
NAACL-HLT 2021

The 2021 Conference
of the North American Chapter

of the Association for Computational Linguistics:
Human Language Technologies

Industry Papers

June 6 - 11, 2021

©2021 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-954085-47-3

ii

Message from the Industry Track Chairs

Language technologies and their applications are an integral and critical part of our daily lives. The
development of many of these technologies trace their roots to academic and industrial research
laboratories where researchers invented a plethora of algorithms, benchmarked them against shared
datasets and perfected the performance of these algorithms to provide plausible solutions to real-
world applications. While a controlled laboratory setting is vital for a deeper scientific understanding
of the language problem and the impact of algorithmic design choices on the performance of a
technology, transitioning the technology to real-world industrial strength applications raises a different,
yet challenging, set of technical issues.

The Industry Track at NAACL HLT 2021 represents innovations and implementations in speech and
natural language processing technologies and systems that are relevant to industrial applications. The
primary focus of this track is on papers that advance the understanding of, and demonstrate the effective
handling of, practical issues related to the deployment of language processing technologies in non-trivial
real-world systems. By “non-trivial real-world system” we mean an application that is deployed for
real-world use, i.e. outside controlled environments such as a laboratories, classrooms or experimental
crowd-sourced setups, and that uses natural language processing (including speech technology), even if
not state of the art in terms of research. There is no requirement that the system be made by a for-profit
company, but the users of the system must be outside of the NLP research community.

We received 132 papers, and accepted 39, or 29.5%. This year, nearly half the papers in the
Industry Track are about dialog processing, reflecting the importance of interactive systems in industrial
applications today. Additional topics include semantics, machine translation, information retrieval, and
sentiment analysis.

We hope that these papers will provide an interesting complement to the Main Track papers.

Young-bum Kim, Yunyao Li, Owen Rambow

iii

Organizing Committee

Young-bum Kim, Amazon, Inc. (youngbum@amazon.com)
Yunyao Li, IBM, Inc. (yunyaoli@us.ibm.com)
Owen Rambow, Stony Brook University (owen.rambow@stonybrook.edu)

Reviewers

We thank our reviewers, without whom the Industry Track would not be possible. This list also includes
reviewers for the secondary ethics review.

Jade Abbott, Mohamed Abdelhady, George Acquaah-Mensah, Gilles Adda, Shazia Afzal, Sachin Agarwal,
Hua Ai, Alan Akbik, Mohamed AlTantawy, Shankar Ananthakrishnan, Ankit Arun, Venkatesh Baglodi,
Srinivas Bangalore, Nikoletta Basiou, Daniel Bauer, Frederic Bechet, Tilman Becker, Emily M. Bender,
Luciana Benotti, Dan Bikel, Claudia Borg, Trung Bui, Greg Burnham, Donna Byron, Aoife Cahill, Vitor
Carvalho, Thiago Castro Ferreira, Sourish Chaudhuri, Ciprian Chelba, John Chen, Minhua Chen, Laura
Chiticariu, Justin Chiu, Eunah Cho, Jaesik Choi, Jaegul Choo, Jennifer Chu-Carroll, Hyung Won Chung,
Rylan Conway, Deborah Dahl, Marina Danilevsky, Budhaditya Deb, Lingjia Deng, Giuseppe Di Fabbrizio,
Christine Doran, Dejing Dou, Pablo Duboue, Matthew Dunn, David Elson, Ramy Eskander, Xing Fan,
Song Feng, Oliver Ferschke, Michael Flor, Karën Fort, Annemarie Friedrich, Ankur Gandhe, Rashmi
Gangadharaiah, Judith Gaspers, Anna Lisa Gentile, Ryan Georgi, Debanjan Ghosh, Honglei Guo, Yufan
Guo, Daniel Hardt, Hua He, Enrique Henestroza Anguiano, Sanjika Hewavitharana, Christopher Hidey,
Derrick Higgins, Lynette Hirschman, Yufang Hou, Samar Husain, Javid Huseynov, Hyesung Ji, Hongxia
Jin, Mahesh Joshi, Mohammad Kachuee, Jun Seok Kang, Yoav Katz, Saurabh Khanwalkar, Sun Kim,
Dongchan Kim, Yoon Kim, Joo-Kyung Kim, Yu-Seop Kim, Jin-Dong Kim, Jared Kramer, Sanjeev Kumar,
Anjishnu Kumar, Rohit Kumar, Gakuto Kurata, Sarasi Lalithsena, Anastassia Lastname, Young-Suk
Lee, Han Li, Constantine Lignos, Heuiseok Lim, Chin-Yew Lin, Xiaohu Liu, Anastassia Loukina, Alex
Marin, Yuval Marton, Yuji Matsumoto, David McDonald, Angeliki Metallinou, Lisa Michaud, Margot
Mieskes, Nyalleng Moorosi, Michelle Morales, Isabelle Moulinier, Matthew Mulholland, Udhyakumar
Nallasamy, Jinseok Nam, Nobal B. Niraula, Elnaz Nouri, Mari Olsen, Cecile Paris, Youngja Park, Taiwoo
Park, Dookun Park, Patrick Paroubek, Ioannis Partalas, Siddharth Patwardhan, Karl Pichotta, Vassilis
Plachouras, Alexandros Potamianos, Saloni Potdar, Rashmi Prasad, Long Qin, Elio Querze, Sravana
Reddy, Ehud Reiter, Nicholas Ruiz, Alicia Sagae, Avneesh Saluja, Mark Sammons, Ruhi Sarikaya, Hassan
Sawaf, Frank Schilder, Ethan Selfridge, Igor Shalyminov, Michal Shmueli-Scheuer, Lei Shu, Sunayana
Sitaram, AJ Stent, Svetlana Stoyanchev, Chengwei Su, Tara Taghavi, Joel Tetreault, Sudarshan R. Thitte,
Isabel Trancoso, Keith Trnka, Ling Tsou, Morgan Ulinski, Ngoc Phuoc An Vo, Yi-Chia Wang, Lucy Lu
Wang, Guoyin Wang, Kyle Williams, Puyang Xu, Yeongyook Yang, Kai Yu, Seunghak Yu, Liyuan Zhang,
Yefeng Zheng

v

Table of Contents

When does text prediction benefit from additional context? An exploration of contextual signals for chat
and email messages

Stojan Trajanovski, Chad Atalla, Kunho Kim, Vipul Agarwal, Milad Shokouhi and Chris Quirk. .1

Identifying and Resolving Annotation Changes for Natural Language Understanding
Jose Garrido Ramas, Giorgio Pessot, Abdalghani Abujabal and Martin Rajman 10

Optimizing NLU Reranking Using Entity Resolution Signals in Multi-domain Dialog Systems
Tong Wang, Jiangning Chen, Mohsen Malmir, Shuyan Dong, Xin He, Han Wang, Chengwei Su,

Yue Liu and Yang Liu . 19

Entity Resolution in Open-domain Conversations
Mingyue Shang, Tong Wang, Mihail Eric, Jiangning Chen, Jiyang Wang, Matthew Welch, Tiantong

Deng, Akshay Grewal, Han Wang, Yue Liu, Yang Liu and Dilek Hakkani-Tur . 26

Pretrain-Finetune Based Training of Task-Oriented Dialogue Systems in a Real-World Setting
Manisha Srivastava, Yichao Lu, Riley Peschon and Chenyang Li . 34

Contextual Domain Classification with Temporal Representations
Tzu-Hsiang Lin, Yipeng Shi, Chentao Ye, Yang Fan, Weitong Ruan, Emre Barut, Wael Hamza and

Chengwei Su. .41

Bootstrapping a Music Voice Assistant with Weak Supervision
Sergio Oramas, Massimo Quadrana and Fabien Gouyon . 49

Continuous Model Improvement for Language Understanding with Machine Translation
Abdalghani Abujabal, Claudio Delli Bovi, Sungho Ryu, Turan Gojayev, Fabian Triefenbach and

Yannick Versley . 56

A Hybrid Approach to Scalable and Robust Spoken Language Understanding in Enterprise Virtual
Agents

Ryan Price, Mahnoosh Mehrabani, Narendra Gupta, Yeon-Jun Kim, Shahab Jalalvand, Minhua
Chen, Yanjie Zhao and Srinivas Bangalore . 63

Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems
Shubhi Tyagi, Antonio Bonafonte, Jaime Lorenzo-Trueba and Javier Latorre.72

Addressing the Vulnerability of NMT in Input Perturbations
Weiwen Xu, Ai Ti Aw, Yang Ding, Kui Wu and Shafiq Joty . 80

Cross-lingual Supervision Improves Unsupervised Neural Machine Translation
Mingxuan Wang, Hongxiao Bai, Lei Li and Hai Zhao . 89

Should we find another model?: Improving Neural Machine Translation Performance with ONE-Piece
Tokenization Method without Model Modification

chanjun park, Sugyeong Eo, Hyeonseok Moon and Heuiseok Lim . 97

Autocorrect in the Process of Translation — Multi-task Learning Improves Dialogue Machine Transla-
tion

Tao Wang, Chengqi Zhao, Mingxuan Wang, Lei Li and Deyi Xiong. .105

vii

LightSeq: A High Performance Inference Library for Transformers
Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang and Lei Li . 113

Practical Transformer-based Multilingual Text Classification
Cindy Wang and Michele Banko . 121

An Emotional Comfort Framework for Improving User Satisfaction in E-Commerce Customer Service
Chatbots

Shuangyong Song, Chao Wang, Haiqing Chen and Huan Chen . 130

Language Scaling for Universal Suggested Replies Model
Qianlan Ying, Payal Bajaj, Budhaditya Deb, Yu Yang, Wei Wang, Bojia Lin, Milad Shokouhi, Xia

Song, Yang Yang and Daxin Jiang . 138

Graph-based Multilingual Product Retrieval in E-Commerce Search
Hanqing Lu, Youna Hu, Tong Zhao, Tony Wu, Yiwei Song and Bing Yin . 146

Query2Prod2Vec: Grounded Word Embeddings for eCommerce
Federico Bianchi, Jacopo Tagliabue and Bingqing Yu . 154

An Architecture for Accelerated Large-Scale Inference of Transformer-Based Language Models
Amir Ganiev, Colton Chapin, Anderson De Andrade and Chen Liu . 163

When and Why a Model Fails? A Human-in-the-loop Error Detection Framework for Sentiment Analysis
Zhe Liu, Yufan Guo and Jalal Mahmud . 170

Technical Question Answering across Tasks and Domains
Wenhao Yu, Lingfei Wu, Yu Deng, Qingkai Zeng, Ruchi Mahindru, Sinem Guven and Meng Jiang

178

Cost-effective Deployment of BERT Models in Serverless Environment
Marek Suppa, Katarína Benešová and Andrej Švec . 187

Noise Robust Named Entity Understanding for Voice Assistants
Deepak Muralidharan, Joel Ruben Antony Moniz, Sida Gao, Xiao Yang, Justine Kao, Stephen

Pulman, Atish Kothari, Ray Shen, Yinying Pan, Vivek Kaul, Mubarak Seyed Ibrahim, Gang Xiang, Nan
Dun, Yidan Zhou, Andy O, Yuan Zhang, Pooja Chitkara, Xuan Wang, Alkesh Patel, Kushal Tayal, Roger
Zheng, Peter Grasch, Jason D Williams and Lin Li . 196

Goodwill Hunting: Analyzing and Repurposing Off-the-Shelf Named Entity Linking Systems
Karan Goel, Laurel Orr, Nazneen Fatema Rajani, Jesse Vig and Christopher Ré 205

Intent Features for Rich Natural Language Understanding
Brian Lester, Sagnik Ray Choudhury, Rashmi Prasad and Srinivas Bangalore 214

Development of an Enterprise-Grade Contract Understanding System
Arvind Agarwal, Laura Chiticariu, Poornima Chozhiyath Raman, Marina Danilevsky, Diman Ghazi,

Ankush Gupta, Shanmukha Guttula, Yannis Katsis, Rajasekar Krishnamurthy, Yunyao Li, Shubham
Mudgal, Vitobha Munigala, Nicholas Phan, Dhaval Sonawane, Sneha Srinivasan, Sudarshan R. Thitte,
Mitesh Vasa, Ramiya Venkatachalam, Vinitha Yaski and Huaiyu Zhu . 222

Discovering Better Model Architectures for Medical Query Understanding
Wei Zhu, Yuan Ni, Xiaoling Wang and Guotong Xie . 230

viii

OodGAN: Generative Adversarial Network for Out-of-Domain Data Generation
Petr Marek, Vishal Ishwar Naik, Anuj Goyal and Vincent Auvray . 238

Coherent and Concise Radiology Report Generation via Context Specific Image Representations and
Orthogonal Sentence States

Litton J Kurisinkel, Ai Ti Aw and Nancy F Chen . 246

An Empirical Study of Generating Texts for Search Engine Advertising
Hidetaka Kamigaito, Peinan Zhang, Hiroya Takamura and Manabu Okumura 255

Ad Headline Generation using Self-Critical Masked Language Model
Yashal Shakti Kanungo, Sumit Negi and Aruna Rajan . 263

LATEX-Numeric: Language Agnostic Text Attribute Extraction for Numeric Attributes
Kartik Mehta, Ioana Oprea and Nikhil Rasiwasia . 272

Training Language Models under Resource Constraints for Adversarial Advertisement Detection
Eshwar Shamanna Girishekar, Shiv Surya, Nishant Nikhil, Dyut Kumar Sil, Sumit Negi and Aruna

Rajan . 280

Combining Weakly Supervised ML Techniques for Low-Resource NLU
Victor Soto and Konstantine Arkoudas . 288

Label-Guided Learning for Item Categorization in e-Commerce
Lei Chen and Hirokazu Miyake . 296

Benchmarking Commercial Intent Detection Services with Practice-Driven Evaluations
Haode Qi, Lin Pan, Atin Sood, Abhishek Shah, Ladislav Kunc, Mo Yu and Saloni Potdar 304

Industry Scale Semi-Supervised Learning for Natural Language Understanding
Luoxin Chen, Francisco Garcia, Varun Kumar, He Xie and Jianhua Lu . 311

ix

xi

Industry Track Program

Mon 07 Jun 2021 (all times PDT, UTC-7)

09:00–10:20 IND1-Oral: Dialogue (Industry Track)

When does text prediction benefit from additional context? An exploration of con-
textual signals for chat and email messages
Stojan Trajanovski, Chad Atalla, Kunho Kim, Vipul Agarwal, Milad Shokouhi and
Chris Quirk

Identifying and Resolving Annotation Changes for Natural Language Understand-
ing
Jose Garrido Ramas, Giorgio Pessot, Abdalghani Abujabal and Martin Rajman

Optimizing NLU Reranking Using Entity Resolution Signals in Multi-domain Dia-
log Systems
Tong Wang, Jiangning Chen, Mohsen Malmir, Shuyan Dong, Xin He, Han Wang,
Chengwei Su, Yue Liu and Yang Liu

Entity Resolution in Open-domain Conversations
Mingyue Shang, Tong Wang, Mihail Eric, Jiangning Chen, Jiyang Wang, Matthew
Welch, Tiantong Deng, Akshay Grewal, Han Wang, Yue Liu, Yang Liu and Dilek
Hakkani-Tur

Pretrain-Finetune Based Training of Task-Oriented Dialogue Systems in a Real-
World Setting
Manisha Srivastava, Yichao Lu, Riley Peschon and Chenyang Li

Contextual Domain Classification with Temporal Representations
Tzu-Hsiang Lin, Yipeng Shi, Chentao Ye, Yang Fan, Weitong Ruan, Emre Barut,
Wael Hamza and Chengwei Su

10:20–11:40 IND2-Oral: Spoken Dialogue (Industry Track)

Bootstrapping a Music Voice Assistant with Weak Supervision
Sergio Oramas, Massimo Quadrana and Fabien Gouyon

Continuous Model Improvement for Language Understanding with Machine Trans-
lation
Abdalghani Abujabal, Claudio Delli Bovi, Sungho Ryu, Turan Gojayev, Fabian
Triefenbach and Yannick Versley

