

Vocabulary Size: 30000

True Parallel Training Data Size in Sentence Pairs: 13640043

True Parallel Training Data Size in Words: 257966051; 228953683

Synthetic Parallel Training Data Size in Sentence Pairs: 14980793

Synthetic Parallel Training Data Size in Words: 241457887; 209714902
Monolingual Training Data in Sentences: de: 11475958

Monolingual Training Data in Words: de: 160803597

Processing Tools Used: Tokenizer, Language detection (e.g. for data cleanup)

Batch size: 1500

Features of your model development: Data filtering, Data selection, Back-translation with greedy
decoding, Oversampling, Ensembling, Fine-tuning for domain adaptation

Features of your model structure: Dropout, Tied source and target word embeddings
Number of Systems Ensembled/Averaged: 4

Number of GPUs Used Concurrently: 4

Wallclock training time: 5 days

Number of contrastive configurations used: 11

Vocabulary Size: 36000

True Parallel Training Data Size in Sentence Pairs: 45104433

True Parallel Training Data Size in Words: cs: 559485115 en: 637004843
Synthetic Parallel Training Data Size in Sentence Pairs: 88164502

Synthetic Parallel Training Data Size in Words: cs: 1206604906 en: 1450464754
Monolingual Training Data in Sentences: 0

Monolingual Training Data in Words: 0

Processing Tools Used: Language detection (e.g. for data cleanup)

Batch size: 1000

Features of your model development: Data filtering, Back-translation with sampling, Ensembling
Features of your model structure: Dropout

Number of Systems Ensembled/Averaged: 2

Number of GPUs Used Concurrently: 4

Wallclock training time: 12 days

Number of contrastive configurations used: 4
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C.13 FACEBOOK-AI (Tran et al., 2021)

Facebook Al participated in the unconstrained track for all 14 English-centric directions. To explore
the limit of scaling multilingual translation, we trained two multilingual systems: Any-to-English, and
English-to-Any, and submitted them to all directions. In addition to well-known techniques such as
large scale backtranslation, in-domain finetuning, ensembling, and noisy channel re-ranking, we also
experimented with scaling dense transformer (up to 4.7B parameters), and sparse mixture of experts (up

to 52B parameters)

FACEBOOK-AI common Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.

FACEBOOK-AI  cs-en,
de-en,
ha-en,
is-en,
ja-en,
ru-en,
zh-en

FACEBOOK-AI en-cs,
en-de,
en-ha,
en-is,
en-ja,
en-ru,
en-zh

Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt)

Vocabulary Size: 128000

True Parallel Training Data Size in Sentence Pairs: (This includes mined data from CCMatrix
and CCAligned) cs-en 163,005,937 de-en 544,549,887 ha-en 1,176,367 is-en 20,632,971 ja-en
141,399,044 ru-en 276,805,988 zh-en 163,188,501 Total 1,310,758,695

True Parallel Training Data Size in Words: (This includes mined data from CCMatrix and
CCAligned) 2725979073 train.cs_en.cs 2661179726 train.cs_en.en 10546303763 train.de_en.de
9692849751 train.de_en.en 20466571 train.ha_en.ha 18786730 train.ha_en.en 342802801
train.is_en.is 301337746 train.is_en.en 640041697 train.ja_en.ja 1907474016 train.ja_en.en
4896618898 train.ru_en.ru 4887514242 train.ru_en.en 714086693 train.zh_en.zh 2853757236
train.zh_en.en

Synthetic Parallel Training Data Size in Sentence Pairs: (Backtranslation data) cs-en 428,914,158
de-en 394,678,147 ha-en 378,439,788 is-en 428,581,678 ja-en 428,227,231 ru-en 381,863,501
zh-en 432,017,983 Total 2,872,722,486

Monolingual Training Data in Sentences: Similar to backtranslation data ( 430M English sentences)
Processing Tools Used: Language detection (e.g. for data cleanup)

Toolkit Used: fairseq(-py)

Batch size: 1M tokens

Features of your model development: Data filtering, Iterative back-translation, Ensembling,
Averaging, Right-to-left reranking, Target-to-source reranking, Fine-tuning for domain adaptation,
Mixture of Experts

Features of your model structure: Dropout, Tied source and target word embeddings
Document-level training: No document-level: Our system processes each segment independently.
Other Features of Your Training: In-domain parallel data mining

Number of Systems Ensembled/Averaged: 3

Number of GPUs Used Concurrently: 128

Wallclock training time: 1 week

Number of contrastive configurations used: 5 different architectures, 3-4 training iterations each

Vocabulary Size: 128000

True Parallel Training Data Size in Sentence Pairs: (Includes mined data from CCMatrix,
CCAligned) en-cs 163,758,080 en-de 546,657,024 en-ha 995,860 en-is 27,228,288 en-ja
142,843,968 en-ru 277,540,224 en-zh 163,774,144 Total 1,322,797,588

Synthetic Parallel Training Data Size in Sentence Pairs: en-cs 140,172,928 en-de 237,235,904
en-ha 6,719,488 en-is 101,139,008 en-ja 218,456,960 en-ru 163,223,744 en-zh 123,211,776 Total
990,159,808

Monolingual Training Data in Sentences: Same as backtranslation

Processing Tools Used: Language detection (e.g. for data cleanup)

Toolkit Used: fairseq(-py)

Batch size: 1M tokens per batch

Features of your model development: Data filtering, Data selection, Iterative back-translation,
Oversampling, Ensembling, Averaging, Right-to-left reranking, Target-to-source reranking,
Fine-tuning for domain adaptation

Features of your model structure: Dropout, Tied source and target word embeddings
Document-level training: No document-level: Our system processes each segment independently.
Number of Systems Ensembled/Averaged: 2-3

Number of GPUs Used Concurrently: 128

Wallclock training time: 1 week

Number of contrastive configurations used: 20

C.14 FJDMATH (Martinez, 2021)
No brief description provided.
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C.15 GTCOM (Bei and Zong, 2021)
No brief description provided.

C.16 HAPPYNEWYEAR (no associated paper)
No brief description provided.

C.17 HAPPYPOET (no associated paper)
No brief description provided.

C.18 HW-TSC (Wei et al., 2021)

We participate in 7 language pairs including Zh/En, De/En, Ja/En, Ha/En, Is/En, Hi/Bn, and Xh/Zu
and in both directions under the constrained condition. We use the standard Transformer-Big model as
the baseline and obtain the best performance via two variants with larger parameter sizes. We perform
detailed pre-processing and filtering on the provided large-scale bilingual and monolingual datasets.
Several commonly used strategies are used to train our models such as Back Translation, Ensemble
Knowledge Distillation, etc. We also conduct experiments regarding similar language augmentation,
which lead to positive results, although not used in our submission. Our submission obtains competitive
results in the final evaluation.

HW-TSC

HW-TSC

HW-TSC

common Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)

en-zh

zh-en

Document-level training: No document-level: Our system processes each segment independently.
Number of GPUs Used Concurrently: 8

Multilingual MT System: No.

Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt), Moses Tokenizer,
jieba

Vocabulary Size: 32k

True Parallel Training Data Size in Sentence Pairs: 16.5M

Synthetic Parallel Training Data Size in Sentence Pairs: 316.5M

Monolingual Training Data in Sentences: 300M

Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup), Jieba word segmentation for Chinese

Toolkit Used: Marian, fairseq(-py), Moses

Batch size: 4096

Features of your model development: Data filtering, Data selection, Back-translation with sam-
pling, Iterative back-translation, Forward translation for synthetic data, Ensembling, Averaging,
Fine-tuning for domain adaptation

Features of your model structure: Dropout

Number of Systems Ensembled/Averaged: 2Ensembled

Multilingual MT System: No.

Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt), Moses Tokenizer,
jieba

Vocabulary Size: 32k

True Parallel Training Data Size in Sentence Pairs: 16.5M

Synthetic Parallel Training Data Size in Sentence Pairs: 316.5M

Monolingual Training Data in Sentences: 300M

Processing Tools Used: Tokenizer, Language detection (e.g. for data cleanup)

Toolkit Used: Marian, fairseq(-py), Moses

Batch size: 4096

Features of your model development: Data filtering, Data selection, Back-translation with sam-
pling, Iterative back-translation, Forward translation for synthetic data, Ensembling, Averaging
Features of your model structure: Dropout

Number of Systems Ensembled/Averaged: 2ensemble
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HW-TSC

HW-TSC

HW-TSC

HW-TSC

en-ha

ha-en

en-is

is-en

Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece)

Vocabulary Size: 32K

True Parallel Training Data Size in Sentence Pairs: 0.6M

Synthetic Parallel Training Data Size in Sentence Pairs: 14.9M

Monolingual Training Data in Sentences: 14.3M

Processing Tools Used: Word Aligner (e.g. fast_align or GIZA++), Language detection (e.g. for
data cleanup)

Toolkit Used: Marian, fairseq(-py)

Features of your model development: Data filtering, Data selection, Back-translation with greedy
decoding, Iterative back-translation, Forward translation for synthetic data, Ensembling, Averaging,
Fine-tuning for domain adaptation

Features of your model structure: Dropout

Number of Systems Ensembled/Averaged: 4ensemble

Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Vocabulary Size: 32K

True Parallel Training Data Size in Sentence Pairs: 0.6M

Synthetic Parallel Training Data Size in Sentence Pairs: 14.9M

Monolingual Training Data in Sentences: 14.3M

Processing Tools Used: Word Aligner (e.g. fast_align or GIZA++), Language detection (e.g. for
data cleanup)

Toolkit Used: Marian, fairseq(-py)

Features of your model development: Data filtering, Data selection, Back-translation with greedy
decoding, Iterative back-translation, Ensembling, Averaging, Fine-tuning for domain adaptation
Features of your model structure: Dropout

Number of Systems Ensembled/Averaged: 4

Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece)

Vocabulary Size: 32K

True Parallel Training Data Size in Sentence Pairs: 4M

Synthetic Parallel Training Data Size in Sentence Pairs: 42M

Monolingual Training Data in Sentences: 38M

Processing Tools Used: Word Aligner (e.g. fast_align or GIZA++), Language detection (e.g. for
data cleanup)

Toolkit Used: Marian, fairseq(-py)

Batch size: 4096

Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with greedy decoding, Iterative back-translation, Forward translation for synthetic
data, Ensembling, Averaging, Fine-tuning for domain adaptation

Features of your model structure: Dropout

Number of Systems Ensembled/Averaged: 3

Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece)

Vocabulary Size: 32K

True Parallel Training Data Size in Sentence Pairs: 4M

Synthetic Parallel Training Data Size in Sentence Pairs: 42M

Monolingual Training Data in Sentences: 38M

Processing Tools Used: Word Aligner (e.g. fast_align or GIZA++), Language detection (e.g. for
data cleanup)

Toolkit Used: Marian, fairseq(-py)

Features of your model development: Data filtering, Data selection, Back-translation with greedy
decoding, Iterative back-translation, Forward translation for synthetic data, Ensembling, Averaging,
Fine-tuning for domain adaptation

Features of your model structure: Dropout

Number of Systems Ensembled/Averaged: 3

78



HW-TSC

HW-TSC

HW-TSC

HW-TSC

bn-hi

hi-bn

xh-zu

zu-xh

Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Token Unit Type Used: sentencepiece

Vocabulary Size: 32000

True Parallel Training Data Size in Sentence Pairs: 3400000

Synthetic Parallel Training Data Size in Sentence Pairs: 46500000

Monolingual Training Data in Sentences: 46500000

Monolingual Training Data in Words: 1899414973

Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)

Toolkit Used: Marian, fairseq(-py)

Batch size: 1500

Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Oversampling

Number of Systems Ensembled/Averaged: 4

Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Token Unit Type Used: sentencepiece

Vocabulary Size: 32000

True Parallel Training Data Size in Sentence Pairs: 3400000

Synthetic Parallel Training Data Size in Sentence Pairs: 50000000

Monolingual Training Data in Sentences: 50000000

Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)

Toolkit Used: Marian, fairseq(-py)

Batch size: 1500

Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Oversampling, Ensembling, Averaging

Number of Systems Ensembled/Averaged: 4

Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Token Unit Type Used: sentencepiece

Vocabulary Size: 32000

True Parallel Training Data Size in Sentence Pairs: 67000

Synthetic Parallel Training Data Size in Sentence Pairs: 12000000

Monolingual Training Data in Sentences: 12000000

Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)

Toolkit Used: Marian, fairseq(-py)

Batch size: 1500

Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Oversampling, Ensembling, Averaging, Fine-tuning for domain adaptation

Number of Systems Ensembled/Averaged: 4

Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Token Unit Type Used: sentencepiece

Vocabulary Size: 32000

True Parallel Training Data Size in Sentence Pairs: 67000

Synthetic Parallel Training Data Size in Sentence Pairs: 12000000

Synthetic Parallel Training Data Size in Words: 50000000

Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++)

Toolkit Used: Marian, fairseq(-py)

Batch size: 1500

Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Oversampling, Ensembling, Averaging

Number of Systems Ensembled/Averaged: 4
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HW-TSC en-ja Multilingual MT System: No.
Token Unit Type Used: sentencepiece
Vocabulary Size: 32000
True Parallel Training Data Size in Sentence Pairs: 14000000
Synthetic Parallel Training Data Size in Sentence Pairs: 80000000
Monolingual Training Data in Sentences: 150000000
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Toolkit Used: Marian, fairseq(-py)
Batch size: 1500
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Oversampling, Ensembling, Averaging, Fine-tuning for domain adaptation
Number of Systems Ensembled/Averaged: 4

HW-TSC ja-en Multilingual MT System: No.
Token Unit Type Used: sentencepiece
Vocabulary Size: 32000
True Parallel Training Data Size in Sentence Pairs: 12000000
Synthetic Parallel Training Data Size in Sentence Pairs: 80000000
Monolingual Training Data in Sentences: 150000000
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Toolkit Used: Marian, fairseq(-py)
Batch size: 1500
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Oversampling, Ensembling, Averaging, Right-to-left reranking, Fine-tuning for domain adaptation
Number of Systems Ensembled/Averaged: 4

HW-TSC en-de Multilingual MT System: No.
Token Unit Type Used: Moses Tokenizer, spm
Vocabulary Size: 32k
True Parallel Training Data Size in Sentence Pairs: 79M
Synthetic Parallel Training Data Size in Sentence Pairs: 300M
Monolingual Training Data in Sentences: en 300M,de 300M
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Toolkit Used: Marian, fairseq(-py), Moses
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Ensembling, Averaging, Fine-tuning for domain adaptation
Features of your model structure: Dropout
Number of Systems Ensembled/Averaged: 4 ensembled, 3 averaged.
Wallclock training time: max_token=500000, max_step=50000

HW-TSC de-en Multilingual MT System: No.
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece), Moses Tokenizer
Vocabulary Size: 32K
True Parallel Training Data Size in Sentence Pairs: 79M
Synthetic Parallel Training Data Size in Sentence Pairs: 300M
Monolingual Training Data in Sentences: en 300M, de 300M+
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Toolkit Used: Marian, fairseq(-py)
Batch size: max_token=500000
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Ensembling, Averaging, Fine-tuning for domain adaptation
Features of your model structure: Dropout
Number of Systems Ensembled/Averaged: ensembled: 4, average: 3
Wallclock training time: step 50000

C.19 ICL (no associated paper)
No brief description provided.
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C.20 IICT-YVERDON

IICT-Yverdon presents the systems submitted by our team from the Institute of ICT (HEIG-VD / HES-
SO) to the Unsupervised MT and Very Low Resource Supervised MT task. We first study a base-
line system using a Transformer architecture, using the Upper Sorbian (HSB) / German data from the
2020 edition of the task. We quantify the improvements brought by additional techniques such as back-
translation of large German corpora and parent-language initialization using Czech-German data, and
show that each of these is beneficial, and helps to reach scores that are comparable to more sophisticated
systems from the 2020 task. We then present the application of this system to the 2021 task for low-
resource supervised HSB-DE translation, in both directions. Finally, we present a contrastive system for
HSB-DE in both directions, and for unsupervised German to Lower Sorbian (DSB) translation, which
uses multi-task training with various training schedules to improve over the baseline. More specifically,
we present a baseline system using a Transformer architecture, which uses back-translation of large
German corpora and parent-language initialization using Czech-German data. We submit translations
from this system for low-resource supervised HSB-DE, in both directions. We also present a contrastive
system that makes use as well of back-translation and Czech-German initialization, and also multi-task
training, in which we first train Czech-German systems by giving them different denoising tasks, together
with translation, in increasing order of complexity. Afterwards, we first present the child systems with
denoising tasks, and later introduce translation. Finally, we train different models with some changes in
their training setups that we use for ensembling, in order to maximize diversity among the models.

C.21 IIE-MT (no associated paper)
No brief description provided.

C.22 ILLINI (Le et al., 2021)

Illini team presents an end-to-end NMT pipeline for the Japanese <+ English news translation task using
Transformer models and techniques such as politeness and formality tagging, back-translation, model
ensembling, and n-best reranking to improve our translation systems.

C.23 KWAINLP (no associated paper)
No brief description provided.

C.24 LAN-BRIDGE-MT (no associated paper)
No brief description provided.

C.25 LISN (Xu et al., 2021)

LISN’s systems for DE<+FR use Transformer-big model with the “priming"” based on a prior retrieval
step, which looks for similar sentences (in source and target) to prime a similar translation. These
techniques aim to perform some unsupervised domain transfer, which is one of the challenge of this task.
Our system only uses the data provided for the task (bilingual and backtranslated monolingual data) and
are thus constrained submissions. They are built using the fairseq toolkit.

LISN  de-fr, Multilingual MT System: No.
fr-de Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt), Moses Tokenizer
Processing Tools Used: Tokenizer, Language detection (e.g. for data cleanup)
Toolkit Used: fairseq(-py)
Batch size: 4096
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C.26 MACHINE-TRANSLATION (no associated paper)
No brief description provided.

C.27 MANIFOLD (no associated paper)
No brief description provided.

C.28 MIDEIND (Jonsson et al., 2021)

We fine-tuned a sentence-level mBART?25 model on the en-is/is-en translation task using a filtered ver-
sion of the Parlce parallel corpus and a back-translated corpus of roughly 30 million sentence pairs
per translation direction. The back-translated corpus was generated via iterative back-translation using
a Transformer-base model and a final iteration using the mBART25 translation model. Mideind is an
Icelandic startup company focusing on NLP and Al applications for the Icelandic language.

C.29 MiSS (Li et al., 2021b)
No brief description provided.

C.30 MOVELIKEAJAGUAR (no associated paper)
No brief description provided.

C.31 MS-EGDC (Hendy et al., 2021)

We develop NMT for low resource language pairs Bengali to/from Hindi, English to/from Hausa and
Xhosa to/from Zulu. We use constrained resources provided by the organizers. The main idea is to train
a multi-lingual model with a multi-task objective using both parallel and monolingual data. This model
is then used to forward and backward translate monolingual and parallel data (the latter is known as
knowledge distillation). The resulting synthetic data is then used to train bilingual MT models for each
language pair. The best multi-lingual and multi-task models are then combined with the best bilingual
model for each pair using a novel transformer-based method.

C.32 NIUTRANS (Zhou et al., 2021)
No brief description provided.

C.33 NJUSC-TSC (no associated paper)
No brief description provided.

C.34 NUCLEAR-TRANS (no associated paper)
No brief description provided.

C.35 NVIDIA-NEMO (Subramanian et al., 2021)
No brief description provided.

C.36 P3AI (Zhao et al., 2021)
No brief description provided.
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C.37 SMU (no associated paper)
No brief description provided.

C.38 TALP-UPC (Escolano et al., 2021)
No brief description provided.

C.39 TRANSSION

This paper describes the submission systems of TRANSSION for WMT21 . We participated in 6 transla-
tion directions including Hindi <+ Bengali, Zulu <+ Xhosa and English <+ Hausa in both directions. Our
systems are based on Google’s Transformer model architecture, into which we integrated the most recent
features from the academic research. We also employed most techniques that have been proven effective
during the past WMT years, such as Multi-Lingual Training, Back Translation, In-domain Finetuning,
Transfer Learning, ensemble and Reranking.

TRANSSION  common Multilingual MT System: No.

TRANSSION  bn-hi

TRANSSION  xh-zu,
zu-xh,
bn-hi,
hi-bn,
ha-en,
en-ha

C40 TWB

Token Unit Type Used: Custom Tokenizer, BPE (as in https://github.com/rsennrich/subword-nmt)
Vocabulary Size: 50000

Processing Tools Used: Tokenizer, Shallow Dependency Parser ( UD), Shallow Consituency Parser,
Word Aligner (e.g. fast_align or GIZA++), Language detection (e.g. for data cleanup)

Batch size: 6144

Document-level training: No document-level: Our system processes each segment independently.
Number of Systems Ensembled/Averaged: 5

Number of GPUs Used Concurrently: 1

Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...),
Hybrid

Monolingual Training Data in Sentences: 44,035,924

Monolingual Training Data in Words: 329,604,211,372,512,000

Toolkit Used: Custom in Tensorflow, Custom in Keras (whatever is below it)

Features of your model development: Data filtering, Data selection, Back-translation with
sampling, Iterative back-translation, Forward translation for synthetic data, Extra languages used
beyond those listed above (e.g. some form of pivoting or multi-lingual training), Ensembling,
Averaging, Right-to-left reranking, Target-to-source reranking, Fine-tuning for domain adaptation
Features of your model structure: Dropout, Tied source and target word embeddings, Residual
adapters

Pre-trained parts of models: Pre-trained word embeddings

Wallclock training time: 12hours

Number of contrastive configurations used: 15

Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Toolkit Used: Custom in Tensorflow

Features of your model development: Data filtering, Data selection, Back-translation with
sampling, Iterative back-translation, Forward translation for synthetic data, Oversampling, Extra
languages used beyond those listed above (e.g. some form of pivoting or multi-lingual training),
Ensembling, Averaging, Right-to-left reranking, Target-to-source reranking, Fine-tuning for
domain adaptation

Features of your model structure: Dropout, Tied source and target word embeddings

Wallclock training time: 12 hours

We developed a bidirectional transformer-based system for Hausa-English news translation task. In our
paper we give an overview of the data available including the 15,000 hand-crafted parallel dataset which
was created internally. Our best systems achieved 17.1 and 12.3 BLEU on EN-HA and HA-EN directions
on the task test sets, respectively.
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TWB common Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt)
Vocabulary Size: 50,000
True Parallel Training Data Size in Sentence Pairs: 806345
True Parallel Training Data Size in Words: 10697192(en), 11405851 (ha)
Toolkit Used: OpenNMT-py
Batch size: 4096 tokens
Features of your model development: Data filtering, Data selection, Back-translation with sam-
pling, Ensembling, Averaging, Fine-tuning for domain adaptation
Features of your model structure: Dropout
Document-level training: No document-level: Our system processes each segment independently.
Number of Systems Ensembled/Averaged: Averaged up to 8 models
Number of GPUs Used Concurrently: 2
Number of contrastive configurations used: 1

TWB en-ha Synthetic Parallel Training Data Size in Sentence Pairs: 567231
Synthetic Parallel Training Data Size in Words: 2549554 1(ha), 23815542(en)
Monolingual Training Data in Sentences: Only the 567231 sentence dataset that were machine
translated to make synthetic data
Monolingual Training Data in Words: 25495541
Wallclock training time: 24 hours

TWB  ha-en Synthetic Parallel Training Data Size in Sentence Pairs: 1,000,000
Synthetic Parallel Training Data Size in Words: 11442297(en), 13188160(ha)
Monolingual Training Data in Sentences: Only the 1,000,000 sentence dataset that were machine
translated to make synthetic data
Monolingual Training Data in Words: 11442297
Wallclock training time: 36 to 48 hours

C.41 UEDIN (Chen et al., 2021; Pal et al., 2021)

UEdin’s bn-hi and hi-bn systems use models trained on constrained parallel data to back-translate all of
the provided monolingual data. New transformer models are then pre-trained on back-translated data, and
fine-tuned on parallel data. A second stage of fine-tuning is done on training data that is in-domain, which
is extracted in a number of ways, including n-gram matching, TF-IDF similarity, and language model
scoring with the validation set. Finally, multiple models fine-tuned in different ways are ensembled to
generate the final translations.

UEdin’s approach to de<+en started with rule-based and dual conditional cross-entropy filtering of the
provided corpora. All models were trained on a mix of parallel and back-translated data, and further
trained on parallel sentences only. Specifically for en—de, we trained the model on additional title-cased
sentences. The models were then fine-tuned on previous WMT test sets. We ensembled 5 models for
en—de and 6 for de—en. During inference, each test instance was split at sentence-level, translated, and
then concatenated.

UEDIN common Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece)
Toolkit Used: Marian
Document-level training: No document-level: Our system processes each segment independently.
Number of GPUs Used Concurrently: 4

84



UEDIN  bn-hi Vocabulary Size: 32000
True Parallel Training Data Size in Sentence Pairs: 2036669
True Parallel Training Data Size in Words: 24797974
Synthetic Parallel Training Data Size in Sentence Pairs: 248828890
Synthetic Parallel Training Data Size in Words: hi (monolingual, target side): 4368794315 bn
(back-translated, source side): 3287105444
Monolingual Training Data in Sentences: 248828890
Monolingual Training Data in Words: 4368794315
Processing Tools Used: Tokenizer, Language detection (e.g. for data cleanup)
Other Processing Tools Used: Sentence splitter
Batch size: Dynamic
Features of your model development: Data filtering, Data selection, Ensembling, Fine-tuning for
domain adaptation, Back-translation with beam search
Number of Systems Ensembled/Averaged: 5
Wallclock training time: 40 ( 6 * 4 for model ensemble for back-translation + the rest for the final
model)
Number of contrastive configurations used: 30

UEDIN  hi-bn Vocabulary Size: 32000
True Parallel Training Data Size in Sentence Pairs: 2036669
True Parallel Training Data Size in Words: 24797974
Synthetic Parallel Training Data Size in Sentence Pairs: 59736357
Synthetic Parallel Training Data Size in Words: bn (monolingual, target side): 873200873 hi
(back-translated, source side): 1044281945
Monolingual Training Data in Sentences: 59736357
Monolingual Training Data in Words: 873200873
Processing Tools Used: Tokenizer, Language detection (e.g. for data cleanup)
Other Processing Tools Used: Sentence splitter
Batch size: Dynamic
Features of your model development: Data filtering, Data selection, Forward translation for
synthetic data, Ensembling, Fine-tuning for domain adaptation, Back-translation with beam search
Number of Systems Ensembled/Averaged: 8
Wallclock training time: 50 ( 8 * 4 for model ensemble for back-translation + the rest for the final
model)
Number of contrastive configurations used: 30

UEDIN  de-en Vocabulary Size: 32k
True Parallel Training Data Size in Sentence Pairs: 66530788
Synthetic Parallel Training Data Size in Sentence Pairs: 91033109
Processing Tools Used: Language detection (e.g. for data cleanup)
Other Processing Tools Used: fastText for language identification
Features of your model development: Data filtering, Back-translation with greedy decoding,
Back-translation with sampling, Ensembling, Fine-tuning for domain adaptation
Features of your model structure: Dropout, Tied source and target word embeddings
Pre-trained parts of models: Did not use
Number of Systems Ensembled/Averaged: 6
Number of contrastive configurations used: N/A

UEDIN en-de Vocabulary Size: 32k
True Parallel Training Data Size in Sentence Pairs: 66530788
Synthetic Parallel Training Data Size in Sentence Pairs: 146216106
Processing Tools Used: Language detection (e.g. for data cleanup)
Other Processing Tools Used: fastText for language identification
Features of your model development: Data filtering, Back-translation with greedy decoding,
Back-translation with sampling, Ensembling, Fine-tuning for domain adaptation
Features of your model structure: Dropout, Tied source and target word embeddings
Pre-trained parts of models: did not use
Number of Systems Ensembled/Averaged: 5
Wallclock training time: 274 hours
Number of contrastive configurations used: N/A

C.42 UF (no associated paper)
No brief description provided.

C.43 VOLCTRANS (Qian et al., 2021)

VOLCTRANS-AT  VolcTrans-AT’s submission is described in the respective paper (Qian et al., 2021).
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VOLCTRANS-GLAT VolcTrans-GLAT’s submission is a non-autoregressive model equipped with our
recent technique of “glancing transformer" (Qian et al., 2020, to appear in ACL 2021).

VOLCTRANS

VOLCTRANS-AT

VOLCTRANS-GLAT

VOLCTRANS-AT

VOLCTRANS-GLAT

common Multilingual MT System: No.

de-en

de-en

en-de

en-de

True Parallel Training Data Size in Sentence Pairs: 75M

Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)

Document-level training: No document-level: Our system processes each segment independently.

Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt), Moses Tokenizer
Vocabulary Size: 12000

Synthetic Parallel Training Data Size in Sentence Pairs: 110M

Monolingual Training Data in Sentences: 0

Other Processing Tools Used: n/a

Toolkit Used: fairseq(-py), Custom in Pytorch, Custom in Keras (whatever is below it), Moses
Batch size: 125k-256k

Features of your model development: Data filtering, Data selection, Knowledge distillation,
Iterative back-translation, Forward translation for synthetic data, Ensembling, Fine-tuning for
domain adaptation

Features of your model structure: Dropout, Tied source and target word embeddings

Number of Systems Ensembled/Averaged: 9

Number of GPUs Used Concurrently: 16

Wallclock training time: 2 days

Other comments: 3

Basic System Classification: Non-Autoregressive Transformer

Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece), Moses Tokenizer
Vocabulary Size: 32000

Synthetic Parallel Training Data Size in Sentence Pairs: 100M

Monolingual Training Data in Sentences: 0

Toolkit Used: fairseq(-py), Custom in Pytorch, Moses

Batch size: 256k

Features of your model development: Data filtering, Data selection, Knowledge distillation, Itera-
tive back-translation, Forward translation for synthetic data, Ensembling, Right-to-left reranking
Features of your model structure: Dropout

Number of Systems Ensembled/Averaged: 3

Number of GPUs Used Concurrently: 32

Wallclock training time: 3 days

Number of contrastive configurations used: 6

Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt), Moses Tokenizer
Vocabulary Size: 12000

Synthetic Parallel Training Data Size in Sentence Pairs: 110M

Monolingual Training Data in Words: 0

Toolkit Used: fairseq(-py), Custom in Pytorch, Custom in Keras (whatever is below it), Moses
Batch size: 125k-256k

Features of your model development: Data filtering, Data selection, Knowledge distillation,
Iterative back-translation, Forward translation for synthetic data, Ensembling

Features of your model structure: Dropout, Tied source and target word embeddings

Number of Systems Ensembled/Averaged: 3

Number of GPUs Used Concurrently: 16

Wallclock training time: 3 days

Number of contrastive configurations used: 3

Basic System Classification: Non-Autoregressive Transformer

Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece), Moses Tokenizer
Vocabulary Size: 32000

Synthetic Parallel Training Data Size in Sentence Pairs: 100M

Monolingual Training Data in Sentences: 0

Toolkit Used: fairseq(-py), Custom in Pytorch

Batch size: 256k

Features of your model development: Data filtering, Data selection, Knowledge distillation,
Iterative back-translation, Fine-tuning for domain adaptation

Features of your model structure: Dropout

Number of GPUs Used Concurrently: 32

Wallclock training time: 3 days

Number of contrastive configurations used: 6
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C.44 WATERMELON

We only truly participated de-en direction using constraint settings. For other directions, we submit
results from online translators (mainly from DeepL) just in order to see the performance.

WATERMELON  de-en Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt)
Vocabulary Size: 32000
True Parallel Training Data Size in Sentence Pairs: 45M
Synthetic Parallel Training Data Size in Sentence Pairs: 65M
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Other Processing Tools Used: Truecaser
Toolkit Used: fairseq(-py)
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with greedy decoding, Back-translation with sampling, Iterative back-translation,
Forward translation for synthetic data, Ensembling, Averaging, Right-to-left reranking, Target-to-
source reranking, Fine-tuning for domain adaptation
Features of your model structure: Dropout, Tied source and target word embeddings
Number of Systems Ensembled/Averaged: 15

C.45 WECHAT-AI (Zeng et al., 2021)

We have participated in the WMT 2021 shared news translation task on English-to-Chinese, English-
to-Japanese, Japanese-to-English and English-to-German. Our systems are based on the Transformer
(Vaswani et al., 2017) with some effective variants, such as mixed-aan model, dual-attention model,
weighted-aan model, talking-heads attention model, etc. In our experiments, we employ data selection,
several synthetic data generation approaches, advanced finetuning approaches and self-bleu based model
ensemble. Our constrained systems achieve 36.9, 46.9, 27.8 and 31.3 case-sensitive BLEU scores on
English-to-Chinese, English-to-Japanese, Japanese-to-English and English-to-German, respectively. The
BLEU scores of English-to-Chinese, English-to-Japanese and Japanese-to-English are the highest among
all submissions, and that of English-to-German ranks the second. Additionally, one of our submissions
on English-to-Chinese also achieves the highest chrF score 0.344.

WECHAT-AI common Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt)
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Batch size: 65536 tokens
Features of your model structure: Dropout
Document-level training: No document-level: Our system processes each segment independently.

WECHAT-AI  en-de Toolkit Used: fairseq(-py)
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Forward translation for synthetic data, Ensembling, Fine-tuning
for domain adaptation
Number of Systems Ensembled/Averaged: 6

WECHAT-AI en-ja Vocabulary Size: en: 34981, ja: 48519
True Parallel Training Data Size in Sentence Pairs: 12339352
True Parallel Training Data Size in Words: en: 310739662, ja: 379286579
Toolkit Used: OpenNMT-py
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Ensembling, Fine-tuning for domain
adaptation
Number of Systems Ensembled/Averaged: 8
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WECHAT-AI  ja-en

WECHAT-AI  en-zh

Vocabulary Size: en: 34981, ja: 48519

True Parallel Training Data Size in Sentence Pairs: 12339352

True Parallel Training Data Size in Words: en: 310739662, ja: 310739662

Toolkit Used: OpenNMT-py

Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Forward translation for synthetic data, Ensembling, Fine-tuning
for domain adaptation

Number of Systems Ensembled/Averaged: 15

Vocabulary Size: en: 38038, zh: 47038

True Parallel Training Data Size in Sentence Pairs: 31076375

True Parallel Training Data Size in Words: en: 784141085, zh: 749465141

Toolkit Used: fairseq(-py)

Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Ensembling, Fine-tuning for domain adaptation

Number of Systems Ensembled/Averaged: 4

C.46 WINDFALL (no associated paper)
No brief description provided.

C47 XMU (no associated paper)
No brief description provided.

C.48 YYDS (no associated paper)
No brief description provided.

C.49 ZENGHUIMT (Zeng, 2021)

No brief description provided.

ZENGHUIMT  en-zh,
zh-en

Multilingual MT System: No.

Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: Custom Tokenizer, BPE (as in https://github.com/rsennrich/subword-nmt)
Vocabulary Size: 45467

True Parallel Training Data Size in Sentence Pairs: 5600583

True Parallel Training Data Size in Words: 88573016

Synthetic Parallel Training Data Size in Sentence Pairs: 23428568

Monolingual Training Data in Sentences: 23428568

Toolkit Used: THUMT

Batch size: 15000

Features of your model development: Data filtering, Data selection, Iterative back-translation,
Ensembling

Features of your model structure: Dropout, Tied source and target word embeddings
Document-level training: No document-level: Our system processes each segment independently.
Number of Systems Ensembled/Averaged: 4

Number of GPUs Used Concurrently: 1

Wallclock training time: three days

C.50 ZMT (no associated paper)
No brief description provided.
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Abstract

We present the results of the first task on Large-
Scale Multilingual Machine Translation. The
task consists on the many-to-many evaluation
of a single model across a variety of source
and target languages. This year, the task con-
sisted on three different settings: (i) SMALL-
TASK1 (Central/South-Eastern European Lan-
guages), (ii) the SMALL-TASK2 (South East
Asian Languages), and (iii) FULL-TASK (all
101 x 100 language pairs). All the tasks
used the FLORES-101 datasetas the evaluation
benchmark. To ensure the longevity of the
dataset, the test sets were not publicly released
and the models were evaluated in a controlled
environment on Dynabench.There were a total
of 10 participating teams for the tasks, with a
total of 151 intermediate model submissions
and 13 final models. This year’s result show a
significant improvement over the known base-
lines with +17.8 BLEU for SMALL-TASK2,
+10.6 for FULL-TASK and +3.6 for SMALL-
TASKI.

1 Introduction

Despite recent advances in translation quality for
a handful of languages and domains, MT systems
still perform poorly on low-resource languages.
Yet, most of the world’s population speak low-
resource languages and would benefit from im-
provements in translation quality on their native
languages. As a result, the field has been shift-
ing focus towards the evaluation of MT in low-
resource situations (Thu et al., 2016; Guzman et al.,
2019; Barrault et al., 2020; V et al., 2020; Ebrahimi
et al., 2021; Kuwanto et al., 2021). However, these
efforts have had poor coverage of low-resource
languages which limits our understanding on gen-
eralization.More importantly, there has been little
focus on the evaluation of true many-to-many mul-
tilingual models, which hampers the progress of
the field despite all the recent excitement on this
research direction (Fan et al., 2020).

&9

The recent release of the FLORES-101 (Goyal
et al., 2021) benchmark made possible to evaluate
massively multilingual systems in a consistent way.
The benchmark consists of 3001 sentences sam-
pled from English Wikipedia and professionally
translated in 101 languages. This poses a unique
opportunity to understand translation across many
languages with varied typology, resources, etc.

In this first multilingual large-scale shared task,
we use the FLORES-101 benchmark to evaluate
the progress on massively multilingual translation,
where the evaluation is performed in a non-English-
centric way. We propose 3 different tasks: two
small tasks involving translation between 6 lan-
guages each (30 pairs), and a large task involving
the translation across 101 languages (10K pairs).
In the remainder of this paper, we describe the task
setup, the participants, and the official results for
the task. We also analyze the results to understand
better the languages for which progress has been
attained, and those where a gap in quality is still
observed. Finally, we propose future directions for
other tasks in the future.

2 Shared tasks

In this section, we briefly describe each of the tasks,
the data, the baselines and metric used for evalua-
tion.

2.1 Languages

The languages and statistics for the languages in
the small tasks can be observed in Table 1, while
the statistics for the complete set of languages in
the full task can be obtained in Goyal et al. (2021).

SMALL-TASK1 - This task consisted of English
and Central and South-Eastern European Lan-
guages: Croatian, Estonian, Hungarian, Macedo-
nian, Serbian. These languages were chosen by
their low availability of resources, geographical
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ISO 639-3 Language Family Subgrouping Script  Bitext Mono
w/En  Data
SMALL-TASK]1
hrv Croatian Indo-European  Balto-Slavic Latin 422K  144M
est Estonian Uralic Uralic Latin 4.82M 46M
hun Hungarian Uralic Uralic Latin 16.3M  385M
mkd Macedonian Indo-European  Balto-Slavic Cyrillic 1.13M  28.8M
SIp Serbian Indo-European  Balto-Slavic Cyrillic  7.01M  35.7M
SMALL-TASK2
ind Indonesian Austronesian Austronesian ~ Latin 39.1IM  1.05B
jav Javanese Austronesian Austronesian ~ Latin 1.49M  24.4M
msa Malay Austronesian Austronesian ~ Latin 968K  77.5M
tam Tamil Dravidian Dravidian Tamil 992K  68.2M
tgl Filipino (tagaleg)  Austronesian Austronesian ~ Latin 70.6K  107M

Table 1: Languages in each of the small tasks. We include the ISO 639-3 code, the language family, and script.
We also include the amount of resources available in OPUS as reported by Goyal et al. (2021)

proximity, language family diversity (Balto-Slavic,
Uralic and Germanic), and different scripts.

SMALL-TASK2 This task consisted of English
and South-Eastern Asian languages: Javanese, In-
donesian, Malay, Filipino (Tagalog) and Tamil.
These were chosen by their low-resource nature,
geographical proximity and relatedness to a high-
resource language (Indonesian).

FULL-TASK This task consisted of all 101 lan-
guages in the FLORES-101 benchmark, including
English.

2.2 The evaluation data

The original sentences in FLORES-101 were
sourced in English, from a broad group of top-
ics that could be of general interest regardless of
the native language of the reader. The sentences
were sampled equally from Wikinews, Wikijunior
and WikiVoyage by selecting an article randomly
from each domain, and then selecting 3 to 5 con-
tiguous sentences (not considering segments with
very short or malformed sentences).

All source sentences were sent to a Language
Service Provider (LSP) for translation into 101 lan-
guages. After that, the data was sent to different
translators within the LSP for editing and quality
assessment which then moved on to an automated
quality control setup to ensure that the translation
quality score was at least 90 on a scale of 0-100.

2.3 The baselines

Fan et al. (2021) worked on creating a Many-to-
Many translation model, but it did not have the
full coverage of languages in FLORES-101. Hence,
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we used the extended model trained in Goyal et al.
(2021) which was supplemented with OPUS data
and extended to 124 total languages. We trained
two different sizes of models with 615M and 175M
parameters.

2.4 Evaluation Metric

Automatically evaluating translation quality us-
ing BLEU is suboptimal as it relies on n-gram
overlap which is heavily dependent on the par-
ticular tokenization used. The challenge of mak-
ing BLEU comparable by using equivalent tok-
enization schemes has been partially addressed by
sacrebleu (Post, 2018). Ideally, the automatic
evaluation process should be robust, simple and
can be applied to any language without the need to
specify any particular tokenizer, as this will make
it easier for researchers to compare against each
other.

Towards this goal, we trained a SentencePiece
(SPM) tokenizer (Kudo and Richardson, 2018)
with 256K tokens using the CC100 monolingual
data! (Conneau et al., 2020; Wenzek et al., 2020)
from all the FLORES-101 languages. SPM is a sys-
tem that learns subword units based on untokenized
training data, providing a universal tokenizer that
can operate on any language. One challenge is that
the amount of monolingual data available for dif-
ferent languages is not the same — an effect that is
extreme when considering low-resource languages.
Languages with small quantities of data may not
have the same level of coverage in subword units,
or an insufficient quantity of sentences to repre-
sent a diverse enough set of content. To address

"http://data.statmt.org/cc-100/



this, we train our SPM model with temperature up-
sampling similar to Conneau et al. (2020), so that
low-resource languages are represented. Finally,
to compute BLEU, we apply SPM tokenization to
the system output and the reference, and then cal-
culate BLEU in the space of sentence-pieces. Due
to the difference in tokenization, spBLEU scores
are not strictly comparable across different target
languages. However, to compare different models,
here we use averages across the same set of target
languages assuming that difference in tokenizations
do not favor any specific model. In Goyal et al.
(2021) this metric is described as spBLEU, but in
this paper we use BLEU and spBLEU interchange-
ably.

3 Participants

In this section, we list each of the task participants
and briefly describe each of their submissions. For
reproducibility, we link to each of the model sub-
mitted, available in the Dynabench platform.

eBay (Liao et al., 2021) This submissions com-
pares different kind of back-translation settings to
improve the baseline model. They compare dif-
ferent generation algorithms: top-5 beam search;
regular decoding without beam search; regular de-
coding with sampling from top-10 words. Contrary
to Edunov et al. (2018), they find that top-10 de-
coding works best. They also consider how much
English data should be used for the back transla-
tion (since it’s more abundant than for the other
languages). The models are trained from scratch
using iterative back translation. Models: model
440 (SMALL-TASK1), model 441 (SMALL-TASK2),
model 425 (FULL-TASK)

Huawei-TSC (Yu et al.,, 2021) The Huawei-
TSC’s team use a deep transformer encoder-
decoder architecture (Sun et al., 2019), and fo-
cus their efforts on a combination of heuristics
for data preprocessing, synthetic data generation,
fine-tuning language-specific layers, and ensemble
knowledge distillation. Compared to their base-
line transformer on devtest, they get +2.8 BLEU
from the synthetic data generation, +0.5 BLEU
from layer fine tuning, and +0.8 BLEU from the
ensemble knowledge distillation. Models: model
439 (SMALL-TASK?2)

LMU (Lai et al., 2021) The LMU team’s sub-
mission was based on a multilingual model, which
were improved based on two techniques: (i) Tagged
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back-translation originating from bilingual models
(+1.6 above back-translation coming from a multi-
lingual)z; (ii) data selection w.r.t to the dev/devtest
corpora following (Axelrod et al., 2011). Models:
model 444 (SMALL-TASK1)

Maastricht University (Liu and Niehues, 2021)
This submission trained a single multilingual Ma-
chine translation system by training on all 30 direc-
tions of track 2 languages. They mainly adapted
the released pretrained M2M-100 model. They also
did some data filtering to create a cleaner version of
training corpus. Also they created synthetic pairs
by taking parallel source to pivot language transla-
tion dataset and automatically translating pivot lan-
guage sentences into target language, which gives
0.5 BLEU score improvement. They also tried
similarity regularizer and language specific adapter
weight which give 0.2 BLEU score gains overall.
Models: model 445 (SMALL-TASK2)

Microsoft (Yang et al., 2021) The Microsoft
team participated in all three tasks. The submission
is based on the newly-released pretrained model
DeltalLM (Ma et al., 2021a). The final submis-
sion to the shared task uses a mixture of direct and
pivoted translation to improve the performance of
individual directions, depending on whether the
direct or pivoted models perform best. The mix-
ture results in an improvement of +3.63 BLEU for
the FULL-TASK, over their baseline architecture
(24/12), but smaller improvements for the SMALL-
TASK2. In addition, the models use progressive
learning, which starts with a smaller architecture,
noisier training data, and later changes to improve
performance. The model also uses a combination
of parallel, back-translated and noisy-parallel data
(obtained for langs. X and Y from back-translating
into X and Y) Models: model 483 (FULL-TASK)
model 448 (SMALL-TASK1) model 457 (SMALL-
TASK2)

MMTAfrica (Emezue and Dossou, 2021) This
submission creates a non-English-centric multilin-
gual translation system focusing on six African lan-
guages (Igbo, Kinyarwanda, Fon, Swahili, Xhosa,
Yoruba) and English and French. The system starts
from mT5 (Xue et al., 2021) and finetunes it on
parallel data with additional monolingual data used

2 Authors hypothesized that the difference in performance
could be due to the implicit self-training coming from a multi-
lingual model, as opposed to the diversity introduced by a
bilingual model.



for online backtranslation (Sennrich et al., 2016).
To cover Fon and Kinyarwanda, which are not in-
cluded in FLORES-101, a small new test set was
created. Compared to the small baseline models
provided in Goyal et al. (2021), significant improve-
ments were obtained.