A HYBRID APPROACH TO SCALABLE AND ROBUST SPOKEN LANGUAGE UN-
DERSTANDING IN ENTERPRISE VIRTUAL AGENTS
Ryan Price, Mahnoosh Mehrabani, Narendra Gupta, Yeon-Jun Kim, Shahab Jalal-
vand, Minhua Chen, Yanjie Zhao and Srinivas Bangalore

Proteno: Text Normalization with Limited Data for Fast Deployment in Text to
Speech Systems
Shubhi Tyagi, Antonio Bonafonte, Jaime Lorenzo-Trueba and Javier Latorrexii

Mon 07 Jun 2021 (continued; all times PDT, UTC-7))

18:20–19:40 IND3-Oral: Machine Translation (Industry Track)

Addressing the Vulnerability of NMT in Input Perturbations
Weiwen Xu, AiTi Aw, Yang Ding, Kui Wu and Shafiq Joty

Cross-lingual Supervision Improves Unsupervised Neural Machine Translation
Mingxuan Wang, Hongxiao Bai, Lei Li and Hai Zhao

Should we find another model?: Improving Neural Machine Translation Perfor-
mance with ONE-Piece Tokenization Method without Model Modification
chanjun park, Sugyeong Eo, Hyeonseok Moon and Heuiseok Lim

Autocorrect in the Process of Translation — Multi-task Learning Improves Dialogue
Machine Translation
Tao Wang, Chengqi Zhao, Mingxuan Wang, Lei Li and Deyi Xiong

LightSeq: A High Performance Inference Library for Transformers
Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang and Lei Li

Practical Transformer-based Multilingual Text Classification
Cindy Wang and Michele Banko

19:40–21:00 IND4-Oral: Sentiment Analysis and Information Retrieval (Industry Track)

An Emotional Comfort Framework for Improving User Satisfaction in E-Commerce
Customer Service Chatbots
Shuangyong Song, Chao Wang, Haiqing Chen and Huan Chen

Language Scaling for Universal Suggested Replies Model
Qianlan Ying, Payal Bajaj, Budhaditya Deb, Yu Yang, Wei Wang, Bojia Lin, Milad
Shokouhi, Xia Song, Yang Yang and Daxin Jiang

Graph-based Multilingual Product Retrieval in E-Commerce Search
Hanqing Lu, Youna Hu, Tong Zhao, Tony Wu, Yiwei Song and Bing Yin

Query2Prod2Vec: Grounded Word Embeddings for eCommerce
Federico Bianchi, Jacopo Tagliabue and Bingqing Yu

xiii

Mon 07 Jun 2021 (continued; all times PDT, UTC-7))

An Architecture for Accelerated Large-Scale Inference of Transformer-Based Lan-
guage Models
Amir Ganiev, Colton Chapin, Anderson De Andrade and Chen Liu

When and Why a Model Fails? A Human-in-the-loop Error Detection Framework
for Sentiment Analysis
Zhe Liu, Yufan Guo and Jalal Mahmud

Tue 08 Jun 2021 (all times PDT, UTC-7)

09:00–10:20 IND5-Oral: Semantics (Industry Track)

Technical Question Answering across Tasks and Domains
Wenhao Yu, Lingfei Wu, Yu Deng, Qingkai Zeng, Ruchi Mahindru, Sinem Guven
and Meng Jiang

Cost-effective Deployment of BERT Models in Serverless Environment
Marek Suppa, Katarína Benešová and Andrej Švec

Noise Robust Named Entity Understanding for Voice Assistants
Deepak Muralidharan, Joel Ruben Antony Moniz, Sida Gao, Xiao Yang, Justine
Kao, Stephen Pulman, Atish Kothari, Ray Shen, Yinying Pan, Vivek Kaul, Mubarak
Seyed Ibrahim, Gang Xiang, Nan Dun, Yidan Zhou, Andy O, Yuan Zhang, Pooja
Chitkara, Xuan Wang, Alkesh Patel, Kushal Tayal, Roger Zheng, Peter Grasch,
Jason D Williams and Lin Li

Goodwill Hunting: Analyzing and Repurposing Off-the-Shelf Named Entity Linking
Systems
Karan Goel, Laurel Orr, Nazneen Fatema Rajani, Jesse Vig and Christopher Ré

Intent Features for Rich Natural Language Understanding
Brian Lester, Sagnik Ray Choudhury, Rashmi Prasad and Srinivas Bangalore

Development of an Enterprise-Grade Contract Understanding System
Arvind Agarwal, Laura Chiticariu, Poornima Chozhiyath Raman, Marina
Danilevsky, Diman Ghazi, Ankush Gupta, Shanmukha Guttula, Yannis Katsis, Ra-
jasekar Krishnamurthy, Yunyao Li, Shubham Mudgal, Vitobha Munigala, Nicholas
Phan, Dhaval Sonawane, Sneha Srinivasan, Sudarshan R. Thitte, Mitesh Vasa,
Ramiya Venkatachalam, Vinitha Yaski and Huaiyu Zhu

xiv

Wed 09 Jun 2021 (all times PDT, UTC-7)

18:20–19:40 IND6-Oral: Natural Language Generation and Dialogue (Industry Track)

Discovering Better Model Architectures for Medical Query Understanding
Wei Zhu, Yuan Ni, Xiaoling Wang and Guotong Xie

OodGAN: Generative Adversarial Network for Out-of-Domain Data Generation
Petr Marek, Vishal Ishwar Naik, Anuj Goyal and Vincent Auvray

Coherent and Concise Radiology Report Generation via Context Specific Image
Representations and Orthogonal Sentence States
Litton J Kurisinkel, Ai Ti Aw and Nancy F Chen

An Empirical Study of Generating Texts for Search Engine Advertising
Hidetaka Kamigaito, Peinan Zhang, Hiroya Takamura and Manabu Okumura

Ad Headline Generation using Self-Critical Masked Language Model
Yashal Shakti Kanungo, Sumit Negi and Aruna Rajan

19:40–21:00 IND7-Oral: Machine Learning (Industry Track)

LATEX-Numeric: Language Agnostic Text Attribute Extraction for Numeric At-
tributes
Kartik Mehta, Ioana Oprea and Nikhil Rasiwasia

Training Language Models under Resource Constraints for Adversarial Advertise-
ment Detection
Eshwar Shamanna Girishekar, Shiv Surya, Nishant Nikhil, Dyut Kumar Sil, Sumit
Negi and Aruna Rajan

Combining Weakly Supervised ML Techniques for Low-Resource NLU
Victor Soto and Konstantine Arkoudas

Label-Guided Learning for Item Categorization in e-Commerce
Lei Chen and Hirokazu Miyake

Benchmarking Commercial Intent Detection Services with Practice-Driven Evalua-
tions
Haode Qi, Lin Pan, Atin Sood, Abhishek Shah, Ladislav Kunc, Mo Yu and Saloni
Potdar

xv

Wed 09 Jun 2021 (continued; all times PDT, UTC-7))

Industry Scale Semi-Supervised Learning for Natural Language Understanding
Luoxin Chen, Francisco Garcia, Varun Kumar, He Xie and Jianhua Lu

xvi

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 1–9
June 6–11, 2021. ©2021 Association for Computational Linguistics

When does text prediction benefit from additional context?
An exploration of contextual signals for chat and email messages
Stojan Trajanovski

Microsoft
Chad Atalla

Microsoft
Kunho Kim

Microsoft

Vipul Agarwal
Microsoft

Milad Shokouhi
Microsoft

Chris Quirk
Microsoft

{sttrajan,chatalla,kuki,vipulag,milads,chrisq}@microsoft.com

Abstract

Email and chat communication tools are in-
creasingly important for completing daily
tasks. Accurate real-time phrase completion
can save time and bolster productivity. Mod-
ern text prediction algorithms are based on
large language models which typically rely
on the prior words in a message to predict a
completion. We examine how additional con-
textual signals (from previous messages, time,
and subject) affect the performance of a com-
mercial text prediction model. We compare
contextual text prediction in chat and email
messages from two of the largest commercial
platforms Microsoft Teams and Outlook, find-
ing that contextual signals contribute to per-
formance differently between these scenarios.
On emails, time context is most beneficial
with small relative gains of 2% over baseline.
Whereas, in chat scenarios, using a tailored
set of previous messages as context yields rel-
ative improvements over the baseline between
9.3% and 18.6% across various critical service-
oriented text prediction metrics.

1 Introduction

Email and chat communication tools are increas-
ingly important for completing daily professional
and personal tasks. Given the recent pandemic
and shift to remote work, this usage has surged.
The number of daily active users in Microsoft
Teams, the largest business communication and
chat platform, has increased from 20 million (2019,
pre-pandemic) to more than 115 million in Octo-
ber (2020). On the other hand, email continues
to be the crucial driver for formal communication
showing ever increasing usage. Providing real-time
suggestions for word or phrase auto-completions is
known as text prediction. The efficiency of these
communications is enhanced by suggesting highly
accurate text predictions with low latency. Text
prediction services have been deployed across pop-
ular communication tools and platforms such as

(Microsoft Text Predictions, 2020) or GMail Smart
Compose (Chen et al., 2019).

Modern text prediction algorithms are based on
large language models and generally rely on the
prefix of a message (characters typed until cursor
position) to create predictions. We study to what
extent additional contextual signals improve text
predictions in chat and email messages in two of
the largest commercial communication platforms:
Microsoft Teams and Outlook. Our contributions
are summarized as:

• We demonstrate that prior-message context
provides the greatest lift in the Teams (chat)
scenario. A 5 minute window of prior mes-
sages from both senders works the best, with
relative gains from 9.3% up to 18.6% across
key metrics (total match and estimated charac-
ters accepted). This 5 minute window of prior
messages from both senders outperforms the
corresponding 2 and 10 minute scenarios.

• We find that context about message composi-
tion time provides the largest gains for the Out-
look (email) scenario, while adding the sub-
ject as context only marginally helps. These
relative gains are moderate (2-3% across vari-
ous metrics).

• We conclude that the different characteristics
of chat and email messages impede domain
transfer. The best contextual text prediction
models are custom trained for each scenario,
using the most impactful subset of contextual
signals.

The remainder of the paper is organized as follows.
We give an overview of state-of-the-art related re-
search in Section 2. More details on the signals
used for contextualization are provided in Section 3.
Section 4 provides information on the language
model, performance metrics, and statistical details

1

about the data. Experiment results and compar-
isons are presented in Section 5. We conclude in
Section 6. Ethical considerations on the data and
processes are discussed in Section 7.

2 Related work

Text prediction services have been applied for var-
ious applications, including text editor (Darragh
et al., 1990), query autocompletion on search en-
gine (Bast and Weber, 2006; Bar-Yossef and Kraus,
2011), mobile virtual keyboard (Hard et al., 2018).
Recently prediction service is applied on communi-
cation tools for composing email and chat messages
to improve user writing productivity (Kannan et al.,
2016; Deb et al., 2019; Chen et al., 2019; Microsoft
Text Predictions, 2020).

To predict correct text continuation, such ap-
plications leverage efficient lookups with pre-
generated candidates, using most popular candi-
dates (MPC) (Bar-Yossef and Kraus, 2011), or
using large-scale language models (Bengio et al.,
2003). State-of-the-art language models (Jozefow-
icz et al., 2016; Mnih and Hinton, 2009; Melis
et al., 2018) rely on the most recent deep learning
architectures, including large LSTMs (Hochreiter
and Schmidhuber, 1997) or transformers (Vaswani
et al., 2017), while prior approaches involve n-gram
modeling (Kneser and Ney, 1995; James, 2000;
Bickel et al., 2005).

In this work, we focus on the application of text
prediction on production-level online communica-
tion tools, to help users compose emails (Chen
et al., 2019; Microsoft Text Predictions, 2020), and
in addition chat messages. In particular, we fo-
cus on examining useful contextual signals to give
more accurate predicted text, using time, subject,
and prior messages. Various contextualization tech-
niques (e.g., hierarchical RNNs) have been applied
to add useful additional signals such as preced-
ing web interaction, linking pages, similar search
queries or visitor interests of a page (White et al.,
2009); previous sequence of utterances (Park et al.,
2018; Zhang et al., 2018; Yoo et al., 2020) or re-
lated text snippets (Ke et al., 2018).

3 Contextualization concepts

We examine several signals accompanying the main
message text: message compose time, subject,
and previous messages. We combine these sig-
nals with the message body into a single "contex-
tualized" string, using special tokens to separate

signals, as shown in Figure 1a. This approach is
inspired by (Chen et al., 2019), as they showed
that concatenating contextual signals into a single
input string gave a comparable result to more com-
plex methods encoding these signals separately1.
The remainder of this section explains details about
each contextual signal we use.

Time Composition time is a contextual signal
which can provide added value for text prediction,
enabling suggestions with relevant date-time words,
like "weekend", "tonight". We encode local date
and time, as shown in Figure 1a, and use <BOT>
and <EOT> to separate from other signals.

Subject Message subjects often contain the pur-
pose or summarized information of a message. In
the email scenario, we use subject as context. In
the chat scenario, subject is not available, so we
use the chat window name as a proxy for subject
(can be auto-generated or manually set by users).
In both cases, the subject context is wrapped with
<BOU> and <EOU> special tokens.

Previous email messages Previous messages
can provide valuable background information
which influences the text of the current message be-
ing composed. In the email case, we create pairs of
messages and replies. These pairs are concatenated
with a <COT> special token to create a single con-
textual string. In cases where the email was the first
in a thread, the prior email context is left blank.

Previous chat messages Prior message contex-
tualization for chat scenario is much more complex.
Chat conversations typically consist of many small
messages sent in quick succession. Given the email
and chat message length statistics in Section 4, we
expect chat messages to be about 10× smaller than
emails. So, we limit chat histories to 20 messages,
which is roughly equivalent to an email-reply pair
in length. Among these prior messages, any num-
ber and any order could be from the current sender,
or the other participant.

We segment chat histories by message blocks
and time windows. A series of uninterrupted mes-
sages sent by one sender is considered as a single
message block. Messages sent within the past N
minutes are within a time window, which enforces
recency as a proxy for relevance.

We define three prior message context aggre-
gation modes in the chat scenario (visualized in

1They also use subject and previous email as contexts.

2

(a) Context extraction and encoding. (b) Aggregating a 5 min prior chat window in various context modes.

Figure 1: Examples of (a) context encoding pipeline and (b) chat prior message aggregation modes.

Figure 1b), mimicking prior email context:

(i) Ignore-Blocks: chat messages from the cur-
rent sender, in the past N minutes, ignoring
any message block boundaries.

(ii) Respect-Blocks: chat messages from the cur-
rent sender, in the past N minutes, confined
to the most recent message block.

(iii) Both-Senders: chat messages from both
senders, in the past N minutes. When the
sender turn changes, strings are separated by
a space or a special token <COT>.

For each mode, we consider time windows of N =
{2, 5, 10} minutes.

Figure 2: Box-plot statistics: number of tokens in a
context-aggregated message from Microsoft Teams and
Outlook. Green diamond markers represent the mean,
bold red lines are the medians, margins of the boxes are
lower and upper quartiles while whiskers end-points
are the minimums and maximums.

4 Data and Language Model

4.1 Data
Our model training depends on real messages from
two of the largest commercial communication plat-
forms Microsoft Teams and Outlook; this involves
a multi-pronged system for ensuring our customers’

privacy. We work within rigorous privacy rules,
using tools with privacy features built in, and pre-
processing all data through multiple privacy pre-
cautions before it is digested by our models. User
data from our communication platforms is never
visible to humans for analysis, in any raw or pre-
processed format. We run this data through our
pipelines and are only able to view resulting text
prediction metrics. Section 7 contains more details
about these privacy precautions.