Samsung RPH - Konvergen Al (Sutawika and
Cruz, 2021) The submission of the Samsung Re-
search Philippines/Kovergen AI’s team focuses on
the languages in SMALL-TASK?2, in particular on
data preprocessing. For large-scale multilingual
models, the importance of preprocessing has risen
as researchers focus on using web crawls or nois-
ily aligned data to train translation models. In this
submission, various different preprocessing tech-
niques are applied while holding the model and
architecture fixed. The authors have gains of more
than 1 BLEU point from improving preprocessing.
Models: model 443 (SMALL-TASK?2)

TenTrans (Xie et al., 2021) The submission ex-
plores several techniques to improve performance.
It focuses on two systems: TenTrans and FLO-
RES101, although the second one is favored in
later experimentation. The authors achieve large
improvements in performance by using a the pre-
trained M2M 124 FLORES101 model. Main ben-
efit comes from in-domain knowledge adaptation
and fine-tuning. The authors use a domain classifier
based on BERT. Then they use gradual fine-tuning
to gradually removing the least-likely in-domain
sentence pairs at the later stages of training. They
also explore other techniques, including model av-
eraging that help to improve the performance of
their system. Models: model 460 (SMALL-TASK?2)

TelU-KU (Budiwati et al., 2021) The team from
TelU-KU participated in SMALL-TASK?2. Their ap-
proach explores an interesting alternative of im-
proving NMT performance via hyper-parameter
optimization (most promising for low resource lan-
guages). Although simple, this approach effec-
tively provides improvements by +1.08 BLEU on
top of the small baseline and opens up a promising
direction for hyper-parameter optimization. Mod-
els: model 465 (SMALL-TASK?2)

UMD (Bandyopadhyay et al., 2021) This sys-
tem build upon the baseline M2M-124 model (Fan
etal., 2020). It includes two improvements: (i) fine-
tuning over MultiCCAligned; (ii) it uses ReLUs,
which improve +0.8 BLEU over GELUs. In ad-
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dition, the final system is the result of an exten-
sive hyper-parameter optimization. Interestingly,
the authors find that using the bible for finetuning
improves performance over the baseline model de-
spite its small size (only about 0.5 BLEU behind
MultiCCAligned). Models: model 304 (SMALL-
TASK?2)

4 Evaluation Environment

All models were evaluated within the Dynaboard
evaluation-as-a-service framework (Ma et al.,
2021b) that is a part of the Dynabench plat-
form (Kiela et al., 2021). This was done to ensure
that the FLORES test set remains hidden while we
evaluate many-to-many translation. Moreover, the
testing conditions were constrained to a p2.xlarge
AWS instance, which has one NVIDIA K80 GPU.

All model submissions had to be wrapped in a
torchserve® handler and were required to follow
a fixed input/output specification using Dynalab®.
Submitting a system to the task required writing
some wrapper code, and often testing different con-
figurations (e.g. batch size), to ensure that the
model was able to run under the constraints.

Given the additional work needed to run the eval-
uation, participants were encouraged to test the
platform and to submit models early on. To avoid
fine-tuning on the devtest set, we established a sub-
mission cap of one model per day.

In total, we had 81 distinct model submissions
for the small task2 (South-East Asian Languages),
57 distinct submissions to the small task1 (Central
/ South-East European Languages), and 13 model
submissions to the full task. During the evaluation
period, participants were requested to mark a model
as their final submission. In the end, we had 10
final submissions to the small task2, 4 to the small
task 1 and 3 to the full task.

In Figure 1 we observe the total number of sub-
missions per day. We can see that the total number
of submissions per day remained low (less than
5) until August, where the number of submissions
reached 16 per day.

5 Results

Present the analysis of the results for each of the
tasks. Furthermore, we analyze the progress made
for each task, that is, how much improvement has

3https://pytorch.org/serve
*https://github.com/facebookresearch/dynalab
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Figure 1: Submissions to the shared task through Dynabench per day. As expected, we see a rise in the number of

submissions towards the end of the evaluation period.

there been between the baselines and the best mod-
els. Lastly, we analyze the difference between the
models for the full task and each of the smaller
tasks.

5.1 Main Results

In Table 2 we observe the final results for each of
the shared tasks. From the results we observe that
the DeltalLM model from the Microsoft team per-
forms best by a large margin on the SMALL-TASK1
(+2.6 BLEU) and FULL-TASK (+9.1 BLEU), but
the margin is smaller for the SMALL-TASK2 (0.6
BLEU). Below, analyze each task’s results indepen-
dently.

BLEU
SMALL-TASK1 (CSE European langs)
Microsoft 37.59
eBay 34.96
LMU 31.86
baseline M2M-615 28.23
baseline M2M-175 21.33
SMALL-TASK2 (SE Asian langs)
Microsoft 33.89
eBay 33.34
TenTrans 28.89
Maastricht University 28.64
Huawei-TSC 28.40
Samsung RPH/ Konvergen Al 22.97
baseline M2M-615 16.11
UMD 15.72
TelU-KU 13.19
baseline M2M-175 12.30
FULL-TASK (all langs)
Microsoft 16.63
eBay 7.55
baseline M2M-175 6.05

Table 2: Official results for the three shared tasks in the
large-scale multilingual machine translation task
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SMALL-TASK1 In the Central/South-East Euro-
pean languages we observed that the model pre-
trained with DeltalLM performed best, followed by
eBay’s model by a margin of 2.6 BLEU. In this task
we observe that the progress between the M2M-615
baseline and the next best system of 3.6 BLEU.

SMALL-TASK2 In the South-East Asian lan-
guages task, there were many more submissions
than in the other tasks. We see a smaller gap be-
tween the first and second models. These two mod-
els are very different, one using a large pre-trained
language model, while the other one trains from
scratch and uses iterative back translation. There
is also a second cluster formed by the submission
of the next three models, with a gap less than 0.5
BLEU among them. In this cluster, two models
are based on the pre-trained M2M model while
the third one is trained from scratch. Six out of
eight participants perform better than the M2M-
615 baseline, while all participants perform better
than the M2M-175 baseline. The gap between the
best system and the M2M-615 baseline is of 17.8
BLEU.

FULL-TASK In the full task we had fewer submis-
sions, possibly due to the difficulty and resources
to train an evaluate such models. Here the gap
between the best and second-best models is signifi-
cant, around 9 BLEU. However, note that the gap
between the best systems and the baseline is much
smaller (~10.6 BLEU), denoting how much harder
is translating more languages with similarly sized
models.



5.2 Analysis of the progress on quality

One interesting aspect that we can analyze is how
much progress has there been since the release of
M2M-100 (Fan et al., 2020), and its subsequent
adaptation for FLORES101, M2M-124. Here, we
break down the improvements by language pairs to
understand better the changes in performance.

Note that looking at spm-BLEU numbers across
target languages can be deceiving. This is due to
the different spm vocabularies that are used for
each target language. However, for the sake of sim-
plicity in the following analyses we assume that:
(i) relative improvements (deltas) are comparable
across language pairs, (ii) averages of relative im-
provements from two different source languages
(say English and Hausa) into the remaining 101 lan-
guages are roughly comparable, even though the
average for Hausa on the source doesn’t contain
on the target Hausa and contains English, and the
average for English on the source doesn’t contain
English on the target but contains Hausa.

5.2.1 Progress on SMALL-TASK1

SMALL-TASK]1 is constrained and encompasses
Central and South-East European Languages. In
Table 3 we see that the top performing pairs (most
progress) are into and out of English, while the
worst performing ones include Croatian and Mace-
donian. The gap between the best and the worst
performing pairs is of 13 BLEU, yet on average,
translation across language pairs improved 11.3
BLEU.

Source Target ABLEU
Best 5
English Serbian 19.08
Serbian English 15.58
Macedonian  English 14.81
Estonian English 14.17
Hungarian English 13.37
Worst 5
Hungarian Croatian 9.05
Macedonian  Croatian 8.09
Croatian Macedonian 6.96
Serbian Macedonian 6.49
Serbian Croatian 6.13
Average: 11.32

Table 3: Progress in quality for the best and worst lan-
guage pairs in SMALL-TASK1

In Table 4 we present the average progress for
languages in the source or target, and we observe
the following: there was more progress in translat-

Source ABLEU | Target ABLEU
English 14.20 | English 13.97
Macedonian  11.65 | Serbian 13.58
Estonian 11.43 | Hungarian 10.96
Hungarian 11.22 | Estonian 10.91
Serbian 9.84 | Macedonian 9.47
Croatian 9.58 | Croatian 9.02

Table 4: Average progress for each of the languages in
SMALL-TASK1

ing from English than any other language. How-
ever, the gap between the best and worst is less
than 5 BLEU. When looking at the performance
when translating into each of the task languages,
we see a very similar tendency: English tops the
list, Croatian is at the bottom, and the gap between
best performing and worst performing languages is
less than 5 BLEU.

5.3 Progress on SMALL-TASK2

For SMALL-TASK2, there was a significant
progress on languages like Tamil (tam) and Tagalog
(tgl). In Table 5 we see a progress of 30+ BLEU
for translation between Tamil <> English. This
is encouraging, as the baseline model had issues
translating from/into Tamil. It is also encouraging
to see that even for the translation between Malay
<> Indonesian (which was strong to begin with),
we see more than 10+ BLEU improvement. On
average, we see an improvement of 21.8 across
all directions. It’s important to note the fact that
all submissions for this task were constrained, so
these improvements come from better modeling
and training techniques.

Another aspect to note comes from Table 6,
where we see that the language with most progress
is Tamil, followed by English and Tagalog. On the
other hand, in this case we see more disparity on
the progress between the languages with most and
least progress. For instance, it is harder to translate
into Javanese, which only improves 14.7 BLEU on
average.

5.3.1 Progres on FULL-TASK

In Table 7 we present the deltas between the best
scores in the competition for each language pair,
and the baseline. We observe that there are signifi-
cant improvements for certain languages, particu-
larly: Welsh (cym), Irish (gle), Maltese (mlt) and
their pairings with English. These are languages for
which the original M2M model was doing poorly,



Source Target ABLEU
Best 5
English Tamil 32.63
English Tagalog 31.04
Tagalog English 30.16
Tamil English 30.00
Indonesian ~ Tamil 28.45
Worst 5
Tagalog Javanese 14.67
Malay Javanese 12.40
Indonesian  Malay 11.59
Indonesian  Javanese 11.05
Malay Indonesian 10.45
Average: 21.75

Table 5: Progress in quality for the best and worst lan-
guage pairs in SMALL-TASK2

Source ABLEU | Target ABLEU
Tamil 24.35 | Tamil 27.29
English 24.30 | Tagalog 25.29
Tagalog 23.19 | English 24.68
Javanese 20.68 | Malay 19.72
Indonesian 19.13 | Indonesian 18.81
Malay 18.88 | Malay 14.74

Table 6: Average progress for each of the languages in
SMALL-TASK?2

yet the DeltaLM model is doing much better °. In
fact, as seen in Fig. 2, these language pairs are
an exception, and most language pairs fall around
the 11 BLEU improvement range. The average
improvement across language pairs is 10.6 BLEU.
However, there are several language pairs for which
there was no progress at all. In Fig. 2, close to 10%
(~1K pairs) have less than 5 BLEU improvement.

3Since this is an unconstrained submission, it is hard to
know what data went into the models. However, we hypoth-
esize that the improvement is likely due to the amount of
training data available for DeltaLM. As pointed out in Yang
et al. (2021) their model contains about 300K sentences for
Maltese (mt), 1.5M sentences for Irish (ga), and 3M sentences
for Welsh (cy)

Source  Target ABLEU
Best 5
English  Welsh 46.41
Irish English 43.55
English  Irish 43.10
Maltese ~ Welsh 42.88
Irish Maltese 41.83
Average: 10.60

Table 7: Progress in quality for the best and worst lan-
guage pairs in FULL-TASK. Note that we exclude the
worst performing pairs, which made no progress at all.
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Figure 2: Distribution of improvements in BLEU for
different language pairs in the full task

To facilitate the analysis of the progress across
languages, in Fig. 3 we present the improvements
by language groupings. We see big improvements
coming from Other Indo-European (influenced by
Irish, Welsh), Dravidian (influenced by Tamil, Tel-
ugu), Austronesian (influenced by Tagalog). How-
ever we note that there is very little progress for
African Languages as represented by the Bantu and
Nilotic subgroups. Another interesting finding is
that progress trends to be lower when translating
into harder languages.

In summary, there is large progress for a few
languages, but sadly, there is little progress made
for very low-resource languages, particularly those
unrelated to other major languages.

5.4 Moderately Multilingual vs. Massively
Multilingual

A natural question that arises is: what is the gap that
remains between what we’re calling moderately
multilingual models (MoM), i.e models handle just
a few languages and a couple dozen pairs; vs. the
massively multilingual models (M2M) that handle
hundreds of languages and tens of thousand pairs?
To analyze this aspect, we compare the best mod-
els for the full task, and each of the small tasks.

5.4.1 SMALL-TASK1 vs. FULL-TASK

In Figure 4 we present the scores of the best system
for task1 (MoM) vs. the best system for the full task
(M2M). Here we observe that there is a consistent
gap of about 4.7 BLEU between the MoM and
the M2M models when averaging across source
languages. We can observe on the distribution of
deltas of performance that drops in performance
are similarly distributed across languages. This
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Figure 3: Average BLEU improvements per languages
in the source and target language families

suggests that the curse of multilinguality (Conneau
et al., 2020), i.e. the loss in performance by adding
more languages into to a model with fixed capacity,
affects equally the encoding of different languages
to a rate of about 0.05 BLEU per language added to
the model. This is encouraging, as it suggests that
encoding is robust to the addition of new languages.
On the other hand, when we look at the target
side the picture is quite different. Particularly, we
observe more variation in performance, ranging
from -2.7 BLEU for English to -6.8 BLEU for Ser-
bian. We hypothesize that these differences could
be due to a combination of factors: (/) amount of
supervision (which would explain why English per-
formance doesn’t drop as much), (ii) additional
supervision from similar languages, (iii) morpho-
logical richness (which would explain why Hungar-
ian and Estonian are more affected), and (iv) script
usage (which would explain why Serbian is more
affected than Croatian). However, proving these
hypotheses is beyond the scope of this paper.

5.4.2 SMALL-TASK2 vs. FULL-TASK

In Figure 5 we present the scores of the best system
for task2 (MoM) vs. the best system for the full
task (M2M). Here we see again that the model
with more parameters per language is still ahead by
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Figure 5: Comparison of average performances of the
best systems in the FULL-TASK and SMALL-TASK?2 by
source and target languages

about 4.26 BLEU. We also observe more variability
in the distribution of drops in performance, notably,
Javanese, the lowest resource language, being the
most different to the others.

On the target side, we observe that English is
ahead of the curve, showing the least regression.
On the other hand Javanese and Tamil further rein-
force our observations that additional supervision
and morphology play an important role in decoding
performance.

5.5 African Languages

While not officially a track on this year’s com-
petition, Emezue and Dossou (2021) focused on
the task of multilingual machine translation for
African languages that are in FLORES-101. They
introduced MMTAfrica, the first many-to-many
multilingual translation system for six African lan-
guages: Fon (fon), Igbo (ibo), Kinyarwanda (kin),
Swahili/Kiswabhili (swa), Xhosa (xho), and Yoruba
(yor) and two non-African languages: English (eng)
and French (fra). For multilingual translation con-
cerning African languages, a novel backtranslation




and reconstruction objective, BT&REC, was in-
troduced which is inspired by the random online
back translation and TS5 modelling framework re-
spectively, to effectively leverage monolingual data.
Additionally, MMTAfrica improves over the FLO-
RES 101 benchmarks (BLEU gains ranging from
+0.58 in Swahili to French to +19.46 in French to
Xhosa).

6 Conclusion and Future Work

In this paper we presented the first iteration of the
large-scale multilingual translation task. This task
attracted several teams from across the globe and
many models submissions. We kept the test set
blind and used a platform to evaluate model sub-
missions under a controlled environment. In this
task, we observed significant progress in translation
quality across tasks, but particularly in the small
tasks. We observed that pre-trained language mod-
els and large amounts of back-translation (either
at one go, or in iterative fashion) were important
tools used by many participants.

We observed that models that have to translate
fewer languages trend to do better on average, and
that lower resources and morphology complicate
translation, particularly for decoding. We also ob-
served that languages in certain groups, like the
African languages in the Bantu and Nilotic fami-
lies, experience little to no improvement.

In the future, we want to organize shared tasks
with languages for which little or no progress was
achieved this time around. Additionally, we want
to open up the FLORES evaluation setup to other
organizers interested groups of languages within
the FLORES-101 set.
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Abstract

This paper describes the Global Tone Commu-
nication Co., Ltd.’s submission of the WMT21
shared news translation task. We participate in
six directions: English to/from Hausa, Hindi
to/from Bengali and Zulu to/from Xhosa. Our
submitted systems are unconstrained and fo-
cus on multilingual translation model, back-
translation and forward-translation. We also
apply rules and language model to filter mono-
lingual, parallel sentences and synthetic sen-
tences.

1 Introduction

We applied fairseq(Ott et al., 2019) as our develop
tool and use transformer(Vaswani et al., 2017) as
the main architecture. The primary ranking index
for submitted systems is BLEU (Papineni et al.,
2002), therefore we apply BLEU as the evaluation
matrix for our translation system.

For data preprocessing, punctuation normaliza-
tion, tokenization and BPE(byte pair encoding)
(Sennrich et al., 2015) are applied for all lan-
guage. Further, we apply truecase model for En-
glish, Hausa, Zulu and Xhosa according to the
character of each language. Regarding to the to-
kenization, we use polyglot ! as the tokenizer for
Hausa, Hindi, Bengali, Zulu and Xhosa. Besides,
knowledge based rules and language model are also
involved to clean parallel data, monolingual data
and synthetic data.

Due to the quantity limitation of parallel cor-
pus in low-resource language pair, we use forward-
translation with monolingual data to generate more
synthetic data instead of knowledge distillation
(Kim and Rush, 2016). Here forward-translation
refers to translate the source language sentences to
the target language, and then clean this synthetic
data with the above described method. In order
to enrich the low-resource language corpus, we

"https://github.com/aboSamoor/polyglot
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add English to X corpus to construct a multilingual
translation model. This multilingual model is ex-
pected to obtain the inner deep information among
all languages and give us a better translation.

This paper is arranged as follows. We firstly de-
scribe the task and show the data information, then
introduce our multilingual translation model. After
that, we describe the techniques on low-resource
condition and show the conducted experiments in
detail of all directions, including data preprocess-
ing, model architecture, back-translation, forward-
translation and multilingual translation model. At
last, we analyze the results of experiments and draw
the conclusion.

2 Task Description

The task focuses on bilingual text translation in
news domain and the provided data is show in Ta-
ble 1, including parallel data and monolingual data.
For the directions between Hindi and Bengali, the
parallel data is mainly from CC-Aligned, as well
as the directions between Zulu and Xhosa. For the
directions between English and Hausa, the parallel
data is mainly from English-Hausa Opus corpus,
Khamenei corpus, ParaCrawl v8. The monolingual
data we used includes: News Crawl in English,
Hindi and Bengali; extended Common Crawl in
Hausa, Xhosa and Zulu; Common Crawl in Hausa.
All language directions we participated are new
tasks in this year, therefore we only use the pro-
vided newsdev2021 as our development set for the
directions of English to/from Hausa, flores-dev for
the directions of Hindi to/from Bengali and Zulu
to/from Xhosa.

3 Multilingual Translation Model

In low-resource condition, data augmentation and
pretrained model are the most effective approaches
to improve translation quality. According Google’s
Multilingual Neural Machine Translation Sys-
tem(Johnson et al., 2017), we use other language
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language number of sentences
bn-hi parallel data 3.3M
en-bn parallel data 2.2M
en-hi parallel data 2.2M
en-ha parallel data 750K
xh-zu parallel data 60K
en-xh parallel data 41K
en-zu parallel data 45K
en monolingual data 93.4M
bn monolingual data 59.7M
hi monolingual data 46.1M
ha monolingual data 46.1M
xh monolingual data 1.6M
zu monolingual data 2M
en-ha development set 2000
bn-hi development set 997
xh-zu development set 997

Table 1: Task Description

pairs parallel data along with the provided bilingual
data to training a multilingual translation model,
the low-resource language pair is expected to get
the benefits from other language pair’s parallel data,
especially in similar language. For the multilingual
model preprocessing, we add a language tag at be-
ginning of each source sentence, and use joint BPE
for all languages in one multilingual translation
model.

4 Experiment

4.1 Model architecture

¢ Baseline Table 2 shows the baseline model
architecture.

* Big transformer We use fairseq to train our
model with transformer big architecture. The
model configuration and training parameters
is almost same as GTCOM2020(Bei et al.,
2020).

4.2 Training Step

This section introduces all the experiments we set
step by step and Figurel shows the full improve-
ment status.

* Date Filtering The methods of data filtering
are mainly the same as GTCOM2020, includ-
ing knowledge based rules, language model
and repeat cleaning.
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configuration value
architecture transformer
word embedding 512
Encoder depth 5
Decoder depth 5
transformer heads 2

size of FFN 2048
attention dropout 0.2
dropout 0.4
relu dropout 0.2

Table 2: The FLoRes model architecture.

* Baseline We use FLoRes (Guzman et al.,
2019) architecture to construct our baseline in
low-resource condition.

* Multilingual translation model. Due to the
language distinction, We construct two mul-
tilingual translation models with the corpus
organized as: 1. English-Bengali parallel data,
English-Hindi parallel data and Bengali-Hindi
parallel data; 2. English-Hausa parallel data,
English-Xhosa parallel data, English-Zulu par-
allel data and Xhosa-Zulu parallel data. Each
multilingual translation model has a shared
vocabulary.

* Back-translation We use multilingual trans-
lation model to translate the target language
sentence to source language, and clean syn-
thetic data with language model. Here, we
translate all language pairs we have added
into this multilingual translation model. Then
we combine the cleaned back-translation data
and provided parallel sentences to train a new
multilingual translation model.

* Forward-translation Source language sen-
tences are translated to target language, and
then cleaned by language model. Again we
add this forward translation data with cleaned
back-translation data and provided parallel
sentences to train another multilingual trans-
lation model.

* Joint training Repeat generating back-
translation data and forward-translation data
by currently trained best multilingual model
until there is no improvement.

* Transformer big Using bilingual parallel
data and synthetic data generated by cur-



Data filtering

Baseline

Y

Parallel
sentences

Multilingual Balck—trbansl.latlon and Multilingual
» translation Leanfy SNEN3ZE w translation
model
model model

Forward-translation and
clean by language model

Y

Ensemble Joint tr.aining _l‘oialhrcot;rftr]riiglz:ioagdby Train big Using all data Multiling-ual
decoding (big ~ bestbig transformer | transformer | by best model transiation
transformer) model model
Figure 1: The whole work flow.

model bn2hi hi2bn model xh2zu zu2xh
baseline 19.00 11.20 baseline 10.58 10.60
multilingual translation model  19.33  11.22 multilingual translation model  11.66 10.73
+ back-translation 23.63 14.80 + back-translation 12.48 10.76
+ forward-translation 2395 14.95 + forward-translation 12.70 10.86
+ joint training 24.05 15.02 + joint training 12.74  10.92
big transformer 2411 15.14 big transformer 12.77 10.95
+ Ensemble Decoding 25.13 15.86 + Ensemble Decoding 1295 11.02

Table 3: The BLEU score between Hindi and Bengali.

model en2ha ha2en
baseline 11.04 12.02
multilingual translation model  12.20 13.09
+ back-translation 18.27 17.56
+ forward-translation 18.74 18.21
+ joint training 18.95 18.59
big transformer 19.32 1891
+ Ensemble Decoding 21.09 21.58

Table 4: The BLEU score between English and Hausa
after truecase.

rently best multilingual model to train a bilin-
gual model with transformer big architecture
and repeat back-translation step and forward-
translation step, until there is no improvement.

* Ensemble Decoding We use GMSE Algo-
rithm (Deng et al., 2018) to select models to
obtain the best performance.

5 Result and analysis

Table 3, Table 4 and Table 5 show the BLEU score
we evaluated on development set for Hind to/from
Bengali, English to/from Hausa and Xhosa to Zulu

Table 5: The BLEU score between Xhosa and Zulu
after truecase.

respectively. Back-translation is still the most ef-
fective method with improvement ranging from
0.03 to 6.07 BLEU score in low-resource condition.
And multilingual translation model gets the im-
provement ranging from 0.02 to 1.16 BLEU score.
Forward translation enrich the information in low-
resource condition, with improvement of 0.1 to
0.65 BLEU score. Further, ensemble decoding in-
crease the performance with 0.07 to 2.67 BLEU
score.

6 Summary

This work mainly focus data augmentation and pay
less attention on modeling. Because optimizing
translation by data augmentation is the most elegant
way for a commercial system. It can avoid many
unexpected translation result generated by a newly
proposed model which may give our customers
worse translating experience.

This paper describes GTCOM’s neural machine
translation systems for the WMT21 shared news
translation task. For all translation directions,
we build systems mainly base on multilingual
translation model and enrich information by back-
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translation and forward-translation. The effect of
increasing information is also dependent on data
filtering.
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Abstract

This paper presents the University of Edin-
burgh’s constrained submissions of English-
German and English-Hausa systems to the
WMT 2021 shared task on news translation.
We build En-De systems in three stages: cor-
pus filtering, back-translation, and fine-tuning.
For En-Ha we use an iterative back-translation
approach on top of pre-trained En-De models
and investigate vocabulary embedding map-

ping.
1 Introduction

We describe the University of Edinburgh’s par-
ticipation in English<»German (En<»De) and
English«+»Hausa (En<+>Ha) at the WMT 2021 news
translation task. We apply distinct sets of tech-
niques to the two language pairs separately, as the
two pairs are very different in terms of language
proximity and the availability of resources. We fol-
low the constrained condition where we only use
the provided data available to all participants.

For En<»De we first employ rule-based and
dual conditional cross-entropy filtering to clean the
datasets. Then we add to training back-translations
generated in a few ways: tagged, greedy, beam
search and sampling. We fine-tune our models on
past years’ test sets, and finally tune a few config-
urations: length normalization, test sentence split-
ting, and German post-processing.

For En«++»Ha we adopt iterative back-translation,
where at each iteration we initialize the model pa-
rameters from an En-De model in the correspond-
ing direction (En—De for En—Ha and De—En for
Ha—En). These En-De models are trained in the
same way as those submitted to the En-De task, ex-
cept that their vocabulary includes subwords from
the Hausa language. Besides, we experiment with
vocabulary mapping at the embedding level.

Some configurations are kept consistent across
language pairs and systems. Sentences are tok-

ulrich.germann,
a.birch,

laurie.burchell, n.bogoych,
kenneth.heafield}@ed.ac.uk

enized using SentencePiece (Kudo and Richard-
son, 2018) with a 32K shared vocabulary, except
that we added a few extra tokens for tagged back-
translation. All models are trained following Mar-
ian’s Transformer-Big task preset (Vaswani et al.,
2017; Junczys-Dowmunt et al., 2018) unless other-
wise specified: 6 encoder and decoder layers, 16
heads, 1024 hidden embedding size, tied embed-
dings (Press and Wolf, 2017), etc.!

Section 2 and Section 3 describe the detailed
model building process for En<+De and En<>Ha
respectively. While awaiting human evaluation re-
sults, we summarize our automatic metric scores
on the WMT 2021 test sets computed by the task
organizers in Table 1.

Direction BLEU ChrF

En—De 2990 0.59
De—En 51.78 0.66
En—Ha 14.81 0.45
Ha—En 14.89 042

Table 1: Automatic metric scores on WMT?21 test com-
puted by the task organizers.

2 English<>German

2.1 Data and cleaning

English-German is considered to be a high-
resource language pair, with over 90 million par-
allel and hundreds of millions monolingual sen-
tences provided in the shared task. Following our
last year’s submission (Germann, 2020), we divide
the data into three categories, and we use all the
parallel data, as well as monolingual news from
2018 to 2020:

* High-quality parallel: News Commentary, Eu-
roparl and Rapid.

"https://github.com/marian-nmt/marian/
blob/master/src/common/aliases.cpp
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e Crawled parallel: ParaCrawl, WikiMatrix,
CommonCrawl, and WikiTitles.

* Monolingual news: News Crawl

The majority of parallel data are mined and
aligned sentences from the web (Baiion et al., 2020;
Schwenk et al., 2021), so our first step is corpus fil-
tering to remove noisy sentences which could harm
neural machine translation (Khayrallah and Koehn,
2018). We run rule-based filtering using FastText
language identification (Joulin et al., 2016), and var-
ious handcrafted features such as sentence length,
character ratio and length ratio. Similar rules are
applied on the monolingual data, omitting the fea-
tures designed for parallel data. More details can be
found in our cleaning script which is made public.?

We then train seed Transformer-Base models on
the filtered high-quality data, as well as the crawled
data separately, to (self-)score translation cross-
entropy of the crawled parallel sentences. This
enables us to rank and filter out sentences by their
dual conditional cross-entropy (Junczys-Dowmunt,
2018). The method prefers the sentences in a pair
to have low and similar translation cross-entropy
given each other. After empirical trials, we find it is
always better to score using models trained on the
high-quality data, and we choose to keep the best
75% of the crawled data. The filtering efforts are
reported in Table 2. Next, we train Transformer-
Big models on the combination of filtered high-
quality and crawled data. These models serve as
baselines and are used for back-translation later.

Amount of Scoring De—En En—De
crawled model
high-qual  41.47 -
top 25% crawled 39.35 -
high-qual  41.64 43.68
©0p30% - wled  41.51 i
high-qual  42.15 43.40
©OPT%  awled  41.90 i
all - 42.02 42.70

Table 2: BLEU of filtering experiments on WMT19 test
used as dev.

2.2 Back-translation

Since its introduction, back-translation (Sennrich
et al., 2016) has been widely used to boost NMT.

https://github.com/browsermt/
students/tree/master/train-student/clean

We use ensembles of our best seed and baseline
models trained on the filtered data, to generate
back-translations from the monolingual news data
from 2018 to 2020, hoping that the domains are
similar to that of the test. For En—De we mix
back-translations generated using greedy search,
beam search, and sampling; for De—En, we adopt
tagged back-translation (Caswell et al., 2019).

After merging the original and back-translated
data, for each direction we train 4 standard
Transformer-Big models, as well as a model with 8
encoder layers and 4 decoder layers. Specifically
for De—En, we have an extra pre-layer normalized
variant.

As we observed last year, validation BLEU does
not improve after we add back-translated data to
training. As a result, after the models converge, we
continue training them on filtered parallel data only.
The models’ validation BLEU scores® on WMT19
test are displayed in Table 3.

Configuration De—En En—De
Baseline 422 434
+ BT 41.8 43.0
+ cont. training 42.5 43.6

Table 3: Average BLEU scores of BT experiments on
WMT109 test used as dev.

2.3 Fine-tuning and submission

We grid search on length normalization during de-
coding, and find 1.2 to be ideal for En—De and
0.8 for De—En. Particularly for En—De, we have
two more steps to make German text read more
natural: 1) continued training on 25% title-cased
parallel data to improve headline translation and 2)
post-processing on German quotes to make them
consistent.

Previous submissions show that fine-tuning on
past years’ test data helps model performance
(Schamper et al., 2018; Koehn et al., 2018). In
the early years of WMT news translation tasks, the
test sentence pairs can originate in either source or
target language, and are translated and merged into
one set. However, the current evaluation is on trans-
lating sentences originally in the source language
only. Therefore, we experiment with fine-tuning
on the combined sets, as well as on sentence pairs
originated from the source language. We fine-tune

3sacreBLEU (Post, 2018) with signature BLEU+
case.mixed-+numrefs. 1+smooth.exp+tok.13a+version.1.5.1
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all our models on WMT 2008-2019 test sets and
validate on WMT 2020 test set.

While the training data contain mainly one sen-
tence per line, the test set can have multiple sen-
tences in the same segment. As a result, we split
each test instance into single sentences, translate,
and rejoin them. We experiment with fine-tuning
and sentence splitting on the 8-encoder-4-decoder
variant for both languages. Table 4 indicates that
the model achieves the best BLEU (and a signif-
icant improvement over BT baseline) if we fine-
tune it on previous test sentences originating in the
source language only, and split long sentences in
both validation and test sets.

FT De.v Tes.t De—En En—De
on split split
BT baseline 30.8 31.9

none v 41.7 35.2

all 34.7 -

all v 41.1 -

all v 31.2 -

all v v 41.9 36.7
orig. vV v 42.5 36.9

Table 4: BLEU of fine-tuning and sentence-splitting ex-
periments on WMT20 test

For each translation direction, we apply the best
configuration to each model and ensemble them by
averaging their predictions post-softmax. Overall,
we have a 5-model ensemble for En—De, and a
6-model ensemble De—En.

3 English«>Hausa
3.1 Data

The main sources of English-Hausa parallel data
are OPUS (Tiedemann, 2012) and ParaCrawl.
We also include data from WikiTitles* and the
Khamenei® corpora, which are however much
smaller. In total, we gather 759,061 parallel sen-
tences. For back-translation, we use 9.5 mil-
lion monolingual Hausa sentences from Common
Crawl, Extended Common Crawl, and News Crawl
provided by the task organizers. We randomly se-
lect 50 million English monolingual sentences from
the News Crawl collections from 2018, 2019, and
2020.

‘http://data.statmt.org/wikititles/v3/

Shttp://data.statmt.org/wmt21/
translation-task/ha-en/khamenei.vl.
ha-en.tsv

For training, we use a mix of back-translated
monolingual data and parallel data. Since the
dataset sizes differ substantially, we over-sample
the parallel data to achieve a balanced mix: 10x
for English—Hausa, and 50 x for Hausa—English.
Similar to our En-De models, we used tagged back-
translation to distinguish synthetic and authentic
sentences in the data.

3.2 Iterative back-translation and fine-tuning

In our experiments, we combine a transfer learn-
ing approach (Zoph et al., 2016; Kocmi and Bojar,
2018) with 3 iterations of back-translation (Hoang
et al., 2018; Edunov et al., 2018). In each iteration,
we initialize the En—Ha model with a pre-trained
En—De Transformer-Big model (and vice versa
for the other direction). Then, we fine-tune the
model on the English-Hausa data created by the
model from the previous back-translation iteration
(the initial model for the first iteration is fine-tuned
on parallel data only).

We notice that the model generates a large num-
ber of empty translations. We suppress this issue by
taking the second-best candidate translation from
the n-best list if the first one is empty. Another prob-
lem is heavy overfitting in the models. In many
translations, the sentences begin with the prefix
“Never miss an important update!”, followed by the
actual translation. Unfortunately, we only noticed
this issue after the submission.

3.3 Vocabulary embedding mapping

An additional approach we investigate is mapping
the Hausa vocabulary to the German embeddings of
the En—De model, when initializing the En—Ha
model. We train the models with a 32K Senten-
cePiece vocabulary obtained from datasets in all
three languages. Using the frequency-based metric
introduced by (Wang et al., 2020) we assign each
SentencePiece token to an English, German, Hausa
or joint vocabulary. This results in 9192 German to-
kens, 6485 Hausa tokens and a joint vocabulary of
approximately 11k. Having established a separate
Hausa and German vocabulary it is then possible
to map between the embeddings of the two.

In order to map the vocabularies, we indepen-
dently train BWESs (bilingual word embeddings)
using an implementation of Bivec (Luong et al.,
2015) combined with FastText (Bojanowski et al.,
2017). This implementation uses a joint learning
objective as described by Liu et al. (2020) utilising
alignments combined with sub-word information.
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In lieu of a parallel De-Ha dataset an En—De NMT
model is used to translate the English side of the
En-Ha dataset. We constrain SentencePiece encod-
ing using the previously extracted vocabularies for
example the Huasa data is encoded using only the
Hausa tokens and the joint tokens. Once both sides
are encoded FastAlign is used to extract automatic
alignments and the BWEs are trained.

We first map the Hausa tokens to their nearest
neighbour using the Cross-Domain Similarity Lo-
cal Scaling (Lample et al., 2018) distance metric
in the order of Hausa tokens’ frequency, and only
permit a German token to be mapped to exactly
one Hausa token. For tokens that do not have a
one-to-one mapping, we adapt Gu et al. (2018)’s
approach, whereby the embedding of a Hausa to-
ken is initialized to the weighted sum of all German
embeddings. The weights are given by a probabil-
ity distribution derived from the distance of the
Hausa token to each German token in the bilingual
embedding space. It is worth noting that we only
map between the tokens in the Hausa and German
vocabularies not any of the joint tokens. Finally, we
initialize the embedding table using the new embed-
dings and remove all tokens identified as German.
After initialization, we fine-tune the model using
the parallel and back-translated data as described
previously.

Our experiments show that although initializing
the embedding table using a mapping-based ap-
proach results in faster model convergence, it does
not improve the final BLEU score compared to just
fine-tuning from the En-De models. This was ob-
served for both the parallel data and the combined
parallel and back-translated data. The outputs of
the mapping approach to the baseline for the Ha-En
system are qualitatively very similar and indicates
that while the embedding mapping increases con-
vergence there is no knowledge transfer from the
German embeddings.

4 Conclusion

We describe our English-German and English-
Hausa submissions to the news translation task at
WMT 2021. For the En«+De task, fine-tuning and
splitting test instances significantly boosts BLEU
while back-translation alone does not help. In the
En<>Ha task, we experiment with interesting low
resource NMT techniques, but unfortunately, our
submission contains translations from overfitted
models.
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Abstract

This paper describes the Air Force Research
Laboratory (AFRL) machine translation sys-
tems and the improvements that were devel-
oped during the WMT?21 evaluation campaign.
This year, we explore various methods of
adapting our baseline models from WMT20
and again measure improvements in perfor-
mance on the Russian—English language pair.

1 Introduction

As part of the 2021 Conference on Machine Trans-
lation (wmt, 2021) news-translation shared task,
the AFRL human language technology team partic-
ipated in the Russian—English portion of the compe-
tition. We experiment with OpenNMT-tf ! (Klein
etal., 2018) and Marian 2 (Junczys-Dowmunt et al.,
2018) transformer (Vaswani et al., 2017) models
trained as part of our WMT20 (Gwinnup and An-
derson, 2020) efforts and apply varying continued-
training and fine-tuning approaches (Luong and
Manning, 2015; Freitag and Al-Onaizan, 2016), in-
cluding a new method to select a fine-tuning set
from a separate, larger corpus not used in training.

We submit an OpenNMT-based transformer sys-
tem fine-tuned on newstest test sets from 2014-
2017 as our primary entry, and a Marian-based
transformer system fine-tuned on newstest test sets
from 2014-2018 as a contrast.

2 Data and Preprocessing

Since most of our efforts focus on fine-tuning ex-
isting models this year, we reuse the training cor-
pus from our WMT20 systems which includes the
following parallel corpora: Commoncrawl (Smith
et al., 2013), Yandex?, UN v1.0 (Ziemski et al.,

!Available at: https://github.com/OpenNMT/OpenNMT-
tf/

2 Available at: https://github.com/marian-nmt/marian

Shttps://translate.yandex.ru/corpus?
lang=en

jeremy.gwinnup.l, timothy.anderson.20}@us.af.mil

2016), Paracrawl*(Espla et al., 2019), Wikimatrix
(Schwenk et al., 2019), and backtranslated data
from our WMT17 system (Gwinnup et al., 2017)
as well as Edinburgh’s WMT17 system (Sennrich
et al., 2017) yielding a raw corpus of over 76.3
million lines.

The new Russian—English version 8 Paracrawl
corpus is reserved for tuning set selection as de-
scribed in Section 2.3.

2.1 Data Preparation

We re-use the fastText (Joulin et al., 2016b,a) based
language ID filtered corpus with an ID threshold of
0.8 as described in Gwinnup and Anderson (2020),
shown in Table 1, allowing us to make concrete
progress comparisons to last year’s systems.

2.2 Data Augmentation with Speech
Recognition-like output

In order to build a larger pool of training data, we
have created Automatic Speech Recognition (ASR)
- like training data for the Russian—English transla-
tion task. Whereas written text can include upper
and lowercase characters, punctuation, special sym-
bols, and numbers written using digits, transcripts
produced by ASR systems are typically uncased
with no punctuation, no special symbols, and num-
bers written as spoken (e.g., 4.1% rendered as “four
point one percent”). In previous experiments on
an English-German spoken language translation
task (Ore et al., 2020), we found that we could
get an improvement in BLEU score by formatting
the MT training data such that the source language
text matched the output format of our ASR system,
while leaving the target language text unmodified.
We applied a similar procedure to the Russian side
of the Russian-English training corpus using the
text2norm.pl script from ru2sphinx.> This copy of
the ASR-like training text was then appended to

*Version 1 Russian—English parallel data
3 Available at: https://github.com/zamiron/ru4sphinx
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corpus unfiltered lines filtered lines percent remain
commoncrawl 723,256 655,069 90.57%
news-commentary-v15 319,242 286,947 89.88%
yandex 1,000,000 901,318 90.13%
un-2016 11,365,709 9,871,406 86.85%
paracrawl-v1 12,061,155 5,173,675 42.90%
wikimatrix 5,203,872 4,287,881 82.40%
wmt17-afrl-bt 8,921,942 8,317,107 93.22%
wmtl7-uedin-bt 36,772,770 29,074,022 79.06%
Total 76,367,946 58,567,425 76.69%

Table 1: Results of language-id based Russian—English corpus filtering with threshold of 0.8 as reported in (Gwin-

nup and Anderson, 2020)

the original training data, effectively doubling the
size of the corpus.

2.3 Selecting Tuning Sets from
Representative Data

We performed experiments involving automatic se-
lection of fine-tuning corpora. Given a monolin-
gual application corpus, we wish to test the pos-
sibility of selecting an appropriate fine-tuning set
to improve a general-purpose neural MT system’s
performance on that application corpus. We an-
ticipate such techniques to be of increasing impor-
tance, especially for high-value application corpora,
as computational costs of subcorpus selection and
fine-tuning continue to decrease.

2.3.1 Method

We performed subselection as in Erdmann and
Gwinnup (2019), which can flexibly incorporate a
text quality metric and multiple parallel text cor-
pora. In short, this algorithm tries to simultane-
ously optimize the quality of the subset’s text and
its coverage of the vocabulary present in given ap-
plication corpora.

Of special note is our use of clustering to select
data. We hierarchically applied the MAPPER algo-
rithm (Singh et al., 2007) to cluster sentence vec-
tors of a monolingual corpus. The clusters deemed
useful were then used to assign fuzzy clustering to
the application corpus and the corpus from which
we subselect. This clustering information was in-
cluded as one of the text corpora.

2.3.2 Application

The application corpus we used was the Russian
side of newstest2019 and newstest2020, totalling
6777 lines. The pool of possible parallel text for

subselection we took to be the given 12.6M-line
subset of Russian—-English version 8 ParaCrawl cor-
pus with LASER score at least 1.1. For subselec-
tion algorithms, we first preprocessed the Russian
text, applying a 90k-element joint BPE. We used
the algorithm in Erdmann and Gwinnup (2019) to
subselect a corpus, using 3-grams in the vocab-
ulary coverage. As a text quality metric in this
algorithm we used either the provided Bicleaner
scores (Sdnchez-Cartagena et al., 2018; Ramirez-
Sanchez et al., 2020) or the word-averaged scores
provided by OpenNMT’s scoring functionality, us-
ing the untuned OpenNMT model we developed
for this year’s task. In order to provide meaningful
comparisons with our baseline fine-tuning set of
newstest2014-2018, we matched its size by always
subselecting a fine-tuning set with fifteen thousand
lines. Fine-tuning was performed using a single-
model Marian-based untuned MT system as a base-
line.

Sentence vector clustering was learned using a
570M-line monolingual Russian corpus built from
the concatenation of monolingual CommonCrawl
(Smith et al., 2013) data provided by WMT or-
ganizers as part of our WMT18 efforts towards
pretraining word embeddings. The word vectors
were trained using word2vec (Mikolov et al., 2013)
on this corpus, after applying a 90k-element joint
BPE. These embeddings have a dimensionality of
512 to match our Marian transformer-base system
configuration as described in Gwinnup et al. (2018).
A randomly-chosen 100k-line subset of the corpus
was used to find the clustering.