Chat messages We sample Teams data from
more than 3.8 billion curated one-on-one chat mes-
sages that span 6 months (say May - October 2020),
followed by privacy precautions and noise filters.
The data is sorted by time and split into train, vali-
dation, and test sets in non-overlapping time peri-
ods. We use over 90% of the data for training, hold-
ing out 75,000 samples for validation and 25,000
samples for testing. Each message is recorded in
its respective dataset along with all associated con-
text. In a statistical analysis of the chat message
lengths (see Figure 2, blue box) we find that mean
tokens number is 9.15 (length in characters is 48),
while median tokens number is 6 (with character
length 31). Therefore, when iterating character-
by-character through the messages, as done in in-
ference for text predictions, the test set has over
1M evaluation points (resampled periodically, see
Section 7.1).

Email messages In email experiments, we use
approximately 150 million Outlook commercial
emails from a period of 6 months, which go through
the same privacy precautions mentioned above and
in Section 7. The emails are then sorted, filtered
for noise, and cut into train, validation, and test
sets by their date ranges. A statistical analysis of
email lengths (see Figure 2, green box) reveals that
mean number of tokens is 94 (with length in char-

3

acters being 561), while the median is 53 tokens
(and 316 characters). This is roughly 10× larger
than chat messages. When splitting train, test, and
validation sets, over 90% of the data is allocated to
the training set. The test set is subsampled to 3,000
emails (unlike the 25,000 messages for the chat test
set) since this roughly leads to final contextualized
datasets of the same size. Each resulting test set
contains just over 1 million evaluation points, as in
the chat setting.

Additionally, we use the Avocado dataset as a
publicly available dataset, which consists of emails
from 279 accounts of a defunct IT company re-
ferred to as "Avocado" see details in (Oard et al.,
2015), for debugging and validation, allowing us
to directly view data and outputs. This dataset is
split into validation and test sets, each with roughly
3,000 emails for evaluation.

4.2 Prior-message aggregation statistics
When applying the chat-specific prior-message
grouping modes defined in Section 3, the number
of prior messages fetched as context varies. Ta-
ble 1 presents details on how many messages the
different aggregation modes end up grouping. Both
single-sender modes introduce smaller volumes of
context than the Both-Senders mode. For example,
the amount of prior messages grouped in the 5 min-
utes Ignore-Blocks mode is similar to the 2 minutes
Both-Senders mode; where 2.5 chat messages are
combined on average, and 56-59% of chat mes-
sages have at least one message as context. For
emails, only around 50% have prior email context.

The number of tokens per contextualized mes-
sage (including current and aggregated prior mes-
sages) varies between the email scenario and var-
ious aggregation modes in the chat scenario. Fig-
ure 2 provides statistics on these aggregated mes-
sage lengths. In the chat case, the Both-Senders
mode with a 10 minute time window results in the
largest aggregate length, with a median around 27
tokens, and mean above 40 tokens. The Respect-
Blocks mode does not show significant length in-
creases as the time window grows, due to the mes-
sage block boundary limits. For emails, the median
total tokens remains similar regardless of includ-
ing the previous message. This is because half of
emails are not part of an email-reply pair.

4.3 Language model
Once the message data is preprocessed and jointly
encoded with contextual signals, it is passed as an

Configuration
% msgs

with context
mean msgs
as context

2 min Respect-Blocks 30.76% 1.44
5 min Respect-Blocks 34.19% 1.54
10 min Respect-Blocks 35.54% 1.59
2 min Ignore-Blocks 43.31% 1.76
5 min Ignore-Blocks 55.94% 2.51
10 min Ignore-Blocks 63.24% 3.23
2 min Both-Senders 58.90% 2.51
5 min Both-Senders 70.20% 3.99
10 min Both-Senders 76.10% 5.40

Table 1: Microsoft Teams chat message statistics -
amount of aggregated context per message.

input to the Language Model. The production sys-
tem uses a two-layer (550, 550) LSTM (with 6000
sampled softmax size loss) which is optimized to
maximize the Estimated Characters Accepted met-
ric (described in Section 5.1). All contextualization
experiments use the production model architecture
as the baseline. Both baseline and contextual mod-
els are trained on 16 GPUs.

We have conducted experiments with more com-
plex language models (e.g., transformers, deeper
LSTMs), but we use the production model in this
paper as (i) its simpler architecture enables large-
scale low-latency text prediction serving and (ii)
the goal of this work is to explore how different
contextual signals add to the baseline performance.

5 Experiments and results

We conduct experiments for both email and chat
messages with individual contextual signals (time,
subject, prior messages) and combinations of those.

5.1 Performance Metrics

In all experiments, we level the Suggestion Rate
(SR) (number of suggestions per message), then
evaluate model variant performance against the fol-
lowing text prediction metrics:

• MR: Match Rate is the ratio of the number of
matched suggestions and the total number of
generated suggestions.

• ChM / sugg: Characters Matched per
suggestion is the average number of matched
characters per given suggestion

• Est. ChS / sugg: Estimated Characters
Saved per suggestion is the estimated num-
ber of characters that the user is saved from
typing, per suggestion. (Based on observed
acceptance probabilities from real users.)

4

Configuration / context mode MR ChM / sugg Est. ChS / sugg TM ChM Est. ChA
Chat name +5.38%↑ +6.05%↑ +7.83%↑ +5.22%↑ +5.99%↑ +7.86%↑
Time -3.49%↓ -4.28%↓ -6.33%↓ -3.48%↓ -4.25%↓ -6.36%↓
Time+Chat name -13.98%↓ -14.72%↓ -16.57%↓ -13.96%↓ -14.67%↓ -16.57%↓

2 min Respect-Blocks +5.91%↑ +7.65%↑ +12.65%↑ +5.95%↑ +7.72%↑ +12.62%↑
2 min Ignore-Blocks +5.91%↑ +7.68%↑ +12.95%↑ +5.78%↑ +7.62%↑ +12.84%↑
2 min Both-Senders +5.91%↑ +8.77%↑ +16.87%↑ +6.01%↑ +8.77%↑ +17.01%↑

5 min Respect-Blocks +5.65%↑ +7.79%↑ +13.86%↑ +5.56%↑ +7.74%↑ +13.72%↑
5 min Ignore-Blocks +6.72%↑ +9.01%↑ +15.66%↑ +6.59%↑ +8.96%↑ +15.48%↑
5 min Both-Senders +9.41%↑ +11.76%↑ +18.67%↑ +9.30%↑ +11.72%↑ +18.67%↑
10 min Respect-Blocks +5.65%↑ +7.79%↑ +13.55%↑ +5.63%↑ +7.67%↑ +13.53%↑
10 min Ignore-Blocks +6.99%↑ +9.32%↑ +15.66%↑ +6.92%↑ +9.24%↑ +15.56%↑
10 min Both-Senders +8.06%↑ +10.57%↑ +17.77%↑ +7.86%↑ +10.51%↑ +17.55%↑

Time+ 5 min Respect-Blocks +3.76%↑ +5.51%↑ +10.24%↑ +3.84%↑ +5.51%↑ +10.22%↑
Chat name+5 min Respect-Blocks +5.11%↑ +6.36%↑ +9.34%↑ +5.13%↑ +6.35%↑ +9.40%↑

Time+Chat name+5 min Respect-Blocks +5.38%↑ +7.79%↑ +14.16%↑ +5.43%↑ +7.82%↑ +14.26%↑
Time+Chat name+5 min Ignore-Blocks +5.11%↑ +6.97%↑ +12.05%↑ +5.15%↑ +6.99%↑ +12.00%↑
Time+Chat name+5 min Both-Senders +8.87%↑ +11.53%↑ +18.37%↑ +8.91%↑ +11.52%↑ +18.36%↑

Table 2: Microsoft Teams chat messages experiment results with various contextualization modes. First column
is the experiment configuration, other columns are relative gains, over the noncontextual baseline, of the perfor-
mance metrics (Section 5.1) with a leveled suggestion rate of 0.5.

• TM: Total Matches is the number of sugges-
tions which match the upcoming text.

• ChM: Characters Matched is the number of
matched characters from all suggestions.

• Est. ChA: Estimated Characters Accepted
is the estimated2 total number of suggested
characters accepted by users.

5.2 Experiments with chat messages

The performance results for chat messages from
Microsoft Teams compared to the non-contextual
baseline model are shown in Table 2. For compa-
rability, we train the model’s confidence threshold
to level each model’s suggestion rate (SR) at 0.5
suggestions / message.

Contextualization with just the chat window
name (subject) yields moderate gains, possibly
because the typically short chat messages are so
sparse on context that a chat topic name, or partici-
pant names from a chat header, provides a starting
foothold for relevance. In contrast, from the last
table rows, we see that the benefits from subject
context diminish once prior messages are used as a
context, suggesting that the subject proxy is much
weaker than prior message context. Table 2 also
shows that compose-time can act as a confound-
ing context signal for chat messages, especially in
experiments with no prior messages as a context.
This is possibly due to the numerically-heavy time
encoding confusing the model in contrast to the
short text of chat messages. The experiments also

2Based on observed acceptance probabilities on large-scale
production traffic, users tend to accept longer suggestions.

show that the benefits of these contextual signals
are not additive.

All three prior message aggregation modes
(Ignore-Blocks, Respect-Blocks, and Both-Senders)
show gains across all performance metrics, with all
time window sizes. Both-Senders mode achieves
the most significant relative gains: above 9.3%
for Match Rate and the Total Matches; more than
11.7% for the character match and character match
per suggestion; and more than 18.6% for the charac-
ters saved per suggestion and character acceptance.
This indicates that messages from the other sender
provide significant value, when used with a well-
tuned time window. It provides relevant conversa-
tion context from all senders, eliminating confusing
gaps between messages, and enables suggestions
in response to questions posed by the other sender.
In particular, the Ignore-Blocks mode does worse
than Both-Senders, since Ignore-Blocks can vio-
late conversation continuity, including messages
[k, k + 2] from the current sender, and skipping
message k + 1 from the other sender.

For the single-sender modes, Respect-Blocks
generally performs slightly worse as it utilizes only
part of the messages taken by the Ignore-Blocks
mode. This indicates that seeing a longer prefix of
the current message block (more similar to writing
a long email) makes an impact on text prediction in
chat messages. Lastly, we observe that a 5 minute
time window works better than 2 and 10 minute
time windows. Shorter time windows seem to miss
important prior context while a larger windows lead

5

Configuration / context mode MR ChM / sugg Est. ChS / sugg TM ChM Est. ChA
Subject -0.81%↓ -0.36%↓ +0.76%↑ -0.74%↓ -0.35%↓ +0.76%↑
Time +2.02%↑ +2.25%↑ +2.88%↑ +2.01%↑ +2.22%↑ +2.83%↑
Previous Email -9.72%↓ -10.56%↓ -13.05%↓ -9.65%↓ -10.56%↓ -13.12%↓
Time+Subject +0.20%↑ +0.47%↑ +1.06%↑ +0.23%↑ +0.49%↑ +1.11%↑

Table 3: Microsoft Outlook email messages experiment results with various contextualization modes. First column
is experiment configuration, other columns are relative gains, over the noncontextual baseline, of the performance
metrics (Section 5.1) with a leveled suggestion rate of 3.8.

Configuration / context mode MR ChM / sugg Est. ChS / sugg TM ChM Est. ChA
Subject -1.46%↓ -0.21%↓ +1.77%↑ -1.58%↓ -0.22%↓ +1.80%↑
Time +0.24%↑ +1.59%↑ +4.87%↑ +0.20%↑ +1.55%↑ +4.75%↑
Previous Email -3.89%↓ -3.50%↓ -2.43%↓ -3.85%↓ -3.42%↓ -2.43%↓
Time+Subject +1.70%↑ +2.32%↑ +3.32%↑ +1.75%↑ +2.34%↑ +3.41%↑

Table 4: Avocado test set (Oard et al., 2015) messages experiment results for various contextualization modes.
First column is experiment configuration, other columns are relative gains, over the noncontextual baseline, of
performance metrics (Section 5.1) with a leveled suggestion rate of 2.5.

to over-saturation of irrelevant information.

5.3 Experiments with email messages

The gains from the contextualization in email mes-
sages are more moderate compared to those from
chat messages. The comparison of the contextu-
alized models with the baseline on commercial
Microsoft Outlook emails and Avocado dataset
are given in Table 3 and 4 respectively. For
emails, the results suggest that time as a context (or
time+subject in the Avocado dataset) offers most
promising relative gains of 2-3%. This contrasts the
observed trend from chat messages. Time is more
important for emails since emails are often longer,
contain greetings, farewells, and meeting requests
with time-related keywords (e.g., "tomorrow", "last
night", "after the weekend"). Additionally, numer-
ical tokens from the time context are less likely
to outnumber the message content tokens, since
emails are about 10×longer than chat messages.

With the chosen architecture, neither subject nor
prior message context signals provide value in the
email scenario. Subjects may introduce keywords,
but the implemented method of encoding context
and body into a single string did not demonstrate an
ability to pull out those key words for suggestions.
Likewise, prior message context did not benefit the
email scenario. As Figure 2 shows, emails with
prior messages are significantly longer than any of
the chat context aggregations. Prior emails may
have critical information steering the direction of
an email thread, but our production-oriented metric
are not significantly affected. The implemented
architecture may not be strong enough to isolate
and make use of those cues, instead becoming con-
founded by the vast influx of tokens from another

sender. This emphasizes that the email and chat
scenarios require different context signals, and may
benefit from different underlying architectures.

Qualitative analysis with the Avocado set
Given our commercial data-visibility constraints
due to the privacy considerations, we perform
a qualitative analysis on the public Avocado
dataset (Oard et al., 2015). Using this public data,
we evaluate text predictions from one of the promis-
ing email context modes: time context. As shown
in Table 5, we use diff tools to identify when the
time context model and baseline model create (i)
correct suggestions, (ii) wrong suggestions, and
(iii) no suggestions. We see that the time con-
text model improves on all three columns. When
directly examining cases where the time-context
model renders a new correct suggestion, com-
pared to the baseline, we observe a trend of time-
related n-grams. Words like "tomorrow", "avail-
able", "September" are seen more frequently in
correct suggestions (see Figure 3). The same trend
is also observed in the Time+Subject model.

Time as context / Baseline in Avocado test set

cases correct / wrong correct / no sugg no sugg / wrong

context win 256 1494 2825
context loss 239 1400 2553

Table 5: Comparing text predictions of time-context
model vs baselines. "Context win" row holds counts
of cases where contextual model suggestions beat base-
line suggestions.

6 Conclusions

We study the role of context in text prediction for
chat and email platforms. Testing with previous
messages, subject, time as additional contextual

6

Figure 3: The 20 most common new suggestions trig-
gered by the time-context model, on data points from
the Avocado test set (Oard et al., 2015) where the base-
line renders zero suggestions.

signals, we find that the different characteristics
of emails and chat messages influence the selec-
tion of contextual signals to use. Previous message
contextualization leads to significant gains for chat
messages from Microsoft Teams, when using an
appropriate message aggregation strategy. By us-
ing a 5 minute time window and messages from
both senders, we see a 9.4% relative increase in
the match rate, and an 18.6% relative gain on es-
timated characters accepted. Chat messages are
often short and can lack context about a train of
thought; previous messages can bring necessary
semantics to the model to provide a correct predic-
tion. Benefits are comparatively insignificant for
subject and compose time as contextual signals in
chat messages.

In the email scenario based on Microsoft Out-
look, we find that time as a contextual signal yields
the largest boost with a 2.02% relative increase on
the match rate, while subject only helps in conjunc-
tion with time, and prior messages yields no im-
provement. More complex models may be needed
to reap subject and prior message gains for emails,
but the current architecture was chosen for large-
scale serving latency.

Future work involves exploring different encod-
ings for contextual signals, such as utilizing hier-
archical RNNs (Park et al., 2018; Yoo et al., 2020)
to better capture context, or using more advanced
architectures such as transformers or GPT-3.

7 Ethical Considerations

When working with sensitive data and running a
service which generates text predictions for the gen-
eral public, we are responsible for preserving user
privacy and serving fair and inclusive suggestions.

Figure 4: Initial blocklist trigger rates for various con-
textualization merging modes in Microsoft Teams chat
messages.

7.1 Privacy considerations on user data

Our service framework follows the regulatory
requirements of internal company-wise stan-
dards and General Data Protection Regulation
(GDPR) (2018) to meet the user privacy regula-
tions and customer premises. All customer chat
and email data, from Teams and Outlook, used in
this work are classified as customer content, which
is not visible to humans for any purpose. Only
system byproduct data, which is not linkable to
specific users or groups, is obtained and viewed
for quantitative evaluation. This includes internal
service logs or numerical metrics (shown in Sec-
tion 5.1). We also regularly re-sample training and
test data due to our privacy and data retention poli-
cies, preserving similar data set sizes. We strictly
use only publicly available data, such as the Avo-
cado dataset (Oard et al., 2015), for debugging and
visible qualitative evaluation.

7.2 Blocklisting

In pursuit of fair, respectful, and responsible sug-
gestions, we employ a blocklist. This blocklist step
in our text prediction system consists of a large
dictionary containing denigrative, offensive, con-
troversial, sensitive, and stereotype-prone words
and phrases. Text from the message body and con-
textual signals serves as input to the blocklist. Then,
if any word or phrase from the blocklist is found in
the input, all further suggestions are suppressed for
the message.

In the email scenario, the full body and context
is used for blocklist checks, resulting in a blocklist
trigger rate of 47.42%. This means that 47.42%
of our data points contain a blocklisted term in
their input text, and we avoid triggering suggestions
on those points. Naturally, this rate of blocklist

7

triggering increases as more context is added to the
pool of text being checked.

This phenomenon introduces an added complex-
ity to the chat scenario. A noncontextual baseline
chat model would fail to trigger the blocklist on a
response to an offensive statement from two mes-
sages ago. Figure 4 shows how the blocklist trigger
rate varies as larger windows of chat history are
used as context. We ensure that all chat models
check the past 5 messages against the blocklist, no
matter how many prior messages are used for text
prediction inference. With 5 prior messages fed
to the blocklist in chat conversations, the blocklist
trigger rate is 25.08%, instead of 5.89% with no
added prior messages.

Acknowledgements

We would like to thank the members of Microsoft
Search, Assistant and Intelligence (MSAI) group
for their useful comments and suggestions.

References
Ziv Bar-Yossef and Naama Kraus. 2011. Context-

sensitive query auto-completion. In Proc. of the 20th
Intl. Conf. on World Wide Web (WWW), pages 107–
116.

Holger Bast and Ingmar Weber. 2006. Type less, find
more: fast autocompletion search with a succinct in-
dex. In Proc. of the 29th Annual Intl. ACM Conf. on
Research and Development in Information Retrieval
(SIGIR), pages 364–371.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. Jour. of Machine Learning Research,
3:1137–1155.

Steffen Bickel, Peter Haider, and Tobias Scheffer.
2005. Learning to complete sentences. In Euro-
pean Conf. on Machine Learning (ECML), pages
497–504. Springer.

Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan
Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yinan
Wang, Andrew M Dai, Zhifeng Chen, et al. 2019.
Gmail Smart Compose: Real-time Assisted Writing.
In Proc. of the 25th ACM SIGKDD Intl. Conf. on
Knowledge Discovery & Data Mining, pages 2287–
2295.

John J. Darragh, Ian H. Witten, and Mark L. James.
1990. The reactive keyboard: A predictive typing
aid. Computer, 23(11):41–49.

Budhaditya Deb, Peter Bailey, and Milad Shokouhi.
2019. Diversifying reply suggestions using a
matching-conditional variational autoencoder. In

Proc. of Conf. of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT), pages
40–47. Association for Computational Linguistics.

European Commission. 2018. EU data protection rules.
https://ec.europa.eu/info/law/law-topi
c/data-protection/eu-data-protection-r
ules_en. Online; accessed 6 January 2021.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop
Ramaswamy, Françoise Beaufays, Sean Augenstein,
Hubert Eichner, Chloé Kiddon, and Daniel Ramage.
2018. Federated learning for mobile keyboard pre-
diction. arXiv:1811.03604.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Frankie James. 2000. Modified kneser-ney smoothing
of n-gram models. Technical report, RIACS.

Jared Spataro. 2019. 5 attributes of successful teams.
https://www.microsoft.com/en-us/micros
oft-365/blog/2019/11/19/5-attributes-s
uccessful-teams/. Online; accessed 6 January
2021.

Jared Spataro. 2020. Microsoft Teams reaches 115 mil-
lion DAU—plus, a new daily collaboration minutes
metric for Microsoft 365. https://www.micros
oft.com/en-us/microsoft-365/blog/2020/
10/28/microsoft-teams-reaches-115-mill
ion-dau-plus-a-new-daily-collaborati
on-minutes-metric-for-microsoft-365/.
Online; accessed 6 January 2021.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the lim-
its of language modeling. arXiv:1602.02410.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias
Kaufman, Balint Miklos, Greg Corrado, Andrew
Tomkins, Laszlo Lukacs, Marina Ganea, Peter
Young, and Vivek Ramavajjala. 2016. Smart reply:
Automated response suggestion for email. In Proc.
of the ACM SIGKDD Conf. on Knowledge Discovery
and Data Mining (KDD), page 955–964.

Nan Rosemary Ke, Konrad Żołna, Alessandro Sor-
doni, Zhouhan Lin, Adam Trischler, Yoshua Ben-
gio, Joelle Pineau, Laurent Charlin, and Christopher
Pal. 2018. Focused hierarchical RNNs for condi-
tional sequence processing. In Proc. of the 35th
Intl. Conf. on Machine Learning (ICML), volume 80,
pages 2554–2563, Stockholm, Sweden.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Intl.
Conf. on Acoustics, Speech, and Signal Processing
(ICASSP), volume 1, pages 181–184.

Gábor Melis, Chris Dyer, and Phil Blunsom. 2018. On
the state of the art of evaluation in neural language
models. In 6th Intl. Conf. on Learning Representa-
tions (ICLR), Vancouver, BC, Canada.

8

Microsoft Text Predictions. 2020. Write faster using
text predictions in Word, Outlook. https://insi
der.office.com/en-us/blog/text-predi
ctions-in-word-outlook. Online; accessed 7
April 2021.

Andriy Mnih and Geoffrey E Hinton. 2009. A scal-
able hierarchical distributed language model. In Ad-
vances in Neural Information Processing Systems
(NeurIPS), pages 1081–1088.

Douglas Oard, William Webber, David A. Kirsch, and
Sergey Golitsynskiy. 2015. Avocado research email
collection LDC2015T03. Philadelphia: Linguistic
Data Consortium.

Yookoon Park, Jaemin Cho, and Gunhee Kim. 2018. A
hierarchical latent structure for variational conversa-
tion modeling. In Proc. of the Conf. of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 1792–1801, New Orleans, LA,
USA. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pages 5998–6008.

Ryen W. White, P. Bailey, and Liwei Chen. 2009. Pre-
dicting user interests from contextual information.
In Proc. of the 32nd Intl. ACM Conf. on Research
and development in information retrieval (SIGIR).

Kang Min Yoo, Hanbit Lee, Franck Dernoncourt,
Trung Bui, W. Chang, and Sang-goo Lee. 2020.
Variational hierarchical dialog autoencoder for di-
alogue state tracking data augmentation. In Proc.
of the Conf. on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Zhuosheng Zhang, Jiangtong Li, Pengfei Zhu, Hai
Zhao, and Gongshen Liu. 2018. Modeling multi-
turn conversation with deep utterance aggregation.
In Proc. of the 27th Intl. Conf. on Computational
Linguistics (COLING), pages 3740–3752, Santa Fe,
New Mexico, USA. Association for Computational
Linguistics.

9

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 10–18
June 6–11, 2021. ©2021 Association for Computational Linguistics

Identifying and Resolving Annotation Changes
for Natural Language Understanding

Jose Garrido Ramas
Amazon Alexa AI, Germany
jrramas@amazon.de

Giorgio Pessot
Amazon Alexa AI, Germany
pessot@amazon.de

Abdalghani Abujabal
Amazon Alexa AI, Germany
abujabaa@amazon.de

Martin Rajman
EPFL, Lausanne, Switzerland
martin.rajman@epfl.ch

Abstract
Annotation conflict resolution is crucial to-
wards building machine learning models with
acceptable performance. Past work on annota-
tion conflict resolution had assumed that data
is collected at once, with a fixed set of anno-
tators and fixed annotation guidelines. More-
over, previous work dealt with atomic label-
ing tasks. In this paper, we address annota-
tion conflict resolution for Natural Language
Understanding (NLU), a structured prediction
task, in a real-world setting of commercial
voice-controlled personal assistants, where (1)
regular data collections are needed to support
new and existing functionalities, (2) annota-
tion guidelines evolve over time, and (3) the
pool of annotators changes across data col-
lections. We devise an approach combining
information-theoretic measures and a super-
vised neural model to resolve conflicts in data
annotation. We evaluate our approach both
intrinsically and extrinsically on a real-world
dataset with 3.5M utterances of a commercial
dialog system in German. Our approach leads
to dramatic improvements over a majority
baseline especially in contentious cases. On
the NLU task, our approach achieves 2.75% er-
ror reduction over a no-resolution baseline.

1 Introduction

Supervised learning is ubiquitous as a form of learn-
ing in NLP (Abujabal et al., 2019; Finkel et al.,
2005; Rajpurkar et al., 2016), but supervised mod-
els require access to high-quality and manually
annotated data so that they perform reasonably. It
is often assumed that (1) such annotated data is
collected once and then used to train and test vari-
ous models, (2) the pool of annotators is fixed, and
(3) annotation guidelines are fixed (Benikova et al.,
2014; Manning, 2011; Poesio and Artstein, 2005;
Versley, 2006). In real-world NLP applications e.g.,
voice-controlled assistants such as Google Home
or Amazon Alexa, such assumptions are unrealistic.
The assistant is continuously evolving and extended

with new functionalities, and hence, changes to an-
notation guidelines are frequent. The assistant also
needs to adapt to language variations over time,
both lexical and semantic. Therefore, annotated
data needs to be collected regularly i.e., new col-
lections of data at different time points, where the
same utterance text can be re-annotated over time.
Additionally, the set of annotators might change
across collections. In this work, we tackle the prob-
lem of resolving annotation conflicts in a real-world
scenario of a commercial personal assistant.

To minimize annotation conflicts, the same data
point is often labeled by multiple annotators and the
annotation with unanimous agreement, or the one
with majority votes is deemed correct (Benikova
et al., 2014; Bobicev and Sokolova, 2017; Brants,
2000). While such measures ensure the quality
of annotations within the same batch, they cannot
ensure it across batches at different time points,
particularly when the same data point is present
in different batches with inevitable changes to an-
notation guidelines. For detecting and resolving
conflicts, two main methodologies have been ex-
plored; Bayesian modeling and training a super-
vised classification model (Hovy et al., 2013; Plank
et al., 2014; Snow et al., 2008; Versley and Steen,
2016; Volokh and Neumann, 2011). Both method-
ologies make certain assumptions about the setting,
for example, annotation guidelines and the pool of
annotators are fixed, which is not the case for our
use case. Additionally, while Bayesian modeling
is reasonably efficient for small datasets, it is pro-
hibitively expensive for large-scale datasets with
millions of utterances. We adopt a combination of
information-theoretic measures and a classification
neural model to detect and resolve conflicts.

NLU is a key component in language-based ap-
plications, and is defined as the combination of: (1)
An Intent Classifier (IC), which classifies an utter-
ance into one of N intent labels (e.g. PlayMusic),
and (2) A slot labeling (SL) model, which classifies

10

ApplianceOnIntent:

turnUtterance: in the

OSlots: Device LocationO

on light living room

O LocationO
ApplianceOnIntent:
ATSlots: Device LocationO LocationOAT

a1

a2

Figure 1: An example utterance with two conflicting
annotations, a1 and a2. The phrase turn on has two
conflicting slot labels. AT stands for ActionTrigger.
Non-entities are labeled with O (i.e., Other).

tokens into slot types, out of a predefined set (e.g.
SongName) (Goo et al., 2018; Jolly et al., 2020).
An example utterance is shown in Figure 1, with
two conflicting annotations. In this paper, we con-
sider the task of NLU for personal assistants and
assume that utterances arrive at different points in
time, and that the annotation guideline evolves over
time. The same utterance text, e.g., the one shown
in Figure 1, often occurs multiple times across col-
lections, which gives the opportunity to conflicting
annotations. Moreover, changes to the annotation
guidelines over time lead to more conflicts.

Given an NLU dataset with utterances having
multiple, possibly conflicting annotations (IC and
SL), our goal is to find the right annotation for
each such utterance. To this end, we first detect
guideline changes using a maximum information
gain cut (Section 3.3). Then we compute the nor-
malized entropy of the remaining annotations after
dropping the ones before a guideline change. In
case this entropy is low, we simply use majority
voting, otherwise, we rely on a classifier neural-
based model to resolve the conflict (Section 3.4).
Our approach is depicted in Figure 2.

We evaluate our approach both intrinsically and
extrinsically, and show improved performance over
baselines including random resolution or no resolu-
tion in six domains, as detailed in Section 4.

2 Related Work

Annotation conflicts could emerge due to differ-
ent reasons, be it imprecision in the annotation
guideline (Manning, 2011; van Deemter and Kib-
ble, 2000), vagueness in the meaning of the un-
derlying text (Poesio and Artstein, 2005; Recasens
et al., 2011, 2010; Versley, 2006), or annotators
being careless or inexperienced (Manning, 2011;
Hovy et al., 2013). Manning et al. (2011) report, on
the WSJ Part-of-Speech (POS) corpus, that 28.0%
of POS tagging errors stem from imprecise annota-
tion guideline that caused inconsistent annotations,

while 15.5% of the errors are due to wrong gold
standard, which could be attributed to careless or
inexperienced annotators. In our case, conflicts
could occur due to changes to the annotation guide-
lines and having different, possibly inexperienced,
annotators within and across data collections.

Past work on conflict resolution has assumed
that data is collected once and then used for model
training and testing. Consequently, the proposed
methods to detect and resolve conflicts are geared
towards this setting (Benikova et al., 2014; Man-
ning, 2011; Poesio and Artstein, 2005; Recasens
et al., 2011, 2010; van Deemter and Kibble, 2000;
Versley, 2006). In our scenario, we deal with an
ever-growing data which is collected across differ-
ent data collections at different time points. This
increases the likelihood of conflicts especially with
frequent changes to the annotation guideline. In
Dickinson and Meurers (2003), an approach is pro-
posed to automatically detect annotation errors in
gold standard annotations for POS tagging using
n-gram tag variation i.e., looking at n-grams occur-
ring in the corpus with multiple tagging.

Bayesian modeling is often used to model how
reliable each annotator is and to correct/resolve
wrong annotations (Hovy et al., 2013; Snow et al.,
2008). In Hovy et al. (2013), they propose MACE,
an item-response based model, to identify spam-
mer annotators and to predict the correct underly-
ing labels. Applying such models is prohibitively
expensive in our case due to the large amount of
utterances we deal with. Additionally, our anno-
tator pool changes over time. A different line of
work has explored resolving conflicts in a super-
vised classification setting, similar to our approach
for resolving high normalized entropy conflicts.
Volokh and Neumann (2011) use an ensemble of
two off-the-shelf parsers that re-annotate the train-
ing set to detect and resolve conflicts in dependency
treebanks. Versley et al. (2016) use a similar ap-
proach on out-of-domain treebanks. Finally, Plank
et al. (2014) introduce the inter-annotator agree-
ment loss to ensure consistent annotations for POS
tagging.

Intent classification and slot labeling are two
fundamental tasks in spoken language understand-
ing, dating back to early 90’s (Price, 1990). With
the rise of task-oriented personal assistants, the
two tasks got more attention and progress has been
made by applying various deep learning techniques
(Abujabal and Gaspers, 2019; Goo et al., 2018;

11

Conflicting
annotations Max IG Cut NH

Low

High

Majority Voting

LSTM-based
model

Figure 2: Our approach for conflict resolution. Given
conflicting annotations, we first use the Max Informa-
tion Gain (IG) Cut to detect changes in annotation
guidelines. Then, low entropy conflicts are resolved
using majority voting. High entropy conflicts are re-
solved using a classifier LSTM-based model.