Several methods of converting word vectors to
sentence vectors were considered, and we empiri-
cally chose a “softened sum” of the word vectors
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w; as the sentence vector s:

> w;

o= log(1 + number of words in sentence)

Clusters were considered to be useful if they cov-
ered between 1% and 5% of this corpus. In this case
there were 19 such clusters, having between 1000
and 5000 representatives each. These clusters were
found to have qualitative meaning to a Russian lin-
guist: clusters with relatively high representation
in our application corpus tended to be news-like,
and clusters with relatively high representation in
ParaCrawl tended to be noisier.

We computed membership of a given sentence
vector in a fuzzy clustering sense, with weight of
cluster ¢ defined as

z; = (min distance/ distancei)4

where we use Euclidean distance, and the minimum
is taken over all 19 clusters. Although the exact
form is empirical, note that the weight has a maxi-
mum of unity at the closest cluster and that a cluster
will get lower weight if it is farther from the sen-
tence vector. This fuzzy clustering was computed
once using k-means (distance is to cluster mean)
and once using single-linkage (distance is to near-
est member) clustering. These two membership
clusters were then averaged. Coverage of the clus-
ters was encouraged by including the clustering as
another text corpus in our standard algorithm (Erd-
mann and Gwinnup, 2019) — each sentence vector
was converted into a 100-word “sentence,” where
each cluster’s “word” appeared a number of times
relative to the magnitude of its weight in the line’s
clustering®. Naturally, coverage of these clustering
words was computed using only unigrams.

2.3.3 Results

Table 2 shows the results of our fine-tuning exper-
iments. The “clustering” and “metric” columns
designate whether clustering was incorporated
and whether Bicleaner (“Bic”) or NMT scor-
ing (“NMT”) was used as the text quality met-
ric. We see consistent gains over the untuned
set, even on newstest2021, which was not used
in the selection. The three subselection meth-
ods produced similar results on the three test
sets. Fine-tuning with our selected sets did not

SFor example, using a 10-word sentence for brevity, this
process would convert the fuzzy cluster membership vector
[0.2,0.0,0.8,1.0] into the sentence “0222233333”.

produce consistent improvement over our base-
line fine-tuning using newstest2014-2018. Com-
pared to this baseline fine-tuning, the new sets
improved performance on newstest2019 (roughly
+0.7 BLEU), but they lowered performance on
newstest2020 (roughly —0.7 BLEU) and the un-
seen newstest2021 (roughly —1.1 BLEU). Our
generated fine-tuning sets did not show a consis-
tent benefit for this task, so they were not used in
our submission systems. Without further informa-
tion, we cannot attribute the quality of the results
to the method, the quality of data in ParaCrawl, or
other causes.

Our method generates a pseudo in-domain set
for an unknown application domain, using only
source-side data of the application corpus. This
generated set can be used for fine-tuning, training,
or other purposes in natural language processing.
We believe that such techniques warrant further
investigation, especially for an application corpus
where the domain is unknown or human-curated
parallel data are unavailable.

3 Machine Translation Systems

3.1 OpenNMT-tf
The OpenNMT-tf system trained for this task used
the configuration for a big deep transformer net-
work.

We used the following network hyperparame-
ters:

* 1024 embedding size

* 4096 hidden units

* 12 layer encoder

* 12 layer decoder

* 16 transformer heads

e dropout 0.3

* attention dropout 0.1

* feed forward network dropout 0.1

* embeddings for source, target and output lay-
ers were not tied

* Layer normalization

 Label smoothing 0.1

* Learning rate warm-up 8000 steps

The corpus used for the initial model con-

sisted of commoncrawl, paracrawl v1, and news-
commentary-v13 from wmt19 and was processed
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tuning set clustering metric newstest2019 newstest2020 newstest2021
untuned 35.9 34.5 46.5
newstest2014-2018 37.5 35.7 49.3
selected no NMT 38.0 35.0 48.4
selected no Bic 383 35.0 48.2
selected yes Bic 38.2 34.9 479

Table 2: Tuning sets and resultant BLEU scores.

with SentencePiece(Kudo and Richardson, 2018)
using a model with a vocabulary size of 40K trained
on this ru-en corpus of 16,805,109 bi-text. This was
one of our WMT20 submitted systems (Systems
3 and 4 in Table 3). Additionally the corpus was
processed as described in Section 2.2 to resemble
ASR output and the resulting data was combined
with the above for a final count of 33,610,218 bi-
text. The network was trained for 10 epochs of
this training data using a batch size of 3124 and an
effective batch size of 49984 using the lazy Adam
(Kingma and Ba, 2015) optimizer with betal=0.9,
beta2=0.998 and learning rate 2.0. This was a sys-
tem that had been originally trained for speech
translation application but showed improvements
in text translation as well. The final submitted sys-
tem continued training an additional 2 epochs using
the unfiltered data described in Table 1. This was
done to try to take advantage of the larger data set
and not having the computational resources or time
to train a new system with with the larger data set
in time for submission deadline. The output was
an average of the last 8 checkpoints of training.
Checkpoints were saved every 5000 steps. The sys-
tem was then tuned with three epochs of newstest
data from years 2014-2017 (Systems 5 and 6 in
Table 3).

3.2 Marian

Our Marian systems utilize the transformer archi-
tecture in the transformer-base configuration. We
use the WMT14 newstest2014 test set for validation
during training and the following network hyperpa-
rameters:

512 embedding size
2048 hidden units

* 6 layer encoder
* 6 layer decoder

¢ 8 transformer heads

* Tied embeddings for source, target and output
layers

* Layer normalization
* Label smoothing

* Learning rate warm-up and cool-down

We experimented with tuning these systems with
the concatenation of WMT newstest sets from
2014-2018 yielding a tuning corpus of 14,820 par-
allel sentences. For each of the five separate trans-
former models trained for the Marian transformer-
base ensemble systems in Gwinnup and Anderson
(2020), continued training was performed for 10
epochs on the concatenated tests sets. An ensemble
of the five resulting tuned models is then used to
decode newstest sets from 2019-2021. Resulting
scores reported by SacreBLEU are shown as Row 2
in Table 3, while the baseline, untuned ensemble is
shown as Row 1. We note gains between +2.0 and
+3.5 BLEU as measured by SacreBLEU over the
baseline ensemble system depending on test set.

4 Experimental Results

Results reported here and in Table 3 for Marian
systems were scored with SacreBLEU (Post, 2018)
while results for OpenNMT systems were score
with mult-bleu-detok.perl from the Moses toolkit
(Koehn et al., 2007). Internal comparisons between
the two scoring methods have been in agreement.
All scores are on detokenized cased output.

The primary submission system was the
OpenNMT-tf configuration described in section 3.1
and shown in Table 3 as onmt+asr-tune. It resulted
in official scores of 53.31 BLEU-all, 38.83 BLEU-
A, 39.56 BLEU-B, 0.64 chrf-all, 0.63 chrf-A, and
0.64 for chrf-B on the 2021 test-set.

Post evaluation a model with the OpenNMT-tf
configuration described in section 3.1 was trained
on all the unfiltered data (approx. 76M million
bi-text). The results are shown in Table 3 as onmt-
large. The baseline onmt-large system was approx-
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imately +1 BLEU better that the baseline onmt-
asr system while the onmt-asr system which con-
tinued training with two epochs of the large data
set and tuned with newstest2014-2017 (onmt-+asr-
tune) was +2.5 BLEU better than the baseline onmt-
large system which was trained with 10 epochs and
comparable to the onmt-large system tuned with
newstest2014-2017. Experiments were conducted
on both onmt+asr and onmt-large with tuning sets
comprised of different combinations of the supplied
news test sets from 2014 to 2019. Tune7 is news
test sets from 2014-2017 (11,820 bi-text), tune8
is news test sets from 2014-2018 (14,820 bi-text),
and tune9 is news test sets from 2014-2019 (16,820
bi-text). Systems were tuned for three epochs using
these tuning sets. Generally performance dropped
off or decreased slightly with more than 3 epochs
of tuning. To be consistent across systems and tun-
ing sets we are only reporting results for 3 epochs.
As can be seen in Table 3 all three tuning sets pro-
vided significant improvements over the baseline
systems, generally in the range of +3.5 BLEU on
test 2021. For onmt+asr there was little difference
in tuning with tune7 or tune8 whereas tune9 was
approximately +0.4 BLEU better than those two.
For onmt-large tune7 did not provide as much ben-
efit as tune8 and tune9 which were basically the
same, less than 0.1 BLEU difference between the
two.

5 Conclusion

While our two submission systems employ a stan-
dard method of fine-tuning to adapt models towards
a test set, we find that our methods to sample a
similarly-sized tuning corpus from a larger body of
text while only using information about the source
side of that data yields a reasonable improvement
in translation quality. Such a technique could be
useful in adapting translation models to specific
domains where only the source language of a text
source is available.

Using actual in-domain data, such as the pro-
vided news development sets, for fine-tuning pro-
vide a substantial gain in translation quality. Such
data is not always available and thus other selection
techniques as described in Section 2.3 come into
play. Future work will investigate combining the
two approaches to see if additional gains can be
obtained.

The authors would like to thank Emily Conway
and Braeden Bowen for their assistance in human

evaluation of MT output.

References

2021.  Findings of the 2021 conference on ma-
chine translation (WMT21). In Proceedings of the
Sixth Conference on Machine Translation, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Grant Erdmann and Jeremy Gwinnup. 2019. Quality
and coverage: The AFRL submission to the WMT19
parallel corpus filtering for low-resource conditions
task. In Proceedings of the Fourth Conference on
Machine Translation (Volume 3: Shared Task Papers,
Day 2), pages 267-270, Florence, Italy. Association
for Computational Linguistics.

Miquel Espla, Mikel Forcada, Gema Ramirez-Sanchez,
and Hieu Hoang. 2019. ParaCrawl: Web-scale paral-
lel corpora for the languages of the EU. In Proceed-
ings of Machine Translation Summit XVII Volume 2:
Translator, Project and User Tracks, pages 118-119,
Dublin, Ireland. European Association for Machine
Translation.

Markus Freitag and Yaser Al-Onaizan. 2016. Fast Do-
main Adaptation for Neural Machine Translation.
CoRR, abs/1612.06897.

Jeremy Gwinnup and Tim Anderson. 2020. The AFRL
WMT20 news translation systems. In Proceedings
of the Fifth Conference on Machine Translation,
pages 207-212, Online. Association for Computa-
tional Linguistics.

Jeremy Gwinnup, Tim Anderson, Grant Erdmann, and
Katherine Young. 2018. The AFRL WMT18 sys-
tems: Ensembling, continuation and combination.
In Proceedings of the Third Conference on Machine
Translation: Shared Task Papers, pages 394-398.
Association for Computational Linguistics.

Jeremy Gwinnup, Timothy Anderson, Grant Erdmann,
Katherine Young, Michaeel Kazi, Elizabeth Salesky,
Brian Thompson, and Jonathan Taylor. 2017. The
AFRL-MITLL WMT17 systems: Old, new, bor-
rowed, BLEU. In Proceedings of the Second Con-
ference on Machine Translation, pages 303-309,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016a. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2016b. Bag of tricks

Opinions, interpretations, conclusions and recommenda-
tions are those of the authors and are not necessarily endorsed
by the United States Government. Cleared for public release
on 23 August 2021. Originator reference number RH-21-
122279. Case number AFRL-2021-2778.

114



WMT newstest

# system name 2014 2015 2016 2017 2018 2019 2020 2021

1 marian-ens5-base  40.2 344 348 38.0 33.01 358 350 47.1

2 marian-ensS5-tune - - - - - 384 37.0 50.6

3 WMT20 onmt-base 36.87 32.58 3248 35.50 30.76 38.26 - -

4  WMT20 onmt-tune7 - - - - 32.31 39.27 - -

5 onmt+asr - - - - 33.17 38.08 35.86 51.05

6 onmt+asr-tune - - - - 35.71 40.39 37.61 54.49 (+3.44)
7 onmt+asr-tune? - - - - 36.15 4091 37.54 54.58 (+3.54)
8 onmt+asr-tune8 - - - - - 40.72 37.67 54.72 (+3.67)
9 onmt+asr-tune9 - - - - - - 38.04 55.08 (+4.03)
10 onmt-large - - - - 33.81 38.87 36.49 51.92

11 onmt-large-tune7 - - - - 36.08 41.15 38.15 54.61 (+2.69)
12 onmt-large-tune8 - - - - - 40.90 38.40 55.48 (+3.56)
13 onmt-large-tune9 - - - - - - 38.01 5543 (+3.51)

Table 3: Experimental results for baseline and tuned systems.

Marian systems are scored with SacreBLEU,

OpenNMT-tf systems are scored with multi-bleu-detok.perl. Newstest2021 scored with the two supplied refer-
ences. Systems 3 and 4 are WMT20 systems for progress comparison.

for efficient text classification.
arXiv:1607.01759.

arXiv preprint

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116—
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Guillaume Klein, Yoon Kim, Yuntian Deng, Vincent
Nguyen, Jean Senellart, and Alexander Rush. 2018.
OpenNMT: Neural machine translation toolkit. In
Proceedings of the 13th Conference of the Associa-
tion for Machine Translation in the Americas (Vol-
ume 1: Research Papers), pages 177-184, New Or-
leans. Association for Machine Translation in the
Americas.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondfej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion

Volume Proceedings of the Demo and Poster Ses-
sions, pages 177-180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Minh-Thang Luong and Christopher D. Manning. 2015.
Stanford Neural Machine Translation Systems for
Spoken Language Domain. In International Work-
shop on Spoken Language Translation, Da Nang,
Vietnam.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. International Conference on
Learning Representations (ICLR) Workshop.

Brian Ore, Eric Hansen, Tim Anderson, and Jeremy
Gwinnup. 2020. The AFRL IWSLT 2020 systems:
Work-from-home edition. In Proceedings of the
17th International Conference on Spoken Language
Translation, pages 103—108, Online. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Gema Ramirez-Sanchez, Jaume Zaragoza-Bernabeu,
Marta Bafién, and Sergio Ortiz-Rojas. 2020. Bi-

115



fixer and bicleaner: two open-source tools to clean
your parallel data. In Proceedings of the 22nd An-
nual Conference of the European Association for
Machine Translation, pages 291-298, Lisboa, Portu-
gal. European Association for Machine Translation.

Victor M. Sanchez-Cartagena, Marta Bafién, Sergio
Ortiz-Rojas, and Gema Ramirez-Sanchez. 2018.
Prompsit’s submission to wmt 2018 parallel cor-
pus filtering shared task. In Proceedings of the
Third Conference on Machine Translation, Volume
2: Shared Task Papers, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun,
Hongyu Gong, and Francisco Guzmén. 2019.
Wikimatrix: Mining 135m parallel sentences in
1620 language pairs from wikipedia. CoRR,
abs/1907.05791.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich
Germann, Barry Haddow, Kenneth Heafield, An-
tonio Valerio Miceli Barone, and Philip Williams.
2017. The University of Edinburgh’s neural MT
systems for WMT17. 1In Proceedings of the Sec-
ond Conference on Machine Translation, Volume 2:
Shared Task Papers, pages 389-399, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Gurjeet Singh, Facundo Memoli, and Gunnar Carlsson.
2007. Topological Methods for the Analysis of High
Dimensional Data Sets and 3D Object Recognition.
In Eurographics Symposium on Point-Based Graph-
ics. The Eurographics Association.

Jason R. Smith, Herve Saint-Amand, Magdalena Pla-
mada, Philipp Koehn, Chris Callison-Burch, and
Adam Lopez. 2013. Dirt cheap web-scale parallel
text from the common crawl. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics (ACL ’13), pages 1374—-1383,
Sofia, Bulgaria.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000-6010.

Michat Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The united nations parallel cor-
pus v1.0. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation

(LREC 2016).

116



The TALP-UPC Participation in WMT21 News Translation Task:
an mBART-based NMT Approach

Carlos Escolano', Ioannis Tsiamas', Christine Basta' 2, Javier Ferrando',
Marta R. Costa-jussa', José A. R. Fonollosa'
L TALP Research Center, Universitat Politecnica de Catalunya, Barcelona
2 Institute of Graduate Studies and Research, Alexandria University, Egypt
{carlos.escolano, ioannis.tsiamas, christine.basta
javier.ferrando.monsonis,marta.ruiz, jose.fonollosa}@upc.edu

Abstract

This paper describes the submission to the
WMT 2021 news translation shared task by the
UPC Machine Translation group. The goal of
the task is to translate German to French (De-
Fr) and French to German (Fr-De). Our sub-
mission focuses on fine-tuning a pre-trained
model to take advantage of monolingual data.
We fine-tune mBARTS50 using the filtered data,
and additionally, we train a Transformer model
on the same data from scratch. In the exper-
iments, we show that fine-tuning mBART50
results in 31.69 BLEU for De-Fr and 23.63
BLEU for Fr-De, which increases 2.71 and
1.90 BLEU accordingly, as compared to the
model we train from scratch. Our final sub-
mission is an ensemble of these two models,
further increasing 0.3 BLEU for Fr-De.

1 Introduction

Monolingual data is usually more abundant than
parallel data as it does not need any human pro-
cessing. Neural Machine Translation (NMT) has
focused traditionally on parallel data between lan-
guages and monolingual data as back-translation
(Sennrich et al., 2016). This method consists of
translating a monolingual corpus with an NMT sys-
tem and training the model using the synthetic data.
Alternatively, in recent years, pre-trained models
have been proposed using monolingual data as a
pre-training step with self-supervised learning, be-
fore performing task-specific fine-tuning. An exam-
ple of this approach is BERT (Devlin et al., 2019),
which is a Transformer model (Vaswani et al.,
2017), pre-trained on masked language modeling
and next sentences prediction on a large unlabeled
corpus. While BERT is used primarily for classifi-
cation tasks, BART (Lewis et al., 2020) has been
proposed for sequence-to-sequence tasks. BART
is a Transformer encoder-decoder, pre-trained as
a Denoising Autoencoder (DAE) on monolingual
unlabeled text. Since BART is pre-trained on mono-

lingual data, an additional encoder should be intro-
duced during fine-tuning to obtain a bilingual NMT
system. mBART overcomes this restriction by be-
ing pre-trained on multilingual denoising. mBART
(Liu et al., 2020; Tang et al., 2020) is liable to fine-
tuning on several translation directions in order to
obtain a multilingual NMT system.

Our participation to the news translation task at
WMT focuses on translating between German (De)
and French (Fr) in both directions, De-Fr and Fr-
De. To accomplish this, we employ a pre-trained
mBART model, and more specifically mBARTS50
(Tang et al., 2020), which is pre-trained with 50
languages. We fine-tune the mBARTS0 on both
translation directions to obtain a single multilingual
model for the task. To measure the importance of
the pre-training step, we additionally train a Trans-
former with the same architecture and hyperparam-
eters but randomly initialized. Our experiments
show that the fine-tuned mBART50 can achieve
better translation quality in both directions, with
improvements of 2.71 for De-Fr and 1.9 for Fr-De.
Apart from fine-tuning a pre-trained model, our
approach also includes extensive filtering of a large
bilingual corpus to ensure high-quality training
data. Finally, we have considered ensembling the
fine-tuned mBARTS0 and the trained-from-scratch
Transformer for our submission. This ensembling
has resulted in BLEU scores of 31.69 and 23.93 for
De-Fr and Fr-De accordingly.

The rest of this paper is organized as follows:
In Section 2 we describe the background tech-
niques this work builds upon, multilingual NMT
and mBART. In Section 3 we present the datasets
we used for training and the techniques applied for
filtering them. In Section 4 we provide the system
description along with the implementation details
and Section 5 involves the results of our experi-
ments. Finally, in Section 6 we discuss the conclu-
sions of this work and present possible directions
for further research.

117

Proceedings of the Sixth Conference on Machine Translation (WMT), pages 117-122
November 10-11, 2021. ©2021 Association for Computational Linguistics



2 Background

2.1 Neural Machine Translation

Neural Machine Translation (NMT) uses sequence-
to-sequence models, with an encoder-decoder
architecture, built upon deep neural networks
(Sutskever et al., 2014; Bahdanau et al., 2014,
Gehring et al., 2017; Vaswani et al., 2017). In
a sequence-to-sequence model, the source sentence
is mapped to its contextualized representation and
fed to the decoder to generate the translation out-
put in an auto-regressive way. Traditionally, re-
current neural networks (Hochreiter and Schmid-
huber, 1997) have been used for the encoder and
decoder, with an attention mechanism (Bahdanau
et al., 2014) that enables each target token to con-
centrate on certain tokens in the source sentence.
Recently, the Transformer (Vaswani et al., 2017)
led to large improvements on sequence-to-sequence
tasks and NMT, relying exclusively on attention
mechanisms. The systems trained in this work, are
also based on Transformer models.

2.2 Multilingual NMT

Multilingual NMT aims to provide a single model
that can translate several language directions (Fi-
rat et al., 2016; Johnson et al., 2017). These can
be one-to-many, many-to-one, or many-to-many,
with the "one" being usually English due to the
broadly available corpora. Previous studies have
explored different design approaches, focusing on
sharing parts of the model between the different
languages, with shared encoder-decoder attention
between languages (Firat et al., 2016), a shared
encoder (Sen et al., 2019), a task-specific atten-
tion (Blackwood et al., 2018), shared parameters
(Zhu et al., 2020) and full model sharing (John-
son et al., 2017). Recently, the paradigm of full
model sharing has been extended to accommodate
for many more languages and directions by train-
ing huge models for massively multilingual NMT
(Arivazhagan et al., 2019; Fan et al., 2020). Our
submission is also based on multilingual models
that are fully shared between the two language di-
rections German-French and French-German.

2.3 mBART

BART (Lewis et al.,, 2020) is a Transformer
encoder-decoder, which is pre-trained with self-
supervised learning on reconstructing the text cor-
rupted by a noise function. Its multilingual ver-
sion, mBART (Liu et al., 2020), uses the same self-

supervised approach, but reconstructs corrupted
text from multiple monolingual corpora. The na-
ture of this pre-training makes mBART a good ini-
tialization for a multilingual NMT system. mBART
can be fine-tuned on multiple bitext corpora pro-
viding gains in all directions of 25 languages, ex-
cept for the very highest resource ones (Liu et al.,
2020). Our system is initialized with mBART50
(Tang et al., 2020) (an extension of mBART from
25 to 50 languages). This initialization is followed
by multilingual fine-tuning on both directions of a
large German-French bitext.

3 Data

In this section we introduce the datasets used for
training our systems and we go through the data
filtering process that was applied in each one of
them.

3.1 Datasets

In order to train Transformer models for Machine
Translation, commonly, a large parallel corpus is
needed. For the purpose of this research, we fo-
cus on creating a French-German parallel corpus
from several publicly available datasets. More
specifically, these are the Europarl (Koehn, 2005),
Paracrawl (Baifién et al., 2020), Common Crawl!,
News Commentary (Tiedemann, 2012), Wiki Ti-
tles2, Tilde Rapid and EESC (Rozis and Skadins,
2017), WikiMatrix® and TED Talks (Cettolo et al.,
2012). If the dataset contains more languages, we
only keep examples that have non-empty sentences
for French-German. We use the development and
test data of the news test datasets of 2019 and 2020,
as provided by WMT. The size of each dataset can
be found in the first column of Table 1.

3.2 Data Filtering

We employ two stages of data filtering to ensure
that our system is trained on high-quality data. In
the first stage, we process each example, either
from the French or German side, separately by
altering its content. This process includes the fol-
lowing steps in the listed order:

1. Removal of non-utf8 characters

2. De-escaping html characters

"http://data.statmt.org/wmt19/
translation-task/fr-de/bitexts

http://data.statmt.org/wikititles/v3/

*https://github.com/facebookresearch/
LASER/tree/master/tasks/WikiMatrix
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3. Normalization of different types of punctua-
tion

4. Normalization of spacing
5. Removal of redundant apostrophes

The normalization of spacing and punctuation
is applied using the SacreMoses* package. Dur-
ing the second stage of filtering, we completely
remove whole examples, when either the French or
the German sentence contain noise or inconsistent
information.

1. Basic Filtering. We remove examples where
either side is empty, or the two sides contain
the same lower-cased text.

2. Language Filtering. Here we intend to iden-
tify sentences that are written in languages
other than French and German. We remove
examples where the language of either sen-
tence does not match the expected one. To
predict the language of a sentence, we use
a pre-trained language detection model from
FastText (Joulin et al., 2016).

3. Length Filtering. Here we aim to identify
sentences or examples with unnatural length
characteristics that potentially result from
noise. We remove examples where either side
is found to have a large number of words
(greater than 200), an extreme character-to-
word ratio (lower than 1.5 or greater than 12),
at least one word with a high number of char-
acters (greater than 25), or the example has
an extreme source-to-target word ratio (lower
than 0.4 or greater than 2.5). For setting the
boundaries of what is an acceptable length or
ratio, we follow (Shi et al., 2020).

4. Alignment Filtering. At this point, we want
to identify noisy pairs by computing their
alignment scores. We use the fast-align li-
brary (Dyer et al., 2013) and remove exam-
ples where the alignment score is 2.5 times
above the average alignment score of the cor-
pus. The alignment score of an example is cal-
culated as the normalized log-probability of
the German-French alignment, and the align-
ment score of the corpus is the sum of the

*nttps://github.com/alvations/
sacremoses

Dataset Size (thousands)
Original Filtered

Europarl 1,803 1,480
Paracrawl 7,223 5,893
Common Crawl 622 523
News Commentary | 304 236
Wiki Titles 1,007 134
Title Rapid 983 849
EESC 2,844 2,392
WikiMatrix 2,807 1,936
TED Talks 292 279
Total 17,885 13,722

Table 1: Training sets before and after filtering.

alignment scores of its examples. Specifi-
cally for the WikiMatrix pairs, which are not
human-generated and possibly contain more
noise, we follow a more aggressive approach
and remove a pair if its alignment score is 15
absolute points above the average.

The size of the clean corpus can be found in the
second column of Table 1.

4 System Description

In this section we are going to describe the two
main steps of our submission, fine-tuning of a pre-
trained with the provided data and ensemble of
pre-trained and not pre-trained models.

4.1 Multilingual fine-tuning

Traditionally, models are trained from random ini-
tialization. We initialize our model with mBART50
(Tang et al., 2020) pre-trained weights. These
weights act as a more informed initialization that
already contains useful features for language rep-
resentation. Given the support of the public model
to the French and German languages, no modifica-
tions of the embedding model were needed. Follow-
ing mBARTS50 strategy, we fine-tune all the layers
of the multilingual model on all the filtered French-
German and German-French data. To condition
the language generation (Johnson et al., 2017), a
source language token was added as the first token
of the source sentence, and a target language token
was added as the first decoder token to the decoder.

Implementation Both randomly initialized base-
line and mBART50 models were trained using
fairseq’s (Ott et al., 2019)° mBART large imple-

Shttps://github.com/pytorch/fairseq
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mentation for multilingual fine-tuning. The ar-
chitecture consists of 12 layers with 1024 embed-
ding size, 4096 feed-forward size, and 16 attention
heads, both for encoder and decoder, with a total
number of parameters of 610, 878, 464. Models
were trained for approximately 400k updates or
seven epochs using validation loss as an early stop-
ping criterion, with a learning rate of 1 * 10~% and
3 % 107" for the baseline and fine-tuned model, re-
spectively. Both models are trained using the orig-
inal vocabulary of 250k tokens, at subword level
using the sentencepiece® model available with the
mBART50 model. Both models were trained on
two Nvidia GTX 3090 with eight batches of gradi-
ent accumulation. At generation time, beam size
was set to eight.

4.2 Model ensemble

Model ensembling is a popular technique to lever-
age the features learned by several models. This is
especially important in our case as the pre-trained
model has been trained on data not constrained to
the domain. As the pre-training step is performed
on data that does not belong to the task domain, it
could generate structures or patterns that are not
commonly used, even when keeping the sentence’s
intended meaning. In order to balance the provided
data, we ensemble the best checkpoint from the
baseline and the fine-tuned mBART. Thus, next to-
ken prediction during inference is done according
to the combined probability from both models.

Implementation Ensembling was performed us-
ing the standard fairseq generation script. The two
models ensembled were the same checkpoints at
400k updates reported for the individual systems.
Beam size was set to eight as in the previous exper-
iments.

5 Experiments and Results

Multilingual fine-tuning. Our first hypothesis is
that the use of pre-trained models could improve
translation performance. Therefore, we compare
our system with a baseline system with the same
vocabulary and parameter configuration with ran-
dom initialization to measure the impact of the
translation step. Tables 2 and 3 show the transla-
tion results for German-French and French-German
translation directions, respectively. Results show
that fine-tuning of pre-trained models improves

®https://github.com/google/
sentencepiece

61 —e=fine-tuned
Random init.

Walid Loss

—_—
- —
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Epochs

Figure 1: Validation loss during training for the fine-
tuned mBART (fine-tuned) and randomly initialized
(Random init.) models.

BLEU | ABLEU
Baseline 2898 | -
mBART50 | 31.69 | 2.71
+Ensemble | 31.69 | 0.00

Table 2: Results measured in BLEU for the German to
French translation direction

translation quality in both directions by 2.3 BLEU
points on average, showing that a more informed
model initialization significantly impacts the final
model performance. It is worth noticing that we ex-
pected the fine-tuning approach to converge faster
than the randomly initialized baseline, but they
both show similar behaviors and required approxi-
mately 400k training updates. Figure 1 show that
the fine-tuned model’s validation loss is lower over
the entire training but both converge to the best
value at the seventh epoch.

Model Ensemble. Our second hypothesis is that
the pre-training step on the out-of-domain data may
affect the model’s phrasing at inference time, and
ensembling with the baseline trained only on the
provided constrained data could improve its perfor-
mance. Results show that, although a minor im-
provement of 0.3 BLEU points has been reported
for the French to German translation direction, it
is not consistent on German to French, where no
performance difference has been observed. These
results may indicate that the pre-training step has
a limited impact on the final domain performance
and that the fine-tuning step on the provided con-
straint data is the most crucial factor in the final
model’s domain adaptation.
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BLEU | ABLEU
Baseline 21.73 | -
mBARTS50 | 23.63 1.90
+Ensemble | 23.93 | 0.30

Table 3: Results measured in BLEU for the French to
German translation direction

6 Conclusions

This work describes the TALP-UPC system for
the WMT 2021 shared news translation task for
French-German and German-French. Experimen-
tal results show that pre-trained models help im-
prove translation performance in this kind of sce-
nario, even for high-resource language pairs with
millions of parallel sentences available, with 2.71
points for German-French translation direction and
1.90 points for French-German. Results also show
that ensembling of pre-trained and randomly ini-
tialized models can lead to minor performance im-
provements (up to 0.3 BLEU) but not consistently
on both tested languages.

In future work, better results may be obtained
by combining fine-tuned pre-trained models with
traditional back translation. Both techniques would
benefit from the additional monolingual in two dif-
ferent aspects of the NMT model, initialization and
additional training on the monolingual data pro-
vided.
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Abstract

We describe our two NMT systems sub-
mitted to the WMT2021 shared task in
English-Czech news translation: = CUNI-
DocTransformer (document-level CUBBITT)
and CUNI-Marian-Baselines. We improve the
former with a better sentence-segmentation
pre-processing and a post-processing for
fixing errors in numbers and units. We
use the latter for experiments with various
backtranslation techniques.

1 Introduction

In this paper, we describe our two NMT systems
submitted to the WMT 2021 English-Czech news
translation shared task: “CUNI-DocTransformer’
(Charles University document-level Transformer)
and “CUNI-Marian-Baselines”. In addition, we
submitted also “CUNI-Transformer2018”, which
is exactly the same system (sentence-level) as sub-
mitted in 2018 (Popel, 2018).

CUNI-DocTransformer uses the same model as
submitted last year (Popel, 2020), but with im-
proved sentence segmentation (Section 3.1) and
number-unit postprocessing (Section 3.2). This
system was submitted for both English—Czech
and Czech—English.

CUNI-Marian-Baselines is an attempt at reimple-
mentation of the original CUNI-Transformer2018
in Marian (Junczys-Dowmunt et al., 2018), where
we experiment with various setups of tagged back-
translation (Section 4). This system was trained
only for English—Czech.

According to automatic evaluation provided
by the WMT organizers (Table 1), CUNI-
DocTransformer is the third best English—Czech
system.

B

2 Common settings

Both our systems use the Transformer (Vaswani
et al., 2017) architecture, checkpoint averaging

cased BLEU chrF
system ref A ref B ref A
Facebook-Al 24.80 (1) 22.69 (1) 0.5358
Online-W 23.02 (2) 21.57 (2) 0.5285
CUNI-DocTransformer 22.19 (3) 19.85 (3)0.5170
CUNI-Transformer2018 21.63 (4) 19.67 (4) 0.5091
eTranslation 21.03 (5)19.38 (5) 0.5063
Online-A 20.16 (7)18.18 (7) 0.4989
CUNI-Marian-Baselines 20.09 (6) 18.29 (6) 0.4992
Online-B 20.04 (8) 17.90 (8) 0.4956
Online-Y 18.13 (9) 16.13 (9) 0.4807
Online-G 1530 (10) 13.87 (10) 0.4570

Table 1: Evaluation of English—Czech WMT21 sys-
tems. The systems are ordered by BLEU with refer-
ence A, ordering by the other metrics is provided in
parentheses. Names of systems described in this paper
are in bold.

(using the last 8 checkpoints) and a 32k joint
English-Czech subword vocabulary. Both systems
are trained on CzEng 2.0 (Kocmi et al., 2020)
with 61M authentic parallel and 127M synthetic
(back-translated) sentences (see Table 2), but the
English—Czech CUNI-DocTransformer does not
use directly the EN-mono section,! while CUNI-
Marian-Baselines uses all three sections including
EN-mono (i.e. using forward-translation).

Both systems use Block-backtranslation (Popel
et al., 2020), although CUNI-Marian-Baselines
uses too small block size, so it does not have the
expected positive effect as described in Section 4.

3 DocTransformer improvements

3.1 Sentence segmentation

CUNI-DocTransformer was trained on multi-
sentence sequences of up to 3000 characters and

'The synthetic data in CzEng 2.0 were prepared using it-
erated backtranslation, so the EN-mono data were used for
training a Czech—English system, which produced the En-
glish translation of the CS-mono data in CzEng 2.0. Thus,
indirectly also the EN-mono data were used for training the
English—Czech CUNI-DocTransformer.
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data set sentence words (M)

ata se pairs (M) EN CS
authentic 61 617 702
EN-mono (NewsCrawl 2016-2018) 76 1296 1474
CS-mono (NewsCrawl 2013-2018) 51 700 833
total 188 2613 3009

Table 2: Training data sizes (in millions). All the data
are taken from CzEng 2.0.

750 subwords. However, the WMT submission for-
mat requires a segment-level alignment and also the
CUNI-DocTransformer decoding employs overlap-
ping sequences where sentence alignment is needed
(for details see Popel (2020)). Thus, the sentences
within a sequence are separated with a special token
on both source and target side (both during train-
ing and at inference time), which allows a simple
extraction of the sentence alignment.’

Some segments in the WMT input format con-
tain multiple sentences. When treating such seg-
ments as a single sentence, the resulting transla-
tions often missed sentence-initial capital letters
because there were almost no such examples in the
training data, where multiple sentences would not
be separated by the special token.

We thus decided to first split the input segments
into sentences using UDPipe (Straka et al., 2016).
Unfortunately, UDPipe tends to over-segment.’
Such over-segmentation may lead to serious errors
in the translation, even when using the document-
level model. We thus restrict the sentences bound-
aries detected by UDPipe only to boundaries af-
ter sentence-final punctuation, using a simple rule-
based segmenter from Udapi (Popel et al., 2017).
This improved BLEU on our dev set slightly.

3.2 Number-unit post-processing

We noticed three types of translation errors related
to numbers and units.

1. Attempt at converting numbers and units.
For example, the Czech sentence Je vysoky
pouhych 190 cm (meaning He’s only 190 cm
tall) was translated as He’s only six feet tall.

2If the number of special tokens on the source side does
not match the number of special tokens on the target side at
inference time, we back off to translating each sentence in a
given sequence independently.

3UDPipe is trained on Universal Dependencies (Zeman
et al., 2018), where titles and headlines with no final punctua-
tion are treated as sentences, which need to be detected by the
sentence segmentation.

Note that six feet is 183 cm, so the translation
was not exact.

2. Converting units without numbers. For exam-
ple, 27 K& was translated as $27, while the
correct translation should be 27 crowns or 27
CZK.

3. Not converting separators. English uses com-
mas (or thin spaces) as thousand separators
and dots as decimal separators, but Czech uses
the opposite convention (with space being a
more common thousand separator than dot).
So e.g. Czech 179,500 kg means 179 and
a half kg (with precision up to 1 gram) and
the correct translation to English should be
179.500 kg, but CUNI-DocTransformer (and
many other systems) keeps the phrase untrans-
lated, resulting in a thousand times higher
value.

The first type is quite rare — 0.7% of numerical
expressions with units in cs-en and 0.6 in en-cs, ac-
cording to Table 3, while some of these cases may
be correct translation (correctly converted num-
ber and unit). The second type is more frequent
—11.1% and 6.5%, respectively. The third type is
also frequent — in 100,000 Czech sentences from
CzEng 2.0 cs-mono, there were 2594 numbers with
a separator and out of these 275 (10.6%) were not
correctly converted in the English CUBBITT trans-
lations; similarly in 100,000 English sentences in
en-mono, there were 4376 numbers with a separa-
tor and out of these 263 (6.0%) were not converted
in the Czech CUBBITT translations. We have no-
ticed all three types of errors not only in CUBBITT,
but we have not inspected these other MT systems
in detail yet.

We implemented a rule-based tool which tries
to fix such errors in post-processing.* It detects
imperial/SI units of length, weight, speed, area and
volume; units of temperature (Fahrenheit/Celsius)
and currencies (USD, CZK, EUR), but it can be
easily extended. By default, it keeps the units and
numbers the same (except for the thousand/decimal
separators), but it can be configured to convert the
units and numbers. We had to deal with several
edge cases, such as various ways how to write num-
bers and units or handling multiple numbers in a
sentence with a possibly changed word order (using
a word aligner).

*https://github.com/vsvandelik/
cubbitt-fixer

124



kept cs-en en-cs
number unit # % # %
A yes yes 2689 86.5 3548 85.7
B yes no 346 11.1 268 6.5
C no yes 21 0.7 24 0.6
D no no 21 0.7 13 0.3
E detection failure 31 1.0 287 6.9
total 3108 100.0 4140 100.0

Table 3: Automatic analysis of numerical expressions
with units in a sample of 100 000 sentences from the
synthetic parts of CzEng 2.0. Numerical expressions
that were detected only in the source sentences, but not
in the (MT) translation, are marked as detection failure.
Cases B and C where only the unit or only the number
were converted can be safely considered as errors — so
the percentages are marked in bold.

Using our tool, we analyzed a sample of the
synthetic training data in CzEng 2.0 and found out
that at least 11.8% of Czech and 7.1% of English
expressions with numbers and units are translated
wrong, see Table 3.

After submitting CUNI-DocTransformer, we an-
alyzed the WMT2021 news test sets and found
out that there were only 4 sentences affected by
our post-processing. All 4 cases were of the same
type — “korun” was translated as “$”, which was
corrected to “crowns”,

4 Experiments in Marian

The goals of the experiments described in this sec-
tion were:

» Reimplement the Block-backtranslation train-
ing (Popel et al., 2020) in Marian (Junczys-
Dowmunt et al., 2018). Block-backtranslation
was first implemented in the Tensor2Tensor
framework in the CUBBITT system, also
known as CUNI-Transformer2018 (Popel,
2018).

» Explore the effect of Block-backtranslation
(vs. standard shuffled backtranslation (Sen-
nrich et al.)), checkpoint averaging and
Tagged backtranslation (Caswell et al., 2019).

* Try a novel type of Tagged backtranslation
with tags on the target side.

* Explore interactions of the above-mentioned
methods.

4.1 Marian settings

We followed the standard Transformer Big hyper-
parameters, with 6 encoder and 6 decoder lay-
ers (unlike CUNI-DocTransformer, which has 12
encoder layers). Other differences from CUNI-
DocTransformer are: Marian was trained on sen-
tences (no document level) of up to 150 subwords
(-—max—-length 150). It was trained on a sin-
gle GPU (instead of 8), but using 8 batches per
updated (——optimizer—delay 8), thus result-
ing in a similar effective batch size. Due to time
reasons we trained all our Marian models just for
a single epoch on the whole CzEng 2.0 training
data, containing all three parts: authentic parallel
data, synthetic CS-mono and synthetic EN-mono,
i.e. using both backtranslation and forward trans-
lation (Ueffing et al., 2007; Kim and Rush, 2016).
The English—Czech CUNI-DocTransformer was
not trained on the EN-mono part, but it was trained
“until convergence”, for 700k updates (which is not
easily converted to epochs because the authentic
data was upsampled for the Block backtranslation),
i.e. several times more updates that the Marian
model. Finally, we accidentally used too small
blocks in the Block backtranslation, as described
in the following section.

4.2 Replicating CUBBITT

In our first experiment, we tried to replicate the
CUNI-Transformer2018, which also uses the Trans-
former Big hyperparameters (with 6 encoder and
6 decoder layers) and sentence-level training. Our
Marian results were about 1.5 BLEU worse on var-
ious WMT dev sets on average, which is better
than we expected when training for a single epoch
only. According to our preliminary experiments,
including forward-translation data (EN-mono in
our case) makes the initial training faster (i.e. bet-
ter BLEU after the first epoch), although it does
not improve the final BLEU when training until
convergence. Forward translation data are great for
fast uptraining and model distillation — the newly
trained model is being trained to behave similarly
as the original model used to produce the synthetic
translations. The synthetic translations are consis-
tent (if no noising is used) — the same sentence is
translated always the same way.

While the final BLEU results are good enough,
the learning BLEU curves on Figure 1 do not show
the camel-shape progress typical for Block Back-
translation Popel et al. (2020). We also did not
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observe the synergy effect of Block backtransla-
tion and checkpoint averaging. The explanation is
simple: when dividing the data for Block backtrans-
lation, we accidentally used 10 blocks of authentic
data and 20 blocks of synthetic data. Thus there
was less than one checkpoint per each block on
average, which goes against the main idea of Block
backtranslation, where each block of authentic or
synthetic data should be big enough to fit at least
8 checkpoints (considering checkpoint averaging
with 8 checkpoints). We think this is the reason
why we do not see any significant differences be-
tween block and shuffled in Tables 4 and 5 and also
between these two tables (as an effect of checkpoint
averaging).

4.3 Tagged backtranslation

For our experimenting, we decided to try labeling
the data based on its authenticity — The labels
would have two parts, one specifying whether the
source side was an authentic sentence, or created us-
ing back translation or forward translation (Ueffing
et al., 2007; Kim and Rush, 2016), and the other
part specifying the same for the target side. We
tried having no labels at all, labeling only one side
or the other, or labeling both sides. However, in all
these scenarios, every label that existed specified
the authenticity of both the source and the target
side. This is very similar to tagged backtranslation
(Caswell et al., 2019) but we tried using our labels
on the target side as well and we explored possi-
ble synergy between block ordering or checkpoint
averaging by trying the different versions.

Since all of czeng20-train, czeng20-enmono,
czeng20-csmono were used, the labels were
auth+auth, auth+synth and synth+auth.
In each dataset, where the label was present, it was
situated at the beginning of each sentence, space-
separated from the sentence itself.

In addition to the main experimenting with the
four variants of source and target side labeling, we
created versions with data ordered in blocks (of
authentic vs backtranslated data). This resulted in
eight versions being trained — all combinations of:
source side labeling yes/no, targets side labeling
yes/no, block order / completely shuffled data.

When the training data was ordered into blocks,
there were about 10 blocks of each of the data
kinds (czeng20-train, czeng20-csmono, czeng20-
enmono) meaning 30 blocks in total. With our
checkpoint frequency this meant that one block

was slightly smaller than the data seen between
two neighboring checkpoints, which are very small
blocks. The completely shuffled datasets were cre-
ated from the block ones by shuffling them using
a random permutation. The order of data points
was the same among all block-ordered datasets and
same among all completely shuffled datasets.

For time reasons, we only managed to train
each model on a single epoch (using marian’s
——after—epochs 1). From the training, we ob-
tained eight variants, which we then did checkpoint
averaging on, creating additional eight variants. We
then evaluated these 16 variants on the wmt17 new-
stest dataset, and chose two representing models
for each — one was the model at the end of the
training, the other was the model that achieved the
best BLEU score on wmtl7. We evaluated these
32 models on concatenation of wmt15, wmt16 and
wmt18 and chose those seven models that reached
the best BLEU on this testset.

4.4 Results

We observed some differences in performance
among the trained versions. The images below
show the development of BLEU score (measured
on a test set, not the training data) as the train-
ing progressed. We can see that there are differ-
ences among the versions but it is hard to find a
pattern in them. They also do not seem to be consis-
tent among the test sets — wmt15, wmt16, wmtl7,
wmt18. When wmt15, wmt16 and wmt17 are con-
catenated, the differences seem to largely disappear
(see the tables below) and we still do not see any
clear pattern in the results.

We also fail to see clear differences in perfor-
mance between block ordering vs. completely shuf-
fled corpora, and checkpoint averaging vs. no aver-
aging. There is also no synergy between those two
in our results, which is very likely caused by our
setup of extremely small blocks. The blocks used
in CUBBITT were large enough to contain all eight
averaged checkpoints of certain models, while our
blocks didn’t even fully contain one checkpoint.

5 Conclusions

In this paper, we presented two sets of experiments:
automatic correction of numeric expressions with
units in rule-based post-processing and various set-
tings of Tagged backtranslation.

The correction of numeric expressions with units
focuses on errors which are relatively rare and do
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Table 4: Both BLEU scores shown were measured no the concatenation of wmt15, wmt16 and wmt18. best-BLEU
is the score of the model that achieved the best BLEU on wmt17, while final-BLEU is the BLEU of the model at

Source labeling Target labeling Ordering best-BLEU final-BLEU
yes yes block 27.3 27.4
yes yes shuffled 27.3 27.2
yes no block 27.2 274
yes no shuffled 27.2 27.3
no yes block 27.2 27.2
no yes shuffled 27.4 27.4
no no block 27.3 27.3
no no shuffled 27.5 27.5

the end of the training. All of the models in this table are without checkpoint averaging.

Table 5: This table contains the BLEU scores of models with checkpoint averaging. The columns are the same

Source labeling Target labeling Ordering

best-BLEU final-BLEU

yes
yes
yes
yes
no
no
no
no

yes
yes
no
no
yes
yes
no
no

block
shuffled
block
shuffled
block
shuffled
block
shuffled

274
27.2
27.5
27.2
27.3
274
27.3
27.5

274
27.2
27.5
27.2
27.3
274
27.3
27.5

and have the same meaning as in the previous table.

Source labeling Target labeling Ordering checkpoint averaging point wmt21 BLEU
yes no blocks yes last 20.1
yes no blocks no last 20.0
yes no blocks yes best 19.9
no no shuffled no last 19.9
no no shuffled no best  19.6
no no shuffled yes last 19.6
no yes shuffled no last 19.6

Table 6: These are the BLEU scores of the submited models on the wmt21 test set.
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Figure 1: wmtl6 BLEU training curves of averaged
models

not affect automatic metrics such as BLEU much,
but can result in serious misunderstanding of the
meaning of the translation. Unfortunately, these
errors won’t be properly reflected even in the of-
ficial WMT (context-sensitive, but sentence-level)
manual evaluation, where each sentence’s score is
weighted the same, even if some errors are crucial
for the meaning of the whole document.

The experiments with Tagged backtranslation
using a Marian reimplementation of CUBBITT
did not show any substantial differences in the re-
sults nor any consistent pattern. However, we hope
that future work continuing the research on vari-
ous types of training data (authentic vs. synthetic;
forward vs backward; different domains) and their
synergies may bring new results and better under-
standing of the backtranslation training etc.
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Figure 2: wmtl7 BLEU training curves of averaged
models
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Figure 3: wmtl8 BLEU training curves of averaged
models
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Figure 4: wmtl6 BLEU training curves of non-
averaged models
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averaged models
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Abstract

This paper describes our submission to the
constrained track of WMT21 shared news
translation task. We focus on the three rel-
atively low resource language pairs Bengali
+> Hindi, English <+ Hausa and Xhosa <
Zulu. To overcome the limitation of rela-
tively low parallel data we train a multilingual
model using a multitask objective employing
both parallel and monolingual data. In addi-
tion, we augment the data using back trans-
lation. We also train a bilingual model in-
corporating back translation and knowledge
distillation then combine the two models us-
ing sequence-to-sequence mapping. We see
around 70% relative gain in BLEU point for
En < Ha and around 25% relative improve-
ments for Bn < Hiand Xh < Zu compared
to bilingual baselines.

1 Introduction

Neural machine translation (NMT) witnessed a lot
of success in the past few years especially for high
resource languages (Vaswani et al., 2017). Improv-
ing the quality of low resource languages is still
challenging. Some of the popular techniques are
adding high resource helper languages as in multi-
lingual neural machine translation (MNMT) (Dong
et al., 2015; Firat et al., 2016; Ha et al., 2016; John-
son et al., 2017; Arivazhagan et al., 2019), using
monolingual data including pre-training (Liu et al.,
2020), multi-task learning (Wang et al., 2020), back
translation (Sennrich et al., 2016) or any combina-
tion of these methods (Barrault et al., 2020) and
system combination of multiple systems (Liu et al.,
2018).

This paper describes the Microsoft Egypt Devel-
opment Center (EgDC) submission to the WMT21
shared news translation task for three low resource
language pairs (six directions), Bengali <> Hindi
(Bn < H1i), English +» Hausa (En <> Ha) and
Xhosa <> Zulu (Xh « Zu). We focus on the
constrained track because it is easier to compare

different systems and it is always possible to im-
prove performance by adding more data. The main
features of our approach are as follows:

* Using a recently proposed multitask and mul-
tilingual learning framework to benefit from
monolingual data in both the source and target
languages (Wang et al., 2020).

* Using knowledge distillation (Freitag et al.,
2017) to create bilingual baselines from the
original multilingual model and combining it
with the multilingual model.

The paper is organized as follows. Section 2
gives an overview of the data used in the con-
strained scenario, followed by section 3 that gives
a detailed description of our approach. Section 4
presents our experimental evaluation. Finally, our
findings are summarized in Section 5.

2 Data

Following the constrained track, we use bitext data
provided in WMT?21 for the following pairs: Ben-
gali <+ Hindi, English <+ Hausa, Xhosa <+ Zulu
and English <+ German. Statistics of the paral-
lel data used for the three pairs in addition to the
German helper are shown in Table 1. We also use
monolingual data for all previously mentioned lan-
guages provided in WMT?21 for techniques such as
multi-task training and back-translation. Statistics
of the monolingual data used for the 6 languages in
addition to the German helper are shown in Table
2. For very low resource languages, Hausa, Xhosa
and Zulu, we use all the available monolingual
data, e.g. NewsCrawl + CommonCrawl + Extended
CommonCrawl for Hausa, and Extended Common-
Crawl for both Xhosa and Zulu. For relatively high
resource languages, Bengali, Hindi, English and
German, we only use a subset of the provided data
mostly from NewsCrawl due to its high-quality.
In addition to the NewsCrawl monolingual subset,
we add a sampled subset from CommonCrawl to
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Language pair # of sentences
Bengali <> Hindi 3.36M
English <+ Hausa 750K
Xhosa ++ Zulu 94K
English <+ German 84.8M

Table 1: Bitext data used for bilingual and multilingual
systems. For each language pair, we use all available
sources released in WMT21

Language # of sentences

Raw Cleaned

Bengali 53.8M | 53.3M

English 75M 73.5M
German 111.2M | 109.9M

Hausa 10.8M 6.2M

Hindi 60.2M 59.8M

Xhosa 1.6M 950K

Zulu 2M 1.4M

Table 2: Monolingual data used for multi-task training
and back-translation

avoid biasing into the news domain especially for
Bengali <+ Hindi and Xhosa <+ Zulu whose target
evaluation domain come from Wikipedia content.

2.1 Data Filtering

For Bengali, English, Hindi and German, we apply
fastText ! language identification on the monolin-
gual data to remove sentences which are not pre-
dicted as the expected language. We do the same
for Hausa, Xhosa and Zulu using Polyglot > be-
cause fastText does not cover these three languages.
The resulting size of the monolingual data of each
language is shown in Table 2.

3 System Architecture

The final MT system in each direction is an en-
semble of two NMT models comprising a bilingual
model (one for each of the six primary directions)
and a multilingual model trained to provide trans-
lations for 8 directions (the six primary directions
plus English <+ German). The multilingual system
uses a recently proposed multitask framework for
training (Wang et al., 2020). We describe the indi-
vidual systems in Subsection 3.1. This is followed
by presenting our system combination techniques
in Subsection 3.2. Finally we present the archi-
tecture of the submitted system highlighting our

"https://fasttext.cc/docs/en/language-identification.html
Zhttps://github.com/aboSamoor/polyglot

design decisions in Subsection 3.3.
3.1 Individual Systems

This subsection describes the individual systems
and their training leading to the proposed system
combination strategy in the following subsection.
We first build bilingual models for the six primary
directions using the data shown in Table 1 except
the English <+ German. These serve as baselines
to compare to the developed systems. The mod-
els use a transformer base architecture comprising
6 encoder and 6 decoder layers and a 24K joint
vocabulary built for Bengali <+ Hindi, a 8K joint
vocabulary built for English <+ Hausa and a 4K
joint vocabulary built for Xhosa <+ Zulu using sen-
tencepiece (Kudo and Richardson, 2018) to learn
these subword units to tokenize the sentences. In
addition to the baseline bilingual models, we use
knowledge distilled (KD) data and back-translated
(BT) data generated from a multilingual model to
build another set of bilingual models for each of
the six primary directions. This multilingual model
is described below. The purpose of these models is
to participate in the ensemble along with the multi-
lingual models. The latter bilingual models follow
the same transformer base architecture and joint
vocabulary used in the baseline bilingual models.

The multilingual model combines the 8 trans-
lation directions shown in Table 1. These are the
six primary directions plus English <+ German
as a helper. The latter is mainly used to improve
generation on the English centric directions. The
model uses a 64K joint vocabulary constructed
using sentencepiece (Kudo and Richardson,
2018) from a subset of the monolingual data of
each language as described in Section 2. The
transformer model has 12 encoder and 6 decoder
layers. In addition, a multitask objective is used
during training to make use of monolingual data.
The objective comprises the usual parallel data
likelihood referred to as MT, a masked language
model (MLM) at the encoder and a denoising
auto-encoder (DAE) (similar to mBART (Liu
et al., 2020)) at the decoder side. The latter two
objectives help leverage monolingual data for
both the encoder and the decoder sides. The
three objectives are combined using different
proportions according to a schedule during the
training. Please refer to (Wang et al., 2020) for
details.
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To summarize we build the following models:

* Bilingual models trained using parallel data
in Table 1 for the 6 primary directions. These
are mainly used as baselines.

* Multilingual models trained using a multitask
objective using parallel and monolingual data
and comprising 8 directions.

* Bilingual models trained using KD and BT
data generated using our best multilingual
model. These are combined with the best mul-
tilingual model as described in 3.2.

3.2 System Combination

System combination or ensembling is known to
improve the performance over individual systems.
There are many ways to create an ensemble (Liu
et al., 2018; Dabre et al., 2019). For example, indi-
vidual models obtained from different checkpoints
during the same training or by training models shar-
ing the same vocab and architecture using different
data or simply different random seeds can be com-
bined using model averaging techniques. Here,
we opt to combine different models since it gener-
ally leads to better performance because different
models tend to be more complementary. To this
end, we propose a simple and effective method to
combine completely different architectures. The
proposed method could be also used in conjunction
with checkpoint and model averaging for further
gains, but we haven’t tried this in our experiments
due to time limitations.

The basic idea of our combination is very simple.
Assume we have the translation pair z — y where
y is the reference translation. The output of model
1 is the pair x — y1 and the output of model 2 is
the pair x — y2. This can be generalized to mul-
tiple systems but we limited our combination to
only two models. We train a new model that takes
the set of hypotheses (possibly augmented by the
source sentence) from the two models to generate
the target sentence. Thus this model combines the
outputs of two models in the ensemble to produce a
translation closer to the original target sentence i.e.
< HYP >yl < HYP > y2 — y.We also ex-
perimented with adding the source to the input i.e.
<SRC >z < HYP >yl < HYP >y2 =y
which led to around 0.3 BLEU improvement for
Ha — En, but we haven’t tried on other pairs due
to time limitation. All combination models use 6

layers encoder and decoder and a 64K vocabulary
similar to the multilingual system. These combi-
nation models use the full bitext and dev data pro-
vided in WMT21 as shown in Table 1. The system
combination is outlined in Figure 1. This ensem-
bling technique can be thought of as providing both
system combination and post-editing capabilities.

3.3 Overall System

Our overall system is depicted in Figure 2. The
first module shows the data input where language
identification (LID) is used to filter the mono-
lingual data. As mentioned in Section 2.1 we
use fastText and polyglot for LID depending on
the language. We first build bilingual baselines
which are not shown in the figure. Then as
shown in the second module, we build 4 multi-
lingual systems using different task objectives as
follows: MT, MT + MLM,MT + DAFE and
MT + MLM + DAEF trained on the 8 directions
shown in Table 1 following the temperature-based
strategy in (Arivazhagan et al., 2019) to balance
the training data in different resource languages
using T = 5. We pick the best system and use it to
back translate the selected monolingual data. For
most pairs, as detailed in Section 4, we find that
MT + DAE and MT + M LM + DAFE are quite
close. Therefore, we use the MT + DAF to do
back translation for all submitted 6 pairs. We use
beam search with beam size = 5 when generating
the synthetic back-translated data. Once we get
the back-translated data (called BT7) we add it to
our parallel and monolingual data and build a new
multilingual model called MT + DAFE + BT;. We
tag the back-translated data with <BT> tag at be-
ginning of each source sentence so the model can
differentiate between the genuine parallel and back-
translated data quality. The resulting model is used
to regenerate the back-translated data (called BT5)
and to knowledge distill the bitext (called K D).
The latter two data sets are augmented and used to
build a bilingual system (called MT'+ K D+ BT5).
We upsample the K D data set and the upsampling
ratio is selected based on parameter sweeping and
validating the resulting improvement on the val-
idation set. Finally, the latter bilingual model is
combined with our final multilingual model using
the method in Section 3.2 to create our submission.

4 Experimental Results

In this section, we describe the results of our in-
termediate and final systems. We report Sacre-
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Figure 1: The system combination component used for our experiments.

BLEU (Post, 2018) on the validation set released
in WMT?21, and both SacreBLEU and COMET
(Rei et al., 2020) using the available implementa-
tion * on the official test set released in WMT21.
The results for the six submitted language pairs are
in Tables 3-5. The first row in each table shows
the bilingual baseline which performs relatively
poor due to the limited amount of parallel data
for each pair. This is followed by the four mul-
tilingual systems with different objectives. It is
clear that adding a monolingual objective brings
nice improvements for all language pairs. The
MT + DAFE and MT + M LM + DAFE perform
closely for all language pairs indicating that target
monolingual data is most important. The next two
rows show the results of adding back-translated
data to the multilingual model and a bilingual base-
line using back-translated and knowledge distilled
data generated from the best multilingual model.
As expected adding back translation brings signifi-
cant improvement to all language pairs. Also using
the multilingual model to create data for a bilin-
gual model shows excellent results that outperform
the multilingual model. Finally, the ensemble, as
expected, performs better than the individual mod-
els. The significant difference between reported
improvements in Ha <+ En and other directions
shows the effectiveness of adding De <> En paral-
lel and monolingual data that helps English centric
directions more than other directions. We evaluated
the final submitted systems on the official test set
released in WMT21 as shown in Table 6.

*https://github.com/Unbabel/COMET

System Ha-En | En-Ha
bilingual baseline 14.10 13.78
multi. MT 1432 | 13.16
+ MLM 16.18 13.94
+ DAE 18.05 14.91
+ MLM + DAE 17.35 15.03
multi. MT + DAE + BT, 21.11 | 20.24
bilingual MT + KD + BTy | 24.43 | 20.68
ensemble 2490 | 21.00

Table 3: Results of Ha-En and En-Ha systems. We re-
port SacreBLEU scores on the validation set provided
in WMT21

System Bn-Hi | Hi-Bn
bilingual baseline 18.60 | 10.90
multi. MT 18.21 | 10.02
+ MLM 18.82 | 10.67
+ DAE 18.64 | 10.40
+ MLM + DAE 19.20 | 11.27
multi. MT + DAE + BT, 20.18 | 12.29
bilingual MT + KD + BT, | 21.03 | 12.90
ensemble 21.20 | 13.30

Table 4: Results of Bn-Hi and Hi-Bn systems. We re-
port SacreBLEU scores on the validation set provided
in WMT21

5 Summary

This paper describes our submission to the con-
strained track of WMT21. We focus on the three
relatively low resource language pairs Bn <> Hz1,
En < Ha and Xh < Zu. To overcome the lim-
itation of relatively low parallel data we train a
multilingual model using a multitask objective re-
cently proposed in (Wang et al., 2020). In addition,
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Figure 2: The overall system flow used for our experiments

System Xh-Zu | Zu-Xh bilingual model incorporating back translation and
bilingual baseline 8.00 7.60 knowledge distillation. Finally, we combine the
multi. MT 7.53 7.47 two models, using a flexible sequence-to-sequence
+ MLM 7.23 7.02 approach, to yield our submitted systems. We see
+ DAE 8.53 8.24 large gains up to 8-10 BLEU points for En <> Ha
+ MLM + DAE 8.20 7.80 and nice improvements of up to 2-3 BLEU points
multi. MT + DAE + BT, 9.06 8.86 for Bn <+ Hi and Xh < Zu.
bilingual MT + KD + BTz | 9.80 9.17
ensemble 10.00 9.30
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Abstract

We present Mideind’s submission for the
English—Icelandic and Icelandic—English
subsets of the 2021 WMT news translation
task. Transformer-base models are trained for
translation on parallel data to generate back-
translations iteratively. A pretrained mBART-
25 model is then adapted for translation using
parallel data as well as the last backtransla-
tion iteration. This adapted pretrained model is
then used to re-generate backtranslations, and
the training of the adapted model is continued.

1 Introduction

Our work on machine translation for Icelandic has
been going on for a couple of years as a part of the
government sponsored Icelandic Language Tech-
nology Programme (Nikuldsdéttir et al., 2020). By
building on state-of-the-art solutions we have de-
veloped an open and effective translation system
between Icelandic and English.

To achieve this, we collect parallel Icelandic and
English texts which are filtered for good quality
alignments. We also collect monolingual text for
backtranslations. We follow tried and tested meth-
ods in neural machine translation using iterative
backtranslation (Edunov et al., 2018) and adapt the
multilingual denoising autoencoder model mBART-
25 (Liu et al., 2020) for translation.

2 Datasets

We used several parallel and monolingual datasets,
both publicly available and created in-house.

2.1 Parallel data

The parallel data used are Parlce (Steingrimsson
et al., 2020) and the JW300 corpus (Agi¢ and Vuli¢,
2019). In addition we used a parallel student theses
and dissertation abstracts corpus, IPAC, generated
in-house and sourced from the Skemman reposi-

petur,

haukurpj, vt}@mideind.is

tory! as described in (Sfmonarson and Snzbjarnar-
son, 2021). A breakdown of the data is shown in
Table 1.

Corpus #Sentences
The Bible 33k
EEA regulatory texts 1,700k
EMA 404k
ESO 12.6k
OpenSubtitles 1,300k
Tatoeba 10k
Jehova’s Witnesses (JW300) 527k
Other* 93k
IPAC 64k

Table 1: Parallel corpora used. #Sentences are the num-
ber of sentence pairs. Other* denotes software local-
izations, Project Gutenberg literature and the Icelandic
sagas.

Following (Pinnis, 2018) we apply simple heuris-
tic filters to the parallel data, mainly for capturing
OCR and PDF errors, and correcting or removing
character encoding errors after deduplication. Fil-
ters include but are not limited to: empty sequence
removal, length cut-offs, character whitelists, mis-
match in case and symbols between languages, edit-
distances between source and target, normalizing
of punctuation, and ad-hoc regular expressions for
Icelandic specific OCR/PDF errors. For a more
in-depth description see (Jonsson et al., 2020).

Other potential parallel datasets are ParaCrawl
(Banén et al., 2020) and CCMatrix (Schwenk et al.,
2021). Manual review of a couple of hundred ran-
domly chosen lines from ParaCrawl revealed that
the data quality is quite low for Icelandic, many
lines are machine translated or badly aligned. We
therefore did not include ParaCrawl. CCMatrix did
not exist when the project started and we have not

"https://skemman.is

136

Proceedings of the Sixth Conference on Machine Translation (WMT), pages 136-139
November 10-11, 2021. ©2021 Association for Computational Linguistics



taken the time to review and integrate it although a
quick inspection indicates that the quality is higher
than in ParaCrawl.

2.2 Data used for backtranslation

We collected and translated monolingual data
for backtranslations, made available in (Simonar-
son et al., 2020), mostly building on the work
in (Edunov et al.,, 2018). The English sen-
tences (44.7m) are retrieved from the Wikipedia,
Newscrawl and Europarl corpora. The Icelandic
sentences (31.3m) are sourced from the Icelandic
Gigaword Corpus (Steingrimsson et al., 2018).

Lang. Name #Sentences
IS Court rulings 1.8M
IS Supreme court rulings M
IS Laws 814k
IS Web of Science 268k
IS Wikipedia 405k
IS Parliamentary proc. 6.2M
IS Misc 350k
IS Newspaper (Mbl) 13.6M
IS Newspaper (Visir) 4.9M
IS Radio transcripts 1M
EN Newscrawl 33.4M
EN Wikipedia 9.3M
EN Europarl 2.0M

Table 2: Monolingual data used for backtranslation.

3 Training of small transformer models

Our earlier models were trained using the
transformer-base configuration described in
(Vaswani et al., 2017) as implemented in Google’s
Tensor2Tensor (TensorFlow-based) (Vaswani et al.,
2018) library. For later models we switched to
Facebook’s Fairseq (Ott et al., 2019) library. An
improved translation task was implemented in
Fairseq to include BPE dropout; it is available in
the greynirseq? library.

The transformer-base models were trained iter-
atively and used to generate new backtranslations.
We stopped when each language direction had been
trained on backtranslations that were produced by
a model that had itself seen backtranslations at
training time. We compared tagged and untagged
backtranslations, sampling versus beam search and
different mixing ratios (upsampling rate) between
parallel and backtranslated data. Using tagged

https://github.com/mideind/greynirseq

backtranslations as opposed to no tag showed an
improvement from 16.5 to 17.5 BLEU? after the
first iteration over the IPAC development set, while
using no backtranslations gave 15.0, so we pro-
ceeded to use tagged translations.

Model BLEU
Transformer-base 16.5
Transformer-base + bt 17.5
Transformer-base + iterative-bt 18.5
mBART (first run) 23.1
mBART (continued) 23.6

Table 3: BLEU scores over IPAC for the EN-IS direc-
tion.

We use the IPAC test set to measure BLEU since
it was available, has a large range of topics (al-
though maybe not a large range of style) and is very
unlikely to be accidentally included in the training
data. The IPAC data is out of distribution with the
rest of the training data but we do not consider that
to be a problem since our goal is a general purpose
model. The WMT dev set did not exist at the time.

We used a joint BPE vocabulary of size 16k and
shared input-output embedding matrices. We pre-
tokenized the input using tokenizer 4 for the
Icelandic side and spaCy (Honnibal et al., 2020) for
the English side. A beam width of 4 was used for
beam search during backtranslation. Each training
iteration took approximately one week on a single
GTX 1080 graphics card. We were pleasantly sur-
prised with how far we got with only this modest
hardware.

3.1 Translation mixing ratio selection and
beam noise

We assessed the impact of the ratio of synthetic
backtranslation data to authentic parallel data on
translation performance. Best results were obtained
with a 1:2 ratio of authentic to synthetic data, using
IPAC (held out from training) for evaluation.

For noising the backtranslation beam outputs, we
follow (Edunov et al., 2018) and used within-k per-
mutation of whole words (with k=3), whole-word
masking, and word dropout. Using sampling and
noised beam outputs yielded comparable results.

3SacreBLEU signature: BLEU+case . mixed+
lang.en-is+numrefs.l+smooth.exp+tok.13a+
version.1.5.1

*https://github.com/mideind/Tokenizer
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4 Adapting mBART-25 for translation

The mBART-25 (Liu et al., 2020) (610M pa-
rameters) language model is far larger than the
Transformer-base model (110M parameters). It
was pretrained on 25 languages, including English
and Swedish, but not Icelandic. We adapt it for
translation from Icelandic to English and vice versa,
using the same human-derived parallel translation
data as for the transformer-base model along with
the synthetic backtranslated corpus in a ratio of
1:2. We do not use any pre-tokenization and in-
herit the BPE sententencepiece vocabulary from
mBART-25 (of size 250k) with the addition of
an Icelandic language marker that was randomly
initialized. We use the same hyperparameters as
in (Liu et al., 2020) and the implementation from
Fairseq (Ott et al., 2019). The models are trained
until their performance on the development sets
plateaus.

The initial learning rate was set to 3e-4. Sixteen
32GB nVidia V100 GPUs connected with Infini-
band were used for training. The effective batch
size was around 10k sequences and the training
took around 4 days of wall clock time per model.

Subsequently, these trained models were used
to generate improved backtranslations. We then
continued training the first iteration of our mod-
els with the new backtranslated data for another
30,000 steps for the Icelandic-English direction,
and 36,000 steps for the English-Icelandic direc-
tion. The same training configurations were main-
tained as for the earlier runs.

Dir. Steps ’21test ’21dev EEA
En-Is 40k 22.7 259 545
En-Is 40k + 36k 24.3 278 57.6
Is-En 36k 329 304 61.0
Is-En 36k + 30k 33.5 31.8  63.2

Table 4: BLEU scores for the mBART-25 adapted trans-
lation models over the newstest2021 and EEA evalua-
tion sets.

The benefit of continuing training of the mBART-
derived models ranges from 0.6 to 3.1 BLEU as
shown in Table 4. BLEU performance is shown for
both the newstest2021 development set as well as
our cleaned-up dataset with sentence pairs from the
EEA regulation corpus. Note that we do not fine-
tune prior to evaluation nor do we perform check-
point averaging.

5 Conclusion

We have shown how a small team with modest
resources can adapt state-of-the-art methods to a
medium resource language and achieve competitive
results on machine translation between English and
Icelandic.

The trained models are available for transla-
tionat https://velthyding. is and will be
made available at the open CLARIN-IS> repos-
itory. While a formal human comparison of the
current models to the popular Google Translate ser-
vice has not been performed, hundreds of monthly
active users choose our solutions for translation
between Icelandic and English.

6 Future work

We note the relatively small training time of the
mBART adaptation and the lack of Icelandic data
in the pretraining task for mBART as primary fac-
tors that can be addressed for improving results.
Additionally online (or semi-online) self-training
instead of train-then-translate would also improve
results, especially with selective loss truncation as
described in (Zhou et al., 2021). The data selected
for backtranslation should also be expanded for
greater diversity of both genre and vocabulary. Fi-
nally, extending the translation context beyond the
current sentence level is likely to improve results.
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Abstract

This paper describes Allegro.eu submission
for the WMT21 news translation shared
task. We focus on exploring data filtering
and data augmenting methods. We submit-
ted two single-directional models, one for
English—Icelandic direction and other for
Icelandic—English direction. Our news trans-
lation system is based on the transformer-big
architecture, it makes use of corpora filter-
ing, back-translation and forward translation
applied to parallel and monolingual data alike.

1 Introduction

We participated in the WMT21 news translation
shared task for English<+Icelandic language pair.
It is a medium-resource regime with under 10M
parallel sentences. In our experiments we focused
on two approaches for improving translation sys-
tem: data filtering methods inspired by work of
(Jénsson et al., 2020) and data augmentation meth-
ods like back-translation or self-training (Edunov
et al., 2018; Sennrich et al., 2016; He et al., 2019).
We tried to use bi-directional translation models
but single-directional proved to be better. We also
tried to make use of pretraining on monolingual
corpora, but it also was unsuccessful. Krubinski
et al. (2020) showed in their ablation study that
pretraining is the most successful for low-resource
regimes under 1M parallel sentences.

2 Data

2.1 Data Preprocessing

We removed malformed utf-8 encodings, normal-
ized text with NFKC Unicode normalization form,
unescaped HTML, removed control characters and
converted different whitespaces to a basic space
character.

2.2 Data Filtering

We took part in a constrained track for the
English<Icelandic language pair for the news

karol.grzegorczyk, tsimur.hadeliya}@allegro.pl

translation task. We used similar heuristic for fil-
tering monolingual and parallel data. A proper
sentence pair should fulfil these criteria:

For each sentence separately:

* length in chars € (10, 500)

* length in words € (2,100)

* average word length in chars < 12
* max word length in chars < 28

* digit ratio < 0.15

* outside alphabet ratio < 0.015

* language detection probability > 0.9
Criteria calculated on a sentence pair:

* no digit sequence mismatch
* Levenshtein distance > 5

* Poisson based length logprob > -10

For language identification we used the CLD2 li-
brary. We arrived at these threshold values by ana-
lyzing outliers of clean corpora: newsdev2021 de-
velopment dataset and Jonsson’s cleaned Parlce cor-
pus (Jonsson et al., 2020). Our filtering procedure
is inspired by Jénsson’s and extracts 72% of the
same sentences they extracted from the raw Parlce
corpus (Barkarson and Steingrimsson, 2019). Each
heuristic removes up to 5% of lines from those
clean corpora, when all thresholds would be ap-
plied they would remove around 9% from the
cleaned Parlce corpus. For all available raw paral-
lel corpora this procedure would remove 35% of
sentences. Table 1 shows sizes of raw and filtered
corpora available in the constrained track.

2.3 Poisson based length filtering

This section describes an improved method of filter-
ing sentences based on their lengths. A simple ratio
of sentence lengths is a common method, but it is
often too strict for short sentences and too loose
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Parallel corpora raw filtered left
Parlce.1_1 3.56M  1.98M 0.56
ParaCrawl.7_1 239M 195M 0.81
WikiMatrix. 1 313k 177« 0.57
wikititles.3 50k 2k 0.04
Total 6.31IM 4.1M  0.65

Table 1: Sizes of parallel corpora.

for longer ones. We are using a simple assump-
tion, that the distribution of lengths of expected
translation is given by the Poisson distribution with
a mean equal to a length of the source sentence.
This type of length filtering is used by bicleaner
framework (Sanchez-Cartagena et al., 2018). We
use a correction factor scl = 1.04, which is a ratio
of chars in the English side to the Icelandic side
for the whole parallel corpus. We multiply source
length by it or by its reciprocal before calculating
probabilities, depending on the context. Figure 1
compares this method with a ratio-based heuristic
where the allowable ratio range is (0.5, 2). For this
language pair the correction factor is close to 1.0,
but for other language pairs it can deviate more,
which can lead to bias when using a simple ratio-
based heuristic.

500

400

300 A

len_en

200 -

100 4 -
—— Poisson

—— Ratio
— y =scl*x

0 100 200 300 400 500

Figure 1: Distribution of lengths of parallel corpora.
As depicted, Poisson-based heuristic allows more varia-
tion for shorter sentences and lower variation in length
for longer ones.

2.4 Translation postprocessing

Our system has a tendency to generate the same
quotation as in source text. Therefore, before sub-
mitting our translations for evaluation, we applied
simple regular expressions to fix quoting. We made
sure that only (" ") for English submission was used
and for Icelandic we made sure that (,, ©“) was used.

3 System overview

All of our models are based on the Transformer big
architecture, as described in Vaswani et al. (2017).
For training we used OpenNMT-py framework
(Klein et al., 2017) together with sentencepiece
tokenizer (Kudo and Richardson, 2018) unigram
model of size 32k with full character coverage. We
trained models on A100 GPU for 210k steps with a
batch of 8192 tokens which amounts to around 12h
per model. We used half-precision and tied embed-
dings. For optimization we used Adam (Kingma
and Ba, 2014), with a linear warmup for learning
rate for 15k steps up to 0.0005 and inverse square
root decay afterwards. Additionally, all of our mod-
els were randomly initialized.

4 Results

Results are presented in Table 3. We trained a
tokenizer on a cleaned Parlce corpus. A baseline
model we trained on all available parallel corpora
and achieved 18.1 BLEU in English—Icelandic
direction and 24.0 BLEU in Icelandic—English
direction.

4.1 Data filtering impact

We ran 4 variants with the same parameters as de-
scribed at the beginning of section 3, but only for
100k steps. We compared the translation quality of
models trained with filtered training corpus and the
impact of cleaning data used in training tokenizer.
We used the aforementioned cleaned Parlce corpus
(Jénsson et al., 2020) to train the tokenizer. Table
2 presents the results of this comparison.

4.2 Back-translation of monolingual corpora

We took 10M monolingual sentences for each lan-
guage and filtered them as described in section 2.2.
For English we took only News Crawl from 2020,
for Icelandic we used News Crawl 2020 and also
Icelandic Gigaword to obtain full 10M sentences.
We translated the English source to Icelandic, then
translated it back to English. Then we compared
those second translations to source by GLEU score
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clean tokenizer raw tokenizer

16.6/22.6 14.0/19.4
16.2/22.2 14.2/18.9

clean corpus
raw corpus

Table 2: Comparison of impact of filtering data. Values
reported are BLEU scores for en—is/is—en direction
for newsdev2021. We can easily see that training to-
kenizer on clean data has a big impact. Also we can
notice that removing 35% of parallel corpora can im-
prove the quality of the model given the same amount
of compute.

(Wu et al., 2016) and filtered the best 40% of pairs
of original source and first translation based on that.
GLEU score is a variation on the BLEU score. It
is claimed to be a more accurate measure of single
sentence translation quality. We repeated this pro-
cedure for 10M Icelandic monolingual sentences. It
is interesting to note that 4.4% and 2.0% of second
translations were the same as the original source,
for English and Icelandic respectively. We then
created English biased corpus which consisted of:

* 4M of clean parallel corpus

* 4M of English based back-translation where
we used original source as target

* 4M of Icelandic base forward translation
where we used our first translations as target

Then we used this corpus to train a new model, it
achieved 26.8 BLEU in Icelandic—English direc-
tion.

4.3 Back-translation of parallel corpora

We used this newly acquired model to translate the
Icelandic side of clean parallel corpus to English
and likewise filtered by GLEU score for the English
side of the corpus, finally we extracted 75% of most
similar pairs. It is interesting to note that 11% of
translations were the same as the English side of
the parallel corpus. We then created a corpus for
training English—Icelandic model, this time with
typical setup for back-translation where original
sentences were used as a target:

* 4M of clean parallel corpus
* 4M backtranslated monolingual corpus

* 3M backtranslated parallel corpus

Then we used this corpus to train a new model. It
achieved 23.6 BLEU in English—Icelandic direc-
tion and that was our final model for this direction.

newsdev2021
Model En—Is Is—En
baseline 18.1 24.0
BT and FT mono - 26.8
BT mono and parallel  23.6 -
BT mono and parallel - 27.2
final models 23.6 27.4
newstest2021
final submission 22.7 33.3

Table 3: Comparison of forward-translation (FT) and
back-translation (BT) model trained on monolingual
and parallel corpora

Then, analogously, we used this model to translate
the other side of the clean parallel corpora and filter
by GLEU score. It is interesting to note that also
11% of translations was the same as the Icelandic
side of the parallel corpus. We then created a cor-
pus and trained Icelandic—English model which
achieves 27.2 BLEU on the development set. For
this direction our final system was an ensemble of
this new model and previous best.

4.4 Denoising

As it has been recently demonstrated by Raffel
et al. (2020), transfer learning can be success-
fully applied to sequence-to-sequences models.
Therefore, we tried doing unsupervised de-noising
pre-training based on provided monolingual data.
We experimented with three different denoising
schemes:

* Token-based masked language modeling (De-
vlin et al., 2019)

* Whole Word Masking objective inspired by
BERT models released in May 2019

* BART-like denoising with text infilling and
sentence permutation (Lewis et al., 2020)

We tried it in two regimes. One where we pretrain
model and then finetune it on translation down-
stream task. The other where we train both de-
noising and translation objectives simultaneously.
However, we didn’t observe any benefits from do-
ing this. The reason for this is unknown.

5 Conclusion

This paper describes Allegro.eu submission for the
WMT21 news translation shared task. We took part
in constrained track for the English<+Icelandic lan-
guage pair only. Participation in this task allowed
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us to deepen the understanding of filtering methods
common in NMT. The experiments demonstrated
the importance of data filtering in medium-resource
regime machine translation. In this regime, less
data but of higher quality can lead to superior re-
sults.
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Abstract

This system paper describes an end-to-
end NMT pipeline for the Japanese <«
English news translation task as submit-
ted to WMT 2021, where we explore
the efficacy of techniques such as to-
kenizing with language-independent and
language-dependent tokenizers, normaliz-
ing by orthographic conversion, creating
a politeness-and-formality-aware model by
implementing a tagger, back-translation,
model ensembling, and n-best reranking.
We use parallel corpora provided by WMT
2021 organizers for training, and devel-
opment and test data from WMT 2020
for evaluation of different experiment mod-
els. The preprocessed corpora are trained
with a Transformer neural network model.
We found that combining various tech-
niques described herein, such as language-
independent BPE tokenization, incorporat-
ing politeness and formality tags, model
ensembling, n-best reranking, and back-
translation produced the best translation
models relative to other experiment sys-
tems.

1 Introduction

Despite recent advances in machine transla-
tion made possible by neural networks with
attention mechanism (Bahdanau et al., 2014;
Luong et al., 2015), the Japanese-English pair
remains a challenging language pair for ma-
chine translation systems to handle. Chal-
lenges posed by this language pair are multi-
faceted, starting from seemingly trivial differ-
ences in orthographic representations to deep
structural divergence in syntax. This paper
describes an end-to-end neural machine trans-
lation system and related experiments dedi-
cated to the News Translation Shared Task
where the target language pair is Japanese
<> English, as part of a submission to the

Sixth Conference on Machine Translation -
WMT 2021. In our experiments, we explored
the efficacy of techniques such as tokeniz-
ing with language-independent and language-
dependent tokenizers, normalizing by ortho-
graphic conversion, creating a politeness-and-
formality-aware model by implementing a tag-
ger, back-translation, model ensembling, and
n-best reranking. We found that normalizing
the text by orthographic conversion did not
improve over the baseline but controlling for
politeness and formality levels of the text in-
creased BLEU by 1.2 points for the En—Ja
direction, and other techniques such as back-
translation, model ensembling, n-best rerank-
ing also produced improvements.

The paper gives a detailed review of prior
work, with a particular focus on WMT 2020
submissions, and then proceeds to describe our
data, model architecture, experiments, results,
and discussion of their implications.

2 Prior Work

In this section, techniques and development
in neural machine translation will be reviewed
with a focus on the techniques and implemen-
tation most recently used for the Japanese-
English language pair. General techniques de-
ployed across papers submitted to WMT 2020
are bitext data filtering, back-translation, fine
tuning with in-domain data, knowledge dis-
tillation, rule-based reranking, transfer learn-
ing, co-reference processing, hyperparameter
search, segmenting by subword units, BPE
dropout, model ensembling, pre-training with
monolingual data, experimenting with differ-
ent word segmentation methods, context word
embedding, domain adaptation, using related
languages in joint training, domain tagging,
reranking using backward and forward scores,
and dual conditional cross-entropy filtering
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(Barrault et al., 2020). In subsequent subsec-
tions, representative methods and techniques
will be described and the impacts of these
methods presented, in so far as they are ap-
plicable to the Japanese-English pair.

2.1 Data Preprocessing

Data filtering, cleaning, and normalizing are
essential steps in an NMT pipeline, due to
the noisy nature of text corpora. A cursory
glance at some of the given parallel corpora
shows that our data could benefit from addi-
tional filtering and cleaning. For instance, the
Paracrawl corpus contains a fair amount of du-
plicates or near duplicates and about 6 percent
of the WikiMatrix corpus contains texts out-
side the source and target language.

Previous submissions to WMT 2020 utilized
a mix of language-independent and language-
dependent data preprocessing methods to pre-
pare the corpora for training. Researchers
also noted a few issues in the parallel corpora
requiring special attention; for example, Kiy-
ono et al. (2020) remarked that their transla-
tion output contains additional transliteration
in brackets after names already transliterated
into katakana, because these patterns are very
common in the KFTT training corpus. They
advised that this issue be handled during pre-
processing, because postprocessing clean-up,
while possible, tended to hurt brevity (Kiyono
et al., 2020). Following this suggestion, we in-
corporated a preprocessing step (described in
section 3) to handle these patterns.

2.2 Tokenization

Tokenization is an indispensable step in many
natural language processing (NLP) applica-
tions. Byte-Pair-Encoding (BPE) by Sennrich
et al. (2016¢) is a popular compression algo-
rithm that takes care of splitting words into
subword units based on how frequent these
units are. The main idea of BPE is to recover
smaller subwords that are recurring in fuzzy
‘word” boundaries in order to compress the
vocabulary and decomposes rare words into
known subwords. BPE is an effective solu-
tion to the issue of rare words, open vocab-
ulary, and agglutinating morphology in some
languages. The algorithm works by splitting
all words into individual characters, adding
them to a vocabulary, and then iteratively

merging the most frequency subword pairs and
adding them to the vocabulary.

Kudo and Richardson (2018) implemented
BPE in SentencePiece, an unsupervised
toolkit for word segmentation. A language-
agnostic tokenizing and detokenizing algo-
rithm that implements subword unit BPE
(Sennrich et al., 2016¢) and unigram lan-
guage model (Kudo, 2018) to tokenize the
data, SentencePiece also provides a conve-
nient interface to quickly tokenize and deto-
kenize the data, because its implementation
of BPE treats the sentences as sequences of
Unicode characters, does not rely on language-
dependent logic, and allows training from raw
texts. The developers of SentencePiece exper-
imented their toolkit with and without pre-
tokenization for an English-Japanese transla-
tion task, and found that the performance of
training on raw texts is comparable to training
with pre-tokenization.

Previous submissions to WMT 2020 are di-
vided when it comes to which method was
preferred for tokenization. Three submis-
sions (Kiyono et al., 2020; Oravecz et al.,
2020; Marie et al., 2020) used Sentence-
Piece and three submissions (Kim et al.,
2020; Shi et al., 2020; Zhang et al., 2020)
used language-specific tokenizers to preprocess
Japanese (MeCab) and English (Moses) cor-
pora. MeCab is a popular lattice-based tok-
enizer for Japanese. It builds a graph-like data
structure to hold possible tokens in the text
and then uses the Viterbi algorithm to find the
best path through the graph. Moses is a well-
known statistical machine translation toolkit;
its perl scripts are often used to preprocess En-
glish corpora for NMT training (Koehn et al.,
2007). We experimented with both Sentence-
Piece and language-dependent tokenizers prior
to submission. The details will be outlined in
section 5.1 of this report.

2.3 Model Architecture

Most of the papers submitted to WMT 2020
used the Transformer Big settings described
in Vaswani et al. (2017) for their NMT model
architecture (Marie et al., 2020; Kiyono et al.,
2020; Shi et al., 2020; Oravecz et al., 2020;
Zhang et al., 2020).

Prior to the publication of Attention is All
You Need, prominent approaches to sequence-
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to-sequence modeling include recurrent neural
networks, long short-term memory (Hochre-
iter and Schmidhuber, 1997), and gated recur-
rent neural networks. All of these approaches
suffer from computational bottleneck due to
their sequential nature, which prevents par-
allelization within training examples. The
Transformer did away with convolution and
recurrence and focused on attention mecha-
nisms, allowing for modeling of long-distance
dependencies in parallel. Subsequently, it has
been proven to be very successful at handling
long distance dependency in natural language,
as it allows the model to focus attention on
particular source tokens via computation of
an attention score. The attention score can
be determined by way of different methods,
such as a (scaled) dot product (implemented
in Vaswani et al. (2017)), bilinear functions,
or multi-layer perceptrons. The Transformer
achieved state-of-the-art results in English <
French and English < German translation
tasks while cutting down on training time
thanks to parallelization.

2.4 Back-Translation

Back-translation is a commonly used method
in NMT to augment bitext training data by
creating an additional synthetic parallel cor-
pus from monolingual corpora (Sennrich et al.,
2016b). To create back-translated data, a
model that translates from target to source
is required. First, a monolingual corpus of
the target language is used to obtain transla-
tions in the source language. Subsequently,
this monolingual corpus and the translated
synthetic data are appended to the original
training data to train the source to target
model. It is ideal to have a lower ratio of syn-
thetic data to parallel corpus in training the
desired model. As the amount of bitext cor-
pora available for the Japanese-English pair is
well under 20 million sentence pairs, Japanese-
English can be considered to be a medium-
resource language pair and additional back-
translated data could help improve transla-
tions. It should also be noted that there are
limited domain-specific corpora for the lan-
guage pair, and adding additional synthetic
data back-translated from NewsCrawl and
NewsCommentary may help augment the mod-
els.

2.5 Model Reranking

Zhang et al. (2020) implemented model rerank-
ing following Ng et al. (2019). N-best rerank-
ing scores and chooses a translation hypoth-
esis from a list of n-best hypotheses. This
method is based on a noisy channel model and
Bayesian theorem of conditional probability
in log scale, where the weight parameters are
learned from fine tuning a validation set. For
decoding, they used beam search to generate
an n-best candidate list and chose the candi-
date hypothesis that maximizes the objective
conditional probability as the best hypothesis.

Besides the noisy channel approach, rerank-
ing can be done using various criteria, such
as distortion score, word penality, phrase pe-
nality, and so on. Shi et al. (2020) gener-
ated n-best candidates by model ensembling of
forward translation models, backward transla-
tion models, and language models of the tar-
get language and then apply K-batched MIRA
(Cherry and Foster, 2012) or noisy channel
(Yee et al., 2019) to score them. Kiyono
et al. (2020) generated n-best candidates from
Source-to-Target L2R, R2L models, Target-to-
Source L2R, R2L models, Unidictionary Lan-
guage models, and Masked Language models
to compute the scores for reranking.

We reranked translation hypotheses using
perplexity as a criteria.

3 Data

Our system was trained, developed, and tested
fully on data provided by the WMT 2021 or-
ganizers, making it a constrained submission.
Details of the raw parallel corpora prior to sub-
stantial filtering! used in our baseline and ex-
periment models can be viewed in Table 1.