Jolly et al., 2020; Mesnil et al., 2013; Zhang and
Wang, 2016). While we focus on resolving anno-
tation conflicts for NLU with linear labeling i.e.,
intent and slot labels, our approach can be still used
for other more complex tree-based labeling e.g., la-
beling dependency parses or ontology trees (Chen
and Manning, 2014), with the minor change of re-
placing the task-specific neural LSTM-based clas-
sification model. We plan to investigate this in the
future.

3 Annotation Conflict Resolution

3.1 Overview

Given multiple conflicting annotations of an utter-
ance, our goal is to find the right annotation. We
assume that annotations arrive at different points
in time and that the same utterance can be re-
annotated over time. Moreover, we assume that
annotators might differ both within and across data
collections, that each annotation is time stamped,
and that there is always one correct annotation.
Our pipeline for conflict resolution is depicted in
Figure 2. Given an utterance with conflicting an-
notations, we first detect guideline changes using a
maximum information gain cut. Then we compute
the normalized entropy of the remaining annota-
tions i.e., without the annotations before a guideline
change. In case this entropy is low, we simply use
majority voting, otherwise, we rely on a classifier
model to resolve the conflict.

A natural choice to easily resolving annotation
conflicts is to use majority voting. However, we
argue that this is not sufficient for our use case,
where (1) regular data collection and annotation are
required at different time points, and (2) changes
to annotation guideline are frequent. We use the
normalized entropy to detect whether there is high

or low disagreement among annotations. In the
extreme case where the normalized entropy is 1,
majority voting gives a random output and any
model that performs better than random will be
better than majority voting in resolving conflicts. In
our experiments we show that, for high normalized
entropy values, the classifier model significantly
outperforms majority voting.

Note that our conflict resolution pipeline does
not drop utterances with wrong annotations, but
rather replaces the wrong annotations with the cor-
rect ones. We do so to avoid changing the data
distribution.

We apply our pipeline to training data only. The
test set is of higher quality compared to the train
set as each collection of test set data is annotated
multiple times and we use the most recent test set
collection.

3.2 Normalized Entropy

Entropy measures the uncertainty of a probability
distribution (Yang and Qiu, 2014). Given an utter-
ance present N times in the dataset and annotated
in K distinct ways, each occurring ni times such
that

∑K
i=1 ni = N , we define the normalized em-

pirical entropy of the list of conflicting annotations
A, NH(A) as:

NH(A) =
−∑K

i=1
ni
N ∗ log (niN)

logK
, for K > 1

For example, assume an utterance u with three
distinct annotations; a1, a2 and a3. Then, the list A
corresponds to {a1, a2, a3}, K = 3, and pi of each
annotation corresponds to its relative frequency in
the dataset (niN) (Mahendra et al., 2014).

In this work, we harness normalized entropy
(NH) to determine whether majority voting should
be used. NH is a value between 0 and 1, where the
higher it is, the harder the conflict. In the edge case
of a uniform distribution, where NH is 1, majority
voting gives a random output. Therefore, in such
cases, we do not rely on majority voting for con-
flict resolution but rather on a classification model.
We use the normalized entropy over entropy as the
latter increases as K increases when the distribu-
tion is uniform. For example, assume K = 3 and
distribution is uniform, then entropy is H = log 3,
and NH = 1. If K = 2 and distribution is uni-
form, then H = log 2 and NH = 1, and so on.
When the distribution is uniform (and thus majority
voting will be outperformed by a model regardless

12

of K), NH takes its maximum value of 1, while H
increases as K increases (Kvålseth, 2017).

3.3 Changes in Annotation Guideline: Max
Information Gain Cut

We rely on max information gain cut to find out if
there was a change in the annotation scheme that
caused a conflict, and to identify the exact date d of
the change. Let us assume the relatively common
case that there is exactly one relevant change in the
guideline. Then, we aim to split the annotations
of an utterance to two lists; one list containing
annotations prior to the change, and the other one
containing annotations after the change.

Inspired by methods used for splitting on a fea-
ture in decision trees (Mahendra et al., 2014), we
harness information gain (IG) to determine the
date to split at. Concretely, given a listB of chrono-
logically ordered annotations for the same utter-
ance, and their corresponding annotation dates, we
choose the date d that maximizes IG. If the value
of IG is larger than a threshold IG0, we deem the
annotations prior to d incorrect. The higher the
IG is, the more probable the annotations prior to
d to be incorrect. We define a boolean variable D
which is true if the date of an annotation comes
after d, and false otherwise. It divides the list of
annotations B to two sublists, Bb of size Nb of
annotations before date d, and Ba of size Na of an-
notations after date d. We compute IG as follows:

IG(B,D) = NH(B)−NH(B|D), where

NH(B|D) =
Nb ∗NH(Bb) +Na ∗NH(Ba)

N

We use the normalized entropy (NH) for IG com-
putation, as shown in the equation above. As a
result, IG is no longer strictly positive.

In the case of changes in the annotation
guideline, there will be high disagreement among
annotations before and after the change, and thus,
NH(B) will be high. Moreover, annotations
before the change will agree among each other, and
similarly, for annotations after the change. There-
fore, NH(B|D) will be low. Then IG(B,D)
takes its maximum value at the date of the guide-
line change, and annotations after this date, which
belong to the latest guideline, are correct. For ex-
ample, for the following date-ordered annotations;
{a1(03-2019), a1(07-2019), a1(08-2019),
a2(10-2019), a2(11-2019), a3(12-2019),
a2(01-2020), a2(02-2020)}, spliting at d =

-0.1

0

0.1

0.2

0.3

0.4

0.5

03.2019 07.2019 08.2019 10.2019 11.2019 12.2019 01.2020 02.2020

Figure 3: IG values at each date. The split at d =08-
2019 has the highest IG value. We cannot split at the
first and last dates.

(08-2019) yields the highest IG value, as shown in
Figure 3. This indicates that there was a change in
the annotation of this utterance on 08-2019. Hence,
a1 annotation is deemed wrong. In Section 4.2, we
empirically prove that for high IG values, a large
percentage of annotations occurring in the first
half of the Max IG Cut split is incorrect, whereas a
large percentage of annotations in the second half
is correct.

After the split, NH is computed for the remain-
ing annotations i.e., annotations after d. If NH
is less than a threshold NH0, we assign the utter-
ance the annotation with maximum frequency (i.e.,
majority voting). In the example above, NH is
low after the split, and the conflict is resolved by
changing all annotations (i.e., a1 and a3) to a2. Our
reasoning is that, when NH is high, majority vot-
ing will likely be outperformed by an alternative
model (LSTM-based method, explained next) as
there is high disagreement between the annotators.
Note that we do not drop any utterances, we replace
wrong annotations with the correct ones.

3.4 High Entropy Conflicts: LSTM

To make classification in the ambiguous high NH
cases, we use a supervised classifier trained on
the unambiguous examples from our data, in this
case an LSTM-based neural model (Hochreiter and
Schmidhuber, 1997). For the following list of an-
notations, {a1, a2, a3, a2, a1, a3}, no split with IG
greater than a threshold can be found, andNH = 1.
For such utterances, we rely on a neural model to
estimate the probability of each annotation i.e., a1,
a2, and a3. Then we assign the annotation with
highest probability to the utterance. Concretely, we
use the model of Chiu et al. (2016), a bidirectional
word-level LSTM model with a character-based

13

Figure 4: Histogram of conflicts in the training data.
Most conflicts have high entropy.

CNN layer. A softmax layer is used on top of the
output of the bidirectional LSTM, which computes
a probability distribution over the output slot la-
bels for a given input token. We extend the model
to a multi-task setting to support IC by concate-
nating the last hidden states of the Bi-LSTM, and
passing them to a softmax layer, similar to Yang
et al. (2016). We harness the probabilities of the
output of the softmax layer and compute the final
probability of the annotation by multiplying the
probability of each of its slots and of the intent.

4 Experiments

In this section we evaluate our method both intrin-
sically and extrinsically.

4.1 Setup

Data. We use a real-world dataset of a commercial
dialog system in German, belonging to six different
domains covering different, macro-purposes like,
for instance, musical or movies requests. For the
purpose of IC and SL, domains are treated as sepa-
rate datasets. Utterances were manually transcribed
and annotated with domain, intent and slot labels
across many different batches at different points of
time. In total we have 3.5M and 560K training and
testing utterances, respectively. The percentage of
conflicts in the training data varies across domains,
ranging from 4.9% to 10.9%. Most conflicts are of
high entropy, as shown in Figure 4. The test set is
of higher quality compared to the train set as each
collection of test set data is annotated twice. Gen-
erally, the test set has lower number of conflicts
compared to the train set. We do not resolve the
conflicts in the test data to avoid artificial inflation
of results.
LSTM model. For high entropy conflicts, we use
a single layer network for the forward and the back-

Figure 5: Accuracy of the rule change detection
method described in Section 3.3. For high IG values,
the accuracy of annotations after a date d, at which
there is a guideline change, is 90%, while the accuracy
of annotations before d is over 80%.

ward LSTMs whose dimensions are set to 256.
We use Glove pretrained German word embed-
dings (Pennington et al., 2014) with 300 dimen-
sions. For the CNN layer, character embeddings
were initialized randomly with 25 dimensions. We
used a mini-batch Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 0.001. We tried
different optimizers with different learning rates
(e.g., stochastic gradient descent), however, they
performed worse than Adam. We also applied
Dropout of 0.5 to each LSTM output (Hinton et al.,
2012). For training, we use the data described
above (i.e., 3.5M utterances) after applying the
Max IG Cut and majority voting to resolve low en-
tropy conflicts, as described in Section 3.3. High-
entropy conflicts are left unresolved. After 10
epochs, training is terminated. After training is
done, the model is used for conflict resolution for
high entropy cases.

4.2 Intrinsic Evaluation

To asses the quality of our method, an expert lin-
guist is asked to resolve 490 conflicts in two dif-
ferent domains e.g., Music. The linguist is asked
to use the latest annotation guideline. On average,
we have 12.6 utterances per conflict, with a total
number of 6173 utterances for the 490 conflicts.
The maximum number of utterances of a conflict is
181. On the annotation side, the maximum number
of unique annotations of a conflict is 8, while the
average number is 2.35 (Table 1).

We used our pipeline to resolve the 490 conflicts
that were resolved by the linguist, where 229 con-
flicts out of the 490 were resolved with the LSTM
model, which means that 46.7% of the conflicts
were of high normalized entropy (≥ NH0 = 0.75).

14

#Utterances #Unique Annotations
per Conflict per Conflict

Min 2 2

Average 12.6 2.35

Max 181 8

Total 6173 1151

Table 1: Statistics on the 490 conflicts used for our eval-
uation.

Guideline change detected 120

Resolved with LSTM model 229

Resolved with majority voting 261

Table 2: Out of the 490 conflicts, 229 were resolved
with the LSTM model, while 261 conflicts were re-
solved with majority voting.

The remaining 261 conflicts were resolved with
majority voting. 120 out of the 490 conflicts had at
least one guideline change (Table 2).
Max IG cut. For those conflicts with guideline
changes we evaluate, after splitting the list of an-
notations at date d, whether the annotations after
d are correct (aiafter), and whether the annotations
before d are incorrect (aibefore). To this end, for
each conflict with IG ≥ 0.2, we compare each
annotation after and before d with the ground-truth
annotation (agt) provided by the linguist. aiafter
annotations should be correct, therefore, accuracy
is 1 if aiafter agrees with agt, and 0 otherwise. On
the other hand, aibefore annotations should be incor-
rect, and hence, accuracy is 1 if aibefore does not
agree with agt, and 0 otherwise. We compute the
average accuracy over aiafter annotations and the
average accuracy over aibefore annotations for each
conflict. We also compute the average across those
conflicts with the same IG value.

We depicted the results in Figure 5. For high IG
values, high accuracies are achieved for annotations
after and before a split at a date d. For example, at
IG = 0.9, the accuracy of annotations before d is
almost 0.83, while the accuracy of annotations after
d is 0.90. This shows that our max IG cut method
was able to identify the right date d to split the list
of annotations at for the majority of conflicts with
guideline changes. We set IG0 to 0.4.
Majority Voting vs. LSTM. We evaluate the res-
olution of the 490 conflicts with the LSTM-based
model and majority voting at different levels of NH.
For each conflict, we apply the max IG cut and then

Figure 6: Accuracy with majority voting (orange) and
with the LSTM-based method (blue) on the 490 con-
flicts with respect to ground-truth resolution provided
by the linguist. For high values of NH, the LSTM-
based model performs better than majority voting.

resolve it using both methods of majority voting
and LSTM. We then compare the final annotation
each method delivers as correct with that delivered
by the linguist. If both agree, then accuracy is 1,
and 0 otherwise. For each NH value, we compute
the average accuracy of the set of 50 conflicts with
closest NH .

As expected, the accuracy with majority voting
significantly drops with high entropy conflicts, as
shown in Figure 6. The LSTM-based model be-
comes more accurate as NH increases, reaching
the highest accuracy in the case where NH =
1. In the training data, 29.3% of conflicts have
NH = 1. As seen in the figure, accuracy diverges
at NH = 0.75, which we use as NH0. That is, if
NH ≥ 0.75, we use the LSTM-based model, and
majority voting otherwise. For NH below 0.75,
both majority voting and the LSTM-based model
behave similarly, however, we use majority voting
for low entropies as it is more intuitive.

4.3 Effect on NLU

To evaluate our method extrinsically on the down-
stream task of NLU, we trained a multi-task LSTM-
based neural model for intent classification and slot
labeling on the 3.5M utterances after resolving an-
notation conflicts using our proposed method (Fig-
ure 2). Architecture-wise, the model is similar to
the one we use for conflict resolution, described
in Section 3.4. We compared this model with two
baseline models trained as follows:

1. NoResolution: this model was trained on the
full training data without conflict resolution
(i.e., 3.5M utterances).

15

Method Error Rate (Rel. Change)
Random Resolution 0.55%

Our Pipeline 2.75%

Table 3: Results on the NLU task. Our pipeline
achieved 2.75% relative change in error rate with re-
spect to the NoResolution baseline.

2. Rand: We trained this model with conflicts re-
solved by choosing one annotation randomly.

The three models were tested on the same test set
described above (560K utterances). We report the
relative change in error rate with respect to the
NoResolution model. The error rate is defined as
the fraction of utterances in which there is at least
an error either in IC or in SL.

Results are shown in Table 3. Overall, random
conflict resolution slightly reduced the error rate
with 0.55% relative change on average across do-
mains, while our method achieved 2.75% error re-
duction. For each of the six domains, resolving
conflicts with our method improves performance
over random resolution and over no resolution. In
one domain, a reduction in error rate of 4.7% is ob-
served. For five domains, the difference in perfor-
mance passes a two-sided paired t-test for statistical
significance at 95% confidence level.

5 Conclusion

In this paper, we tackled the problem of annotation
conflicts for the task of NLU for voice-controlled
personal assistants. We presented a novel approach
that combines information-theoretic measures and
an LSTM-based neural model. We evaluated our
method on a real-world large-scale dataset, both
intrinsically and extrinsically.

Although we focused on the task of NLU, our
conflict resolution pipeline could be applied to any
manual annotation task. In the future, we plan on in-
vestigating how the choice of the task-specific clas-
sification model affects performance. Moreover,
we plan to study annotation conflict resolution for
other NLP tasks e.g., PoS tagging and dependency
parsing.

Acknowledgements

We thank Melanie Bradford and our anonymous
reviewers for their thoughtful comments and useful
discussions.

References
Abdalghani Abujabal and Judith Gaspers. 2019. Neu-

ral Named Entity Recognition from Subword Units.
In Proc. Interspeech 2019, pages 2663–2667.

Abdalghani Abujabal, Rishiraj Saha Roy, Mohamed
Yahya, and Gerhard Weikum. 2019. Comqa: A
community-sourced dataset for complex factoid
question answering with paraphrase clusters. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-
7, 2019, Volume 1 (Long and Short Papers), pages
307–317. Association for Computational Linguis-
tics.