We used the WMT 2020 development and
test sets to compare various experiment mod-
els against the baseline: 1998 sentences in the
development set in both directions, 1000 test
sentences for the En—Ja direction, and 993
sentences for the Ja—En direction.

From the raw datasets, we applied data fil-
tering to remove noisy data based on two main
criteria, alignment confidence and language

!The original raw WikiMatrix corpus contains 3.8M
sentences. We obtained 3.6M after eliminating sen-
tence pairs that do not have the correct language codes

in the corpus. That is the only filtering applied to the
bitext corpora in Table 1
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Corpus Sentences (M) Hyperparameters T-Base T-Big
JParacrawl 2.0 10.12 Encoder layers 6 6
News Commentary v16 0.0019 Decoder layers 6 6
Wiki Titles v3 0.757 Hidden layers 8 16
WikiMatrix 3.6448 RRN 512 1024
Subtitle Corpus 2.8013 dyy 2048 4096
KFTT 0.4438 Dropout 0.1 0.3
Ted Talks 0.4462 Optimization Adam Adam
Total 18.215 Decay noam noam
Table 1: Size of parallel corpora before filtering Learning rate 0.2 0.2

' Warmup steps 8,000 8,000

Train steps 20,000 300,000

identification. An alignment score is available
for both JParacrawl and WikiMatrix corpora;
we chose 0.6 and 1.0 as the threshold for align-
ment confidence in JParacrawl and WikiMa-
trix respectively. We used fasttext (Joulin
et al., 2017) and its pre-trained language iden-
tification model to identify the language of our
text sentence-by-sentence, and then we filtered
sentence pairs where the language identifica-
tion confidence score is less than 0.8. We also
applied on-the-fly filtering of sentences longer
than 100 tokens during training.

According to Kiyono et al. (2020), the
KFTT corpus contained instances of having
Japanese names followed by its English equiv-
alent in parentheses, which caused their model
to append English names after the Japanese
name in the translation output, for example
¥v ¥ 7 4. AT A (Cassidy Stay). To
avoid this, we filtered out English translations
of names in Japanese source text, specifically
WikiMatrix and KFTT, so that any English
names in parentheses following its Japanese
equivalent were removed. For English, we nor-
malized punctuation and remove non-printing
characters using the Moses scripts (Koehn
et al., 2007). The amount of parallel training
data after filtering was 12.7 M for training our
submission models.

4 Model Architecture

We trained the parallel corpora using the
Transformer base and Transformer big settings
as described in Vaswani et al. (2017), pre-
sented in Table 2. Pre-submission experiments
were trained under the Transformer Base set-
ting while all submission models were trained
under the Transformer Big setting. We used
the same optimization settings in the Trans-

Table 2: Model Hyperparameters

former big model as in the Transformer base
model. We utilized the OpenNMT toolkit
(Klein et al., 2017) with a Pytorch backend
to train our models. Most submission mod-
els took about 7 days to train on one single
NVIDIA GeForce GTX 1080 GPU under the
Transformer Big setting.

5 Experiments

5.1 SentencePiece and
Language-Dependent Tokenizers

We compared two methods of tokenization for
our system. The first is a tokenization method
based on BPE and SentencePiece, as described
in 2.2. We used SentencePiece (Kudo and
Richardson, 2018) to train SentencePiece mod-
els for Japanese and English with 32,000 as
the vocabulary size. SentencePiece is used to
create a tokenizer that depends on subword
units, similar to Byte Pair Encoding (BPE).
This method of tokenization is especially ef-
fective for languages such as Japanese which
does not use whitespace to separate words, has
agglutinating morphology, and contains many
compound words. Using SentencePiece helps
extract subwords within compound words and
create a more robust tokenizer. The tokenizer
model was used with OpenNMT, which per-
formed tokenization on-the-fly. SentencePiece
was used again to detokenize by removing the
meta symbols from the output translation.
The second tokenization method that we
experimented with is language-dependent.
We tokenized English using Moses, follow-
ing the steps described in Hieber et al.
(2018), namely normalizing punctuation in the
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raw data with normalize-punctuation.perl, re-
moving non-printing characters with remove-
non-printing-char.perl, and tokenizing by tok-
enizer.perl.

For Japanese, we tokenized the data with
fugashi (McCann, 2020), a Python wrapper of
the MeCab morphological analyzer described
in 2.2. After tokenization, we applied BPE
(Sennrich et al., 2016¢) on both Japanese and
English with 25,000 merge operations to con-
strain the vocabulary size.

For this comparison, we used a mid-sized
corpus to save time and resources instead of
the full 18M corpus. The number of sentences
after filtering and preprocessing is 6.4M sen-
tences. We trained the models using the Trans-
former Base settings, as described in Table 1.

5.2 Normalizing by Orthographic
Conversion

The Japanese writing system uses a combina-
tion of three distinctive orthographic scripts:
kangji, hiragana, and katakana. Kanji are Chi-
nese characters, used to write content words
such as nouns, verb stems, adjectives, and so
on. Hiragana was derived from kanji. It is a
phonetic syllabary, typically used to write con-
jugational endings, particles, and grammatical
words. Katakana, also a phonetic syllabary
much like hiragana, is typically reserved to
write foreign words, loan words, or strengthen
the emotive content of the texts. In modern
times, the Latin alphabet also has increased
visibility due to the popularity of English, and
the Japanese language can be transliterated
using this alphabet as well. This way of writ-
ing Japanese is called romaji.

We were interested in examining if convert-
ing the raw training texts to other ortho-
graphic scripts such as hiragana and romaji
affects the translation quality of the output.
Because hiragana and katakana have a one-
to-one correspondence, it sufficed to experi-
ment with either one of them. Converting
the raw text to hiragana has a normalizing
effect as what it does is reducing the logo-
graphic/ideographic kanji characters to their
pronunciation, the moraic units written in the
hiragana syllabraries. In that sense, it helps
reduce variability in the data and perhaps is
beneficial.
the text off many contextual cues that would

However, normalizing also strips

be helpful in translation. The dispersion of hi-
ragana in between the content words written
in kanji is arguably systematic enough for our
model to learn that one is used to represent
grammatical particles and the other is used to
represent objects, names, actions, and so on.
Similarly, converting the raw text to romaji
has a normalizing effect at the quasi-phonemic
level. In a related manner, Du and Way (2017)
looked at how a model trained on pinyin per-
formed on a Chinese — English translation
task. They found that using pinyin can help
alleviate the problem of rare words, although
it can introduce ambiguities.

To investigate the question of what impact
normalizing the Japanese source text in hira-
gana and romaji does, we experimented train-
ing three Ja—En models where the source
text is written in three orthographic scripts,
the regular mixed style (baseline), the normal-
ized moraic level hiragana, and the normal-
ized quasi-phonemic level romaji. Each train-
ing corpus contained 4M sentence pairs, after
being filtered by setting the language identifi-
cation score threshold at 0.85 and sampled.
The data were preprocessed with Sentence-
Piece and trained under the Transformer Base
setting, as described in Table 1.

5.3 Politeness and Formality Tagger

Previous work showed that controlling polite-
ness levels has a positive impact on machine
translation systems. Feely et al. (2019) im-
plemented a formality-aware tagging method
for En—Ja NMT. The authors classified for-
mality levels into three categories (informal,
polite, and formal) and found that using a
heuristics-based tagger improved the system’s
performance. Similar to Feely et al. (2019),
Sennrich et al. (2016a) and Yamagishi et al.
(2016) improved on the stylistics of the output
(politeness and honorific forms, respectively),
by applying a side-constraint approach where
target and source suffixes were added during
training to add more meta-textual information
to the corpora. We tested the effectiveness of
this technique on an En—Ja translation sys-
tem.

The news genre is frequently written in
fairly formal Japanese. Makino (2008) de-
scribed politeness and formality in Japanese as
orthogonal concepts. It’s possible to use polite
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but informal language in daily polite conversa-
tions as well as formal language devoid of po-
lite conjugations such as in news articles, aca-
demic papers, and so on. While the given par-
allel corpora are generally of the latter type,
the subtitles corpus contains mostly colloquial
language and the Ted talks corpus contains po-
lite endings not intended to be used in news
articles.

Due to the presence of mixed writing styles
in the training data, we developed a politeness
and formality tagger that works in conjunc-
tion with the Kytea tokenizer (Neubig, 2011)
to address this issue, because we observed that
our initial translation outputs often contained
polite forms not commonly used in the news
genre. Makino (2008) notes that verbs and i-
adjectives have distinct forms for plain and po-
lite but do not have distinct forms to indicate
the formality levels because the same forms are
used in both non-formal and formal writings.
Furthermore, the copula da conjugation is crit-
ical to indicate formality. The tagging schema
developed in Feely et al. (2019) combines the
formal, plain form dearu into the polite cate-
gory, and the formal category is what is typi-
cally referred to as keigo (honorifics). Our tag-
ging schema is tailored towards the news cor-
pus where dearu features often as a marker of
formal writing while polite endings and keigo
do not typically surface (see Appendix A for
the detailed schema). Our tagger extracts the
verb endings from the annotated sentences re-
turned by Kytea and appends a <polite> or
<formal> tag to the beginning of the source
(English) side. Plain forms are left untagged
as they are the default forms in the news genre.

Applying this tagger on a 12.7M training
corpus results in 34.76% tagged as polite and
3.81% tagged as formal. We tokenized the
data using SentencePiece transforms, imple-
mented in the OpenNMT toolkit. We also
filtered out sentence pairs longer than 100 to-
kens. We trained the models using the Trans-
former Big settings, as described in Table 1.

5.4 Back-Translation

For back-translation, we preprocessed a sub-
set of 4M sentences from the monolingual
Newscrawl corpus in the same manner de-
scribed in 3. The filtered corpus was 3,344,628
lines each. We then used the previously

trained Ja—En and En—Ja model to trans-
late the monolingual data to create synthetic
data, setting a beam size of 1 during decod-
ing. We obtained 2.4M and 2.6M sentences
of Japanese and English synthetic data from
back-translation, respectively. This was com-
bined with the existing parallel data to create
a corpus of approximately 15M sentences.

5.5 Model Ensembling and N-Best
Reranking

For n-best reranking, we used a script
by Xu Song, bert-as-a-language-model?,
which calculates the probability of tokens
and perplexity of sentences given a cor-
pus. Using OpenNMT’s option to pro-
duce n-best translations from an emsem-
ble of several high-performing checkpoints,
we created 10 best translations, and used
bert-as-a-language-model to pick the hy-
pothesis with the best perplexity score. This
method ensures the selected hypothesis has
maximized fluency compared to other candi-
dates.

6 Results and Discussion 3

6.1 SentencePiece and
Language-Dependent Tokenizers

We obtained the BLEU scores in Table 3 for
our models. The comparison is not entirely
fair because the amount of data trained for
the Moses and fugashi tokenizer to translate
in the Ja—En direction is 7.3M instead of
6.4M like other models. Additionally, the
number of BPE merge operations learned for
the language-dependent tokenizer case should
have been set to the same as that of Sentence-
Piece for a more equitable comparison.

Using SentencePiece appears to yield better
BLEU result in this experiment; however, we
also did not keep the other factors constant
across the different models under comparison.

https://github.com/xu-song/bert-as-language-
model

3Please note that the baseline models for experi-
ments vary, as some experiments related to data prepro-
cessing such as tokenization method and normalizing
by orthographic conversion were conducted very early
on in our project. These models were also trained un-
der the Transformer Base setting, unlike later models
trained under the Transformer Big setting. It follows
that the baseline results vary from experiment to exper-

iment, except for the tagger and back-translation ex-
periments, where the same En—Ja baseline was used.
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Tokenizer Models Ja—En BLEU
SentencePiece 14.0
Moses and fugashi 9.9
Tokenizer Models En—Ja BLEU
SentencePiece 16.0
Moses and fugashi 9.9

Table 3: Tokenizer Comparison

Orthographic Scripts Ja—En BLEU
Mixed scripts (baseline) 14.2
Hiragana 12.6
Romaygi 12.8

Table 4: Orthographic Script Comparison

Nonetheless, this experiment’s result led us to
adopt SentencePiece as our preferred method
for segmentation in other experiments.

6.2 Normalizing by Orthographic
Conversion

We obtained the BLEU scores in Table 4 for
our models. It can be seen from the results
that training with normalized data by ortho-
graphic conversion does not improve the mod-
els over the baseline. The models trained
on normalized data also have similar perfor-
mances.

The result of this experiment suggests that
normalizing by orthographic conversion might
have removed too many contextual cues for
the model to perform well. Possible work
for future experiments include investigating
whether normalizing katakana in mixed-script
text into hiragana could have a positive im-
pact, because doing so would remove variabil-
ity but would not introduce ambiguity to the
extent it might have done when the content
words in kanji were also normalized. Another
direction for future research involves looking
at training NMT models using sub-character
units such as radicals or strokes, as was done
in Zhang and Komachi (2018).

6.3 Politeness and Formality Tagger

BLEU and chrF scores with a 95% confidence
interval from a baseline model and a tagger
model as seen in Table 5 shows that using a
formality and politeness aware model improves
the model’s performance.

Models En—Ja BLEU chrF

18.6 £0.8 28.4 £0.7
19.8 £0.8 29.5 £0.7

Baseline
With tagger

Table 5: Politeness-and-Formality-Aware Model
vs. Baseline

Models En—Ja BLEU chrF
Baseline 18.6 0.8 28.4 £0.7
With BT data  18.8 £0.8 28.8 £+0.7
Models Ja—En BLEU chrF
Baseline 17.0 £0.8 44.7 £0.8
With BT data  18.7 £0.8 46.6 +0.8

Table 6: Back-Translation vs. Baseline

The result of this experiment is very encour-
aging to us as the score increase is notable.
It also suggests that the proposed classifica-
tion of predicate endings works well for the
news training data available. The training
data used for this experiment contains 12.7M
sentence pairs. Developing a politeness and
formality aware model applicable to a wider
selection of genres in Japanese remains future
work, where careful consideration of different
writing styles and additional classification of
stylistic markers are needed.

6.4 Back-Translation

Using back-translated data improved the re-
sults (reported with a 95% confidence inter-
val), although the gain in the En—Ja di-
rection was modest, as shown in table 6.
The results reinforce previous findings that
back-translation generally improves transla-
tion quality, and for languages with low re-
sources, it can be especially useful.  Al-
though the Ja-En pair is not considered low-
resourced, the parallel data for news-specific
corpus was very scarce, so using the monolin-
gual newscrawl and newscorpus was beneficial
to the model learning.

6.5 Model Ensembling and N-Best
Reranking

During the decoding phase, we ensembled the
highest performing checkpoints and obtained
10 best translations from those checkpoints.
The best hypothesis was determined by the
best perplexity score of the language model.
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Models En—Ja BLEU
Baseline 32.9
N-best reranking 34.0
Models Ja—En BLEU
Baseline 17.6
N-best reranking 18.6

Table 7: N-best reranking vs. Baseline

We found that for both directions, this method
resulted in improved translations, as demon-
strated in table 7. This evaluation result was
done on the WMT 2021 test set and was ob-
tained during the submission period using the
submitted models.

7 Conclusion

We produced several models to tackle the task
of translating Japanese to English and English
to Japanese. Namely, we have used BPE,
employed a politeness and formality tagger,
and during decoding, utilized model ensem-
bling and n-best reranking. Normalizing by
orthographic conversion did not produce im-
provement compared to the baseline, but the
other techniques have all proven to be effec-
tive and thus have been employed in our fi-
nal submissions. We also found that for both
En—Ja and Ja—En, adding back-translated
data improved the results. This may be ex-
plained by the fact that there is very little par-
allel data in the news domain, and adding syn-
thetic data from alternative in-domain sources
helped tune the model. While improvement
in the BLEU score is modest for En—Ja, we
expect the results to improve further if we in-
crease the amount of back-translated data. We
also showed that employing a tagger to intro-
duce more contextual cues related to polite-
ness and formality to our translation system
is an effective technique. Differences in for-
mality and politeness levels present are issues
often encountered when using training data
in languages with rich honorifics. Thus the
technique employed in this paper could be ex-
tended to other languages such as Korean.
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A Appendix

<polite>

T desu,

%9 masu,

TL 7z deshita,

¥ L 7z mashita,

% L T mashite,

¥ ¥ A masen,

%L & 9 mashou,

7% &\ nasai,

{72 & W kudasai,

128V E ¥ kudasaimase

<formal>

TH 5 dearu,

TH» S dearou,

TH 57255 dearudarou,

T®H > 7z deatta,

TH o725 5 deattarou,

TH 72725 5 deattadarou,
TH > T3 deatteiru,

T®H > Tz deatteita,

ThHhiLs deareru,

TH o5 dearaseru,
Thotb dearareru,

TH SR\ dearanai,
ThHoRRWIZSH D dearanaidarou,
TH 529 > 7z dearanakatta,
ThHokhro7125 5 dearanakattadarou,
THNZ\ dearena,

TH o R\ dearasenai,

TH 5 N2 deararenai

Table 8: Tagging Rules
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Abstract

In this paper, we describe our MISS sys-
tem that participated in the WMT21 news
translation task. We mainly participated in
the evaluation of the three translation di-
rections of English-Chinese and Japanese-
English translation tasks. In the systems sub-
mitted, we primarily considered wider net-
works, deeper networks, relative positional en-
coding, and dynamic convolutional networks
in terms of model structure, while in terms of
training, we investigated contrastive learning-
reinforced domain adaptation, self-supervised
training, and optimization objective switching
training methods. According to the final evalu-
ation results, a deeper, wider, and stronger net-
work can improve translation performance in
general, yet our data domain adaption method
can improve performance even more. In addi-
tion, we found that switching to the use of our
proposed objective during the finetune phase
using relatively small domain-related data can
effectively improve the stability of the model’s
convergence and achieve better optimal perfor-
mance.

1 Introduction

News translation (Bojar et al., 2017, 2018; Barrault
et al., 2019, 2020) is one of the most prominent
and appealing tasks in machine translation evalua-
tion (Wu et al., 2020b; Li et al., 2020c¢). Our MiSS
system took part in the WMT21 news translation
task, including English — Chinese (En — Zh),
Chinese — English (Zh — En), and Japanese —
English (Ja — En) translation directions. We devel-
oped translation systems for this year’s submission
to investigate machine translation techniques from
two perspectives: model structure and model train-
ing. All of the data used by the submitted systems
is constrained. Due to a lack of training resources,

*Corresponding author. Zuchao Li was limited technical
researcher at NICT when this work was done. This work was

partially supported by the Key Projects of National Natural
Science Foundation of China (U1836222 and 61733011).

{mutiyama, eiichiro.sumita}@nict.go.jp,
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the English->Japanese translation direction is only
investigated from the model structure perspective.

From the perspective of model structure, we
choose the Transformer (Vaswani et al., 2017; Li
et al., 2021c) model based on self-attention, which
is extensively utilized in neural machine translation
systems, as our basis (Zhang et al., 2020b; Li et al.,
2020d). On this strong foundation, we opt to simply
deepen the model by increasing the number of en-
coder layers or widen the model by increasing the
hidden size of the model to obtain a deeper or wider
model. When deepening or widening the model,
we found that there is no need for additional sophis-
ticated structure design (e.g., layer drop (Fan et al.,
2020) / sublayer drop (Li et al., 2021a)) or train-
ing strategy when there is adequate training data
available. In addition to Transformer architecture,
Wu et al. (2019) propose a dynamic convolution
structure that can perform competitively or better
to the self-attention structure. Follow the practice
in WMT20 (Wu et al., 2020a), we also applied the
dynamic convolution architecture as another basis.

According to our preliminary results on the de-
velopment set, domain has a significant impact on
performance, despite the fact that we are working
with the resource-rich En-Zh and En-Ja language
pairs. This year’s submissions are mostly con-
cerned with utilizing training approaches to miti-
gate the impact of domain differences. Specifically,
we first use data in all hybrid domains to train the
initial NMT model, and then, based on sentence em-
bedding model enhanced by contrastive learning,
the parallel/monolingual corpus is filtered monolin-
gually or cross-lingually, and the filtered domain-
related parallel corpus is used for further finetuning,
and the domain-related monolingual corpus is used
for in-domain back-translation enhancement. In
addition, we also adopted a self-supervised train-
ing method to train the model on the given source
text of the test set and its domain-related monolin-
gual text obtained by filtering. In self-supervised

154

Proceedings of the Sixth Conference on Machine Translation (WMT), pages 154-161
November 10-11, 2021. ©2021 Association for Computational Linguistics



training, we combine our Data-dependent Gaus-
sian Prior Objective (D2GPo) objective (Li et al.,
2020b) to alleviate the collapse due to non-golden
targets. In the finetune stage with the domain-
related parallel corpus, we adopted the training
strategy of switching the optimization objective
from the MLE to our proposed Dual Skew Diver-
gence (DSD) (Li et al., 2019). The results demon-
strated that switching to the DSD objective resulted
in improved convergence.

From the evaluation results, we observe substan-
tial improvements over the strong baseline with 4.3
(En — Zh), 4.8 (Zh — En), 3.2 (Ja — En) BLEU
scores on the development sets, respectively. The
gains can be attributed to larger model capacity and
better training strategies. And the results suggest
that the cost of domain adaptation to improve per-
formance is less than the cost of increasing model
capacity.

2 Model Perspective

With the development of deep learning in NLP (He
et al., 2018; Cai et al., 2018; He et al., 2019; Li
et al., 2021d), model ensembling can usually pro-
duce better results than single models, and the big-
ger the difference between the models used for
ensembling, within a certain limit, the higher the
improvement will be. As a result, we chose four
distinct typical architectures as the basis for single
NMT models and trained them on the same data.
The detailed parameters of each model architecture
are shown in Table 1.

Deep Transformer Some related works (Zhang
et al., 2019; Wang et al., 2019; Li et al., 2020a,
2021a) have revealed that deep networks have great
advantages in NMT performance compared to shal-
low networks recently. Based on the Transformer
NMT model architecture, we found that in the pres-
ence of sufficient training data, merely increasing
the number of stacked layers of the encoder can ful-
fill the goal of deep Transformer without the use of
additional initialization, dropout, or layer skipping
techniques.

Wide Transformer Recent researches (Sun
et al., 2019; Wu et al., 2020a; Zhang et al., 2020a;
Wu et al., 2020b; Meng et al., 2020) have demon-
strated that, in addition to deepening the NMT
model, widening the model can also effectively
improve translation performance, with increasing
the feed-forward network (FFN) size in the Trans-

Deep Wide Deep
Transformer Transformer DynamicConv
Enc. Layers 40 20 20
Dec. Layers 6 6 6
Attn. Heads 16 16 16
Hidden Size 1,024 1,024 1,024
FFN Size 4,096 8,192 4,096

Table 1: Hyper-parameters of different model architec-
tures. Note that Wide Transformer with relative posi-
tion encoding was also used as baseline models.

former model bringing less training and inference
cost than increasing the overall hidden size of the
model. We took a same practice in our work by
increasing the FFN size and established a Wide
Transformer baseline.

Deep DynamicConv Dynamic convolution
(DynamicConv) (Wu et al., 2019) was proposed
as a replacement for Transformer architecture
and has piqued much interest (Wu et al., 2020a)
due to its good speed advantage and comparable
performance. To enhance the performance of
single model, we also deepen the DynamicConv
model by increasing the number of encoder layers,
denoted as Deep DynamicConv. The original Dy-
namicConv model consists of 7 encoder layers and
6 decoder layers. We deepen the DynamicConv
model’s encoder layers to Deep DynamicConv.
Because the kernel size of each convolution layer
in the DynamicConv model differs, we set the
kernel sizes of the 16 encoder layers in Deep

DynamicConvto [3, 7, 15, 31, 31, 31,
31, 31, 31, 31, 31, 31, 31, 31,
31, 31, 31, 31, 31, 31] and leave the

other settings unchanged from the original model.

Relative Position Encoding Because self-
attention in the convention Transformer model is
position-independent, the encoded features must
be enhanced with explicit positional information
for natural language processing. Absolute position
encoding is usually employed in the Transformer
NMT model. Shaw et al. (2018) proposed to add
relative position encoding (RPE) for improving
self-attentional features and shown additional
performance gains. We also applied relative
position encoding to the Wide Transformer model
and created another strong baseline.

We use the identical vocabulary and data to train
these four baseline models separately, and then
average the best 5 checkpoints in each model’s
training phase to generate the final model output
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Figure 1: Illustration for contrastive learning-reinforced domain adaptation

in the corresponding stage. According to Wu et al.
(2020a)’s experience, the best 5 checkpoints are
determined based on the BLEU metric on the devel-
opment set rather than the perplexity (PPL) metric.
Furthermore, we applied the D2GPo objective (Li
et al., 2020b) in the training process to obtain more
stable convergence and decrease the impacts of
overfitting resulting from the training set’s noise.

3 Training Perspective

Contrastive  Learning-reinforced  Domain
Adaptation Data domain issues have been found
to have a significant impact on machine translation
performance (Saunders, 2021). The official
training data is of hybrid domain, despite the fact
that the evaluation task is news translation. And,
while news translation corpora can be deemed to be
in the news domain, there are significant variances
in news styles within the same domain. As a result,
one of the keys to performance enhancement will
be how to utilize the data training model that is
closer to the evaluation data domain and style.
Using languages L1 and Ly as an example, the
data that may be used comprises the parallel cor-
pus D]LDI_ L,» as well as their respective large-scale
monolingual corpus D% and D%. Parallel cor-
pora are typically utilized for direct training of
NMT models, whereas monolingual corpora are
used for back-translation (Edunov et al., 2018) and
self-supervised training (Jiao et al., 2021). The do-
main filtering method can be utilized in these three
training procedures to create corpus whose domain
is more similar to the development and test sets.
Instead of relying on the co-occurrence probabil-

ity of the surface tokens in the sentence, we based
the domain filtering on the hypothesis that the more
similar the sentence representations generated by
the Transformer encoder are, the more likely they
are to be dispersed in the same domain. Because
the current Transformer encoder’s representation is
based on the bidirectional and full attention of all
tokens, the combination and order of tokens have a
significant impact on the final representation, the
sentence representation is adequate for capturing
domain information. As a result, we use the sen-
tence embedding distance to measure the domain
similarity.

We leveraged a universal paraphrastic sentence
encoder (Wieting et al., 2016; Ethayarajh, 2018;
Li and Zhao, 2020) to embed each given sentence
to a dense representation. On a large scale mono-
lingual corpus, we train our own monolingual and
multilingual sentence encoder, a Transformer that
has been pre-trained using masked language mod-
eling (Devlin et al., 2019; Zhang et al., 2020c; Li
etal., 2021b), with the XLLM toolkit (Conneau et al.,
2020) and fine-tuned to maximize cosine similarity
between similar sentences. Contrastive learning
seeks to acquire effective representation by pulling
semantically close neighbors and pushing non-
neighbors apart (Hadsell et al., 2006). Since this cri-
terion precisely meets the requirements of sentence
representation learning, we use contrastive learning
to finetune the pre-trained sentence encoder. Fig-
ure 1 illustrates our contrastive learning-reinforced
domain adaptation method.

According to the domain adaptation require-
ments in actual machine translation, the trained
sentence encoder needs respond to four scenar-
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ios: Original Input Monolingual Filter, Translated
Input Monolingual Filter, Original Input Cross-
lingual Filter, Translated Input Cross-lingual Fil-
ter. Because the fourth scenario can be covered by
the first, we only employ the first three scenarios
in our experiment.

For all scenarios, we first follow Gao et al.
(2021)’s approach to perform unsupervised train-
ing in which the input sentence itself is used as
a positive instance due to there will be some dif-
ferences between the sentence representations of
the two pass input with the presence of the model
dropout, and other sentences in the in-batch are
used as negative instances.

The unsupervised contrastive learning-trained
monolingual sentence encoder can be used directly
as an evaluator of the similarity of sentences in
the same language and to mine similar sentences
from the sentence bank. However, for the non-gold
translated sentences filtering, we apply the base-
line NMT models to translate parallel corpus and
to back-translated monolingual corpus to generate
pseudo-paraphrase corpus. And then triplet loss
is used to fine-tune the unsupervised sentence en-
coder:

;C(l‘,y) = max(O,a - COS(I‘,y)) + COS(ZL',yn),

where positive pairs (z,y) are paraphrases from
translation or back-translation, y,, are in-batch neg-
ative instances.

Likewise, we still need cross-language filtering,
therefore we use parallel corpus instead of syn-
thetic pseudo-restatement corpus and triplet loss
for additional finetuning on the multilingual sen-
tence encoder.

As shown in Figure 1, taking the L9 in-domain
source sentences in development set as an exam-
ple, we first use the initial NMT model to translate
these sentences to L; translated text. The different
trained sentence encoder is then used to encode
these sentences and the large-scale monolingual
or parallel corpus based on different scenarios re-
spectively. Then, using the faiss toolkit', a query
procedure is performed to locate related in-domain
monolingual or parallel corpora with similarity cal-
culation and ranking.

Back-translation and Self-supervised Training
Using the in-domain monolingual and parallel cor-

"https://github.com/facebookresearch/
faiss

pus, we may train the initial model using back-
translation and self-supervised training approaches.
For back-translation, we leverage the original mul-
tiple NMT models to translate these monolinguals
into various pseudo-parallel corpora, and then com-
bine them with the in-domain parallel corpus to
finetune the NMT model. For self-supervised train-
ing, we use a variety of models to perform en-
semble translation on the in-domain monolingual
text as the translation target and combine the in-
domain translation corpus to fine-tune the model.
In the specific implementation, we perform back-
translation and self-supervised training consecu-
tively such that the self-supervised training stage
can exploit the stronger NMT model trained during
the back-translation stage.

Optimization Objective Switching Training It
is easier to fall into a local optimum in the pro-
cess of back-translation and self-supervised train-
ing because there are relatively fewer in-domain
data and input or output in part of the data utilized
is not gold. According to our experience in (Li
et al., 2019), switching the training objective to the
adversarial learning objective after MLE training
converges might help jump out of the local opti-
mal state and get better performance. Follow this
practice, in the back-translation and self-supervised
training stages, we first employ MLE target training
to converge on a development set and then switch
to Li et al. (2019)’s DSD loss for further training:

Losp == Y [6(t)yilog((1 )3 +ayy)
=1

—(1 = B(t))3ilog(§:)
+(1 = B(t))yilog((1 — a)y; + aFi)l,

where y; is the ¢-th token in the target sequence
y, ¥i is the i-th predicted token, « is a hyper-
parameter in a-skew divergence (Lee, 1999), and
B(t) is the controllable weight from the PID con-
troller.

4 Data Setup

English<>Chinese In the English<Chinese
translation, we used all official parallel corpus,
including ParaCrawl v7.1, News Commentary
v16, Wiki Titles v3, UN Parallel Corpus V1.0,
CCMT Corpus and WikiMatrix. For English, we
use the tokenization tool provided by Moses?, and

https://github.com/moses—smt/
mosesdecoder
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S | En—Zh Zh—En En—Ja Ja—En
ystems
\ Dev Test Devy Test Devy Test Devy Test
Transformer-big \ 31.67 - 33.26 - 23.31 - 21.61 -
Deep Transformer 32.48 — 34.18 — 24.68 — 22.78 -
@ ++ID-BT 35.30 — 38.94 — — — 24.46 —
@ ++ID-ST 35.95 — 39.18 — — — 25.82 —
Wide Transformer 32.67 — 34.01 — 24.27 — 23.20 —
® ++ID-BT 35.37 — 38.82 — — — 24.55 —
@ ++ID-ST 36.15 — 39.13 — — — 25.71 —
Deep DynamicConv. 32.39 - 33.68 - 24.08 - 2191 -
® ++ID-BT 35.01 — 38.66 — — — 24.37 —
® ++ID-ST 36.03 — 39.05 — — — 25.66 —
Wide Transformer w/ RPE | 32.52 - 34.35 — 24.76 — 22.78 —
@ ++ID-BT 35.55 — 38.91 — — — 24.48 —
++ID-ST 36.08 — 39.20 — — — 25.71 —
Baseline Ensemble 3279 319 3447 278 2479 426 23.15 238
Ensemble: ©+®+®+® | 35.62 357 3898 324 — — 24.63 264
Ensemble: @ + @ + ® + 36.41 36.2 39.25 32.6 — — 2599 27.0

Table 2: BLEU evaluation results on the WMT 2021 development and test sets. The BLEU in the development
set is a word-level MultiBLEU score, but the BLEU in the test set is from the official evaluation. Due to a lack of

resources, En—Ja only completed the baseline training and ensemble submission.

for Chinese, we use pkuseg (Luo et al., 2019) as
the word segmentor. We adopt a joint byte pair
encoding (BPE) (Sennrich et al., 2016) with 44K
operations for subword vocabulary in English
and Chinese. Punctuation normalization is not
employed to preprocess the training data in order
to prevent complex post-processing of punctuation
restoration. For English post-processing, we use
the script in Moses to de-tokenize the translation,
whereas for Chinese, we employ sacremoses® for
de-segmentation.

English<>Japanese In the English<+Japanese
translation, data for training were combined from
ParaCrawl v7.1, News Commentary v16, Wiki
Titles v3, WikiMatrix, The Kyoto Free Trans-
lation Task Corpus, and TED Talks. Similarly,
the Japanese sentences are segmented using the
Mecab* segmentor, while the English sentences are
processed using the Moses tokenizer. The size of
the English and Japanese joint BPE is also set to
44K. In post-processing, Moses script and sacre-
moses are also employed for detokenization.

We merged the whole news-crawl corpus for
monolingual data. However, in Chinese and
Japanese, news-crawl corpus alone is insufficient
to train the sentence encoder, so we sampled some
data from the common-crawl corpus and eventu-
ally produced the data in English, Chinese, and

*https://github.com/alvations/
sacremoses
*nttps://github.com/taku910/mecab

Japanese 100M sentences each. For pre-processing,
we exclude sentences that are more than 175 words
long, and the word ratio between the source and
the target greater than 1:2 or 2:1.

5 Model Training

All of our NMT models are built using the Fairseq
toolkit. Except for the switching training phase, all
models are optimized with Adam optimizer, and
SGD optimizer is utilized for optimization training
when switching to DSD loss. During the base-
line model training process, the learning rate is
scheduled using the inverse sqrt scheduler with
4000 warm-up steps, maximum learning rate Se-4,
and betas (0.9, 0.98). Each model is trained on 8
NVIDIA V100 GPUs, with batch size limited to
8192 tokens per GPU. FP16 is emploted to save
GPU memory and speed up calculations. To in-
crease the virtual batch size, we set the gradient
update steps to 8 during the training phase. The
label smoothing and dropout values are both set to
0.1. In the finetuning stage, we utilize a smaller
batch size, 4,096 tokens per GPU, and train the
model at a fixed learning rate of 1e-4. Sentence en-
coder models are developed with the XLLM toolkit,
and the architecture is based on the BERT-base.
The hidden size, heads, hidden layers, and FFN
size are 768/12/12/3072 respectively. During train-
ing, a early stop mechanism is applied in which the
training will stop when the PPL on the development
set does not decrease after 25 epochs.
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6 Results and Analysis

Table 2 shows the results on the development sets as
well as the official evaluation results on the WMT21
test sets. First, when comparing Deep Transformer,
Wide Transformer, and Transformer-big, we ob-
served that increasing the number of model layers
or widening the model to increase the number of
model parameters can result in large performance
benefits. Second, Deep DynamicConv has shown
comparable results to Deep Transformer in multi-
ple data sets, demonstrating that DynamicConv is a
viable replacement option for Transformer. Third,
the Deep Transformer w/ RPE model outperforms
Deep Transformer model in most circumstances,
demonstrating that machine translation benefits
from additional relative position encoding informa-
tion. Fourth, in-domain back-translation (ID-BT)
and in-domain self-supervised training (ID-ST) im-
prove the model’s performance substantially more
than the increased model parameters, indicating
that the data domain is a primary factor limiting
translation performance. Furthermore, these en-
hancements demonstrate that our domain adaption
approach of contrast learning-reinforced is a effec-
tive approach. Finally, we performed ensemble
on the four finetuned baselines and received even
higher results, demonstrating that the models of the
four architectures differ from each other.

7 Conclusion

In this paper, we introduce our MISS transla-
tion system, which participated in the WMT21
news translation task. We developed a new con-
trast learning-reinforced domain adaptation strat-
egy in this work, and the experimental findings
suggest that this method may significantly increase
translation performance. Furthermore, we con-
ducted experiments on a range of model archi-
tectures. Our domain adaption strategy improved
these strong baseline models significantly, illus-
trating the method’s generality and indicating that
the performance deficiency is not due to a specific
model structure.
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Abstract

This paper describes the Fujitsu DMATH sys-
tems used for WMT 2021 News Translation
and Biomedical Translation tasks. We focused
on low-resource pairs, using a simple system.
We conducted experiments on English-Hausa,
Xhosa-Zulu and English-Basque, and submit-
ted the results for Xhosa—Zulu in the News
Translation Task, and English—Basque in the
Biomedical Translation Task, abstract and ter-
minology translation subtasks. Our system
combines BPE dropout, sub-subword features
and back-translation with a Transformer (base)
model, achieving good results on the evaluation
sets.

1 Introduction

WMT has been exploring the state of the art in
MT for many years, and, particularly in recent edi-
tions, the participants have shown impressive re-
sults. However, often times, these results require
very heavy or complex systems, trained on dozens
of GPUs. Participants compete for a margin that
places them above the rest, combining multiple
methods from the latest research.

In recent years, different variants of the Trans-
former (Vaswani et al., 2017) architecture have
been popular for NMT, so can be seen when inspect-
ing the submissions to previous editions of WMT.
In our systems, we use the Transformer base con-
figuration, the smaller one. Our implementation is
based on Sockeye 2 (Hieber et al., 2020; Domhan
et al., 2020).

We combine several techniques or strategies for
low-resource pairs. These techniques are described
in Section 2.

We conducted a few experiments on language
pairs Xhosa-Zulu and English-Hausa, from the
News Transltion task, and on English-Basque, from
the Biomedical Translation task. The results of our
experiments are shown in Section 3.

2 Techniques

This section describes the strategies used for our
NMT models. The first two, bpe dropout and sub-
subword features, were used in all the subtasks,
while the last one was only used for the biomedical
translation subtasks.

2.1 BPE dropout

BPE dropout (Provilkov et al., 2020) was intro-
duced as an alternative to Kudo (2018). Provilkov
et al. found that the main drawback to the subword
regularization method is its complexity, since it
requires training a unigram language model and
uses uses EM and Viterbi algorithms to sample
segmentations.

BPE dropout works on BPE vocabulary models
(Sennrich et al., 2016b), that is, the vocabularies
are built in the same way as vanilla BPE. While
the unigram language model subword regulariza-
tion method uses a statistical model and dynamic
programming to be able to sample different seg-
mentations from the same sequence, BPE dropout
uses random noise to discard certain merges, ran-
domly generating a different sequence of subwords
each time. This is so because BPE does not store
the frequencies of each subword, only the order
of the merges. Merges are discarded with a prob-
ability p, which is usually 0.1. Provilkov et al.
concluded through several experiments that BPE
dropout achieves better results.

Our systems use BPE dropout during training,
with a dropout proability p of 0.1.

2.2 Sub-subword features

The main idea of the Sub-subword feature method
(Martinez et al., 2021) is to build the embedding
matrices from the n-gram features of the subwords
in the vocabulary. The features used to produce
the embeddings are selected by an algrithm before
training, and the neural network that produces the
embeddings is trained with the rest of the model.
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Sentences | Words in source | Words in target | Word ratio
Xh-Zu | 94,323 1,356,127 1,325,168 1.02
En-Ha | 752,287 11,044,101 11,713,109 1.06
En-Eu | 2,627,745 23,225,786 17,472,145 1.33

Table 1: Statistics of the datasets used for BT experiments. The rows of the table are ordered from smallest to largest,
the source language being that of the pair. The ratios are the number of words of the largest language compared to

the other.

The method has a regularizing effect, particu-
larly effective under low-resource settings. The
sub-subword feature method can be used with BPE
and BPE dropout, to achieve better results.

2.3 Back-Translation

Back-translation (BT) (Sennrich et al., 2016a) can
be used with monolingual data of the target lan-
guage, to improve low-resource language pair per-
formance. BT is a type of distant supervision, in
which a model of the opposite direction to the one
that one wants to build is used to synthesize more
parallel data. The method requires training an op-
posite model, and the synthesized data is noisy.
Still BT has been used extensively with good re-
sults reported (Poncelas et al., 2018; Edunov et al.,
2018).

The effectiveness of the BT method depends
largely on the quality of the monolingual corpora
used. Monolingual corpora compiled automatically
using web crawlers in combination with automatic
language detection are prone to be noisy. Partic-
ularly for low-resource languages for which lan-
guage detection has lower accuracy.

For example, we noted that the Hausa Extended
Common Crawl corpus published for WMT21 con-
tained a large number of Japanese song lyrics writ-
ten in Latin alphabet.

Our systems used 2 million backtranslated sen-
tences to improve performance.

2.4 Multilingual model

Johnson et al. (2017) introduced multilingual mod-
els to NMT. Multilingual models are capable of
translating more than one pair. For this, they used
a simple approach that consists of using a special
symbol inserted in the source sentence, indicating
the target language. The architecture of the model
can be the same as that of non-multilingual models.
In their experiments, they showed that, although
the performance of pairs with more resources wors-
ens when sharing a model with other pairs, the

performance of pairs with fewer resources im-
proves. Multilingual models allow translation be-
tween pairs with zero resources. This is known as
zero-shot translation.

Much research has been done on Multilingual
Neural Machine Translation (MNMT). Dabre et al.
(2020) published a comprehensive survey that sum-
marizes different ideas and techniques for MNMT.

For the English-Basque Biomedical task, we
tried using multilingual models too. In particu-
lar, for the terminology translation subtask, we
included the English-Spanish terminology from
MeSpEN (Villegas et al., 2018). The terminology
was included as training data, using the method
described in this section. A more sophisticated
vocabulary integration method could have given
better results (Post and Vilar, 2018; Bergmanis and
Pinnis, 2021).

3 Experiments

We conducted experiments on Xhosa — Zulu, Zulu
— Xhosa, English — Hausa, Hausa — English
and English — Basque. Notice that the WMT21
Biomedical Translation Task for English-Basque
was only in the English — Basque direction, and
not Basque — English.

Table 1 shows the statistics for three language
pairs. The rows are ordered from smallest to largest.
The Xhosa-Zulu and English-Hausa data were pub-
lished in the WMT21 news translation task. Both
are classified as low-resource in the task descrip-
tion, but Xhosa and Zulu are two closely-related
languages, and English and Hausa, two distant lan-
guages. The English-Basque data were published
for the biomedical task of WMT21. The English-
Basque dataset cannot be considered low-resource,
with 2.6M parallel sentences, but it represents two
distant languages. The Basque language has a com-
plex morphology that makes its generation difficult.

Word ratios can hint about the similarity or dis-
similarity of the languages. Xhosa and Zulu are
related languages, and that is why they show a ra-
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Xh—Zu | Zu—Xh En—Ha Ha—En En—Eu
Baseline | 6.5(416) | 6.3 (421) | 12.0(.412) | 13.0 (.403) | 16.5 (.456)
+SSWF 9.3 (.470) | 8.5(.468) | 12.5(.420) | 14.5(429) | 17.3 (471)
+BT 9.2 (471) | 8.6 (.467) | 17.5(.480) | 16.7 (.460) | 16.4 (.462)
+BT+SSWF | 9.7 (478) | 8.8 (470) | 18.0 (.482) | 15.5(.461) | 16.4 (.463)

Table 2: BT results for various language pairs. (+/-) BT indicates the use or non-use of BT data. The results follow
the format "BLEU (CHRF2)". Best BLEU results are shown in bold and the best CHRF2 are underlined.

tio close to one. English and Hausa are distant
languages, but their morphological characteristics
result in sequences of similar length.

Table 3 shows the hyperparameters used to train
the models. The Transformer hyperparameters
are those of the base model. We use a relatively
large vocabulary size of 32k subwords. Although
Sennrich and Zhang (2019) showed that smaller
vocabularies give better results on low-resource
datasets, larger vocabularies work well when using
sub-subword features (Martinez et al., 2021).

We used 4,000 warmup steps schedule as de-
scribed in Vaswani et al. (2017) with an initial
learning rate of 2.0 and evaluated the development
cost every 2,000 updates. The model was reloaded
from the best checkpoint when the development
cost did not improve, and training stopped after 3
consecutive stallings.

Hyperparameter | Value
Vocabulary size 32,000 subwords
BPE dropout p 0.1

Batch size 4,096 (x2 GPUs)
Warmup steps 4,000

Learning rate 2.0

Encoder layers 6

Decoder layers 6

Attention heads 8

Transformer size 512

Hidden layer size | 2,048

Dropout 0.1

Label smoothing € | 0.1

FTE layers 3

FTE size } 3,072

Table 3: Hyperparameters used in our models. { FTE
(feature-to-embedding) network size for sub-subword
feature (+SSWE') models.

For the News Translation Task participants need
agree to contribute to the manual evaluation about
eight hours of work, per system submission. In
consideration of this workload, we decided to sub-

mit only the Xhosa — Zulu system to the News
Translation Task.

Table 2 shows the results for the languages in
Table 1. The BT data were translated using the
sub-subword feature (+SSWF) model. The BT data
contain 2 million pairs of sentences. The English-
Basque model shown in this table does not use the
multilingual approach described in Subsection 2.4.

The results show that the sub-subword features
(+SsSWF) improve the results of the correspond-
ing —SSWF models under low-resource settings.
In the case of Hausa — English, the +SSWE sys-
tem did not achieve better BLEU scores than the
corresponding —SSWEF system, but achieved better
CHREF2.

Despite its noisy nature, we decided to use the
Extended Common Crawl Hausa corpus. The re-
sults show that the data, although noisy, was effec-
tive in improving the performance.

The English — Basque biomedical abstract
translation did not improve when using back-
translation data. It is possible that the cause for
this was the domain mismatch of the monolingual
data, that was not exclusively from scientific pa-
pers’ abstracts.

All models were trained on two NVIDIA Tesla
P100 GPUs. The Xhosa-Zulu models are trained
in about 2.5 hours, and the English-Hausa models
are trained in about 10 hours.

Table 4 shows the result of combining the
English-Basque training data with the MeSpEN
English-Spanish terminology (Villegas et al., 2018).
The MeSpEN terminology dictionary that we used
contained 125,519 term pairs after cleaning.

Model BLEU | chrF2
En—Eu 16.47 456
En—Eu +SSWF 1734 | 471
En— {Eu,Es} +SSwWF | 17.44 | 470

Table 4: NMT result of combining the English-Basque
training data with the MeSpEN English-Spanish termi-
nology.
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The scores displayed were obtained by evaluat-
ing the trained models on a test set sampled from
the provided data for abstract translation. The data
used to build the development and test sets were
removed from the training data. The results show
the BLEU and CHRF?2 scores for abstract transla-
tion, but we did not prepare any evaluation set for
terminology translation, as we wanted to include
WMT20 terminology in the training data.

The same models were used for abstract trans-
lation and terminology translation. Manual exam-
ination of the produced transations hinted better
performance for the the model trained with English-
Spanish terminology.

In consideration of the results, we decided to
submit two systems to the abstract translation and
terminology translation subtasks. One of the sys-
tems incorporated the MeSpEN terminology, and
the other one did not. Both systems did not use
backtranslated data.

4 Conclusions

We built and submitted three lightweight systems
that used sub-subword features to build the embed-
dings. We evaluated the approach with different
configurations and the results showed the adequacy
of the approach.

The relatively small models could possibly use
larger hyperparameters and other techniques to
achieve better results, but we think the current re-
sults can show the strenght of the techniques that
were applied.
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Abstract

This paper presents the Adam Mickiewicz
University’s (AMU) submissions to the
WMT 2021 News Translation Task. The
submissions focus on the English«>Hausa
translation directions, which is a low-resource
translation scenario between distant languages.
Our approach involves thorough data cleaning,
transfer learning using a high-resource lan-
guage pair, iterative training, and utilization
of monolingual data via back-translation.
We experiment with NMT and PB-SMT
approaches alike, using the base Transformer
architecture for all of the NMT models while
utilizing PB-SMT systems as comparable
baseline solutions.

1 Introduction

We describe the Adam Mickiewicz University’s
submissions to the WMT 2021 News Translation
Task. We focused on translation between Hausa
and English — a low-resource translation scenario
between distant languages. Our methods combine
data cleaning with OpusFilter (Aulamo et al., 2020)
and fastText (Joulin et al., 2016), transfer learning
(Aji et al., 2020; Zoph et al., 2016), iterative train-
ing, and back-translation (Sennrich et al., 2016a).

All NMT models were trained with
FAIRSEQ (Ott et al., 2019), while the first it-
eration of the back-translation was generated with
Moses (Koehn et al., 2007).

The results presented in the paper are based
on the first released development set ("Dev-1"),
which consists of 1000 sentences, the final devel-
opment set ("Dev-full"), which adds additional
1000 sentences to the first development set, and
the released test set without additional test suites
("Test"). The test set consists of 1000 sentences
in English—Hausa direction and 997 sentences in
Hausa—English direction.

The final submissions significantly outperform
the vanilla NMT baselines in terms of BLEU (Pap-

ineni et al., 2002) metric results, as implemented
in SACREBLEU (Post, 2018) with default settings.

All systems were trained in a constrained sce-
nario i.e., using the data provided by the organizers
of WMT 2021 only.

2 Data preparation

The quality of the training data has a great im-
pact on the final performance of the NMT mod-
els (Rikters, 2018). The data preparation consisted
of data cleaning and filtering performed by using
OpusFilter (Aulamo et al., 2020) pipelines. We
specified separate pipelines for monolingual and
parallel data. Data cleaning phase consisted of
normalizing punctuation, removing non-printable
characters, and decoding HTML entities by using
Moses (Koehn et al., 2007) pre-processing scripts.

We applied subword segmentation on fil-
tered data by using SentencePiece (Kudo and
Richardson, 2018) tool with byte-pair-encoding
(BPE) (Sennrich et al., 2016b) algorithm. The cor-
pora we used for model training, along with the
number of sentences before filtering, are specified
in Table 1. Number of sentences after filtering is
presented in Table 2.

Monolingual data filtering For the monolingual
data filtering, we defined an OpusFilter pipeline
that consists of the following filters:

* deduplication filter,

* sentence length filter,

» word length filter,

* Latin character score filter,

* language identification filter.

The sentence length filter requires that the sen-
tence contain a minimum of 3 and a maximum
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Data type Sentences Corpora

Parallel en-ha 751,560 Khamenei, Opus, ParaCrawl

Monolingual en 41,428,626 News crawl (only 2020)

Monolingual ha 2,311,959 News crawl, CommonCrawl

Parallel de-en 8,600,361 Tilde Rapid, CommonCrawl, Europarl, News commentary, ParaCrawl

Table 1: Corpora statistics before filtering.

of 100 words. A maximum of 40 characters is re-
quired for the word length. The required Latin char-
acter score for a sentence is set to 100%. Language
identification filter is based on a fastText (Joulin
et al., 2016) language identifier. The open-source
fastText language identification models do not iden-
tify Hausa, so we used the JW300 corpus from the
English-Hausa Opus collection to train our custom
language identifier. A sentence must pass all filters
to be included in the training data.

Data type Sentences
Monolingual en 39,812,834
Monolingual ha 1,227,921
Parallel ha-en 494,246

Table 2: Monolingual corpora statistics after filtering.

Parallel data filtering The filters used in the
parallel data filtering pipeline are nearly identi-
cal to those used in the monolingual data filtering
pipeline. Filters are applied to both the source and
target sentences in this scenario. We also included
a length ratio filter with a threshold of 2, indicat-
ing that a sentence on the source side can be up to
twice as long as a sentence on the target side and
vice versa.

A similar pipeline was applied to the German-
English data that was used for transfer learning. We
downsampled 3M sentence pairs from ParaCrawl
due to the imbalance in the German-English data.

3 Approach

Our models combine transfer learning from a
high-resource language pair (German-English), it-
erative training, and back-translation. We used
FAIRSEQ (Ott et al., 2019) toolkit in our experi-
ments with NMT models, while we used Moses
(Koehn et al., 2007) toolkit for our experiments
with PB-SMT models.

All of our NMT models follow the base Trans-
former architecture (Vaswani et al., 2017), us-
ing ReL.U as the activation function and Adam

(Kingma and Ba, 2015) as the optimizer with the
following parameters: 31 = 0.9, B2 = 0.98,
e = le—8. We set the inverse square root learning
rate scheduling with a peak value of le—3. We
used learning rate warmup stage for 4000 updates
with initial learning rate of 1e—7. Dropout prob-
ability was set to 0.2, while the attention dropout
probability was set to 0.1. We also used label
smoothing with a value of 0.1. In the case of base-
line English-Hausa models, the joint vocabulary
was based on both English and Hausa data. In all
cases, the vocabulary size was set to 32,000.

The PB-SMT models were trained with default
settings with Moses (Koehn et al., 2007) toolkit. In
addition, we trained a 5-gram Operation Sequence
Model (Durrani et al., 2013). All language mod-
els are 5-gram models and were binarized with
KenLLM (Heafield et al., 2013). The models were
trained on tokenized, word-level, lowercased sen-
tences. Re-casing was applied to the model outputs.
After training the base models, we also applied
MERT (Minimum Error Rate Training) (Och, 2003;
Bertoldi et al., 2009) tuning on the development
set.

3.1 Baseline systems

We decided to train baseline models of two types:
vanilla Transformer (base) and PB-SMT. The ex-
periments conducted on the first release of the
development set showed that PB-SMT performs
significantly better than NMT: we achieved +1.8
BLEU score on Hausa—English and +0.7 on
English—Hausa. Based on these results, we de-
cided to use PB-SMT models to generate data for
the first iteration of iterative training.

When the test set was published, we computed
the scores for the baselines. To our surprise, the
scores obtained by NMT are much higher than PB-
SMT, especially in the Hausa—English direction.
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the English—Hausa model in a manner sim-
ilar to step 2, with the exception that we did

System HA — EN EN — HA
Dev-1 Test Dev-1 Test

NMT baseline 1221 1144 10.28 11.05

PB-SMT baseline 14.00 6.59 11.02 9.36

not upsample the parallel data in this scenario
due to the fact that back-translated data was

Table 3: Baseline results according to the automatic
evaluation with BLEU metric.

3.2 Transfer learning

According to recent studies, transfer learning (TL)
enhances translation quality in low-resource sce-
narios (Zoph et al., 2016; Aji et al., 2020). We
chose the German—English translation direction
as a base. In general, we followed (Nguyen and
Chiang, 2017) and trained a shared Hausa-German-
English vocabulary (BPE). Then, we trained a
German—English model using parallel data from
the WMT 2021 Translation Task, which was fil-
tered similarly to Hausa-English data. Finally, we
used the Hausa-English data to fine-tune the pre-
trained German—English model. We obtained a
BLEU score of 13.31 on the "Dev-1" development
set (+1.1 BLEU compared to the NMT baseline),
which was lower than the PB-SMT baseline.

3.3 Iterative back-translation

Monolingual data has been widely employed in
MT to enrich parallel corpora with synthetic data
to improve the quality of MT systems, particularly
in low-resource scenarios (Bojar and Tamchyna,
2011; Bertoldi and Federico, 2009). We applied
the back-translation technique (Edunov et al., 2018)
iteratively (Hoang et al., 2018) to translate Hausa
and English monolingual data into the other lan-
guage, using intermediate models to generate incre-
mentally better translations.

1. First, we used the best baseline model (PB-
SMT based on Moses) in English—Hausa di-
rection to translate 5SM English sentences into
Hausa.

2. We used this additional data to train the
Hausa—English model by applying transfer
learning from the German—English model.
We upsampled the original parallel data 10
times to match the size of the back-translated
data. We used the resulting NMT model to
translate all Hausa monolingual data into En-
glish via sampling.

3. We combined the obtained back-translated
data with the original parallel corpora to train

generated through sampling.

4. This technique was applied iteratively, result-
ing in the systems shown in Table 4. In all
Hausa—English systems except the last, we
utilized SM English monolingual sentences in
the model training; in the last system, we used
25M sentences. We used all accessible Hausa
monolingual data in all English—Hausa sys-
tems.

System HA — EN EN — HA

1 16.22 -
2 - 13.04
3 20.05 -
4 - 14.38
5 22.85 -
6 - 14.77

Table 4: Iterative back-translation results of the NMT
systems on the "Dev-1" development set according to
the automatic evaluation with BLEU metric.

4 Final results

Table 5 presents the final results for both the
English—Hausa and Hausa—English translation
directions for both the development and test sets.
These results were produced by the final models
from the iterative back-translation step described
in section 3.3.

Direction Dev-1 Dev-full Test
EN — HA 14.77 21.21 16.15
HA — EN 22.85 2523 14.13

Table 5: Final results according to the automatic evalu-
ation with BLEU metric.

We notice a severe decrease in BLEU metric re-
sults on the test set as compared to the development
set, particularly in the Hausa—English direction.
This could suggest a domain shift between the two
sets. Because our models are heavily based on the
back-translated data, some vocabulary, especially
proper names, may be missing from the training
data.
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5 Post-submission work

Due to a lack of computing power and time, our
experiments and submissions were based on single
model training. After the submission deadline, we
retrained the final models three times with different
seeds. Table 6 presents the results for the ensemble
of four models in both directions. We obtained
slight improvements on both test sets, but the dif-
ferences are insignificant. On the other hand, the
ensemble performed worse on the development set,
especially on the first version.

Direction Dev-1 Dev-full Test
EN — HA 14.68 21.00 16.34
HA — EN 21.24 26.25 14.87

Table 6: Post-submission models ensemble results ac-
cording to the automatic evaluation with BLEU metric.
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Abstract

The paper describes the 3 NMT models sub-
mitted by the eTranslation team to the WMT
2021 news translation shared task. We de-
veloped systems in language pairs that are
actively used in the European Commission’s
eTranslation service. In the WMT news task,
recent years have seen a steady increase in the
need for computational resources to train deep
and complex architectures to produce compet-
itive systems. We took a different approach
and explored alternative strategies focusing on
data selection and filtering to improve the per-
formance of baseline systems. In the domain
constrained task for the French—German lan-
guage pair our approach resulted in the best
system by a significant margin in BLEU. For
the other two systems (English—-German and
English-Czech') we tried to build competitive
models using standard best practices.

1 Introduction

The eTranslation team is behind the translation ser-
vices of the European Commission’s eTranslation
project®. This is a building block of the Connecting
Europe Facility (CEF), with the aim of support-
ing European and national public administrations’
information exchange across language barriers in
the EU. The project is described in more details in
(Oravecz et al., 2019).

The team’s participation in the WMT shared
tasks has provided valuable insights to improve the
quality of our production systems and allowed us to
explore languages and domains beyond the formal
language of EU institutions, leading to a continuous
extension of the eTranslation service and helping
in the search for the right balance between the use
of resources in production environments and the
best possible performance of models.

"Due to returning problems of resource availability, the
En—Cs experiments did not finish until the submission dead-
line so we could finally only submit last year’s system.

https://ec.europa.eu/cefdigital/wiki/
display/CEFDIGITAL/eTranslation

This year the team participated in the news trans-
lation shared task with 3 different language pairs:
English — German, English — Czech and French
— German. The selection was motivated by the
fact that these language pairs can all be consid-
ered as high or medium resource, which is the
main scenario in the eTranslation service, while
the constrained domain in Fr—De offered a good
opportunity to focus on and experiment with data
selection and filtering techniques, which is a more
viable alternative in our environment than the re-
source demanding (brute-force) increase in model
complexity.

2 Data Preparation

Here we briefly describe the base data sets, the gen-
eral selection and filtering methods we applied to
prepare these initial data sets used to train the first
models. Further data selection and augmentation
methods to improve the quality of baseline models
are described in Section 3.2. For all models we
only used the provided parallel and monolingual
data, so our 3 submissions fall into the constrained
category.

2.1 Base Data Selection and Filtering

As afirst baseline approach, we tried to make use of
all provided original parallel (OP) data to build the
first models for reference or back-translation. Since
these data sets were fairly similar to those from last
year we followed the same practice and trained
baseline models from all OP data. There was, how-
ever, a significant increase in the ParaCrawl data,
which for En—De for example, doubled its size.
As it turned out, the increase in size did not neces-
sarily mean a better translation model trained from
the full data set so we explored different subsets
based on scoring by both source and target lan-
guage models (see Section 4.1 for the details of
these experiments).

The domain distribution of the data sets was not
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Data set En—De Fr—De En—Cs
Europarl v10 1.77TM 1.79M  0.62M
Common Crawl 2.16M 0.56M 0.11M
News Commentary vi6  0.38M  0.20M  0.25M"15
Tilde Rapid corpus 0.99M - 0.28M
Wiki Titles v3 1.3IM  0.52M  0.32M"?
ParaCrawl v7.1 792M  6.30M  4.90Mv5-!
WikiMatrix 546M  2.80M 1.92M
CzEng 2.0 - - 41.6M
Total: 91.27M 12.26M 50.0M

Table 1: Number of segments in the filtered parallel data used for baseline models.

uniform across language pairs, which had some
influence on some of the workflows but the basic
procedure of data cleaning was similar in all cases.
As a general clean-up, we performed the following
steps on the parallel data:

e language identification with FastText®> (Joulin
etal., 2016),

e segment deduplication with masked numerals,
i.e. we deleted duplicate segments regardless
of differences in numerals,

e deletion of segments where source/target to-
ken ratio exceeds 1:3 (or 3:1),

e deletion of segments longer than 100-150 to-
kens (depending on language pair),

e exclusion of segments where the ratio between
the number of characters and the number of
words was below 1.5 or above 40,

e exclusion of segments without a minimum
number of alphabetic characters (2-5 depend-
ing on the data set).

These filtering steps led to an average reduction
of about 15-20% of the training data with the num-
ber of segments as shown in Table 1.

2.1.1 Monolingual data

To build language models or create synthetic par-
allel text from monolingual data, we generally se-
lected recent target language News Crawl data sets
filtered according to the above steps (where appli-
cable) with some minor adjustments. For En—De,
we used the 2016-2020 German News Crawl data

Shttps://fasttext.cc/docs/en/
language-identification.html

but as in the previous years excluded the 2018 set
due to the high number of garbage segments with
scrambled tokens, we set a threshold on the maxi-
mum length of a token (40) and the minimum ratio
of letters to digits in a segment (4), and reduced the
maximum segment length to 80 tokens, resulting
in a 167M segment monolingual German data set.
A similar procedure applied to the 2016-2020 En-
glish NewsCrawl corpus resulted in a monolingual
English data set of 133M segments.

To create domain specific back-translation data
for Fr—De we used the same data as for En—De,
but due to the document based filtering method (see
Section 3.2.2) the versions with document bound-
aries were used.

2.1.2 Development and test data

Development and test data sets were selected from
the development suites provided. For En—De,
we used the 2019 test set as validation set in the
trainings and the 2020 test set as the test set to
evaluate the trained models*. These data sets al-
ready contained only source original segments. We
also extracted a source original subset from the
full En—De development set, which was used in
fine tuning of the final En—De models (see Sec-
tion 3.2.3).

For Fr—De, the development set was shuffled
and split into 3000 segment pairs for validation
set and the rest (1813 segment pairs) for a general
test set. To get an indication of the effect of data
selection as described in Section 3.2.2, it was nec-
essary to create a domain specific custom test set as
well. The Fr—De 2008-14 development sets were
filtered using a pattern based approach based on a

*The reverse direction was used for the back-translation
engines.
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small list of 50 manually selected domain specific
keywords>, as well as scored and ranked by a target
language model built from selected monolingual
data (see Section 3.2.2). These two candidate lists
were then manually revised and filtered to result in
a 2k domain specific test set. These segments were
removed from the training data.

2.2 Pre- and Postprocessing

Similarly to previous years (Oravecz et al., 2019,
2020) we opted for the simplest possible workflow
leaving out the standard pre- and postprocessing
steps of truecasing, or (de)tokenization, and simply
used SentencePiece (Kudo, 2018), which allows
raw text input/output within the Marian toolkit
(Junczys-Dowmunt et al., 2018)° in the experi-
ments. In some language pairs some simple nor-
malization steps were applied in post-processing,
which are described in the language pair specific
result sections.

3 Trainings

In competitive systems big transformer architec-
tures have become the norm in recent years (Bar-
rault et al., 2020). We can in general see a sig-
nificant increase in the need for computational re-
sources to train deeper and more complex architec-
tures up to 40-50 encoder layers (Wu et al., 2020b;
Zhang et al., 2020; Wu et al., 2020a). Our resource
environment does not allow us to fully follow this
trend, limiting the complexity of the models as well
as the scope of the experiments. Similarly to pre-
vious years, in all experiments we used Marian, as
the core tool of our standard NMT framework in
the eTranslation service. All trainings were run
as multi-GPU trainings on 2 or 4 NVIDIA V100
GPUs with 16GB RAM, while for one training
we were able to use a server with 8 32GB V100
GPUs.” Base transformers were typically trained
for 20-30 epochs, whereas big transfomers were
generally trained for 4-9 epochs for very high re-
source setups (>400M segments) and 20-25 epochs
for medium resource.

For example: Abwicklung, Betrug, Finanzbeitrag, Kapital
etc.

®We did not change the default settings for Marian’s built-
in SentencePiece: unigram model, built-in normalization and
no subword regularization.

7 Access to high capacity resources at an affordable price
has been especially challenging for us this year. In a race
where computational power plays a crucial role (particularly
in high resource settings) this might lead to an inherent disad-
vantage, which can be difficult to handle.

3.1 NMT Models

We only used base transformer models (Vaswani
et al., 2017) for the first baseline models and for
models used for back-translation to gain time and
efficiency in back-translating large amounts of tar-
get monolingual data. For more competitive sys-
tems we switched to big transformer architectures,
which resulted in significant improvements but at
the same time the rise in computing costs and train-
ing time was also substantial. Due to the limita-
tions of available resources we could build only
one set of a 2—4 member ensemble from big trans-
formers as our submission systems for En—De and
Fr—De; again a high cost for a relatively smaller
scale improvement. Our training settings have not
changed from last year’s setup: for most of the
hyperparameters we used the default settings for
the base transformer architecture in Marian® with
dynamic batching and tying all embeddings. To
save time and resources, we stopped the trainings
if sentence-wise normalized cross-entropy on the
validation set did not improve in 5 consecutive val-
idation steps. In the big transformer experiments,
also following recommended settings for Marian,
we doubled the filter size and the number of heads,
decreased the learning rate from 0.0003 to 0.0002
and halved the update value for —1 r-warmup and
—-lr-decay-inv-sqrt.

Following common ranges of subword vocabu-
lary sizes, we set a 36k joint SentencePiece vocab-
ulary in En—De and En—Cs, and 30k in Fr—De.

3.2 Improving Baseline Models

In this section we briefly describe the methods we
experimented with to improve the baseline mod-
els, such as selecting and filtering domain specific
monolingual corpora to build additional synthetic
data sets with back-translation (Sennrich et al.,
2016), using development data (where available) or
language model scored subsets of original parallel
data to continue the training of already converged
models and building ensembles of deep models
originally trained from different seeds. Evaluation
scores are reported in Section 4.

3.2.1 Filtering ParaCrawl

Training the En—De baseline model from the orig-
inal parallel (OP) data (Table 1) we noticed that
the model performed only as well (32.8 BLEU

8See eg. https://github.com/marian-nmt/
marian-examples/tree/master/transformer.
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on the 2020 test set) as our comparable model
from last year despite having about twice as much
ParaCrawl data while the other datasets remained
basically very similar. This suggested that the v7.1
ParaCrawl (PC) data might have been noisier or
contained more out of (news) domain data than
expected. This was confirmed by training an al-
ternative baseline excluding the whole ParaCrawl
data set, which in the end resulted in a better score
(33.3). To find a more beneficial subset of the PC
data we first experimented with the stock Bicleaner
filtering (Ramirez-Sanchez et al., 2020), setting
higher thresholds of 0.65 and 0.75, which filtered
the PC data to 51M and 26M segments, respec-
tively. Adding either of these subsets to the other
OP data sets did not lead to a significant increase
(33.4 in both setups), however, we used the 51M
segment subset instead of the full PC data in some
further filtering experiments (see Section 3.2.3).

As a second filtering method we trained trans-
former language models (LM) with Marian from
the filtered monolingual English and German data
sets, scored both sides of the ParaCrawl data and
ranked the segments (by simply averaging the
scores). We experimented with models trained
by adding the top 10, 20 and 30M highest scor-
ing PC segments to the other OP data and found
the 20M segment subset to produce the best base-
line score (35.2), therefore we selected this data
set (non ParaCrawl OP data plus the 20M segment
LM scored ParaCrawl subset) as the initial paral-
lel data for more complex models as well as for
back-translation.’

3.2.2 Synthetic Data

Back-translation (BT) is the most used data aug-
mentation technique in neural machine translation,
but one which can introduce a wide range of scenar-
ios in the search for finding the most optimal setup
in the amount of synthetic data, the ratio of bitext to
back-translation data or in the methods to generate
the synthetic source (Edunov et al., 2018; Hoang
et al., 2018). Tagged back-translation (Caswell
et al., 2019) has been proposed as a simple and effi-
cient alternative to noising techniques, arguing that
it is the indication of the data being synthetic that
is relevant for the model. This has been confirmed

°Clearly, there are other data selection combinations possi-
ble, for example, by taking only the 0.65 threshold Bicleaner
subset as the base data for the LM based filtering, however, we
did not have the time and resources to explore more scenarios
for this language pair.

in our experiments in previous years, therefore we
tried to use this technique in our workflows.

In the En—De system, we trained the reverse
engine as a base transformer from the best base-
line data setup mentioned above. After the conver-
gence of this model we continued the training with
a 30M segment subset of the OP data created by lan-
guage model scoring (with the same models as for
ParaCrawl). This gave an additional small increase
in BLEU (0.4). With this model we back-translated
an aggressively sentence segmented version of the
filtered German monolingual data (see Section 2.1),
which increased the size of the training set from
the initial 167M segments to 219M. Our first inten-
tion was to build strong sentence based models and
postprocess their output with dedicated sentence-
to-document methods (which we describe in Sec-
tion 3.2.5), so we tried to build one sentence per
segment back-translated data sets by splitting up
segments containing several sentences.

To train the submission ready systems we upsam-
pled the best baseline OP data set to a 1:1 ratio with
the BT data (Ng et al., 2019; Junczys-Dowmunt,
2019). This setup was a one shot configuration, we
had no time and resources to experiment with other
OP-BT combinations.

The task in the Fr—De language pair was do-
main specific, which offered us the opportunity to
follow suit with the more recent shift from model
centric approaches to data centric ones and focus
on methods for finding the optimal subsets of the
provided data which help improve performance in
the selected domain. Therefore we tried to tune
our models towards the domain by making use of
guided topic modeling!?. We created financial seed
word lists by manually selecting 40 and 175 domain
specific tokens from the top of a raw frequency list
from a few million German News Crawl segments,
and then we clustered the documents in the 2016,
2017, 2019 and 2020 German News Crawl data set
into different topics guided by the selected seed
word list.!" By selecting the documents clustered
into the seed word list induced topic we finally
collected ca. 12M German News Crawl segments
derived from two topic modelling runs based on
one or the other list. These segments overlapped to
a great extent. We back-translated both selections
then cleaned up the back-translated data the way

Ohttps://github.com/vi3k6i5/guidedlda

"'The text was tokenized and we used a German stopword
list but no lemmatization in creating the document-term matri-
ces.
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we cleaned up the OP data but removed addition-
ally pairs of segments that contained more than 15
numeric characters or more than 15 non-decimal
commas. We also used the two sets to train two
domain specific language models to score and rank
the original parallel data set.

After that we took the union of the filtered BT's
and deduplicated it. This gave us ca. 15M BT seg-
ment pairs which was at almost 1:1 ratio with the
OP data. We explored training with subsets of the
BT data but this did not give any improvement so
we decided to use it all. We also experimented
with tagged and untagged BT data, of which some-
what unexpectedly the latter gave the better result.
The reason might be that the BT data was more
in-domain, while most of the OP data was out of
(news) domain and the explicit OP vs. BT distinc-
tion might have presented a harmful signal to the
model here.

3.2.3 Continued Trainings and Fine Tuning
on Dev Sets

As last year, in the En—De system we followed a
two-stage continued training process to improve
performance as domain adaptation (Luong and
Manning, 2015). We scored the non ParaCrawl
OP plus the 0.65 threshold ParaCrawl subset (see
Section 3.2.1) with the language models used for fil-
tering the ParaCrawl data set (Section 3.2.1). Then
we used the top 10, 20 and 30M subset to continue
the training of the OP+BT converged models until
the BLEU score on the test set increased (Junczys-
Dowmunt, 2019); typically 2 epochs with an in-
crease of 0.5 points. The second stage utilized the
2008-2019 development sets (34k segments) as
fine tuning data in the experiments and for the final
submission it was extended with the 2020 test set.
We trained with reduced batch size and learning
rate for 4 epochs on this set and then for additional
3 epochs we switched to a source original subset
(16k) to reach the highest BLEU score. In the end
this process gave only a minor improvement of 0.3
BLEU points.

For Fr—De, we experimented with fine-tuning
the best converged models (see Section 4.2) by us-
ing different sets of in-domain data. We scored the
OP data for domain, using the two different LMs
as mentioned above. Then, we selected the top 1M
segments of each scored set of OP data and inter-
sected them. This gave us ca. 0.85M segment pairs.
However, this approach was not successful. In the
other setup, we selected the top 2M segments of

each scored set of OP data and intersected them,
which gave us ca. 1.75M segments. We fine-tuned
with reduced batch size until the BLEU score in-
creased, which gave us an increase of 0.8 points on
the domain specific test set.

3.2.4 Ensembles

The En— De final submission consisted of a modest
4 model big transformer ensemble, trained with
the same best configuration and workflow but with
different seeds. This approach usually gives a small
but steady improvement (about 0.5 BLEU points
here) but for substantially high resource settings
it also comes with large computational costs. It
is not uncommon to use ensembling already for
back-translation (Wu et al., 2020b) but for lack of
time and resources we had to limit this technique
to the submission setups.

The Fr—De ensemble was composed of 4 big
transformer models — three of them trained on orig-
inal parallel data and back-translated data in ratio
1:1. The 4th big transformer was one of the 3 big
transformers, additionally fine-tuned for 7 epochs
on the 1.75M OP data scored with the domain LMs.
For lack of time it was only one experimental setup
out of many other possible ones but proved to be
better than our previous systems.

3.2.5 Methods Tested but not Selected for
Submission Models

In the En—De system, this year we experimented
with a two-stage translation process of using a
strong sentence-level system at the first step and
post-process its output with a dedicated sentence-
to-document level model. Following the method
proposed by Voita et al. (2019), we created a 100M
segment synthetic dataset by round-trip translating
the (filtered) 2019 and 2020 German News Crawl
with document boundaries with the baseline sen-
tence level (forward and reverse) systems, and then
generating 1, 2, 3 and 4 sentence long “source
German”—"‘target German” pairs from the round-
trip translated segments and the sentences in the
original News crawl documents. We trained a base
transformer from this data set and used it as a sec-
ond stage repair on the output of the best En—De
sentence level system. Unfortunately, we observed
a significant drop in BLEU (almost 5 points) and
although this is somewhat consistent with what for
example Ma et al. (2021) reports on automatic eval-
uation for this method, we did not want to take the
risk of submitting a system with such a quality drop
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on the automatic metric to manual evaluation.

4 Results

We submitted a constrained system for each of the 3
language pairs. For En—Cs, we ran out of time and
had to reuse our last year submission. For the other
language pairs, we provide the evaluation scores
for models at important stages in the development,
which reflect how the models got better as we tried
various methods for improvement. All results are
reported in detokenized BLEU.!?

4.1 English—German

Test sets
System Data 2020 2021
M1: Baseline 12M 33.3 -
M2: M1+PC 32M 35.2 -
M3: M2+BT?9T 450M 36.7 -
M4: M3 tuned 450M+36k 37.5 -
MS5: M4 ensemble 450M+36k 38.0 29.6

Table 2: Results for En—De models. The 2021 result
is from the Ocelot submission.

In Table 2 we present the main stages of the de-
velopment of the En—De systems. Model 1 was
the initial baseline model and used only the origi-
nal parallel data excluding ParaCrawl altogether. In
Model 2 we added the language model filtered and
scored top 20M subset from ParaCrawl (PC). For
Model 3, we switched to the big transformer archi-
tecture and used the large aggressively segmented
back-translation (BT) dataset with 1:1 upsampled
original parallel data (OP). The next model (M4)
was tuned for 3 additional epochs with the top 10M
LM scored OP data and then with the development
set, leading to a small but steady increase. Finally
the system we submitted was an ensemble of four
M4 models. Our primary system being a sentence-
level model, we performed sentence segmentation
as a preprocessing step and then simply remerged
the sentence level hypotheses on the target side
where needed. Finally, as in previous years, a post-
processing step normalizing German punctuation
and some space fixing around the % sign was run
on the final output.

"ZsacreBLEU signatures: BLEU+case .mixed+
lang.en-de+numrefs.l+smooth.exp+tok.1l3a+
version.1.4.13

4.2 French— German

Table 3 summarizes the results of the Fr—De exper-
iments. The first baseline model (M1) was trained
only on the original parallel data with news data
upscaled 5 times (NewsCrawl, NewsCommentary),
while in model 2 and 3 (M2, M3) we added the do-
main specific back-translated data set (as described
in Section 3.2.2). Switching from base transform-
ers (M1 to M3) to the big transformer architecture
in model 4 (M4) led to a decent improvement. This
setup was used for the models in the M5 three
model ensemble. In the primary submission (M6)
this was extended with a 4™ big transformer. In M6,
the 4 models were trained on the original parallel
(OP) data and back-translated data (in ratio 1:1),
and one of the models was additionally fine-tuned
for 7 epochs on the 1.75M domain LM scored orig-
inal parallel data subset (see Section 3.2.3).

4.3 English—Czech

Due to problems with computational resources, the
En—Cs trainings had not finished until the submis-
sion deadline. Our primary submission presented
in Table 4 is therefore a clone of the 2020 system
(trained on OP plus BT data).

5 Conclusion

We presented the submissions of the eTranslation
team to the WMT 2021 news translation shared
task on 3 language pairs: English-German, French-
German and English-Czech. Unlike in previous
years, we had to face a few unexpected challenges
with respect to resource availability, which in-
evitably affected some experiments we planned
to carry out. We tried to put more emphasis on data
selection, filtering and domain specific evaluation
with custom test sets in the task where it seemed to
be most rewarding and automatic evaluation results
justified this approach.
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Abstract

We describe the University of Edinburgh’s
Bengali<+»Hindi constrained systems submit-
ted to the WMT21 News Translation task. We
submitted ensembles of Transformer models
built with large-scale back-translation and fine-
tuned on subsets of training data retrieved
based on similarity to the target domain. For
both translation directions, our submissions
are among the best-performing constrained
systems according to human evaluation.

1 Introduction

We present the University of Edinburgh’s participa-
tion in the WMT21 news translation shared task on
the Bengali—Hindi (Bn—Hi) and Hindi—Bengali
(Hi—Bn) language pairs. We followed the con-
strained condition, i.e. only using the data provided
by the organizers. The training data for these lan-
guage pairs consisted of noisy crawled data, and
was mostly out-of-domain with respect to the val-
idation and test domain. Therefore, most of our
efforts concentrated on fine-tuning models to adapt
to the target domain. We also explore multiple
back-translation methods, and ensembles of mod-
els trained and fine-tuned with different methods.

Building our systems consisted of the following
steps, each of which is described in more detail in
the remaining sections of this paper:

* Cleaning the noisy parallel data (Section 3).

* Training ensembles of Transformer models on
the cleaned provided data for back-translation;
and using the back-translated data along with
the clean parallel data to train new models
(Section 4).

* Fine-tuning the models on subsets of training
data retrieved that are similar to the target do-
main, based on different similarity measures
(Section 5).

* Ensembling various models and decoding
with optimal parameters (Section 6).

pinzhen.chen,

ssen}t@ed.ac.uk

We also report some methods that we tried to
use but did not work in Section 8.

2 Model Configuration

Our models follow the Transformer-Big architec-
ture (Vaswani et al., 2017): 6 layers of encoders
and decoders, 16 heads, an embedding size of 1024,
a unit size of 4096, etc. We found that smaller
Transformer architectures performed worse.

All models are trained with the same vocabu-
lary of 32k SentencePiece subwords (Kudo and
Richardson, 2018) to allow ensembling. We use
a shared vocabulary between source and target, as
well as tied embeddings (Press and Wolf, 2017).
We tried other vocabulary sizes too: 5k, 10k, and
20k, though all of them had similar performance.
We also included several special tokens in the vo-
cabulary, of which we finally used only one for
tagged back-translation (Caswell et al., 2019).

We train models with 32GB dynamic batch size
and an optimizer delay (Bogoychev et al., 2018)
of 3 with the Adam optimizer (Kingma and Ba,
2015) under a learning rate of 0.0003, until we see
no improvement within 10 consecutive validation
steps. All models were trained with the Marian
NMT toolkit (Junczys-Dowmunt et al., 2018)!

3 Datasets and Cleaning

3.1 Corpora

All our models are trained in the constrained sce-
nario — even more specifically, we only use data
provided for the news translation task for these spe-
cific language pairs. This consists of 3.3M parallel
sentences from the CCAligned corpus (EI-Kishky
et al., 2020), along with monolingual data in both
languages. The details of the corpora used along
with their sizes are shown in Table 1.

"https://github.com/marian-nmt/marian
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Corpus Lines (M)
Parallel 3.36
+ deduplication and filtering 2.03
Monolingual
Bn NewsCrawl 10.1
Bn CommonCrawl 49.6
Hi NewsCrawl 46.1
Hi CommonCrawl 202

Table 1: Bn and Hi corpora used in our submissions.

3.2 Cleaning

Since the CCAligned corpus is built from web
crawls and is known to be very noisy (Caswell
et al., 2021), we focused on cleaning the parallel
data before training translation models. Our main
approaches are rule-based and heuristic cleaning
methods, along with language identification and
language model filters. Our final systems used the
following cleaning methods for the parallel corpus:

De-duplication Duplicate sentence pairs
around 17.3% of the corpus — were removed.

Splitting multi-language sentences We ob-
served large chunks of the corpus where the sen-
tences on the Bengali side also had their English
translations attached in the same line. Some rough
punctuation and script-based heuristics were used
to remove the English segments from these lines.
The roughness of these heuristics also affected a
large number of other lines, mostly noisy ones
containing non-lexical information, but we ob-
served no degradation of quality due to this in-
accuracy. We also found some such sentences on
the Hindi side, but they were less frequent and re-
moval showed no improvement in quality, so we
did not split Hindi sentences in this way for our
final models.

Language ID filtering We used publicly avail-
able FastText language identification models
(Joulin et al., 2016, 2017)? to filter out lines in
wrong languages. We get the top 3 predictions for
each line, throw out lines where the right language
does not appear in the top 3 for one or both sides,
sort by the language prediction probabilities, and
based on manual inspection, arrive at minimum
threshold probabilities of 0.6 for Bengali lines and
0.4 for Hindi lines, above which lines are retained.

https://fasttext.cc/docs/en/
language-identification.html
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Language model filtering We used KenLM
(Heafield, 2011) to train separate trigram language
models for Bengali and Hindji, on all provided Ex-
tended CommonCrawl monolingual data, and used
these to score the parallel data. We retain sentences
with logy( probabilities greater than -4.

4 Training with Synthetic Data

In each language direction, we trained 4 models
with different seeds. We then ensembled these 4
models to back-translate (Sennrich et al., 2016)
all the provided monolingual data. We used this
translated data in many different ways as described
in the remainder of this section.

Tagged back-translation Following Caswell
et al. (2019), we prefixed a special <__BT__ >
token to all back-translated news monolingual data,
combined the data with the clean parallel data, and
trained new models.

Two-step training We first trained models on
all the back-translated data only, then once that
converged, continued training on the clean parallel
data. Since the amount of monolingual data far
exceeds the amount of parallel data, this training
regime gave us better results than mixing parallel
and back-translated data at the same time. The
latter method would also involve finding the right
amount of back-translated data to sample/select,
since using it all would overwhelm the parallel
training data.

Forward translation We also trained models on
parallel data along with all the back-translations
and all forward translations, i.e. instead of strictly
keeping target monolingual data on the target side
and synthetic back-translated data on the source
side, we used both directions of translated data.

5 Fine-tuning to the Target Domain

5.1 Fine-tuning on retrieved sentences

Unlike many of the other language pairs in the news
translation task, the Bengali-Hindi pair does not
include any known in-domain training corpora. The
training data is aligned from documents obtained
through untargeted web crawling (El-Kishky et al.,
2020), and thus contains out-of-domain and noisy
text. On the other hand, the target domain, reflected
in the validation and test sets, consists of Wikipedia
content®.

3Despite it being part of the ‘news translation’ task



To adapt our models to the target domain, we
retrieved sentences from the training corpora which
are similar to the source side of validation and test
sets based on different similarity measures, and
then fine-tuned the models on these subsets of data.
The remainder of this section describes the different
methods to retrieve the relevant subsets of data.
The number of sentence pairs retrieved by each of
these methods which are then used for fine-tuning
is shown in Table 2.

. Lines (K)
Retrieval Source Bn  Hi
1 bigram overlap  dev 448 891
2 bigram overlap  dev 243 597
3 bigram overlap  dev 158 445
1 bigram overlap  dev, test 487 932
2 bigram overlap dev, test 273 639
3 bigram overlap  dev, test 183 479
LM threshold -2.5 dev 50 175
LM threshold -2.0 dev, test 12 13
TF-IDF dev,test 5.6 27.9

TF-IDF cluster dev, test 20 20

Table 2: Number of training sentence pairs retrieved for
fine-tuning by different methods.

Based on vocabulary overlap The simplest
method is to retrieve any sentence pairs whose
source texts have 1, 2, or 3 non-punctuation bi-
grams which occur on the source side of the val-
idation and test sets. Due to the large mismatch
between training corpus and target domain, this
method retrieves a surprisingly small proportion of
the training corpus, as shown in Table 2.

Based on language model scoring We trained n-
gram language models on the validation and test set
or validation set data only, scored the parallel data
with these language models, then kept sentences
scoring above a certain threshold. Even though
the small size of the validation data means that
the language model is probably not very good, we
still see some improvements by fine-tuning on data
retrieved this way.

Based on TF-IDF similarity We first adapted
the document aligner* from ParaCrawl (Bafién
et al., 2020) to work at sentence level. This tool
uses the translation of a source text (Uszkoreit et al.,

*https://github.com/bitextor/bitextor/
tree/master/document-aligner

2010) to match potential target text using cosine
similarity of TF-IDF-weighted word frequency vec-
tors. In this case, we match the source side of our
validation and test sets with the parallel text to find
potential “matches”. This method retrieves too few
matches with only the validation set, but we got
a few thousand sentence pairs (Table 2) from a
combination of validation and test sets.

Following Chen et al. (2020b), we also devel-
oped a variant where we first cluster each source
sentence with another X sentences in the valida-
tion and test sets based on n-gram TF-IDF vector
cosine similarity, then treat the cluster as a single
query and compare it against each source sentence
in the parallel training data. We always picked
the top 20K resulting pairs. Through manual in-
spection, we found that the resulting corpus is very
reasonable when we cluster the whole validation
and test sets as one query, making the fine-tuning
essentially a test domain adaptation process.

5.2 Fine-tuning on the validation set

Since the validation data is the only domain-
specific data we had, similar to Chen et al. (2020a),
we fine-tuned all our final models on a portion of
the validation set (we used 95% of the data instead
of 75%) until it stopped improving on the rest of the
validation set. This was done as a final additional
step after the other kinds of fine-tuning described
previously.

6 Ensembles and Decoding Parameters

6.1 Ensembles

As shown in Table 3, our primary submissions con-
sist of ensembles of multiple models trained and
fine-tuned in different ways. Due to the compo-
nent models not being very high-quality, we ob-
served that this type of ensemble produces more
robust translations than simple ensembles of mod-
els trained identically with different seeds.

6.2 Optimal decoding hyperparameters

Using an initial ensemble of 4 models, we swept
a wide range of values of beam size and length
normalization hyperparameters to decode the vali-
dation set. We find that optimizing these can result
in an improvement of up to 0.5 BLEU on the vali-
dation set. We obtained the best scores with a beam
size of 16, and a length normalization parameter of
1.3 for Bn—Hi and 0.7 for Hi—Bn, and used these
values to decode the test set.
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Model Bn—Hi Hi—Bn
BLEU ChrF BLEU ChrF
(1) Single model baseline — Parallel data 19.56 0.4638 10.70 0.4378
(2) Ensemble — Parallel data 20.37 0.4733 11.47 0.4482
(3) Parallel + back-translated data 18.62 0.4577 9.78 0.4360
(4) Parallel + backward + forward translations 20.16 0.4697 11.78 0.4503
(5) Continue training on (3) with parallel data 21.26 0.4784  12.29 0.4587
(6) Continue training on (4) with parallel data 20.97 0.4767 12.02 0.4470
(7) Tagged BT (NewsCrawl only) + parallel data ~ 20.61 0.4753  12.13 0.4541
(5) fine-tuned on:
(8) 1 bigram overlap, dev 21.55 0.4816 12.26 0.4573
9) 2 bigram overlap, dev 21.49 0.4806 12.31 0.4587
(10) 3 bigram overlap, dev 21.35 0.4803 12.44 0.4600
(11) LM threshold -2.5, dev 21.30 0.4794 12.29 0.4590
(12) 1 bigram overlap, dev+test 21.45 04814 1229 0.4599
(13) 2 bigram overlap, dev+test 21.52 04812 1221 0.4568
(14) 3 bigram overlap, dev+test 21.38 04794 1226 0.4594
(15) LM threshold -2.0, dev+test 21.29 0.4792 1224 0.4563
(16) TF-IDF, dev+test 21.32 04788 12.32 0.4601
(17)  (6) fine-tuned on TF-IDF cluster, dev+test 20.26 04710 12.02 0.4470
Table 3: Validation set BLEU and ChrF scores for our models.
Submitted ensembles Bn—Hi Hi—Bn
BLEU ChrF BLEU ChrF
(8)+(9)+(10)+(11) 21.75 0.4895 -
(6)+(71)+(8)+(9)+(10)+(1 1)+(16)+(17) - 12.55 0.4536

Table 4: Test set BLEU and ChrF scores for our primary submissions. Model numbers refer to models from Table
3, but note that all models were fine-tuned on the validation set before ensembling.