Darina Benikova, Chris Biemann, and Marc Reznicek.
2014. NoSta-d named entity annotation for Ger-
man: Guidelines and dataset. In Proceedings of
the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 2524–
2531, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Victoria Bobicev and Marina Sokolova. 2017. Inter-
annotator agreement in sentiment analysis: Machine
learning perspective. In Proceedings of the Inter-
national Conference Recent Advances in Natural
Language Processing, RANLP 2017, pages 97–102,
Varna, Bulgaria. INCOMA Ltd.

Thorsten Brants. 2000. Inter-annotator agreement
for a German newspaper corpus. In Proceed-
ings of the Second International Conference on
Language Resources and Evaluation (LREC’00),
Athens, Greece. European Language Resources As-
sociation (ELRA).

Danqi Chen and Christopher D. Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A
meeting of SIGDAT, a Special Interest Group of the
ACL, pages 740–750. ACL.

Jason P. C. Chiu and Eric Nichols. 2016. Named en-
tity recognition with bidirectional lstm-cnns. TACL,
4:357–370.

Markus Dickinson and W. Detmar Meurers. 2003. De-
tecting errors in part-of-speech annotation. In 10th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, Budapest, Hun-
gary. Association for Computational Linguistics.

Jenny Rose Finkel, Trond Grenager, and Christopher D.
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In ACL 2005, 43rd Annual Meeting of the
Association for Computational Linguistics, Proceed-
ings of the Conference, 25-30 June 2005, University
of Michigan, USA, pages 363–370. The Association
for Computer Linguistics.

16

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li
Huo, Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-
Nung Chen. 2018. Slot-gated modeling for joint
slot filling and intent prediction. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT, New
Orleans, Louisiana, USA, June 1-6, 2018, Volume
2 (Short Papers), pages 753–757. Association for
Computational Linguistics.

Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. 2012. Improving neural networks by
preventing co-adaptation of feature detectors.
CoRR, abs/1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard H. Hovy. 2013. Learning whom to trust
with MACE. In Human Language Technologies:
Conference of the North American Chapter of the
Association of Computational Linguistics, Proceed-
ings, June 9-14, 2013, Westin Peachtree Plaza Hotel,
Atlanta, Georgia, USA, pages 1120–1130. The Asso-
ciation for Computational Linguistics.

Shailza Jolly, Tobias Falke, Caglar Tirkaz, and Daniil
Sorokin. 2020. Data-efficient paraphrase generation
to bootstrap intent classification and slot labeling for
new features in task-oriented dialog systems. In Pro-
ceedings of the 28th International Conference on
Computational Linguistics: Industry Track, pages
10–20, Online. International Committee on Compu-
tational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Tarald O. Kvålseth. 2017. On normalized mutual in-
formation: Measure derivations and properties. En-
tropy, 19(11).

M.S. Mahendra, E.J. Neuhold, A.M. Tjoa, and I. You.
2014. Information and Communication Technology:
Second IFIP TC 5/8 International Conference, ICT-
EurAsia 2014, Bali, Indonesia, April 14-17, 2014,
Proceedings. Lecture Notes in Computer Science.
Springer Berlin Heidelberg.

Christopher D. Manning. 2011. Part-of-speech tagging
from 97% to 100%: Is it time for some linguis-
tics? In Computational Linguistics and Intelligent
Text Processing - 12th International Conference, CI-
CLing 2011, Tokyo, Japan, February 20-26, 2011.
Proceedings, Part I, volume 6608 of Lecture Notes
in Computer Science, pages 171–189. Springer.

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spo-
ken language understanding. In INTERSPEECH
2013, 14th Annual Conference of the International
Speech Communication Association, Lyon, France,
August 25-29, 2013, pages 3771–3775. ISCA.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Inter-
est Group of the ACL, pages 1532–1543. ACL.

Barbara Plank, Dirk Hovy, and Anders Søgaard. 2014.
Learning part-of-speech taggers with inter-annotator
agreement loss. In Proceedings of the 14th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, EACL 2014, April 26-30,
2014, Gothenburg, Sweden, pages 742–751. The As-
sociation for Computer Linguistics.

Massimo Poesio and Ron Artstein. 2005. The relia-
bility of anaphoric annotation, reconsidered: Taking
ambiguity into account. In Proceedings of the Work-
shop on Frontiers in Corpus Annotations II: Pie in
the Sky@ACL 2005, Ann Arbor, MI, USA, June 29,
2005, pages 76–83. Association for Computational
Linguistics.

P. J. Price. 1990. Evaluation of spoken language sys-
tems: the ATIS domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, USA, June 24-27, 1990. Mor-
gan Kaufmann.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383–2392.
The Association for Computational Linguistics.

Marta Recasens, Eduard Hovy, and M. Antònia Martí.
2010. A typology of near-identity relations for coref-
erence (NIDENT). In Proceedings of the Seventh In-
ternational Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta. European
Language Resources Association (ELRA).

Marta Recasens, Eduard Hovy, and M Antònia Martí.
2011. Identity, non-identity, and near-identity: Ad-
dressing the complexity of coreference. Lingua,
121(6):1138–1152.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Y. Ng. 2008. Cheap and fast - but is it
good? evaluating non-expert annotations for natural
language tasks. In 2008 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2008, Proceedings of the Conference, 25-27 October

17

2008, Honolulu, Hawaii, USA, A meeting of SIG-
DAT, a Special Interest Group of the ACL, pages
254–263. ACL.

Kees van Deemter and Rodger Kibble. 2000. On core-
ferring: Coreference in MUC and related annotation
schemes. Comput. Linguistics, 26(4):629–637.

Yannick Versley. 2006. Disagreement dissected:
Vagueness as a source of ambiguity in nominal (co-)
reference. In Ambiguity in Anaphora Workshop Pro-
ceedings, pages 83–89.

Yannick Versley and Julius Steen. 2016. Detecting
annotation scheme variation in out-of-domain tree-
banks. In Proceedings of the Tenth International
Conference on Language Resources and Evalua-
tion LREC 2016, Portorož, Slovenia, May 23-28,
2016. European Language Resources Association
(ELRA).

Alexander Volokh and Günter Neumann. 2011. Au-
tomatic detection and correction of errors in depen-
dency treebanks. In The 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, Proceedings of the Confer-
ence, 19-24 June, 2011, Portland, Oregon, USA -
Short Papers, pages 346–350. The Association for
Computer Linguistics.

Jiping Yang and Wanhua Qiu. 2014. Normalized ex-
pected utility-entropy measure of risk. Entropy,
16:3590–3604.

Zhilin Yang, Ruslan Salakhutdinov, and William W.
Cohen. 2016. Multi-task cross-lingual sequence tag-
ging from scratch. CoRR, abs/1603.06270.

Xiaodong Zhang and Houfeng Wang. 2016. A joint
model of intent determination and slot filling for spo-
ken language understanding. In Proceedings of the
Twenty-Fifth International Joint Conference on Arti-
ficial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016, pages 2993–2999. IJCAI/AAAI
Press.

18

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 19–25
June 6–11, 2021. ©2021 Association for Computational Linguistics

Optimizing NLU Reranking Using Entity Resolution Signals in
Multi-domain Dialog Systems

Tong Wang∗, Jiangning Chen∗, Mohsen Malmir, Shuyan Dong,
Xin He, Han Wang, Chengwei Su, Yue Liu, Yang Liu

Amazon Alexa
{tonwng, cjiangni, malmim, shuyand, xih, wnghn, chengwes, lyu, yangliud}@amazon.com

Abstract
In dialog systems, the Natural Language
Understanding (NLU) component typically
makes the interpretation decision (including
domain, intent and slots) for an utterance be-
fore the mentioned entities are resolved. This
may result in intent classification and slot tag-
ging errors. In this work, we propose to
leverage Entity Resolution (ER) features in
NLU reranking and introduce a novel loss term
based on ER signals to better learn model
weights in the reranking framework. In addi-
tion, for a multi-domain dialog scenario, we
propose a score distribution matching method
to ensure scores generated by the NLU rerank-
ing models for different domains are properly
calibrated. In offline experiments, we demon-
strate our proposed approach significantly out-
performs the baseline model on both single-
domain and cross-domain evaluations.

1 Introduction

In spoken dialog systems, natural language under-
standing (NLU) typically includes domain classifi-
cation (DC), intent classification (IC), and named
entity recognition (NER) models. After NER ex-
tracts entity mentions, an Entity Resolution (ER)
component is used to resolve the ambiguous en-
tities. For example, NLU interprets an utterance
to Alexa (or Siri) "play hello by adele" as in the
‘Music’ domain, ‘play music’ intent, and labels
"hello" as a song name, "adele" as an artist name.
ER queries are then formulated based on such a
hypothesis to retrieve entities in music catalogs.
Often times NLU can generate a list of hypotheses
for DC, IC, and NER, and then a reranking model
uses various confidence scores to rerank these can-
didates (Su et al., 2018).

Since ER is performed after NLU models, the
current NLU interpretation of the utterance is lim-
ited to the raw text rather than its underlying enti-
ties. Even in NLU reranking (Su et al., 2018), only

∗The first two authors have equal contribution

DC, IC, and NER confidence scores were used,
and as a result, the top hypothesis picked by NLU
reranking might not be the best interpretation of the
utterance. For example, in the absence of entity in-
formation, "the beatles" in the utterance "play with
the beatles" is interpreted as an artist name. If the
reranker could search the ER catalog, it would pro-
mote the hypothesis that has "with the beatles" as
an album name. Such NLU errors may propagate
to ER and downstream components and potentially
lead to end-customer friction.

In this work, we thus propose to incorporate
ER features in the NLU reranking model, called
NLU-ER reranking. For a domain, we use its corre-
sponding catalogs to extract entity related features
for NLU reranking for this domain. To enhance ER
feature learning, we add a novel loss term when
an NER hypothesis cannot be found in the catalog.
One additional challenge arises in the multi-domain
systems. In large-scale NLU systems, one design
approach is to modularize the system as per the
concept of domains (such as Music, Video, Smart
Home), and each domain has its own NLU (DC,
IC, NER) and reranking models that are trained
independently. Under this scheme, each domain’s
NLU reranking plays an important role in both in-
domain and cross-domain reranking, since it not
only ranks hypotheses within a domain to promote
the correct hypothesis, but also produces ranking
scores that need to be comparable across all differ-
ent domains. In (Su et al., 2018), the scores for the
hypotheses from different domains are calibrated
through training on the same utterance data with
similar models . However, we may only use NLU-
ER reranking for some domains (due to reasons
such as lack of entity catalog, different production
launch schedule, etc.), and the scores from such
rerankers may no longer be comparable with other
domains using the original reranker model. To mit-
igate this issue, we introduce a score distribution
matching method to adjust the score distributions.

19

We evaluate our NLU-ER reranking model on
multiple data sets, including synthetic and real di-
alog data, and for both single domain and cross-
domain setups. Our results show improved NLU
performance compared to the baseline, and the im-
provement is contributed to our proposed ER fea-
tures, loss term, and score matching method.

2 Related Work

Early reranking approaches in NLU systems use a
single reranker for all the domains. Robichaud et
al. (Robichaud et al., 2014) proposed a system for
multi-domain hypothesis ranking (HR) that uses
LambdaMART algorithm (Burges et al., 2007) to
train a ranking system. The features in the ranking
system include confidence scores for intents and
slots, relevant database hits and contextual features
that embed relationship to previous utterances. The
authors showed improved accuracy in top domains
using both non-contextual and contextual features.
Crook et al. adapted a similar reranking scheme for
multi-language hypothesis ranking (Crook et al.,
2015). The set of features in the reranker include
binary presence variables, for example presence
of an intent, coverage of tagged entities and con-
textual features. They adapted the LambdaMART
algorithm to train a Gradient Boosted Decision
Trees model (Friedman, 2001) for cross language
hypothesis ranking, and demonstrated compara-
ble performance of the cross language reranker to
the language-specific reranker. These models did
not explicitly use ER signals for reranking. In ad-
dition, reranking is done across domains. Such
single reranker approach is not practical in NLU
systems with a large set of independent domains.
In contrast, our approach emphasizes domain inde-
pendence, allowing reranking to be performed for
each domain independently. Furthermore, we rely
on ER signal as a means to improve reranking.

To the best of our knowledge, the most related
work to ours is Su et al. (Su et al., 2018), which
proposed a re-ranking scheme to maximize the ac-
curacy of the top hypothesis while maintaining the
independence of different domains through implicit
calibration. Each domain has its NLU reranker, and
the scores for the hypotheses from reranking are
compared across all the domains to pick the best
hypothesis. The feature vector for each reranker is
composed of intent, domain and slot tagging scores
from the corresponding domain. Additionally, a
cross entropy loss term is used to ensure calibra-

tion across domains. In a series of experiments,
they demonstrated improvement of semantic under-
standing. Our work is an extension of that work
as we utilize ER signals, in addition to the DC, IC,
and NER scores, and introduce a new loss term to
improve the reranking accuracy.

To resolve the score non-comparable problem
in a multi-domain system, traditional calibration
methods utilize Platt Scaling or Isotonic Regres-
sion to calibrate the prediction distribution into a
uniform distribution (Zadrozny and Elkan, 2001,
2002; Platt et al., 1999; Niculescu-Mizil and Caru-
ana, 2005; Wilks, 1990). However, this does not
work in our scenario since the data in different do-
mains are imbalanced, which causes domains with
big traffic to have lower confidence scores. Instead
of using probability calibration methods, we pro-
pose a solution based on power transformation to
match the prediction score distribution back to the
original score distribution, thus making the scores
comparable even after ER information is added to
NLU reranking.

3 Reranking Model

The baseline NLU reranking model is implemented
as a linear function that predicts the ranking score
from DC, IC, and NER confidence scores. We
augment its feature vector using ER signals and
introduce a novel loss term that penalizes the hy-
potheses that do not have a matched entity in the
catalog. Similar to (Su et al., 2018), we tested using
a neural network model for reranking, but observed
no improvements, therefore we focus on the linear
model.

3.1 ER Features in Reranking

The features used in the baseline NLU reranker
include scores for DC (d), IC (i), NER (n) hy-
potheses, and ASR scores that are obtained from
upstream components and used for all the do-
mains. The additional ER features used in NLU-ER
reranker are extracted and computed from the ER
system, and can be designed differently for indi-
vidual domains. For example, in this work, for
the Music domain, ER features we use are aggre-
gated from NER slot types such as: SongName,
ArtistName, and the ER features are defined as:

ER success esi : if a hypothesis contains a slot
si that is successfully matched by any of the ER
catalogs, this feature is set to 1, otherwise 0. ER
success feature serves as a positive signal to pro-

20

mote the corresponding hypothesis score.
ER no match msi : if a slot si in a hypothesis

does not have any matched entities in the ER cat-
alogs, this feature value is 1, otherwise 0. ER no
match feature serves as a negative signal to penalize
the hypothesis score. We find ‘ER no match’ is a
stronger signal than ‘ER success’ because over 90%
of the time, ER no match implies the corresponding
hypothesis does not agree with the ground truth.

Similarity feature lsi : this feature is nonzero
only if the ER success feature esi is 1. In each
catalog, a lexical or semantic similarity score be-
tween the slot value and every resolved entity is
computed, and the maximum score among them
is selected as the feature value. This indicates the
confidence of the ER success signal.

Not in Gazetteer: this feature is set to 1 when
ER features are not in the gazetteer (neither ER
success nor no match), otherwise 0. We will discuss
the gazetteer in the next section.

3.2 ER Gazetteer Selection

Since NLU and reranking happen before ER, in
runtime retrieving ER features from large catalogs
for NLU reranking is not trivial. Therefore we
propose to cache the ER signals offline and make
it accessible in NLU reranking in the form of a
gazetteer. To make the best use of the allocated
amount of runtime memory, we design a gazetteer
selection algorithm to include the most relevant
and effective ER features in the gazetteer.