6.3 Sentence splitting

In the source texts of the test set, we observed
many instances of more than one sentence in one
line. Since our models are trained on single sen-
tences, we chose to run a sentence splitter on the
test source, translate, and rejoin the translated sen-
tences. For this purpose, we used the Moses sen-
tence splitter (Koehn et al., 2007)° for Bengali text,
and the IndicNLP sentence splitter (Kunchukuttan,
2020) for Hindi.

6.4 Numeral transliteration

Due to the fact that numerals in the Latin script
are often used in Bengali and Hindi text, which
is reflected by the web crawled training data, our
models tend to generate a mix of Latin and Ben-
gali/Hindi numerals, sometimes even in the same
sentence. To ensure consistency, we transliterated

Shttps://github.com/moses-smt/
mosesdecoder/blob/master/scripts/ems/
support/split-sentences.perl

all Bengali or Hindi numerals in our test outputs to
their Latin script counterparts (it is equally feasible
to convert Latin numerals to the target language).
While this may not help in terms of automatic met-
rics (we lose 0.3-0.5 BLEU after this step), we
believe human evaluators would prefer consistency
in this regard.

7 Results

Table 3 shows BLEU® and ChrF’ scored using
sacreBLEU (Post, 2018) on the validation sets. We
see that fine-tuning on the retrieved subsets of data
consistently results in quality gains. We tried many
different ensembles and, upon visual inspection,
found that models fine-tuned on data retrieved on
the basis of similarity to validation and test sets
were not necessarily better than those from valida-
tion sets only.
bsignature: BLEU+case.mixed+numrefs. 1+smooth.exp+

tok.13a+version.1.5.1
"signature: chrF2+numchars.6+space.false+version.1.5.1
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Ave. Ave.z System
82.1 0.202 GTCOM
79.1 0.163 Online-B
77.5 0.080 TRANSSION
78.0 0.076 MS-EgDC
78.0 0.054 UEdin
76.1 -0.015 Online-Y
757 -0.080 HuaweiTSC
75.7 -0.107 Online-A
70.8 -0.373 Online-G

(a) bn—hi

O constrained

Ave. Ave.z System
95.0 0.245 HuaweiTSC
94.8 0.236 Online-A
945 0233 GTCOM
94.6 0.214 UEdin
92.3 0.080 Online-Y
92.0 0.045 TRANSSION
91.3 0.029 Online-B
90.9 -0.008 MS-EgDC
73.5 -1.100 Online-G

(b) hi—bn

[J unconstrained

Table 5: Human evaluation results. Our submissions are in bold. Systems within a cluster are considered tied.

Table 4 reports the automatic scores of our final
submitted systems on the test sets. As shown in
Table 5, according to human evaluation conducted
by the task organizers, our systems rank at the top
(tied) among all the constrained submissions for
both translation directions.

8 Unsuccessful Attempts

In this section, we document some methods that
we tried to use, but which did not work at all or did
not result in better systems.

Dual conditional cross-entropy filtering Our
initial cleaning effort was to use dual conditional
cross-entropy (Junczys-Dowmunt, 2018) to self-
filter the parallel data, which yielded no useful
results. We also randomly split the data into two
halves, trained translation models on each half, to
score and filter the other half of the data — this
method did not work either. We conclude that these
methods are not suitable in this scenario where we
do not have any clean data, however small, to train
the initial cleaning model.

Copied monolingual data We attempted to syn-
thesize training data by copying (Currey et al.,
2017) and transliterating® monolingual data in the
target language to source. In this way, we obtained
pseudo parallel data that could potentially improve
the decoder side of a translation model without
harming the encoder much.

Transfer learning We also explored utilizing
dataset from another language in the form of model

$https://github.com/
indic-transliteration/indic_
transliteration_py

pre-training. Following Aji et al. (2020), we initial-
ize our Bengali<»Hindi model weights, excluding
the embeddings, from our English«>German sub-
mission to WMT21 (Chen et al., 2021).

These methods above did not increase BLEU,
except that transliterated monolingual data brought
a tiny improvement. Model pre-training achieved
the convergence faster, but did not achieve better
final BLEU. Consequently, we did not carry out
any further experiments with these methods.
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Abstract

This paper describes the Volctrans’ submission
to the WMT21 news translation shared task
for German—English translation. We build
a parallel (i.e., non-autoregressive) translation
system using the Glancing Transformer (Qian
et al., 2020), which enables fast and accu-
rate parallel decoding in contrast to the cur-
rently prevailing autoregressive models. To
the best of our knowledge, this is the first par-
allel translation system that can be scaled to
such a practical scenario like WMT competi-
tion. More importantly, our parallel translation
system achieves the best BLEU score (35.0)
on German—English translation task, outper-
forming all strong autoregressive counterparts.

1 Introduction

In recent years WMT competitions, most teams
develop their translation systems based on autore-
gressive models, such as Transformer (Vaswani
et al, 2017). Although autoregressive mod-
els (AT) achieve strong results, it is also worth
exploring other alternative machine translation
paradigm. Therefore, we build our systems with
non-autoregressive translation (NAT) models (Gu
et al., 2018). Unlike the left-to-right decoding in
the autoregressive models, the NAT models employ
the more efficient parallel decoding. Specifically,
our system employs single-pass parallel decoding,
which generates all the tokens in parallel at one
time, thus can accelerate decoding speed.

In this paper, we would like to present the best
practice we explored in this year’s competition for
our parallel translation system, aiming at achieving
top results while preserving decoding efficiency.

System Overview. To achieve this, we improve
the parallel translation system in several aspects,
including better model architectures, various data

*Equal contributions.
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exploitation methods, mutli-stage training strategy,
and inference with effective reranking techniques.
For model architectures (§2), we build the parallel
translation system based on the Glancing Trans-
former (GLAT, Qian et al., 2020). Besides, our
system employs dynamic linear combination of
layers (DLCL, Wang et al., 2019) for training deep
models. For data exploitation (§3), we first filter
data with multiple strategies. After filtering, we
use the Transformer (Vaswani et al., 2017) to syn-
thesize various distilled data. For training (§4), the
NAT models employ multi-stage training to better
exploit the distilled data. At inference phase (§5),
the system generates the final results by reranking
candidate hypothesis from multiple parallel gener-
ation models.

With the proposed techniques, our parallel trans-
lation system surpasses autoregressive models, and
achieves the highest BLEU score (35.0) in the
German—English translation task. Such results
show that parallel translation system not only has
great decoding efficiency, but also could achieve
better performance compared to the autoregresssive
counterparts.

2 Backbone Model Architecture

As depicted in Figure 1, our submitted system em-
ploys GLAT (Qian et al., 2020) as our backbone
model architecture, and includes an auxiliary de-
coder in GLAT for achieving better translation per-
formance. GLAT is a method for training non-
autoregressive models rather than a model archi-
tecture, which adaptively samples target tokens in
training. Although the target token sampling in
GLAT helps training, it also introduces a gap be-
tween training and inference. To close the gap,
we introduce the auxiliary decoder that shares the
same encoder with the GLAT decoder, which is
only used for training in a multi-tasking fashion.

Proceedings of the Sixth Conference on Machine Translation (WMT), pages 187-196
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Figure 1: Illustration of our backbone model architec-
ture: Glancing Transformer with an auxiliary decoder.

Besides, we train models with three architecture
settings to increase model diversity.

2.1 Glancing Transformer

GLAT has three components: the encoder, the de-
coder, and the length predictor. The architecture
of GLAT is built upon the Transformer (Vaswani
et al., 2017). The encoder is the same as that of
Transformer, and the decoder is different from the
Transformer decoder in the attention mask. Trans-
former employs attention mask in self-attention
layer to prevent decoder representations attending
to subsequent positions. Since GLAT generates
sentences in parallel, the decoder of GLAT has no
attention mask and uses global context in decoding.
The details of the length predictor is described in
Section 2.3.

To reduce the difficulty of training deep mod-
els, we also employ dynamic linear combination
of layers (DLCL, Wang et al., 2019) in the archi-
tecture. With DLCL, the input of each layer is the
linear combination of outputs from all the previous
layers.

Given the source input X = {x1,x2,....,2n}
and the target output Y = {y1, yo, ..., yr}, we use
the glancing language model (Qian et al., 2020) in
training. The model performs two decoding during
training. In the first decoding, the model generates
the sentence Y in parallel. Then, the model ran-
domly selects a subset of tokens GS(Y,Y) in the
target sentence Y':

GS(Y,Y) = Random(Y, S(Y,Y)) (1)
where Random(Y, S) means randomly sample S
tokens in Y. And the sampling number S(Y,Y)
is computed by S(Y,Y) = o - d(Y,Y). d(Y,Y)
is the Hamming distance between the first decod-
ing result Y and the target sentence Y, and o is a
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hyper-parameter for controlling the sampling num-
ber more flexibly.

In the second decoding, the model replaces part
of the original decoder input representations with
the embeddings of tokens in GS(Y,Y). Specifi-
cally, the token y; is used to replace the input rep-
resentation at position ¢. With the replaced decoder
inputs, the model learns to predict the remaining
words and compute the training loss:

2.

> €GS(Y,Y)

Loim = log p(y:|GS(Y,Y), X) (2)

where GS(Y,Y) is the subset of tokens in Y that
are not selected. In training, the model starts from
learning to generate sentence fragments and grad-
ually learning the parallel generation of the whole
sequence.

2.2 Auxiliary Decoder

Although the sampled target words in GLAT train-
ing help the model learn target word interdependen-
cies, they also introduce a gap between training and
inference as the model cannot obtain target word
inputs in inference. Therefore, we add an auxiliary
non-autoregressive decoder to close the gap. The
auxiliary decoder shares the same encoder with the
GLAT decoder and directly learns to predict the
whole sequence in parallel. With the auxiliary de-
coder, we compute the loss for predicting the whole
sequence:

T

Laux = Z 1Og Paux (yt|X)
t=1

3

where P, is the output probability of the auxiliary
decoder. We jointly train the two decoders and the
training loss of model is:

»Cgen = »Cglm + )\['aux (4)
Note that the auxiliary decoder is only used in train-
ing and has no additional cost in inference.

2.3 Length Prediction

To enable parallel generation, the model predicts
the target length before decoding. We use the aver-
age of encoder hidden states H,y, as the represen-
tation to predict the length of target sentence. The
probability of the target length is computed by:

HT

avg E len) %)

Pien = softmax(
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where Ej, is the embeddings of length. Instead
of directly predicting the target length, the imple-
mented model predicts the length difference be-
tween input and output, which is easier to learn.
We use cross entropy loss for optimizing Fe, and
train the length predictor with the generation mod-
ule jointly.
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As shown in Figure 2, in order to increase the di-
versity of models, we use three model architecture
settings for GLAT. The details of the three GLAT
architecture variants are:

* GLAT-base: Following Wu et al. (2020);Sun
et al. (2019), we increase the number of en-
coder layers and use 16 encoder layers for
GLAT-base. For decoders, we use 6 layers
for the original decoder and 2 layers for the
auxiliary decoder. As for other model hyper-
parameters, we use the 1024 hidden dimen-
sion and 16 attention heads, which are the
same as the setting of Transformer-big.

* GLAT-deep: We further increase the number
of encoder layers to 32 for GLAT-deep. To
keep the number of model parameters on the

Model Variants

same scale, we decrease the hidden dimension
to 768.

* GLAT-wide: Following previous work (Wu
et al., 2020), we also expand the dimension
of the feed-forward inner layer to construct
GLAT-wide. We set the feed-forward dimen-
sion to 12288 and the encoder layer number
to 12.

3 Data Preparation

In this section, we will describe our best practice of
distilled data construction by employing AT mod-
els. As illustrated in data preparation in Figure 2,
we will first depict the general procedure of data fil-
tering and preprocessing of the provided raw data,
followed by the training details of the AT models.
Finally, we will describe how we produced distilled
data given the trained AT models. The resulting
distilled data will be used for training our GLAT
system.

3.1 Data Filtering and Preprocessing

Data quality matters in machine translation systems.
To obtain high-quality data, we employ rule-based
heuristics, language detection, word alignment and
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similarity-based retrieval to filter the provided par-
allel and monolingual corpora.

Rule-based Data Filtering

Based on experiences and WMT reports in previous
years, we first preprocess raw data based on rules:

* Data deduplication.

* Delete parallel data with the same source and
target.

* Remove special tokens and unprintable to-
kens.

* Remove HTML tags and inline URLs.

* Remove words or characters that repeat more
than 5 times.

* Delete sentences that are too long (more than
200 words) or too short (less than 5 words), as
well as the parallel data whose length-ratios of
source and target sentences are out of balance.

Parallel Data Filtering

After completing the rule-based filtering, we fur-
ther filtered parallel data via language detection
and its parallelism. The filtering process consists
of three stages:

1. Coarse-grained filtering: We filter parallel cor-
pus according to the results and ratio of lan-
guage detection. We use the pycld3! library
to filter German—English sentence pairs with
a language likelihood greater than 0.8 and a
language ratio greater than 60%.

2. Word alignment learning: We use fast
align (Dyer et al., 2013)? to automatically
learn German—English word alignment on
the coarsely filtered corpus.

3. Fine-grained filtering: We filter the sentences
with an align score greater than five on all
parallel corpora and sort them through the
vocabulary learned by fast align.

Note that the amount of data in different corpora is
not balanced. We split the data into the paracrawl
group and the non-paracrawl group. We filter out
about 10% of the data in the non-paracrawl group
and 20% of the data in the paracrawl group.

Monolingual Data Filtering

For monolingual data, we first use the pycld3 li-
brary to filter the data of low scores, similar to the
coarse-grained filtering of parallel data.
Considering that monolingual data is too large,
we searched for some of the most relevant sen-

"https://pypi.org/project/pycld3/
https://github.com/clab/fast_align

German (De)
75M

English (En)

parallel data

monolingual data 86M 105M

Table 1: Statistics of the training data after preprocess-
ing and filtering.

tences in our distilled data through sentence re-
trieval. We sample news domain sentences from
the previous years’ dev set and newscrawl corpus,
and train a sentence BERT (Reimers and Gurevych,
2019)3 to retrieve the sentences on the monolin-
gual corpus. In detail, for each sampled news sen-
tence, we calculate the inner product of sentence
embedding between it and some random monolin-
gual sentences (as the entire corpus is too large),
where the sentence embedding is calculated with
the sentence BERT model. We retrieved the top
8000 sentences for each news sample according to
the inner product of sentence embedding. Finally,
we deduplicate the retrieved sentences to obtain the
final monolingual data.

Data Preprocessing

Once we obtained filtered data, we preprocess them
through the following steps:

1. Normalization: we use Moses tokenizer to
normalize the punctuation.

2. Tokenization: we use Moses tokenizer to tok-
enize all datasets.

3. Truecasing: we use Moses truecaser to learn
and apply truecasing on all datasets.

4. Subword segmentation: we use our proposed
VOLT (Xu et al., 2021), which learns vocab-
ularies via optimal transport, to split tokens
into subwords, resulting in a joint vocabulary
of a size of 12k subwords.

We summarize the statistics of the final datasets in
Table 1.

3.2 Training of AT Systems

In this section, we describe our AT systems, which
served to distill data for GLAT training. Over-
all, we first train a pair of German—English and
English—German AT systems purely using parallel
data. We then exploit source and target monolin-
gual data to create synthetic parallel data to further
improve the AT models. Besides, we leverage the

*https://github.com/UKPLab/
sentence-transformers
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testsets from previous years to fine-tune the AT
models for in-domain adaptation.

Hyperparameters. The AT models are Trans-
former models with 12 layers of encoder and de-
coder. We use the implementations in Fairseq (Ott
et al., 2019). All models are trained with Adam op-
timizer (Kingma and Ba, 2014). We use the inverse
sqrt learning rate scheduler with 4000 warm-up
steps and set the maximum learning rate to 5- 1074,
The betas are (0.9, 0.98). We use multiple GPUs
during training, resulting in an approximate total
effective batch size of 128k tokens. During train-
ing, we employ label smoothing (Szegedy et al.,
2016) of 0.1 and set dropout rate (Srivastava et al.,
2014) to 0.3.

Iterative Back Translation

Zhang et al. (2018) proposed an iterative joint train-
ing method for better usage of monolingual data
from the source language (i.e., German) and tar-
get language (i.e., English). In each iteration, the
German—English model generates forward syn-
thetic data from the German monolingual data, and
the English—German model generates backward
synthetic data from the English monolingual data.
Then, the German— English and English—German
models are trained with the new forward and back-
ward synthetic data to improve both models’ perfor-
mance, in which the target-side data are assumed
to be the authentic ones from the monolingual cor-
pus. In the next iteration, the German—English
and English—German models can generate syn-
thetic data with better quality, and their perfor-
mance can be further improved . We jointly train
the German—English and English—German mod-
els for 3 iterations.

In-domain Finetuning

We fine-tune the trained model on the previous
years’ testsets to obtain in-domain knowledge,
which is a widely used technique in previous
years” WMT (Li et al., 2019). Specifically, we use
WMT19 German—English testset as in-domain
data. We set the learning rate to le-4 without a
learning rate scheduler and the max tokens per
batch as 4096. We then fine-tune the model for
30 steps*.

“Since the size of the in-domain data is small, fine-tuning
with more steps will overfit the data.
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De-En En-De
baseline 39.34  35.10
iterative BT 4356 36.85
in-domain FT 44.00 38.30
forward translation 44.05 39.50
final training 44.15  39.70

Table 2: BLEU scores of AT models on newstest20
with respect to different training stages.

Forward Translation

Bogoychev and Sennrich (2019) observed that
on the sentences that are originally in the source
language, which is the case of the test sets of
this year’s WMT, the forward translation could
bring significantly more improvement than back-
translation. We thus use the finetuned model, ob-
tained by the aforementioned in-domain finetuning,
to translate source monolingual corpus to obtain
forward translation data. We then apply these for-
ward translation data to finetune our AT models.

Finally, we combine all the parallel data, back-
translation data, and forward translation data to
further finetune our AT models. Table 2 shows
the performance of the AT models with respect
with each training stage. The resulting AT models
are ready for constructing distilled data for GLAT
training.

3.3 Constructing Distilled Data for GLAT

One of the widely known difficulties of training
NAT models is the multi-modality problem (Gu
et al., 2018). In the raw training data, the target
tokens have strong correlations across different po-
sitions, which is hard to capture by NAT models
due to the conditional independence assumption.
A key ingredient in the training recipe for most of
the NAT models is constructing training data via
sequence-level knowledge distillation (Kim and
Rush, 2016), where the target-side of the training
data is replaced by the forward translation of AT
models.

Note that previous work did not leverage exist-
ing large-scale monolingual data in training GLAT
models, either from source or target language. In
this work, we applied sequence-level knowledge
distillation to parallel data and monolingual data
from both source and target languages.

* Parallel data and source monolingual data dis-

tillation (119M sentences). We directly use
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Figure 3: Learning curves of different finetuning strate-
gies, reported on newstest20, De—En. The light
blue curve denotes training with inverse square root
scheduler where the peak learning rate equals 5 - 1074,
and the initial sampling ratio A is set to 0.5, the dark
blue curve denotes training with a constant learning
rate of le —4 and A = 0.1.

German—English AT model to obtain the for-
ward translations of the German sentences.
Monolingual target data distillation (39M sen-
tences). The way to exploiting target mono-
lingual data is not as evident as using the
monolingual source data since the purpose of
knowledge distillation is to construct a pseudo-
parallel dataset where synthetic ones replace
the actual target sentences. To this end, we
propose a cycle distilling technique. We use
the backward English—German AT model to
back-translate the monolingual target data, re-
sulting in a translated source dataset. We then
used the German—English AT model to get
the round-trip forward translation of the trans-
lated source dataset, obtaining the cycle dis-
tilled data. We will refer to this as cycle KD
data.

4 Multi-Stage Training

We train our parallel translation system in a multi-
stage way (See Multi-Stage Training in Figure 2).
In the first stage, the model uses the distilled par-
allel and source monolingual data for training. In
the second stage, we train the model with the tar-
get monolingual data (aka. cycle KD data). After
training the model on large-scale distilled data until
convergence, we finetune the model on small-scale
in-domain data.

4.1 General-Domain Training

All models are trained with Adam optimizer with
decoupled weight decay (Kingma and Ba, 2014;
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Figure 4: BLEU score versus the dropout and learning
rate, reported on newstest20, De—En.

Loshchilov and Hutter, 2017). We use the inverse
sqrt learning rate scheduler with 4000 warm-up
steps and set the maximum learning rate to 5- 1074,
The adam betas are (0.9,0.999).

4.2 Resuming Training

We often have to load a pre-trained checkpoint and
continuously train the model on a new dataset. The
loaded checkpoint serves as a good initialization,
and the parameters may change significantly in this
process.

We found that it is not easy to apply the tech-
niques from auto-regressive translation to GLAT
directly. Preliminary experiments show that if we
employ the techniques illustrated in (Qian et al.,
2020) during the finetuning stage, the BLEU score
will degrade dramatically and then increase slowly
until convergence. The number of total update steps
required for convergence is similar to training from
scratch on a new dataset. There are mainly two con-
cerns. Firstly, GLAT employs the inverse square
root learning rate scheduler. The learning rate will
increase to 5 - 10~ linearly and decay exponen-
tially until the training process is over (the learning
rate is close to 1e — 4). During the finetuning stage,
a constant learning rate no larger than le — 4 will
stabilize the training process. Secondly, the ini-
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Figure 5: Various pipelines for domain adaptation.

In-Domain Data GLAT-1 GLAT-II

- 0.00 +2.20
Raw +1.51 +2.21
Distilled I +0.30  +1.99
Distilled IT +1.56 +2.31

Table 3: Results of different adaptation pipelines.
GLAT-I and GLAT-II are models trained with distilled
training data generated by AT Model I and AT Model 11
in Figure 5, respectively. After training, we use the in-
domain data Distilled I and Distilled II for fine-tuning.

tial sampling ratio A = 0.5 in (Qian et al., 2020)
can be too large for finetuning since the model can
already do a good job in the translation task. A
large sampling ratio may cause the model to suf-
fer from “exposure bias”’(Zhang et al., 2019): the
gap between training (where some target words are
provided) and validation (where no target words
are provided). Figure 3 illustrates the comparison
between two different finetuning strategies.

4.3 In-Domain Adaptation

When finetuning the model on small-scale in-
domain data, which is widely used for domain
adaptation (Meng et al., 2020), the parameters of
the model do not change significantly.

For domain adaptation, we perform grid search
on four group of hyper-parameters: learning rate(
le —5,3e — 5, le — 4), dropout(0.0, 0.1, 0.3), sam-
pling rate A (0.3, 0.1), and max number of tokens
per batch (2000, 4000, 8000). For each combina-
tion, we conduct two experiments to reduce the
variance. Experimental results (Figure 4) show that
the learning rate and dropout rate are the most sig-
nificant factors. Interestingly, when dropout is set
to 0, the performance is surprisingly great, which
indicates the effectiveness of over-fitting on an in-
domain dataset.
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feature groups feature number

GLAT score 3
AT 16e6d 3
AT 12e12d 3
Self BLEU 1
Self Chrf 1

Table 4: Selected Features.

Model BLEU Self-R AT-R

GLAT-base (w/o AUX) 42.28 42.54 42.90
+ CTC 41.04
+ AUX 43.1

43.11 43.52

Table 5: Results of different architectures, reported on
newstest20, De—En.

There are several feasible pipelines for domain
adaptation due to the interaction between auto-
regressive and non-autoregressive models. Figure
5 illustrates these pipelines, and the key points are
listed as follows:

* Should we finetune the auto-regressive model
on the in-domain dataset (AT Model I—-AT
Model II)?

* Should we use the original in-domain dataset
for GLAT’s model adaptation or the in-
domain dataset distilled by AT model I, or
the in-domain dataset distilled by AT Model
1?

Table 3 shows the results of different pipelines.
Experiments show that making domain adaptation
on the autoregressive model can boost the perfor-
mance of the non-autoregressive model. It is also
beneficial to further finetune the non-autoregressive
model on the distilled in-domain dataset.

5 Inference

In this section, we introduce two approaches for
GLAT’s inference: Noisy parallel decoding (NPD)
and Reranking (See Inference in Figure 2). NPD
is easy to integrate into a single model and im-
prove the performance; Reranking can help push
the performance to the limit: generating as many
candidates as possible and ranking them with as
many features as possible.

5.1 Noisy Parallel Decoding

A simple yet efficient inference approach is noisy
parallel decoding (NPD) (Gu et al., 2018). We



GLAT-base GLAT-deep GLAT-wide
Model BLEU Self-R AT-R BLEU Self-R AT-R BLEU Self-R AT-R
baseline 43.10 43.11 4352 4244 4389 43.14 4338 4349 43.81
+cycle KD 4340 4324 4377 4286 4351 4373 4351 4349 4379
+ adaptation 43.76  43.67 44.00 43.00 43.69 43.82 4376 4391 43.94
+ reranker 44.64*

Table 6: Final results, reported on newstest20, De—En. * denotes the submitted system (BLEU=35.0 on

newstest21, De—En). The baseline is GLAT w/ AUX.

first predict m target length candidates (in Table
5, m = b), then generate output sequences with
argmax decoding for each target length candidate.
Then we use a model to rank these sequences and
identify the best overall output as the final output. If
the model for ranking and the one for generation is
the same model (GLAT), we call it Self-Reranking;
if the ranking model is AT, we call it AT-Reranking.

5.2 Reranking

We use kbmira® to re-rank hypotheses. We first
train GLAT model variants of different settings,
each of which produces a set of candidates via the
various search algorithm in Section 2.4. For each
source sentence, every model outputs 7 hypothe-
sis candidates and a total of 252 translations are
collected for re-ranking. Then we compute 44 fea-
tures for each hypothesis, out of which 11 features
are finally used. The selected features are listed in
Table 4. The kbmira algorithm takes these features
to select the best hypothesis from these candidates.
Note that the kbmira algorithm is optimized on
newstest19 and validated on newstest20 to
select the best feature combination. Instead of enu-
merating all the possible combinations (244), we
incrementally add feature groups to kbmira algo-
rithm for fast search.

It is considered as an ablation study to pre-
defined features. After selecting the best fea-
ture combination, we further search better kb-
mira weights to achieve higher BLEU scores on
newstest20.

6 Experiment

For our parallel translation system, we train three
GLAT variants with the distilled data, and get the

Shttps://github.com/moses—smt/
mosesdecoder

final outputs by reranking candidate hypothesis
obtained from multiple GLAT models.

6.1 Hyperparameters

We implement our models with Fairseq (Ott et al.,
2019). Our experiments are carried out on 4 ma-
chines with 8 NVIDIA V100 GPUs, each of which
has 32 GB memory. The number of tokens per
batch is set to 256k. The dropout rate is set to 0.3
for the first 100k steps. We reduce the dropout to
0.1 after 100k steps, which can contribute to an im-
provement of about 1 BLEU score (Figure 3). The
hyper-parameter A for balancing L, and Ly, is
set to 1.

6.2 Results

Our models are trained on the distilled parallel data
and the distilled source monolingual data firstly.
We experiment with various utilization of raw data,
but the results show that the usage of raw data
has no positive effect. The results of different ar-
chitectures can be found in Table 5. Self-R and
AT-R denote self-reranking and reranking with an
autoregressive model, respectively. Experimental
results show that the auxiliary decoder (AUX) ef-
fectively improves the performance by about 0.6
BLEU scores. For GLAT-base + CTC (Graves et al.,
2006), we first set the max output length to twice
the source input length and remove the blanks and
repeated tokens after generation. We find CTC does
not improve the performance and requires about
twice the training time for convergence.

Based on GLAT with AUX, we employ three
technologies to improve further: continuously train-
ing on the cycle KD data, domain adaptation, and
reranking with various features. Table 6 shows the
final results of our submitted system. Training on
the distilled target monolingual data can further im-
prove the performance by about 0.3 BLEU scores.
Since the domain adaptation has already been em-
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ployed in the AT model’s training process, the cycle
KD data has already contained information of the
in-domain data. However, the domain adaptation
on GLAT can still gain a slight improvement of
about 0.2. Moreover, an additional reranker with
more diverse features can boost the performance
by about 0.6.

7 Conclusion

In this paper, we introduced our system submitted
to the WMT2021 shared news translation task on
German—English. We build a parallel translation
system based on the Glancing Transformer (Qian
et al., 2020). Knowledge distillation, domain adap-
tation, reranking have proven effective in our sys-
tem. Our constrained parallel translation system
gets first place in the German— English translation
task with a 35.0 BLEU score.
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Abstract

This paper provides an overview of NVIDIA
NeMo’s neural machine translation systems
for the constrained data track of the WMT21
News and Biomedical Shared Translation
Tasks. Our news task submissions for English
<> German (En <> De) and English <+ Rus-
sian (En <> Ru) are built on top of a base-
line transformer-based sequence-to-sequence
model (Vaswani et al., 2017). Specifically,
we use a combination of 1) checkpoint av-
eraging 2) model scaling 3) data augmenta-
tion with backtranslation and knowledge dis-
tillation from right-to-left factorized models 4)
finetuning on test sets from previous years 5)
model ensembling 6) shallow fusion decoding
with transformer language models and 7) noisy
channel re-ranking. Additionally, our biomed-
ical task submission for English <+ Russian
uses a biomedically biased vocabulary and is
trained from scratch on news task data, medi-
cally relevant text curated from the news task
dataset, and biomedical data provided by the
shared task. Our news system achieves a sacre-
BLEU score of 39.5 on the WMT’20 En —
De test set outperforming the best submission
from last year’s task of 38.8. Our biomedical
task Ru — En and En — Ru systems reach
BLEU scores of 43.8 and 40.3 respectively on
the WMT’20 Biomedical Task Test set, outper-
forming the previous year’s best submissions.

1 Introduction

We take part in the WMT’21 News Shared Task
for English <> German, English <+ Russian, and
the Biomedical Shared Task for English <> Rus-
sian. Our systems are implemented in the NVIDIA
NeMo! framework (Kuchaiev et al., 2019). They
build on baseline sequence-to-sequence trans-
former models (Vaswani et al., 2017) in the follow-
ing ways: 1) Checkpoint averaging, 2) Model scal-
ing up to 1B parameters, 3) Data augmentation with

'https://github.com/NVIDIA/NeMo

large-scale backtranslation (Edunov et al., 2018) of
monolingual Newscrawl data and sequence-level
knowledge distillation from a right-to-left factor-
ized model (Zhang et al., 2019b), 4) Finetuning
models on in-domain news data from WMT test
sets made available in previous years, 5) Ensem-
bling models trained on different subsets of the
overall data 6) Shallow fusion decoding with trans-
former language models (Gulcehre et al., 2015) 7)
Noisy channel re-ranking of beam search candidate
hypotheses (Yee et al., 2019).

Overall, we find each of these components re-
sults in a small improvement in BLEU scores with
backtranslation results being mixed depending on
the language direction and whether the test data
contains translationese inputs. Using a combina-
tion of these techniques, we achieve 39.5 sacre-
BLEU scores on the En — De WMT’20 test set,
outperforming the best BLEU scores from last
year’s competition of 38.77.

Training our En <+ Ru biomedical task submis-
sion from scratch using a biomedical vocabulary
and similar model improvements to those used for
our news task submission, we report a sacreBLEU
score of 40.3 on En — Ru and 43.8 on Ru —
Enh on the WMT’20 Biomedical Shared Task test
dataset. This improves over the best submissions
from last year’s competition” of 39.6 and 43.3 on
En — Ru and Ru — En respectively.

2 Datasets

We participated in the constrained data track at
this year’s news and biomedical competitions and
used all the parallel corpora provided by the
WMT Shared Tasks for both En <+ De and En
<> Ru. We used the provided English, German,
and Russian monolingual Newscrawl data for back-
translation and training our autoregressive trans-
former language models. We filter out monolingual

>We compare against all En <+ Ru Biomedical submis-
sions, not just the ones marked as the final submission.
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Newscrawl data only based on minimum and maxi-
mum length criteria, but perform more aggressive
filtering of our parallel data described in Section
2.1.

2.1 Parallel Corpus Filtering

We use a combination of the following data filter-
ing steps for all parallel corpora (including pseudo
parallel corpora generated via backtranslation and
distillation) except for the Biomedical Shared Task
provided data.

* Language ID Filtering - We use the fastText
(Joulin et al., 2016) language ID classifier’ to
remove training examples that aren’t in the
appropriate language.

* Length and Ratio Filtering - We filter out
examples where a sentence in either language
is longer than 250 tokens before BPE tokeniza-
tion and where the length ratio between source
and target sentences exceeds 1.3.

* Bicleaner - Bitexts that were assigned a Bi-
cleaner (Ramirez-Sanchez et al., 2020) score
of < 0.6 were removed.

On the news shared task, we keep 60M parallel
sentences for En <+ De and 26M sentences for En
<> Ru after filtering.

2.2 Biomedical Task Data

Our parallel biomedical domain data included a
mix of all the En <+ Ru parallel training data given
by shared task organizers and biomedically relevant
examples selected from the provided En <+ Ru
news task data.

We trained two biomedical domain binary clas-
sifiers, one for English and one for Russian. The
classifiers were composed of two task-specific fully
connected layers on top of pre-trained BERT Base
(Devlin et al., 2018) or RuBERT Base (Kuratov
and Arkhipov, 2019) for English and Russian re-
spectively. The positive examples were sourced
from the WMT’20 Biomedical Shared Task train
set. The negative examples were randomly sam-
pled from the parallel En <+ Ru news data given
for the WMT’ 21 news task. An equal amount of
45K examples were used for both the positive and
negative classes.

‘https://fasttext.cc/docs/en/
language-identification.html

We ran our English biomedical domain classi-
fiers on the English half of all approximately 26M
parallel En <+ Ru WMT’21 news training data.
We saved all sentences with predicted biomedical
domain probabilities over 50%, collecting around
560k examples. We then ran our Russian classifier
on the Russian counterparts to the 560k predicted
in domain English sentences. We averaged the clas-
sifier scores from the English and Russian domain
classifiers and used this average score as our final
selection criteria. We set a cut-off threshold of .90
resulting in 208K parallel examples classified from
the news domain data. We combined this with the
46k parallel biomedical examples provided for the
task, resulting in a total of 256,037 parallel training
examples.

2.3 Data Pre-processing and Post-processing

We normalize punctuation* and tokenize> examples

with the Moses toolkit. For En <+ De, we train a
shared BPE tokenizer with a vocab of 32k tokens
using the YouTokenToMe® library. For En ¢ Ru,
we train language-specific BPE tokenizers with
a vocab of 16k tokens each. For the En <> Ru
Biomedical translation task, we learn a separate
BPE tokenizer solely on our Biomedical Task Data
described in 2.2. We use BPE-dropout (Provilkov
et al., 2019) of 0.1 for both language pairs and
tasks. We post-process En — De model generated
translations to replace quotes with their German
equivalents - ,, and “.

3 System overview

Our systems build on the Transformer sequence-
to-sequence architecture (Vaswani et al., 2017). In
the subsequent subsections, we discuss model scal-
ing, checkpoint averaging, data augmentation with
backtranslation and right-to-left distillation, model
finetuning, ensembling, shallow fusion decoding
with LMs, and noisy channel re-ranking.

3.1 Model Configurations

We experiment with three different model con-
figurations - Large, XLarge, and XXLarge. The
Large configuration corresponds to the “Trans-
former Large” variant from Vaswani et al. (2017)

*https://github.com/moses—smt/
mosesdecoder/blob/master/scripts/
tokenizer/normalize-punctuation.perl

Shttps://github.com/moses—smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

*https://github.com/VKCOM/YouTokenToMe
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and the XLarge and XXLarge scale that base con-
figuration along depth and width. The exact spec-
ifications are in Table 1. Following Kasai et al.
(2020), we keep the number decoder layers fixed
at 6 and scale only the depth of the encoder to 24
layers for the “XLarge” configuration. For stable
optimization of deep transformers, we use the “pre-
LN transformer block (Xiong et al., 2020). When
scaling to 1 billion parameters (XXLarge), we only
increase hidden and feedforward dimensions of the
model.

Large | XLarge | XXLarge

Hidden Dim 1,024 | 1,024 1,536

Feedforward Dim | 4,096 | 4,096 6,144
Attention Heads 16 16 24
Encoder Layers 6 24 24
Decoder Layers 6 6 6
Pre-LN X v v
Parameters 240M | 500M 1B

Table 1: Model Configurations

3.2 Checkpoint Averaging

Over the course of training, we save the top-k
checkpoints that obtain the best sacreBLEU scores
on a validation set. The final model parameters are
obtained by averaging the parameters correspond-
ing to these checkpoints.

k

eavg = Z 91
i=1

84v¢ are the model parameters after checkpoint
averaging and 0, .. .0 are the individual check-
points being averaged. Empirically, we didn’t ob-
serve a difference between averaging the last k
checkpoints versus the top-k checkpoints. The for-
mer is however more common and implemented in
libraries such as fairseq (Ott et al., 2019).

=

3.3 Data Augmentation with Backtranslation
& Right-to-left model distillation

We follow Edunov et al. (2018) in backtranslating
monolingual Newscrawl data with noise introduced
via topk sampling (k=500). For En < De, we back-
translate ~250M sentences and filter translations
based on the process described in Section 2.1. We
observed fairly significant drops in BLEU score
when using backtranslated data for En <+ Ru and
did not apply any data augmentation for this lan-
guage pair. We use the XLarge model configuration

trained only on the News Task provided parallel
corpus to generate translations.

We also train an XLarge model for En — De
and De — En on the News Task provided parallel
data where the output sequence is factorized from
right-to-left. Translations of the training dataset
with topk sampling (k=500) using these models are
generated and added to the overall training set.

When adding only backtranslated text or data
generated from right-to-left factorized models, we
use a 2:1 ratio of parallel to pseudo-parallel (model
generated) data. When training with a combination
of both, we use a 6:3:1 ratio of parallel, right-to-
left generated, and backtranslated data. We skew
data sampling in this way since training on right-to-
left generated data showed better performance on
recent WMT test sets as opposed to backtranslation
which did better on old test sets that contained
translationese inputs (see Tables 2 and 3).

3.4 Mixed Domain Training

For the biomedical task submission, we experiment
with different mixed domain training approaches
(Zhang et al., 2019a). We train on the concatenated
combination of news task and biomedical task data-
up-sampling the proportion of biomedical data to
make up 30% or 50% of the data-parallel exam-
ples seen during training. We also train models on
concatenated data with no up-sampling and with
purely news task data. The base models trained on
exclusively news task data still use the biomedical
vocabulary tokenizer.

3.5 Model Finetuning

For our news task submission, we finetuned models
on an in-domain parallel corpus consisting of WMT
provided test datasets from past years (WMT 08 -
WMT’ 19 for En <+ De comprising ~32k examples)
for both En <+ De and En <+ Ru.

We finetuned our biomedical task base models
on the 250k parallel sentences obtained via the pro-
cess described in Section 2.2. Models are finetuned
for 1-2 epochs using a fixed tuned learning rate and
the top-k checkpoints on a validation dataset (new-
stest2020 for the News Shared Task) are averaged.

3.6 Ensembling

Given k different models for a particular language
direction trained with the same tokenizer, we en-
semble them at inference by averaging their proba-
bility distributions over the next token.
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k
P(yily<t, z;01...0k) = = > P(wily<s, =;6)
i=1

x| =

Where P(y:|y<t, z) is the probability distribu-
tion over the target token y; given all previously
generated target tokens y., and the input sequence
x. 01 .. .0y are the k different models being ensem-
bled.

Beam search scores are computed using these
averaged probabilities at each time step. In practice,
we ensemble models trained on different subsets of
the available data.

For En <> De, we ensemble a total of 6 models
trained on different subsets of the data. Example:
News Task provided bitext only, the addition of
backtranslated and/or data from right-to-left factor-
ized models and finetuned models.

For En <+ Ru, we ensemble a total of 3 identical
XLarge models trained with different random seeds
on the main parallel corpus.

For the En <+ Ru biomedical task, we ensem-
ble 4 finetuned models whose base configurations
were trained with different mixed domain sam-
pling ratios. Specifically, each translation direction
includes an ensemble of models initially trained
on mixed domain data with 50% up-sampling
of biomedical data, concatenated biomedical and
news data with no up sampling, exclusively news
data, and exclusively news data with right-to-left
distillation.

3.7 Shallow Fusion Decoding with Language
Models

Aside from backtranslation, another way to lever-
age large amounts of monolingual data is via train-
ing language models. We train language-specific
16-layer transformer language models at the sen-
tence level, which is architecturally similar to Rad-
ford et al. (2019). They are trained on Newscrawl
and use the same tokenizers as our NMT systems.
When generating translations, we decode jointly
with our NMT system 6,_,; and a target side lan-
guage moel 8; (Gulcehre et al., 2015). The score of
a partially decoded sequence on the beam S(y1..,)
of length n is given by the following recurrence

S(yl...n|~r; Os—t, et) = S(yl...n—l ’.T; Os—t, et)
+log P(yn’y<n7 xz; 95—>t) + )\sf log P(yn‘y<n§ et)

where the empty sequence has a score of 0. We
tuned the LM importance coefficient A7 on a vali-
dation dataset and found a value between 0.05 - 0.1
to work well in practice.

3.8 Noisy Channel Re-ranking

We re-rank the beam search candidates produced
by our ensemble model generated with or without
shallow fusion using a neural noisy channel model
(Yee et al., 2019). The noisy channel model com-
putes the score of any translation S(y;|z) on the
beam based on a forward (source-to-target) model,
a reverse (target-to-source), and a target language
model. The best translation after re-ranking is
given by

arg max S(y;|z) = log P(yi|z; 052,
+)\ncr ( log P(x|yu 9t—>8) + lOg P(yu 975))

Forward log probabilities are given by an en-
semble of source-to-target models 65™,. We ex-
perimented with using an ensemble of target-to-
source translation models to compute log P(z|y;)
but didn’t observe any empirical benefits and so
all reported results use only a single reverse model
0;—,s for noisy channel re-ranking. We generate
15 candidates via beam search and tune )\, on a
validation dataset and found a value between 0.5 -

0.7 to work well in practice.

3.9 Training & Optimization

All En <+ De models were trained for up to 450k
updates using the Adam optimizer (Kingma and
Ba, 2014) with 8; = 0.9, 83 = 0.98 and Inverse
Square Root Annealing (Vaswani et al., 2017) with
30k warm-up steps and a maximum learning rate
of 4e-4. En <> Ru models were trained for up
to 150k updates with 7k warmup steps. We use
label smoothing of 0.1 and a dropout of 0.1 on
intermediate activations including attention scores
to regularize our models.

The “Large” models were trained on NVIDIA
DGX-1 machines with 8 32G V100 GPUs. We
use a batch size of 16k tokens per GPU for an
effective batch size of 128k tokens. The “XLarge”
models were trained on 64 GPUs split across 4
NVIDIA DGX-2 nodes with 16 32G V100 GPUs
each. These models use an effective batch size of
256k tokens. Finally, our “XXLarge” models were
trained on 256 GPUs across 16 DGX-2 nodes with
an effective batch size of 512k tokens.
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En — De News Task Model WMT’ 14 | WMT’18 | WMT’ 19 | WMT 20 | Avg A
(1) | Transformer-Large 29.9 46.6 41.1 31.5 0
(2) | (1) + Checkpoint Averaging 30.7 48.3 43.5 33.5 1.4
(3) | (2) + Transformer-XLarge 322 48.7 433 34.7 2.1
(4) | (3) + Backtranslation 34.9 49.2 40.5 34.6 2.2
(5) | (3) + R2L Distllation 324 49.1 434 37.2% 2.9
(6) | (3) + Backtranslation + R2L Distlla- 34.3 50.1 42.9 37.4* 3.6

tion
(7) | (5) + Shallow Fuison Decoding 32.8 49.0 434 37.6* 3.1
(8) | (6) + Transformer-XXLarge 35.5 50.0 41.8 37.5% 3.6
(9) | (6) + Finetuning (WMT’08-19) - - - 37.6* -
(10) | (8) + (9) + Ensembling 344 50.7 442 38.9* 4.4
(11) | (10) + Noisy Channel Re-ranking 36.0 51.6 44.3 39.5* 5.2

Table 2: Model ablations for En — De. All reported scores are obtained from sacreBLEU. WMT’20 scores with a
* apply post-processing to replace punctuations as reported in Section 2.3. Avg A computes the improvement over
the Transformer-Large baseline averaged over the 4 test sets.

De — En News Task Model WMT’ 14 | WMT’18 | WMT’ 19 | WMT’20 | Avg A

(1) | Transformer-Large 35.5 45.0 40.5 37.5 0

(2) | (1) + Checkpoint Averaging 36.5 46.1 41.6 38.3 0.7
3) | (2) + Transformer-XLarge 37.7 47.8 41.9 37.6 1.3
(4) | (3) + Backtranslation 40.3 50.4 40.5 37.7 2.3
(5) | (3) + R2L Distllation 37.5 47.8 42.3 39.7 1.9
(6) | (3) + Backtranslation + R2L Distllation 39.3 49.6 41.8 394 2.7
(7) | (6) + Finetuning (WMT’08-19) - - - 41.1 -

(8) | (7) + Ensembling 39.5 49.9 43.3 41.9 3.7
(9) | (8) + Noisy Channel Re-ranking 40.1 50.6 42.8 42.0 4.0

Table 3: Model ablations for De — En. All reported scores are obtained from sacreBLEU. Avg A computes the
improvement over the Transformer-Large baseline averaged over the 4 test sets.