We define Frequent Utterance Database (FUD)
as the live traffic data where the same utterance has
been spoken by more than 10 unique customers. To
formalize the selection procedure, we define outper-
forming and underperforming utterances by friction
(e.g., request cannot be handled) rate fr and 30s
playback queue (playback ≥ 30s) rate qr. For all
FUD utterances in a given period, an utterance u is
defined as outperforming if fr(u) ≤ µfr−λ1∗σfr
and qr(u) ≥ µqr + λ2 ∗ σqr, where µ and σ are
the mean and standard deviation, λ1 and λ2 are
hyperparameters. Underperforming utterances are
defined likewise.

The detailed gazetteer selection algorithm is de-
scribed in Algorithm 1. uh1 , ..., uhn denote n-best
NLU hypotheses of the utterance u. The idea is
to encourage the successful hypotheses and avoid
the friction hypotheses based on the historical data.
For instance, if u is an underperforming utterance
and uh1 is ER_NO_MATCH, we want to penalize

Algorithm 1: Gazetteer Data Selection
Obtain outperforming and underperforming
utterances from FUD;

for u ∈ outperforming utterances do
if uh1 is ER_SUCCESS then

select ER features in uh1 to the
gazetteer;

end
end
for u ∈ underperforming utterances do

if uh1 is ER_NO_MATCH then
select ER features in uh1 to the

gazetteer;
end
if uhi is ER_SUCCESS, and hi 6= h1
then

select ER features in uhi to the
gazetteer;

end
end

uh1 to down-rank it, and promote other hypotheses
uhi (i 6= 1) that receive the ER_SUCCESS signal.
For the utterance hypotheses that are not selected
in the gazetteer, we will use the Not_in_gazetteer
(NG) feature.

3.3 NLU-ER Reranker
For an utterance, the hypothesis score y is defined
as the following:

y =WGG+
∑

si∈S
1slot=si(WsiERsi) + 1NGwd

(1)

The first part in (1) is the baseline NLU reranker
model:

(2)y =WGG

where G = [g1, g2, . . . , gp]
T is the NLU general

feature vector, WG = [w1, w2, . . . , wp] is the cor-
responding weight vector. The rest of the fea-
tures are ER related. 1 is the indicator func-
tion. S is the set of all slot types, ERsi =
[er1, er2, . . . , erq]

T is the ER feature vector and
Wsi = [wsi1, wsi2, . . . , wsip] is the correspond-
ing weight vector. If an utterance in Music only
contains SongName slot s1, then y = WGG +
Ws1ERs1 , the rest of the terms are all 0s. If an ut-
terance does not have any ER features from all the
defined slot types, y = WGG + wd. wd serves
as the default ER feature value to the reranker

21

when no corresponding ER features are found in
the gazetteer described above. Its value is also
learned during the model training.

3.4 Loss Function
We use SemER (Semantic Error Rate) (Su et al.,
2018) to evaluate NLU performance. For a hy-
pothesis, SemER is defined as E/T , where E is
the total number of substitution, insertion, deletion
errors of the slots, T is the total number of slots.

One choice of the loss function is the combina-
tion of expected SemER loss and expected cross
entropy loss (Su et al., 2018). The loss function Lu
of an utterance is defined as:

Lu = k1Su + k2Cu (3)

where Su is the expected SemER loss: Su =∑N
i pi × SemERi, and Cu is the expected cross

entropy loss: Cu =
∑N

i pi × [−ti log ri − (1 −
ti) log(1 − ri)], where ri = 1

1+e−yi , pi = eyi∑5
j e
yj

,

ti = (SemERi == 0), N is the number of hy-
potheses in utterance u.

Since our analysis showed that ER_NO_MATCH
is a stronger signal and we expect the top hypothe-
sis to get ER hits, we add a penalty term Nu to the
loss function to penalize the loss when the 1-best
hypothesis gets ER_NO_MATCH.

Let rj = maxi(ri) be the best score in the cur-
rent training step, and j the index for the current
best hypothesis. Then no match loss term is defined
as:

Nu = −ej × log(1− rj) (4)

where ei =
#(sloter_no_match)

#(slot) . It is the ratio of the
slots with ER_NO_MATCH to all the slots in the
ith hypothesis, and if no slot gets ER_NO_MATCH,
the loss term is zero. Then the overall loss function
is updated as:

Lu = k1Su + k2Cu + k3Nu (5)

Nu will penalize more the hypothesis that has a
high score but gets no ER hits. k1,2,3 are the hyper-
parameters, Lu is the final loss term for NLU-ER
Reranker.

In our experiments, we observed that the weights
are higher for the ER no match feature, and the
model with the new loss term had a better perfor-
mance under in-domain setup, which is as expected.
Also, giving higher weight to ‘ER no match’ de-
creases the confidence scores generated by a do-
main NLU-ER reranker, which can help with the

cross domain calibration problem. We will dis-
cuss how to ensure comparable scores in the next
section.

4 Score Distribution Matching

Before adding the ER features, the reranking scores
are calibrated through training on the same utter-
ance data with similar models. However, adding
the ER features in NLU reranking for a single do-
main may lead to incomparable scores with other
domains. Using the loss function in Eq (3), we
have the following theorem:

Theorem 4.1. Under the loss function in Eq (3),
assuming hypothesis 1 is the ground truth, and
0 = SemER1 < SemER2 < SemER3 <
SemER4 < SemER5, with a uniform score as-
sumption

∑5
j e

yj = c; Eq (1) will obtain a higher
positive label hypothesis score and a lower nega-
tive label score than Eq (2).

Proof. For the expected SemER loss Su, since it is
the linear combination of SemERi, the solution of
the minimization problem will be: p1 → 1, p2 =
p3 = p4 = p5 → 0. This leads to:y1 → ∞, y2 =
y3 = y4 = y5 → −∞. Then for the expected cross
entropy loss Cu, let xi = eyi , the minimization of
Cu becomes:

min−x1 log
x1

1 + x1
−
∑

j 6=1

xj log
1

1 + xj
= min−I1−I2.

The first part (I1) is monotonically increasing,
while the second part (I2) is monotonically de-
creasing when xj > 0. This also leads to: y1 →
∞, y2 = y3 = y4 = y5 → −∞. Thus, solving
the minimization problem minLu is equivalent to
solving the linear system:

{
F+ ~w = y1+

F− ~w = −y1−
(6)

when y →∞ associated with the given loss in Eq
(3), where F+ is the feature matrix for the positive
labels, F− is the feature vector for the negative la-
bels, ~w is the weight vector we need to solve, and
1+,1− are the unit vectors with the same dimen-
sion as the number of positive samples and negative
samples respectively.

We can rewrite Eq (6) into: F ~w = ~y, and
its solution will be the projection associated with
the loss in Eq (3) of ~y onto the solution space
spanned by the column vectors of matrix F . Now

22

define this projection as PF (~y). For the fea-
ture matrix of the NLU model in Eq (2), we
have FN = G, and for the feature matrix of
NLU-ER model in Eq (1) we have FER =
[G,ERs1 , ERs2 , . . . , ERsq ,1default]. Since FN
is the submatrix of FER, we have spanFN ⊂
spanFER, thus:

PFN (~y) ≤ PFER(~y)

In Theorem 4.1, we show that the candidate hy-
pothesis from a more complicated model will be
more likely to have a higher score than the do-
mains using the original reranker model. Thus
the domains using the NLU-ER reranker are no
longer comparable to the domains using the origi-
nal model. We observed this scenario in our experi-
ments empirically. When we only experiment with
Music domain, it will generate higher confidence
scores and have more false positives.

To solve this problem, since we would like the
confidence scores for each domain to have stabi-
lized variance and minimized skewness, we pro-
pose to use power transformation, which is able
to map data from any distribution to an approxi-
mately standard Gaussian distribution. In our case,
the confidence scores from Eq (1) might be zero or
negative, thus we consider the Yeo-Johnson trans-
formation with λ 6= 0 and λ 6= 2:

x
(λ)
i =

{
[(xi + 1)λ − 1]/λ if xi ≥ 0,
−[(−xi+1)2−λ−1]

2−λ if xi < 0,
(7)

We have the inverse function:

x
(λ)
i =

{
(λxi + 1)

1
λ − 1 if xi ≥ 0,

1− [1− (2− λ)xi]
1

2−λ if xi < 0,
(8)

where parameter λ is determined through maxi-
mum likelihood estimation. The idea is to first map
both the NLU reranker model scores and the NLU-
ER reranker scores to a standard Gaussian distri-
bution and obtain λNLU and λNLU−ER. Then to
calculate a new score from the NLU-ER reranker,
we first use Eq (7) to transform the score into a
standard Gaussian score with λ = λNLU−ER, fol-
lowed by Eq (8) to transform the standard Gaussian
score back into the original NLU reranker scores
with λ = λNLU . Notice that when λ > 0, both Eq
(7) and (8) are monotonic functions, thus the map-
ping method can only change the score distribution
while maintaining the in-domain ranking order.

5 Experiment

5.1 Experimental Setup
We use the following data sets for training and
evaluation:

Annotation Data (AD): It contains around 1
million annotated utterances from internal traffic.
Training and testing split is 50:50. For testing, we
further evaluate two different conditions: (i) ‘AD
All’ using utterances from all domains for cross-
domain evaluation. (ii) ‘AD Music’, ‘AD Video’,
‘AD LS’ using utterances from the Music domain,
Video Domain and Local Search domain, respec-
tively, for in-domain evaluation.

Synthetic Data (SD): These are synthetically
generated ambiguous utterances used for in-domain
evaluation. For Music and Video domains, utter-
ances are in the form of "play X". Slot type of
X could be ArtistName, SongName, AlbumName,
VideoName, etc. X is an actual entity sampled
from the corresponding ER song, video, artist, or
album catalogs, and it is not in the training data,
such that the model cannot infer the slot by sim-
ply "memorizing" it from the training data. We
only report SongName (10K data) results in Music
domain, and VideoName results in Video domain,
due to the space limitation. For Local Search do-
main, utterances are in the form of "give me the
direction to X", slot type of X could be PlaceName,
DestinationName, etc. Note this data set is more
ambiguous than the above one from real traffic in
that "X" has multiple interpretations, whereas in
real traffic users often add other words to help dis-
ambiguate, for example ‘play music ...’.

We initialize the general feature weights to the
same weights used in the baseline model. ER fea-
ture weights are set to smaller values (3 times less
than the general feature weights). We find the ex-
pected SemER loss is less effective, so we set k1
= 0.01, k2 = 0.9, k3 = 0.1. Besides, we use Adam
optimizer (Kingma and Ba, 2014) with a learning
rate of 0.0001 and train the model for 10 epochs.

5.2 Results
Table 1 presents the NLU-ER reranker results for
cross-domain (AD All) and in-domain (AD Mu-
sic, SD) settings. All the results are the SemER
metric relative improvements compared to the base-
line reranker. We have DC, IC, NER scores as the
general NLU features. NLU-ER reranker uses ad-
ditional ER features: ER success, no match, and
lexical similarity of different slot types, and the

23

Table 1: NLU-ER reranking results on different data
sets. The reported numbers show relative improve-
ments compared with the baseline model using SemER
evaluation metric. Baseline: NLU reranker with gen-
eral features; ER: NLU-ER reranker with gazetteer se-
lection; +N: with loss term for No Match feature; +R:
with regression score matching; +P: with power trans-
formation score matching. All the results in the table
are statistically significant with p-value < 0.01.

ER ER+N ER+N+R ER+N+P

AD All -0.22% +0.19% +0.26% +0.32%
AD Music +0.87% +0.99% +0.99% +0.99%
AD Video +0.95% +1.01% +1.01% +1.01%
AD LS +0.08% +0.09% +0.09% +0.09%
SD Music +20.74% +28.58% +28.58% +28.58%
SD Video +14.21% +18.69% +18.69% +18.69%
SD LS +12.53% +17.37% +17.37% +17.37%

gazetteer selection algorithm is applied to retrieve
the ER features. For the in-domain results, NLU-
ER reranker has statistically significant improve-
ment on both AD and SD. The improvement is
more substantial on SD data, over 20%, which
indicates ER features are more helpful when the ut-
terances have ambiguity. Note there is some degra-
dation in cross domain results on AD All when
NLU-ER is used, due to the non-comparable score
issue. After adding the loss term for ER no match
feature, we observed additional improvements on
both the in-domain and cross-domain settings.

As discussed earlier, because the scores from
the baseline model are already well calibrated
across domains, we use Yeo-Johnson transforma-
tion to match the domain score distribution back
into the baseline score distribution. For Music do-
main, we use maximum likelihood estimation to get
λNLU = 1.088 and λNLUER = 1.104. With these
two estimations, we map NLU-ER reranker scores
back to obtain a score in the baseline reranker score
distribution. Using this updated score, we can
see the cross-domain SemER score is improved
by 0.32% relatively. Among the improved cases,
we found that the number of False Positive utter-
ances is decreased by 7.37% relatively. For com-
parison, we also trained a univariate neural network
regression model to predict the original reranker
score given the NLU-ER reranker score. Although
this method also yields improvements, we can see
that power transformation has a better performance
and is also easy to implement. Note again that
the in-domain performance remains the same since
these score mapping approaches do not affect the

in-domain ranking order. We perform the same
experiments for Video domain and Local Search
domain as well, and have the similar observations.

To illustrate the effectiveness of our proposed
NLU-ER reranker and analyze the reasons for per-
formance improvement, we compare the generated
1-best hypothesis from the baseline model with our
new reranker. For utterance "play hot chocolate by
polar express", the correct type for "polar express"
is album. The baseline model predicts "polar ex-
press" as an artist because it is not in the training
set, and "Song by Artist" appears more frequently
than "Song by Album". However, our model suc-
cessfully selected this hypothesis ("polar express"
is an album), since ER_SUCCESS signal is found
from the ER album catalog but ER_NO_MATCH is
found from ER artist catalog. Similarly, in another
example "play a sixteen z" where "a sixteen z" is
ambiguous and not in the training set, the baseline
model predicts it as a song since utterances with
SongName slot have higher frequency in the train-
ing data, whereas our model can correctly select
ProgramName as the 1-best hypothesis using ER
signals.

6 Conclusion

In this work, we proposed a framework to incorpo-
rate ER information in NLU reranking. We devel-
oped a new feature vector for the domain reranker
by utilizing entity resolution features such as hits
or no hits. To provide the ER features to the NLU
reranker, we proposed an offline solution that dis-
tills the ER signals into a gazetteer. We also in-
troduced a novel loss term based on ER signals to
discourage the domain reranker from promoting
hypotheses with ER no match and showed that it
leads to better model performance. Finally, since
domain rerankers predict the ranking scores inde-
pendently, we introduced a score matching method
to transform the NLU-ER model score distribu-
tion to make the final scores comparable across do-
mains. Our experiments demonstrated that the Mu-
sic domain reranker performance is significantly
improved when ER information is incorporated in
the feature vector. Also with score calibration, we
achieve moderate gain for the cross-domain sce-
nario.

7 Acknowledgement

We acknowledge Kyle Saggar, Grace Deng, Ian
Gardiner, Mark Cusick, Justin Flammia, Apoorva

24

Balevalachilu, Huitian Lei, Tan Xiao, Tian Zhu,
Prajit Reddy Muppidi, Priya Khokher, Adi Golla-
pudi, Bo Xiao for their contributions to this effort.

References
Christopher J. Burges, Robert Ragno, and Quoc V. Le.

2007. Learning to rank with nonsmooth cost func-
tions. In B. Schölkopf, J. C. Platt, and T. Hoffman,
editors, Advances in Neural Information Processing
Systems 19, pages 193–200. MIT Press.

Paul A Crook, Jean-Philippe Robichaud, and Ruhi
Sarikaya. 2015. Multi-language hypotheses ranking
and domain tracking for open domain dialogue sys-
tems. In Sixteenth Annual Conference of the Inter-
national Speech Communication Association.

Jerome H Friedman. 2001. Greedy function approx-
imation: a gradient boosting machine. Annals of
statistics, pages 1189–1232.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Alexandru Niculescu-Mizil and Rich Caruana. 2005.
Predicting good probabilities with supervised learn-
ing. In Proceedings of the 22nd international con-
ference on Machine learning, pages 625–632.