En — Ru News Task Model WMT’17 | WMT’18 | WMT’19 | WMT 20 | Avg A
(1) | Transformer-Large 354 30.8 32.0 22.3 0
(2) | (1) + Transformer-XLarge + Ckpt Avg 36.8 32.2 332 23.2 1.2
(3) | (2) + Finetuning (WMT’14-16) 38.0 33.1 35.1 24.3 2.5
(4) | (3) + Ensemble (x3) 38.6 33.5 35.3 24.8 2.9
(5) | (4) + Shallow Fusion 38.6 33.7 35.7 24.7 3.0
(6) | Oracle BLEU with beam size 4 - - 39.9 - -

Table 4: Model ablations for En — Ru. All reported scores are obtained from sacreBLEU. Avg A computes the
improvement over the Transformer-Large baseline averaged over the 4 test sets.

4 News Task Submission

In this Section, we present results for our News
Shared Task submission. Tables 2 and 3 contain
ablations for En <+ De and while Tables 4 and 5
has ablations for En +> Ru.

Each of the components we describe improves
BLEU scores except for backtranslation and scal-
ing our models to 1B params. Both show mixed
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results on En <+ De - scores improve significantly
on WMT’ 14 and WMT" 18 test sets when adding
backtranslated data (possibly because these test sets
contain translationese inputs) but hurts or does not
improve performance on WMT’19 and WMT 20
test sets. Our 1B parameter model does signifi-
cantly better on WMT’ 14, but worse on WMT’ 19
and is comparable to the 500M parameter model
on WMT’ 18 and WMT’20. We found optimization



Ru — En News Task Model WMT’17 | WMT’18 | WMT’19 | WMT’20 | Avg A
(1) | Transformer-Large 37.6 33.0 37.7 36.6 0
(2) | (1) + Transformer-XLarge + Ckpt Avg 38.7 343 38.2 37.2 0.9
(3) | (2) + Finetuning (WMT’14-16) 40.7 354 40.5 37.1 2.2
4) | (3) + Ensemble (x3) 40.7 35.5 41 37.7 2.5
(5) | (4) + Shallow Fusion 40.9 35.9 40.8 37.5 2.6
(6) | Oracle BLEU with beam size 4 - 46.4 - -

Table 5: Model ablations for Ru — En. All reported scores are obtained from sacreBLEU. Avg A computes the
improvement over the Transformer-Large baseline averaged over the 4 test sets.

En — Ru Biomedical Task Model WMT’20 Bio | A
(1) | Transformer-Large News Task Model 32.2 0
(2) | Transformer-XLarge News Task Model 33.8 1.6
(3) | Transformer-XLarge + Biomed Vocab w/ News Data 33.9 1.7
(4) | Transformer-XLarge + Biomed Vocab w/ News + R2L Distillation Data 34.2 2.0
(5) | Transformer-XLarge + Biomed Vocab w/ News + 30% Biomed Data 36.7 4.5
(6) | Transformer-XLarge + Biomed Vocab w/ News + 50% Biomed Data 36.8 4.6
(7) | Transformer-XLarge + Biomed Vocab w/ News + Biomed Data 37.4 5.2
(8) | (2) + Biomed Data Finetuning 37.8 5.6
(9) | (3) + Biomed Data Finetuning 38.5 6.3
(10) | (4) + Biomed Data Finetuning 38.2 6.0
(11) | (6) + Biomed Data Finetuning 374 5.2
(12) | (7) + Biomed Data Finetuning 38.5 6.3
(13) | (9) (10) (11) (12) Ensemble 39.9 7.7
(14) | (13) + Shallow Fusion 40.0 7.8
(15) | (13) + Noisy Channel Re-ranking 40.3 8.1

Table 6: Model iterations for the Biomedical Shared Task En — Ru. All reported scores are checkpoint averaged
and are obtained from sacreBLEU. A computes the improvement over the Transformer-Large baseline on the
WMT’20 Biomedical Shared Task test set. Model 15 is our selected best submission and model 14 is our alternate

submission.

with Adam to be unstable and used AdamW with
a weight decay of 0.01 instead. Our final En —
De model achieves a BLEU score of 39.5 on the
WMT’ 20 test set, which improves over the sub-
mission with the best BLEU score from last year’s
competition of 38.8. We however do not do as
well on De — En, with a final BLEU score of 42,
compared to last year’s best submission of 43.8.

Backtranslation significantly hurt performance
in initial experiments on En <+ Ru so we exclude
it from our ensemble. The impact of ensembling,
finetuning, and shallow fusion are fairly similar to
En < De. Additionally, we also report an “Oracle
BLEU” score in Tables 4 and 5 where we compute
BLEU scores by cheating and picking the trans-
lation on our beam that has the highest sentence
BLEU score with respect to the reference. This is
a useful indicator of how much there is to gain by
re-ranking the beam search candidates.

5 Biomedical translation task submission

We present our Biomedical Shared Task submission
in this section. Building on lessons learned from
our news task ablation studies, we opted to use
the Transformer-XLarge architecture, and average
all of the intermediate model checkpoints which
helps reduce model variance as a consequence of
finetuning. Tables 6 and 7 show our results as we
iterated on improving our models.

We trained our BPE tokenizer on biomedical
data to mitigate character-level segmentation of
words unique to the biomedical domain. We found
this had a minimal effect on model performance.
This could be because the majority of our parallel
biomedical data was selected from news task train-
ing data, and thus biomedical words were already
adequately accounted for by the news task model’s
tokenizer. We found that up-sampling in-domain

202



Ru — En Biomedical Task Model WMT’20 Bio | A
(1) | Transformer-Large News Task Model 38.7 0
(2) | Transformer-XLarge News Task Model 39.8 1.1
(3) | Transformer-XLarge + Biomed Vocab w/ News Data 39.8 1.1
(4) | Transformer-XLarge + Biomed Vocab w/ News + R2L Distillation Data 39.2 0.5
(5) | Transformer-XLarge + Biomed Vocab w/ News + 30% Biomed Data 37.6 -1.1
(6) | Transformer-XLarge + Biomed Vocab w/ News + 50% Biomed Data 38.4 -0.3
(7) | Transformer-XLarge + Biomed Vocab w/ News + Biomed Data 41.5 2.8
(8) | (2) + Biomed Data Finetuning 42.3 3.6
(9) | (3) + Biomed Data Finetuning 42.6 3.9
(10) | (4) + Biomed Data Finetuning 41.7 3.0
(11) | (6) + Biomed Data Finetuning 39.6 0.9
(12) | (7) + Biomed Data Finetuning 41.8 3.1
(13) | (9) (12) Ensemble 42.8 4.1
(14) | (9) (10) (11) (12) Ensemble 43.8 5.1
(15) | (14) + Shallow Fusion 43.7 5.0
(16) | (14) + Noisy Channel Re-ranking 42.1 34

Table 7: Model iterations for the Biomedical Shared Task Ru — En. All reported scores are checkpoint averaged
and are obtained from sacreBLEU. A computes the improvement over the Transformer-Large baseline on the
WMT’20 Biomedical Shared Task test set. Model 14 is our selected best submission.

biomedical data hurt performance compared to con-
catenating out-of-domain and in-domain data with
no up-sampling. For the En — Ru direction, in-
cluding any biomedical domain data during initial
model training showed improvements over training
on exclusively news task data. Up-sampling in-
domain data for the Ru — En direction hurt perfor-
mance compared to our news task model baselines.

Unsurprisingly, finetuning base models on
biomedical domain data improved BLEU scores
for all models. In-domain finetuning helped mod-
els initially trained on news task data overcome
performance gaps between themselves and mod-
els that had seen a higher amount of biomedical
data during training. Neither shallow fusion nor
noisy channel re-ranking improved model perfor-
mance after ensembling for the Ru — En direction.
Both techniques individually improved En — Ru
performance but failed to do so in combination.

Ensembling our models led to an additional per-
formance boost and allowed us to reach our maxi-
mum En — Ru BLEU score of 40.3 and Ru — En
BLEU score of 43.8. These scores show a 0.9 and
0.5 improvement over last year’s best score of 39.4
and 43.3 (Bawden et al., 2020) respectively.

6 Conclusion

We present Neural Machine Translation Systems
for the En <+ De News Task and En <+ Ru News

and Biomedical shared tasks implemented in the
NeMo framework (Kuchaiev et al., 2019). Our
systems build on the Transformer sequence-to-
sequence model to include backtranslated text and
data from right-to-left factorized models, ensem-
bling, finetuning, mining biomedically relevant
data using domain classifiers, shallow fusion with
LMs, and noisy channel re-ranking. These achieve
competitive performance to submissions from pre-
vious years.
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Abstract

We describe Facebook’s multilingual model
submission to the WMT2021 shared task on
news translation. We participate in 14 lan-
guage directions: English to and from Czech,
German, Hausa, Icelandic, Japanese, Russian,
and Chinese. To develop systems covering
all these directions, we focus on multilingual
models. We utilize data from all available
sources — WMT, large-scale data mining, and
in-domain backtranslation — to create high
quality bilingual and multilingual baselines.
Subsequently, we investigate strategies for
scaling multilingual model size, such that one
system has sufficient capacity for high quality
representations of all eight languages. Our fi-
nal submission is an ensemble of dense and
sparse Mixture-of-Expert multilingual transla-
tion models, followed by finetuning on in-
domain news data and noisy channel reranking.
Compared to previous year’s winning submis-
sions, our multilingual system improved the
translation quality on all language directions,
with an average improvement of 2.0 BLEU. In
the WMT2021 task, our system ranks first in
10 directions based on automatic evaluation.

1 Introduction

We participate in the WMT2021 shared task on
news translation and submit a multilingual transla-
tion system. In recent years, multilingual transla-
tion has gained significant interest as an alternative
to developing separate, specialized systems for dif-
ferent language directions (Firat et al., 2016; Tan
et al., 2019; Aharoni et al., 2019; Zhang et al.,
2020; Tang et al., 2020; Arivazhagan et al., 2019).
Multilingual systems have great potential for sim-
plicity and consolidation, making them attractive
options for the development and maintenance of
commercial translation technologies. From a re-
search standpoint, studies of transfer learning be-
tween related languages and developing methods
that incorporate low-resource languages are strong

motivators for grouping languages together in one
system (Dabre et al., 2019; Fan et al., 2021).

Despite such motivations, existing multilingual
translation systems have been unable to show that
the translation quality of multilingual systems sur-
passes that of bilingual. Several works compare to
bilingual baselines, but these baselines do not in-
corporate standard techniques used across the field
— such as backtranslation or dense model scaling.
Further, multilingual translation systems are often
developed on non-standard training datasets and
use different evaluation datasets. These factors
make it difficult to assess the performance of multi-
lingual translation, particularly when compared to
the most competitive bilingual models.

In this work, our aim is to demonstrate against
the winning WMT2020 models and our bilingual
WMT2021 systems that multilingual translation
models have stronger performance than bilingual
ones. We focus on 14 language directions: En-
glish to and from Czech, German, Hausa, Icelandic,
Japanese, Russian, and Chinese. We create an un-
constrained system that utilizes both WMT dis-
tributed and publicly available training data, apply
large-scale backtranslation, and explore dense and
mixture-of-expert architectures. We compare the
impact of various techniques on bilingual and multi-
lingual systems, demonstrating where multilingual
systems have an advantage. Our final multilingual
submission improves the translation quality on av-
erage +2.0 compared to the WMT2020 winning
models, and ranks first in 10 directions based on au-
tomatic evaluation on the WMT2021 leaderboard.

2 Data

We participate in translation of English to and from
Czech (cs), German (de), Hausa (ha), Icelandic (is),
Japanese (ja), Russian (ru), and Chinese (zh). We
describe our bitext and monolingual data sources,
including additional mined data created for Hausa,
and our preprocessing pipeline.
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2.1 Bitext Data

For all directions, we use all available bitext data
from the shared task . For language directions such
as English to German or English to Russian, this
provides millions of high-quality bitext. However,
for low to mid resource languages, such as Hausa
and Icelandic, we incorporate additional sources
of data from freely available online sources such
as ccMatrix (Schwenk et al., 2019), ccAligned (EI-
Kishky et al., 2020), and OPUS (Tiedemann, 2012).
We utilize all available data sources to develop the
best quality translation model possible.

For English-Hausa (and Hausa-English), we also
mined extra parallel data from the provided mono-
lingual data. We use LaBSE (Feng et al., 2020) to
embed Hausa and English sentences into the same
embedding space. We then use the margin function
formulation (Artetxe and Schwenk, 2019) based
on K-nearest neighbors (KNN) to score and rank
pairs of sentences from the two languages. Using
the mining strategy from Tran et al. (2020), we
mined an additional one million pairs of parallel
sentences for English-Hausa.

Data Processing. The majority of available bi-
text represents noisy alignment rather than the out-
put of human translations. We apply several steps
of preprocessing to filter noisy data. First, we apply
language identification using fasttext (Joulin
et al., 2017) and retain sentences predicted as the
desired language'. We then normalize punctuation
with moses. Subsequently, we removed sentences
longer than 250 words and with a source/target
length ratio exceeding 3.

2.2 Monolingual Data

Previous work (Ng et al., 2019) shows that using in-
domain monolingual data provides the most quality
improvement when used for large-scale backtrans-
lation. For high resource languages such as En-
glish and German, there are sufficiently large quan-
tities of in-domain data available in Newscrawl,
and we do not utilize additional monolingual data.
For the remaining languages, the data available
in Newscrawl is not sufficient and we follow the
strategy in Moore and Lewis (2010); Ng et al.
(2019) to examine large quantities of general-
domain monolingual data from Commoncrawl?

"Note: for Hausa, the language identification system was
unreliable, so we did not utilize it.
“http://data.statmt.org/cc-100/

Language Bitext Monolingual
Czech 185M 140M
German 571M 237M
Hausa 1.7M ™
Icelandic 28.2M 101M
Japanese 145.7M 218M
Russian 297M 163M
Chinese 166M 123M
English — 430M

Table 1: Amount of Data per Language. The bitext
data includes data distributed by the WMT Shared Task,
the OPUS repository, ccMatrix, ccAligned, and newly
mined data for Hausa. The monolingual data includes
data distributed by the WMT Shared Task and CC100.

and identify a subset that is most similar to the avail-
able in-domain news data. For each language, we
train an n-gram language model (Heafield, 2011)
on all available news-domain data (Newscrawl)
and a n-gram language model on a similarly
sized sample from general-domain data (Common-
crawl). For each sentence s in Commoncrawl,
we compute word-normalized cross entropy scores
Hiews(s) and Hgeneral (s) using in-domain language
model and general-domain language model respec-
tively. We retain sentences that meet the threshold
Hiews(s) — Hgeneral (s) > 0.01. This selects around
5% of total number of sentences in the original
Commoncrawl.

2.3 Vocabulary

To create our multilingual vocabulary, we first learn
a multilingual subword tokenizer on our combined
training data across all languages. We use Sentence-
Piece (Kudo and Richardson, 2018), which learns
subword units from untokenized text. We train our
SPM model with temperature upsampling (with
T=5) similar to Conneau et al. (2020), so that low-
resource languages are represented. For bilingual
models, we used vocabulary size of 32,000, and
for multilingual models, we used 128, 000. Subse-
quently, we convert the learned SPM units into our
final vocabulary.

3 System Overview

We describe step-by-step how we created our fi-
nal multilingual submission for WMT2021. We
detail our bilingual and multilingual model archi-
tectures, as well as how we incorporate strategies
such as backtranslation, news-domain finetuning,
ensembling, and noisy channel reranking.
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3.1 Baseline Bilingual Models

A pre-requisite to creating state-of-the-art multi-
lingual translation systems is establishing strong,
competitive bilingual baselines. Our goal is to ap-
ply the same set of techniques in data augmentation
and modeling scaling to both bilingual and multilin-
gual models, and demonstrate multilingual models
have stronger translation quality.

To create baseline bilingual systems, we train a
separate Transformer model (Vaswani et al., 2017)
for each language direction. For every language
pair except Hausa, we use the Transformer 12/12
configurations in Table 2. For Hausa-English (and
English-Hausa), since the amount of bitext data is
smaller, we use the Transformer-Base architecture
similar to Vaswani et al. (2017). We train all our
models using fairseq (Ott et al., 2019) on 32
Volta 32GB GPUs. We use learning rate of 0.001
with the Adam optimizer, batch size of 768,000 to-
kens?, and tune the dropout rate for each language
direction independently. For large models

3.2 Backtranslation

Backtranslation (Sennrich et al., 2015) is a widely
used technique to improve the quality of machine
translation systems using data augmentation. To
perform backtranslation for a forward language di-
rection (e.g. English to German), we use a system
in the backward direction (e.g. German to English),
to translate the target German monolingual data
into the English source. We then use these back-
translated synthetic English to German sentence
pairs in conjunction with the original parallel data
to train an improved forward translation model.
We use all available filtered monolingual data
we have for each language (up to 500 million sen-
tences per language) for backtranslation. Using
our baseline bilingual models (described in Sec-
tion 3.1), we first finetune on in-domain news data
(described in Section 3.5), and use an ensemble of
3 models with different seeds to generate backtrans-
lation data using beam search. For Hausa-English
and English-Hausa, we applied a round of iterative
backtranslation (Hoang et al., 2018; Chen et al.,
2019) as the quality improvement is significant.

3.3 Data Sharding and Sampling

Table 1 displays the amount of data for all lan-
guages after postprocessing. We divide the data

36000 tokens per GPU * 32 GPUs * 4 update frequency

12/12  24/24 24/24 Wide
Layers 12 24 24
Emb. Size 1,024 1,024 2,048
FFN Size 4,096 8,192 16,384
Attn. Heads 16 16 32
Total Params. 480M 1.2B 4.7B

Table 2: Dense Transformer Configurations.

into multiple shards, with each training epoch us-
ing one shard. We downsample data from both
high resource directions and synthetic backtrans-
lated data by dividing them into a greater number
of shards than the real bitext data from low re-
source directions. We find that downsampling high
resource languages works better than upsampling
low resource languages, as upsampling contributes
more strongly to overfitting.

3.4 Model Architectures

We describe several model architectures that we
compared using the final dataset with both bitext
and backtranslated data.

Scaling Bilingual Models. Based on the base-
line architectures described in Section 3.1, we fur-
ther improve our bilingual models. The two main
improvements are: adding backtranslated data, and
adding deeper and wider Transformer configura-
tions to take advantage of the increase in data.

Dense Multilingual Models. For the multilin-
gual systems, we train two separate models: Many
to English, or one system encompassing every lan-
guage translated into English, and English to Many,
or one for English into every language. The chal-
lenge of multilingual models is often one of ca-
pacity — given a fixed number of parameters, a
model needs to learn representations of numerous
languages rather than just one. To understand the
needed capacity and optimal architectural configu-
ration, we experiment with different Transformer
architectures, ranging from 480M parameters to
4.7B parameters (see Table 2).

Sparsely Gated MoE Multilingual Models. In
multilingual models, languages necessarily com-
pete for capacity and must balance sharing parame-
ters with specialization for different languages. A
straightforward way to add capacity to neural archi-
tectures is to simply scale the model size in a dense
manner: increasing the number of layers, the width
of the layers, or the size of the hidden dimension.
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However, this has a significant computational cost,
as each forward pass activates all parameters — at
the limit, models become incredibly slow to train
and produce translations (Fan et al., 2021).

In this work, we instead focus on sparse model
scaling, motivated by wanting to increase capac-
ity without a proportional increase in computa-
tional cost. We train Sparsely Gated Mixture-of-
Expert (MoE) models (Lepikhin et al., 2020) for
English to Many and Many to English. These mod-
els aim to strike a balance between allowing high-
resource directions to benefit from increased ex-
pert model capacity, while also allowing transfer to
low-resource directions via shared model capacity.
In each Sparsely Gated MoE layer, each token is
routed to the top-k expert FFN blocks based on a
learned gating function. Thus, only a subset of all
the model’s parameters is used per input sequence.

We use a Transformer architecture with the Feed
Forward block in every alternate Transformer layer
replaced with a Sparsely Gated Mixture-of-Experts
layer with top-2 gating in the encoder and decoder.
As in Lepikhin et al. (2020), we also add a gate loss
term to balance expert assignment across tokens
with a gate loss weight of 0.01. We use an expert
capacity factor of 2.0. We use a learning rate of
0.001 with the Adam optimizer with 4000 warmup
updates and a batch size of 1 Million tokens (MoE
model with 64 experts) or 1.5 Million tokens (MoE
model with 128 experts).

3.5 In-Domain Finetuning

Finetuning with domain-specific data is an effec-
tive method of improving translation quality for
the desired domain, and thus we curated news-
domain data for finetuning. For directions such
as German and Russian, we finetune on evaluation
datasets from previous years of WMT. For Hausa
and Icelandic, as no previous data exists, we use
mined data and filter to the subset identified as
most likely news domain. Subsequently, we fine-
tune our models on the in-domain data for a maxi-
mum of ten epochs, selecting the best model with
validation loss on the newstest2020 dev set.
For our submission, we use the settings tuned on
newstest2020 and include newstest2021
dev set in the final finetuning.

3.6 Checkpoint Averaging

To combat bias toward recent training data, it is
common to average parameters across multiple
checkpoints of a model (Vaswani et al., 2017). We

apply this technique to all models and average the
last five checkpoints. To address rapid overfitting
during finetuning, we also average the finetuned
model with the model after the initial training is
complete and select this averaged set of parameters
if it performs better on the validation data.

3.7 Noisy Channel Re-ranking

We apply noisy channel re-ranking to select the
best candidate translations from n-best hypotheses
generated with beam search. We follow Yee et al.
(2019); Bhosale et al. (2020) and utilize scores
from the direct model P(tgt|src), channel model
P(src|tgt), and language model P(tgt). To com-
bine these scores for reranking, for every one of
our n-best hypotheses, we calculate:

log P(tgt|src)+A1 log P(src|tgt)+Az2 log P(tgt)

The weights Ay and Ao are determined by tuning
them with a random search over 1000 trials on a
validation set and selecting the weights that give
the best performance. In addition, we also tune a
length penalty. The search bounds we use for the
weights and the length penalty are [0,2].

Language Models. We trained Transformer-
based language models for all languages on the
same monolingual data as used for backtransla-
tion. The exception is English, where we trained
on the CC100 English data and RoBERTa training
data (Conneau et al., 2020; Wenzek et al., 2019;
Liu et al., 2019). For the high resource languages,
the language models have 12 decoder layers and
embedding dimension 4096. For Hausa and Ice-
landic, we trained smaller language models with 6
decoder layers to prevent overfitting.

3.8 Post-Processing

As a final step, we apply post-processing to the
translation outputs for Czech, German, Icelandic,
Japanese, and Chinese. For Czech, German, and
Icelandic, we convert quotation marks to German
double-quote style*. For Chinese and Japanese, we
convert punctuation marks to the language-specific
punctuation characters.

4 Experiments and Results

We conduct experiments to quantify the impact of
each of the component in our system. All exper-
iments are evaluated on newstest20 (Barrault
et al., 2020) using SacreBLEU (Post, 2018).

*https://en.wikipedia.org/wiki/Quotation_mark#German
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cs-en de-en ha-en is-en ja-en ru-em zh-en
Multilingual Vocab  28.3 38.0 28.3 345 211 38.0 30.8
Bilingual Vocab 28.6 36.8 284 352 224 37.0 29.6

en-cs en-de en-ha en-is en-ja en-ru en-zh
Multilingual Vocab ~ 33.2 394 23.1 294  26.1 25.7 42.4
Bilingual Vocab 33.7 39.8 239 294 261 26.0 43.3

Table 3: Impact of Vocabulary on Bilingual Models. We compare using a specialized bilingual vocabulary vs. a
general multilingual vocabulary and its impact on performance of bilingual systems.

4.1 Creating State-of-the-Art Multilingual
Translation Models

We investigate the effectiveness of multilingual-
ity in translation. Compared to bilingual models,
which can dedicate their capacity to specializing in
specific source and target languages, multilingual
systems must learn to effectively share available
capacity across all languages while balancing lan-
guages of different resource levels. Despite rising
research interest, previous WMT submissions have
not demonstrated quality improvement of multilin-
gual models over bilingual models. We discuss var-
ious choices and comparisons that build our state-
of-the-art multilingual translation system. Overall,
the best multilingual systems outperform the best
bilingual ones in 11 out of 14 directions, with an
average improvement of +0.8 BLEU.

4.1.1 Building a Multilingual Vocabulary.

Similar to how multilingual systems must share
model capacity, multilingual translation models
must also share vocabulary capacity. Instead of
training specialized subword units for a specific
language (often 32k), multilingual models group
all languages together to learn a much smaller vo-
cabulary set than 32k * number of languages. We
first examine the impact of this multilingual vocab-
ulary, by taking a bilingual system and training it
with the multilingual vocabulary. This would in-
dicate a performance difference coming not from
architecture, but from the vocabulary itself. Ta-
ble 3 indicates that across all directions, using a
specialized bilingual vocabulary is usually supe-
rior, meaning multilingual systems must bridge the
performance gap of a potentially subpar vocabu-
lary. However, for some directions such as en-is
and en-ja, no difference is observed.

4.1.2 Comparing Model Architectures.

Dense Transformer Models. Overall, we find
that dense multilingual models are fairly compet-
itive with dense bilingual models (see Table 4).

Importantly, we find multilingual models benefit
greatly from additional model capacity. In Table 5,
we show comparable dense scaling applied to a
bilingual model translating from English to Ger-
man. While the multilingual model improves up to
1 BLEU point, the bilingual model only improves
+0.3 BLEU, indicating diminishing return and pos-
sible overfitting in bilingual models. Scaling mul-
tilingual translation models has stronger potential
for performance improvement.

Sparsely Gated Mixture of Expert Models. If
multilingual models benefit from greater capacity,
what is the best way to add that capacity? In Ta-
ble 4, we compare the performance of Dense and
MoE multilingual models while keeping the FLOPs
per update approximately the same for fair compar-
ison. Due to the conditional compute capacity of
MOoE layers, MoE models have a greater number of
total parameters, but a comparable computational
cost with the corresponding dense model.

For Many to English and English to Many, the
MoE model with 64 experts per MoE layer gives
an average boost of +0.7 BLEU on the dev set.
To compare to scaling dense models, increasing
dense model size from 12/12 to 24/24 does not
correspond to significant improvement for Many
to English. However, there is around +1 BLEU
improvement in dense scaling on English to Many.
We also see a slightly decline or no improvement
in the performance of MoE models (MoE-64 12/12
vs MoE-128 24/24) when increasing model dimen-
sionality and increasing the number of experts from
64 to 128. One possible hypothesis is that having
128 experts is largely unnecessary for only 7 lan-
guages. Compared to 64 experts, training conver-
gence per expert is slower as each expert is exposed
to fewer tokens during training on an average.

After finetuning on in-domain data, we observe
a significant improvement in performance across
the board. There is a larger improvement from fine-
tuning in MoE models compared to the associated

209



cs-en de-en ha-en is-en ja-en ru-en zh-en \ Avg
Bilingual Dense 12/12 28.3 38.0 283 345 211 38.0 30.8 | 31.3
Dense 12/12 26.9 37.5 283 352 190 36.2 28.8 | 303
MoE-64 12/12 28.0 389 272 373 185 39.1 28.0 | 31.0
Dense 24/24 28.1 37.2 263 356 206 35.8 28.0 | 302
MoE-128 24/24 28.1 36.8 23.1 369 187 36.9 29.7 | 29.7
Dense 24/24 Wide 29.0 37.9 245 368 212 36.9 304 | 31.0
Bilingual Dense 12/12, BL-FT 304  42.8 303 355 246 39.5 362 | 342
Dense 12/12, ML-FT 30.3 424 327 375 239 39.5 342 | 344
MoE-64 12/12, ML-FT 31.6 435 334 388 257 39.8 36.0 | 355
Dense 24/24, ML-FT 31.8 434 36.0 388 256 40.3 36.3 | 36.0
MoE-128 24/24, ML-FT 319 436 349 397 265 40.4 372 | 363
Dense 24/24 Wide, ML-FT 32.1 43.8 361 394 267  40.6 369 | 36.5

en-cs en-de en-ha en-is en-ja en-ru en-zh | Avg
Bilingual Dense 12/12 33.1 39.6 23.1 294  26.1 25.7 424 | 313
Dense 12/12 33.7 38.6 214 305 266 25.3 41.1 | 31.0
MoE-64 12/12 335 39.7 204 315 280 264 425 | 31.7
Dense 24/24 34.0 39.6 217 316 275 26.4 423 | 319
MoE-128 24/24 33.0  40.2 193 309 288  26.6 4.8 | 31.7
Dense 24/24 Wide 334 39.7 234 320 280 26.6 422 | 322
Bilingual Dense 12/12, BL-FT  35.7 39.5 233 294 277 26.0 43.0 | 32.1
Dense 12/12, ML-FT 35.0 39.1 229 305 269 25.6 415 | 31.6
MoE-64 12/12, ML-FT 359 404 24.1 29.6 288 26.4 43.0 | 326
Dense 24/24, ML-FT 35.8 40.1 24.1 31.6 287 26.8 425 | 32.8
MoE-128 24/24, ML-FT 364  40.8 246 312 297 268 43.6 | 333
Dense 24/24 Wide, ML-FT 36.7 40.6 246 320 293 26.7 43.0 | 333

Table 4: Comparing Dense vs Sparsely Gated MoE Multilingual Models before and after in-domain fine-tuning.
BL-FT refers to finetuning a model on bilingual data, while ML-FT refers to finetuning a model on multilingual

data, see Section 4.1.

en-de
Bilingual 12/12 39.8
Bilingual 24/24 40.1
Bilingual 24/24 Wide 40.3
Bilingual 12/12 + FT 40.4
Bilingual 24/24 + FT 40.5
Bilingual 24/24 Wide + FT  40.4

Table 5: Scaling Bilingual Models.

dense baselines. Furthermore, the MoE model with
128 experts, which previously lagged behind the
MoE model with 64 experts, now gives the best re-
sults for all but two directions. A possible hypothe-
sis is that expert capacity in MoE models can retain
specialized direction-specific finetuning better than
dense models, where all language directions must
share all model capacity while finetuning.

4.1.3 Effects of In-Domain Finetuning

Finetuning Improves Multilingual More than
Bilingual. Table 6 compares the impact of fine-
tuning across a variety of models. Multilingual
systems benefit more from in-domain finetuning.

As a result, the best multilingual system always
outperforms the best bilingual system.

Multilingual Finetuning is better than Bilin-
gual Finetuning. For multilingual models, there
are two possible finetuning schemes (Tang et al.,
2020). The multilingual model could be finetuned
to specialize to the news domain in a multilingual
fashion, concatenating the news data for all lan-
guages, or could be finetuned for each direction
separately by training on bilingual news domain
data. We compare multilingual in-domain finetun-
ing with bilingual in-domain finetuning in Table 6.
We find that multilingual finetuning is almost al-
ways better than bilingual finetuning, indicating
that it is not necessary to take a multilingual sys-
tem and specialize it to be bilingual via bilingual
finetuning — a completely multilingual system still
has the strongest performance.

4.1.4 Human Evaluation.

While a number of studies have been conducted
on bilingual models to understand how BLEU cor-
relates with human-perceived quality, few studies
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cs-en de-en ha-en is-en ja-en ru-en zh-en
Bilingual 28.3 38.0 28.3 345 211 38.0 30.8
Bilingual, BL-FT 30.4 42.8 30.3 355 246 39.5 36.2
Multilingual 29.0 37.9 24.5 36.8 212 36.9 304
Multilingual, BL-FT 31.8 433 319 370 265 40.6 36.8
Multilingual, ML-FT  32.1 43.8 361 394  26.7 40.6 36.9

en-cs en-de en-ha en-is en-ja en-ru en-zh
Bilingual 33.1 39.6 23.1 294 26.1 25.7 424
Bilingual, BL-FT 35.7 39.5 233 294 277 26.0 43.0
Multilingual 334 39.7 234 320 28.0 26.6 422
Multilingual, BL-FT 36.1 40.3 242 30.1 287 274 43.0
Multilingual, ML-FT  36.7 40.6 246 320 293 26.7 43.0

Table 6: Impact of Finetuning on Bilingual and Multilingual Models. BL-FT refers to finetuning a multilingual
model on bilingual data, while ML-FT refers to finetuning a multilingual model on multilingual data.

cs-en de-en ha-en is-en ja-en
Bilingual 289 415 159 303 19.7
+BT 28.3 38.0 28.3 345 211
A -0.6 3.5 +124 442 +14

en-cs en-de en-ha en-is en-ja
Bilingual  33.1 38.7 147 258 254
+BT 332 39.4 23.1 294  26.1
A +0.1 +0.7 +84  +3.6 +0.7

Table 7: Impact of Large-scale Backtranslation in
Bilingual Systems.

cs-en de-en ha-en is-en ja-en
Multilingual  27.7 37.6 16.5 342 208
+ BT 27.8 37.9 25.8 356 208
A +0.1 +0.3 +9.3 +14 +0

en-cs en-de en-ha en-is en-ja
Multilingual ~ 33.7 39 100 270 269
+ BT 339 39.2 237 316 276
A +0.2 0.2 +13.7 +4.6 +0.7

Table 8: Impact of Large-scale Backtranslation in
Multilingual Systems.

have investigated multilingual ones. Given a bilin-
gual system and a multilingual system with the
same BLEU scores, we want to understand if there
is anything intrinsically different in the multilingual
system output that would impact human evaluation.

We study two directions: English to German and
English to Russian. We ask human annotators who
are fluent in source and native in target language to
evaluate the translation quality between a bilingual
system output and a multilingual system output.
Both systems have similar BLEU scores, within
decimal point difference. The translations are gen-
erated on the same English source sentence. We

. Bilingual Bilingual . Bilingual

I Bilingual +BT +FT +BT+FT

zh-en

de-en

cs-en ru-en

Figure 1: Impact of In-Domain Finetuning after
Backtranslation on bilingual models.

find no statistically significant difference between
human evaluations of both systems, indicating that
human evaluators have no innate preference for
bilingual or multilingual systems.

4.2 TImpact of Large-scale Backtranslation

Large-scale backtranslation has contributed to im-
provements in performance in machine translation
models (Edunov et al., 2018), even when measured
in human evaluation studies (Edunov et al., 2019;
Bogoychev and Sennrich, 2019) — it is a compo-
nent integrated into most modern translation sys-
tems. However, backtranslation also has downsides.
Research has indicated that systems trained with
large scale backtranslation data tend to overfit to
the synthetically generated source sentences, pro-
ducing lower quality translations when translating
original source sentences (Marie et al., 2020). Fur-
ther, backtranslation is fundamentally a form of
data augmentation, which could have increasingly
marginal effect when large-scale mined bitext is di-
rectly incorporated into training datasets. Beyond
mining, multilingual translation can also be seen
as an inherent form of data augmentation, as lan-
guage directions can benefit from the training data
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MMT \ Model cs-en de-en ha-en is-en ja-en ru-en zh-en \ Avg Incremental A
X Bilingual 28.9 41.5 15.9 30.3 19.7 40.2 34.8 | 30.2 —
X + Backtranslation  28.3 38.0 28.3 345 211 38.0 30.8 | 31.3 +1.1
X + Finetuning 30.4 42.8 30.3 355 246 39.5 36.2 | 34.2 +2.9
v + Multilingual 32.1 43.8 36.1 394 267 40.6 369 | 36.5 +2.3
v + Ensemble 323 44.5 37.2 399 272 40.9 37.8 | 37.1 +0.6
v + Reranking 32.7 444 382 405 278 41.4 38.0 | 37.6 +0.5
X WMT20 Winner 29.9 43.8 — — 26.6 39.2 36.9
A over WMT20 +2.8 +0.6 — — +1.2  +2.2 +1.1
MMT \ Model en-cs en-de en-ha en-is en-ja en-ru en-zh \ Avg Incremental A
X Bilingual 33.1 38.7 14.7 25.8 254 25.8 40.0 | 29.1 —
X + Backtranslation  33.1 39.6 23.1 294  26.1 25.7 424 | 31.3 +2.3
X + Finetuning 35.7 39.5 233 294 277 26.0 43.0 | 32.1 +0.7
v + Multilingual 36.4 40.8 24.6 312 297 26.8 43.6 | 333 +1.2
v + Ensemble 36.8 41.1 25.0 325 297 26.9 43.6 | 33.7 +0.4
v + Reranking 37.2 41.1 25.5 32.8 297 27.4 43.6 | 339 +0.2
v + Postprocessing 39.8 42.6 25.5 345 29.8 28.8 48.2 | 35.6 +1.7
X WMT20 Winner 36.8 38.8 — — 28.4 25.5 47.3
A over WMT20 +3.0 +3.8 — — +14  +33 +0.9

Table 9: Full Results of Submitted Models. Starting with a bilingual baseline, we depict the incremental gain
of different techniques across language pairs. Our final submission is a multilingual ensemble with noisy channel
reranking, trained on all available data including backtranslation. On all language pairs, we observe improvement
compared to the previous WMT20 winning models. The column MMT denotes if the model is multilingual. Note

Hausa and Icelandic were not present in WMT20.

of other directions. Thus, we analyze further in this
section the continued importance of backtransla-
tion, even in multilingual systems.

Backtranslation in Bilingual Systems. First,
we investigate if backtranslated data is still helpful,
even after we augment the training dataset with
mined and publicly available training data, beyond
what is distributed in the WMT Shared Task. Our
results in Table 7 show that backtranslation is help-
ful for 10 out of 14 directions, especially for low re-
source directions such as ha-en and is-en. However,
for high resource directions such as de-en, ru-en,
zh-en, bilingual systems trained with backtransla-
tion had slightly lower validation BLEU compared
to those trained without backtranslation.

Finetuning Corrects Overfitting to Transla-
tionese We further investigate the anomaly that
high-resource directions can suffer from adding
backtranslated data. Figure 1 shows that the mi-
nor BLEU degradation from adding backtransla-
tion mostly disappears after applying in-domain
finetuning. For zh-en and cs-en after in-domain
finetuning, the system trained with backtransla-
tion has stronger performance (+0.4 BLEU) com-
pared to the system trained without backtransla-
tion. Previous studies of this effect have indicated

that backtranslation produces translationese, which
has distinct qualities compared to original training
data (Marie et al., 2020; Zhang and Toral, 2019;
Graham et al., 2020). We hypothesize that in-
domain finetuning, which trains the model on non-
backtranslated data, can have a corrective effect
that counteracts overfitting on translationese.

Backtranslation in Multilingual Systems. Ta-
ble 8 summarizes the performance improvement
from adding backtranslation to multilingual mod-
els in an ablation study. Overall, despite creat-
ing a fully unconstrained system with substantially
greater training data and leveraging the data shar-
ing potential of multilingual translation, we find
that backtranslation still improves the performance.
We believe this is influenced by the fact that back-
translation fully utilizes available monolingual data.
While data mining techniques can identify poten-
tially parallel sentences, it is naturally limited to
identifying only a subset of the full monolingual
data the algorithms utilize to mine.

4.3 Ablation on Components of Final
Submission

Finally, we end by analyzing each aspect in our
final submission and the cumulative effect. The
effect of each component is shown in Table 9.
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Bilingual Baselines. We find that our bilingual
baselines have high BLEU scores, particularly
for ru-en where our bilingual baseline is already
stronger than the WMT20 winner. Overall, we ob-
serve that only en-ha and ha-en are significantly
lower than 20 BLEU, indicating that curating a
large amount of high quality bitext data is likely
the most important basis of a strong system.

Backtranslation. Subsequently, we add back-
translated data. We observe that ha, is, and ja in
particular observe large improvements in BLEU
after adding backtranslated data, while other direc-
tions can actually slightly decrease in quality as a
possible effect of translationese.

In-Domain Finetuning. We next evaluate the
impact of in-domain finetuning and find an almost
3 BLEU improvement across directions for trans-
lation into English and 0.7 BLEU improvement
for translation out of English. Across all language
directions, finetuning is almost universally helpful.

Multilingual. Compared to bilingual models,
multilingual models have stronger performance in
every direction. Multilingual models benefit much
more from scaling model size, as our largest archi-
tecture (MoE-128 24/24) has the best performance.

Ensembling. The effect of ensembling on aver-
age is fairly minor, but specific directions can see
large improvements (such as +1 BLEU on zh-en).

Reranking. We then apply noisy channel rerank-
ing to the outputs of our final system. It is helpful
across almost all directions, but does not have a
huge effect on BLEU. On average, performance
improves around 0.3 to 0.5 BLEU.

Postprocessing. Finally, we observe that post-
processing translated output to use standardized
punctuation in each language is very important for
BLEU scores when translating out of English. For
example, Chinese in particular has a number of
specific periods and double width punctuation char-
acters, and properly using these produces almost
+5 BLEU. However, we note that these techniques
likely only improve BLEU score, and the effect on
human evaluation is not well understood.

5 Conclusion

In this paper, we describe Facebook’s multilingual
model submission to the WMT2021 shared task on
news translation. We employed techniques such as

large scale backtranslation, bitext mining, large
scale dense and sparse multilingual models, in-
domain finetuning, ensembling, and noisy channel
reranking. We provide extensive experiment results
to quantify the impact of each technique, as well
as how well they cumulatively stack to produce the
final system. Our results demonstrate that multi-
lingual translation can achieve state-of-the-art per-
formance on both low resource and high resource
languages, beating our strong bilingual baselines
and previous years’ winning submissions.
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Tencent Translation System for the WMT21 News Translation Task

Longyue Wang* Mu Li Fangxu Liu Shuming Shi Zhaopeng Tu
Xing Wang Shuangzhi Wu Jiali Zeng Wen Zhang
Tencent Al Lab & Cloud Xiaowei
Abstract We hypothesized that different models have their

This paper describes Tencent Translation sys-
tems for the WMT21 shared task. We par-
ticipate in the news translation task on three
language pairs: Chinese=English, English=
Chinese and German=-English. Our systems
are built on various Transformer models with
novel techniques adapted from our recent re-
search work. First, we combine different
data augmentation methods including back-
translation, forward-translation and right-to-
left training to enlarge the training data. We
also apply language coverage bias, data reju-
venation and uncertainty-based sampling ap-
proaches to select content-relevant and high-
quality data from large parallel and mono-
lingual corpora. Expect for in-domain fine-
tuning, we also propose a fine-grained “one
model one domain” approach to model char-
acteristics of different news genres at fine-
tuning and decoding stages. Besides, we
use greed-based ensemble algorithm and trans-
ductive ensemble method to further boost
our systems. Based on our success in the
last WMT, we continuously employed ad-
vanced techniques such as large batch train-
ing, data selection and data filtering. Fi-
nally, our constrained Chinese=-English sys-
tem achieves 33.4 case-sensitive BLEU score,
which is the highest among all submissions.
The German=-English system is ranked at sec-
ond place accordingly.

1 Introduction

In this year’s news translation task, our trans-
lation team at Tencent Al Lab & Cloud Xi-
aowei participated in three shared tasks, in-
cluding Chinese=-English, English=-Chinese and
German=-English. We used the same data strate-
gies, model architectures and corresponding tech-
niques for all tasks.

* Corresponding author: vinnylywang @tencent.com. The
other authors are in alphabetical order of last name.
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own strengths and characteristics, and they can
complement each other. Thus, we built various ad-
vanced NMT models which mainly differ in train-
ing data and model architectures. These models (i.e.
DEEP, LARGE and LARGE-FFN) are empirically
designed based on Transformer-Deep which has
proven more effective than the Transformer-Big
models (Li et al., 2019). In addition to the orig-
inal multi-head self-attention, we also proposed
a mixed attention strategy by combining relative
position with the original one, which extends the
self-attention to efficiently consider representations
of the relative positions. We use a variation of rel-
ative position, the random attention (RAN) (Zeng
et al., 2021). As a results, we combined these mod-
els at transductive fine-tuning stage.

In terms of data augmentation, we adapt back-
translation (BT) (Sennrich et al., 2016a), forward-
translation (FT) (Zhang and Zong, 2016) and right-
to-left (R2L) (Zhang et al., 2019) techniques to
generate large-scale synthetic training data. Dif-
ferent from the standard back-translation, we add
noise to the synthetic source sentence in order to
take advantage of large-scale monolingual text. In
addition, we used tagged BT mechanism (i.e. add
a special token to the synthetic source sentence) to
help the model better distinguish the originality of
data. All the parallel data and a large amount of
monolingual data are used in corresponding data
augmentation methods, and finally we combine
them together to build strong baseline models.

To enhance the domain-specific knowledge, we
introduced approaches at both data and model lev-
els. First, we employed a hybrid data selection
method (Wang et al.) to produce different fine-
tuning datasets. More specifically, we apply lan-
guage coverage bias (Wang et al., 2021a), data
rejuvenation (Jiao et al., 2020) and uncertainty-
based sampling (Jiao et al., 2021) to select content-
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relevant and high-quality data from parallel and
monolingual corpora. The news texts contain a
number of sub-genres such as COVID-19 and gov-
ernment report. Thus, we fine-tuned a domain-
specific model translate each sub-genre of text in
the test set (i.e. “one domain one model”).

We take advantage of the combination meth-
ods to further improve the translation quality. The
“greedy search ensemble algorithm” (Li 