John Platt et al. 1999. Probabilistic outputs for sup-
port vector machines and comparisons to regularized
likelihood methods. Advances in large margin clas-
sifiers, 10(3):61–74.

Jean-Philippe Robichaud, Paul A Crook, Puyang Xu,
Omar Zia Khan, and Ruhi Sarikaya. 2014. Hy-
potheses ranking for robust domain classification
and tracking in dialogue systems. In Fifteenth An-
nual Conference of the International Speech Com-
munication Association.

Chengwei Su, Rahul Gupta, Shankar Ananthakrish-
nan, and Spyros Matsoukas. 2018. A re-ranker
scheme for integrating large scale nlu models. In
2018 IEEE Spoken Language Technology Workshop
(SLT), pages 670–676. IEEE.

Daniel S Wilks. 1990. On the combination of fore-
cast probabilities for consecutive precipitation peri-
ods. Weather and forecasting, 5(4):640–650.

Bianca Zadrozny and Charles Elkan. 2001. Obtaining
calibrated probability estimates from decision trees
and naive bayesian classifiers. In Icml, volume 1,
pages 609–616. Citeseer.

Bianca Zadrozny and Charles Elkan. 2002. Transform-
ing classifier scores into accurate multiclass proba-
bility estimates. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 694–699.

25

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 26–33
June 6–11, 2021. ©2021 Association for Computational Linguistics

Entity Resolution in Open-domain Conversations

Mingyue Shang∗, Tong Wang∗, Mihail Eric, Jiangning Chen, Jiyang Wang
Matthew Welch, Tiantong Deng, Akshay Grewal, Han Wang, Yue Liu

Imre Kiss, Yang Liu, Dilek Hakkani-Tur
Amazon Alexa

{myshang, tonwng, mihaeric, cjiangni, welcmtt, jiyangw, gracdeng,
aksgrewa, wnghn, lyu, ikiss, yangliud, hakkanit}@amazon.com

Abstract

In recent years, incorporating external knowl-
edge for response generation in open-domain
conversation systems has attracted great inter-
est. To improve the relevance of retrieved
knowledge, we propose a neural entity linking
(NEL) approach. Different from formal docu-
ments such as news, conversational utterances
are informal and multi-turn, which makes it
more challenging to disambiguate the entities.
Therefore, we present a context-aware named
entity recognition model (NER) and entity res-
olution (ER) model to utilize dialogue context
information. We conduct NEL experiments
on three open-domain conversation datasets
and validate that incorporating context infor-
mation improves the performance of NER and
ER models. Furthermore, we verify that using
knowledge sentences identified based on NEL
benefits the neural response generation model.

1 Introduction

Building an informative open-domain conversa-
tional agent that can naturally interact with hu-
mans has been one of recent scientific research
topics. Inspired by the development of neural net-
works, neural generation based conversation sys-
tems have made great progress (Sutskever et al.,
2014; Vinyals and Le, 2015; Li et al., 2017; Wolf
et al., 2019a; Zhou et al., 2020). However, one
issue in such approaches is that the neural mod-
els often produce universal and less informative
responses (Huang et al., 2020). To address this
issue, previous work proposed to incorporate exter-
nal information into the response generation mod-
els, such as topics (Xing et al., 2017) and emo-
tions (Zhou et al., 2018a). One line of research
investigates the use of external knowledge to enrich
the information of the responses (Ghazvininejad
et al., 2018; Young et al., 2018; Dinan et al., 2018;
Gopalakrishnan et al., 2019; Meng et al., 2020).

∗The first two authors have equal contribution

Most existing studies retrieve relevant knowledge
from a knowledge base using the entities and noun
phrases in the input text. Thus, correctly identi-
fying these entities is crucial to find the relevant
knowledge for a given dialog context. This typi-
cally involves two subtasks: given a user utterance,
the system first identifies any named entities it con-
tains (NER task) and then performs entity resolu-
tion (ER) to disambiguate the mentioned entities
using a knowledge base. Both NER and ER (or
NEL) have been well explored in previous stud-
ies and demonstrated to perform highly for news
or well written text. However, for open domain
spoken conversations and human-bot dialog, per-
formance suffers due to ASR errors, incomplete or
ungrammatical sentences from users, difference of
spoken and written style, and less training data for
such tasks.

In this paper, we propose to use neural en-
tity linking (NEL) technologies that leverage both
utterance-level and dialog-level context to retrieve
relevant knowledge. As shown in the example in
Figure 1, dialogues often contain multiple turns
and information is dispersed throughout each turn.
Thus, a single turn of interaction may be insuf-
ficient for entity disambiguation. Therefore, we
leverage previous utterances in the dialogue as
the context information and propose context-aware
models to better solve the NER and ER tasks in
open-domain conversation systems. When recog-
nizing and disambiguating entities in a given utter-
ance, we encode dialog context, and adopt the atten-
tion mechanism to extract the information related
to the current utterance. To verify the effectiveness
of context-aware models, in addition to the intrinsic
evaluations, i.e., NER and ER standalone perfor-
mance, we conduct an extrinsic evaluation where
NER and ER results are integrated in a knowledge
grounded neural response generation model in an
open domain conversation system and response
quality is evaluated. Our major contributions can

26

Figure 1: An example dialog illustrating the pipeline of NER, ER, and response generation. The bold sentence in
the utterances is the current utterance and the previous utterances are the context. The current utterance and its
context are fed to the NER module to identify the entity mentions. Then the ER module takes the entity mentions
and all the sentences as input to resolve the entity. The response generation module produces an output based on
the knowledge entity information and the dialog input.

be summarized as follows:

• We propose neural network based context-
aware models for NER and ER respectively in
open domain conversations.

• Experimental results on different conversation
datasets show that our proposed context-aware
NER and ER models outperform other state-
of-the-art models that do not use context in-
formation.

• In an end2end evaluation, we demonstrate that
incorporating ER information improves qual-
ity of neural response generation models in
open domain conversations.

2 Related Work

2.1 Open-domain Conversation System

Inspired by the availability of conversational data
and the prosperity of neural networks, building
open-domain conversation systems by data-driven
approaches has achieved great progress. Previous
methods can be roughly divided into two categories,
retrieval-based (Zhang et al., 2018; Wu et al., 2019;
Tao et al., 2019) and generation-based (Vinyals and
Le, 2015; Li et al., 2017; Asghar et al., 2018; Tao
et al., 2018). Chen et al. (2017) point out that con-
ventional sequence-to-sequence methods tend to
generate trivial responses that lack information and
diversity. To address this issue, a line of research
proposes to incorporate external knowledge into the
generation process. Most of the work in this line
retrieves knowledge based on a search or retrieval
step first, and followed by further reranking of re-
trieved relevant knowledge snippets (Ghazvinine-
jad et al., 2018; Young et al., 2018; Zhou et al.,

2018b; Gopalakrishnan et al., 2019; Zhao et al.,
2020). In our work, we propose neural entity recog-
nition and linking to identify and resolve entities
more accurately in order to obtain more relevant
knowledge for knowledge grounded response gen-
eration.

2.2 Neural Entity Linking

NEL typically involves two tasks: recognizing
named entities in a given text and then disamgibu-
ating the entity mentions according to the knowl-
edge base (KB). Researchers have shown great suc-
cess in NER with the help of Convolutional Neural
Networks (CNNs), Bidirectional Recurrent Neural
Networks (Bi-RNNs), and attention mechanisms
along with a CRF decoder (Chiu and Nichols, 2016;
Akbik et al., 2018; Ghaddar and Langlais, 2018;
Jiang et al., 2019; Baevski et al., 2019; Yamada
et al., 2020). Deep neural networks (DNNs) are
also dominant in entity resolution tasks. They are
used to calculate the semantic similarity between
the recognized entity mentions and the entities in
the KB (Yamada et al., 2016; Ganea and Hofmann,
2017; Sil et al., 2018; Raiman and Raiman, 2018).
However, previous NEL work has mainly focused
on news or formal documents, which is different
from open-domain dialogues in many aspects. Sen-
tences in open-domain dialogues are more informal,
making it more difficult to recognize and disam-
biguate entities. In addition, since conversations
are multi-turn, the semantic information in the cur-
rent utterance is ambiguous and context needs to
be considered. In this paper, we investigate NEL
in open-domain conversational data and propose
context-aware NER and ER models.

27

Figure 2: Context-aware NER model: information
from previous k utterances is used while performing
NER on utterance i.

3 Methodology

3.1 Problem Formulation

Our problem can be formulated as follows. Given
an open-domain dialogue until a time point D =
ci, xi, where xi is the current utterance, we define
the utterance context ci = {u1, . . . , uk} as the list
of utterances prior to xi, and k is the size of the con-
text. For each xi given ci, an NER model is applied
to detect entity mentions in the form of BIO labels.1

Then for each predicted entity mention, yj , a query
is formulated to search a knowledge base to get a
list of candidate entities, {e1, . . . , em}, where m is
the size of the returned entities from the search. An
ER model is then used to rank the entities and iden-
tify the most relevant entity, et. Finally, a response,
ri, is generated based on ci, xi, and knowledge sen-
tences obtained from the linked entities et. Note a
knowledge ranking algorithm is applied when there
are multiple knowledge sentences corresponding
to et or there are multiple entity mentions in xi.
Figure 1 overviews the pipeline of generating re-
sponses with NER and ER modules.

3.2 Context-Aware Named Entity
Recognition Model

Figure 2 gives the overall architecture of the
context-aware NER model. Following the frame-
work presented by Chiu and Nichols (2016), we em-
ploy a bi-directional, long short-term memory (Bi-
LSTM) model to extract word features and a condi-
tional random field (CRF) to predict the NER labels.

1These labels are widely used for NER and indicate a token
is Begin, Inside, or Outside an entity mention, respectively.

Suppose we have an utterance xi = {wi1, . . . , wiT },
where T is the length of xi and wt is the t-th to-
ken. After converting each token in xi to its vector
representation through a word embedding table2,
the Bi-LSTM layer encodes the sentence into hid-
den states hit, which are the concatenation of

−→
h it

from the forward LSTM and
←−
h it from the back-

ward LSTM. The CRF layer then takes the hidden
states as input to predict the label probability.

As discussed earlier, as opposed to news or docu-
ments, recognizing and disambiguating the named
entities in conversational utterances requires con-
sideration of the context information. Therefore,
we employ another Bi-LSTM layer to encode the
context utterances from the previous turns,

sjt = [−→s jt ;←−s jt] (1)

where −→s jt is the forward hidden state of the t-th
token in the context utterance uj and ←−s jt is the
backward hidden state.

We use an attention mechanism to model the
different impact of the previous utterances in the
context:

Attention = softmax
(
QKT

√
dk

)
V (2)

whereQ,K, V refer to the query, key, and value, re-
spectively. Here, the key and value are the context
sentences, and the query is the current utterance. To
aggregate the context information, a max-pooling
operation is performed on the dimension of sen-
tences. Then, the context vector is concatenated
with the sentence vector, and then is supplied as
the input of the CRF layer.

3.3 Context-aware Entity Resolution Model

Our entity resolution model contains two steps:
coarse-grained candidate selection and fine-grained
candidate ranking.

Candidate selection At this stage we retrieve rel-
evant entities from the KB. We create an Elastic-
search (Gormley and Tong, 2015) index with the
entity labels and apply both an exact and a Leven-
shtein distance based fuzzy match to obtain candi-
date entities. For each entity mention, we take the
top 10 search results, ranked by Elasticsearch, as
the candidates for the subsequent reranking step.

2Here we adopt the stacked embedding released by
Flair (Akbik et al., 2018).

28

Figure 3: Context-aware ER reranking.

Reranking At this stage the candidate entities
are re-ranked based on the match scores from our
context-aware model. We propose to compute the
relevance score from the entity, utterance and ses-
sion levels. The structure of the multi-level re-
ranking model is shown in Figure 3.

Entity-Level Matching: This considers the
candidate entity’s label and type attributes, and
matches with the entity mention and the predicted
type, respectively.

Utterance-Level Matching: This measures the
matching degree between the candidate entity’s
description and the current utterance based on
sentence-level semantic information.

Session-Level Matching: This treats the con-
text and current utterance as a conversation session,
and computes its match score with the candidate
entity’s description.

For each matching level, we first concatenate
the representations from the entity candidate in the
KB and the dialog side, and then employ BERT
(Devlin et al., 2018) to get their representations.
vlabel, vtype, vutterance, vsession represent the out-
put of BERT corresponding to the mention label
and type (entity-level), utterance-level, and session-
level, respectively. We also define the popularity
of an entity based on the number of views in the
last 60 days, represented as vp. All these features
are concatenated and then fed into an MLP layer to
predict the ranking score:

v = [vlabel; vtype; vutterance; vsession; vp]

s = MLP(v)
(3)

To train this model, we minimize the pair-wise

hinge-loss, defined as:

lr = max(0, σ + s− − s+) (4)

where s+ is the ranking score of the ground-truth
entity and s− is the ranking score of a negative en-
tity sampled from candidates other than the ground-
truth. σ is a constant margin and is set to 0.5.

3.4 Response Generation Model

Given the linked entities, we employ a transformer-
based response generation model that is trained to
leverage the context of a dialogue along with the
knowledge relevant at a given turn. More specif-
ically, we first fine-tune a GPT2-medium model
using the Wizard of Wikipedia (WOW) dataset (Di-
nan et al., 2018). WOW is a suitable dataset for
fine-tuning as it involves knowledge-grounded con-
versations dealing with Wikipedia articles, a data
source we are using for entity linking in this work.

The GPT2 generation model is fine-tuned in
a matter consistent with (Wolf et al., 2019b;
Gopalakrishnan et al., 2020). During genera-
tion, we are provided a dialogue context, C =
{c1, c2, ..., ci−1} containing utterances before ci.
We use our linked entities to query the relevant
Wikipedia articles, and use the first paragraph of the
returned articles, giving us a collection of knowl-
edge sentences, K = {k1, k2, ..., kn}.

Next, we truncate each knowledge sentence with
more than 64 tokens and provide a concatenated
input consisting of the dialogue context and the
knowledge sentences. We then sample from the
language model, one token at a time, using nucleus
sampling to form our generated system response.

4 Experiment Setup

4.1 Datasets

We rely on Wikipedia and Wiki data3 to build the
knowledge base for this task. We built a Knowledge
Graph (KG) containing over 6M entities including
attributes such as Wiki ID, title, type, and introduc-
tion. To perform NEL on conversational data, we
collect a Multi-turn Open-domain Conversation
Dataset (MOC) and ask crowd worker annotators
to first annotate NER labels (entity mention and
type), and then give ER labels – the ground truth
Wikidata ID. Different from the entity labels in reg-
ular NER tasks, we define 50 entity types across
8 popular domains in open-domain conversations

3https://www.wikidata.org/wiki/,https://www.wikipedia.org/

29

including Fashion, Politics, Books, Sports, Music,
Science/Technology, Game, Video/Movies. In ad-
dition, we created a synthetic dataset that contains
ambiguous entities that can only be understood
through dialog context. For example, in the ut-
terance "I like Harry Potter", the model needs to
understand the context of the utterance to figure out
if the user is referring to the movie or the book. We
also randomly selected some conversations from
Wizard of Wikipedia (WoW), which is a collection
of open-domain dialogues grounded on Wikipedia
knowledge (Dinan et al., 2018). The statistics of
the datasets we used are shown in Table 1.

Dataset Train Validation Test
MOC 5,962 662 1,111
Synthetic 8,150 905 2,896
WoW 1,948 216 540

Table 1: Number of utterances of the open-domain con-
versation data sets used in this study.

4.2 Model Setup

All models are implemented in Pytorch (Paszke
et al., 2017). For the NER model, we initialize
the word embedding with stacked embeddings, in-
cluding Flair embeddings (Akbik et al., 2018) and
FastText embeddings (Bojanowski et al., 2017).
The sizes of the word embeddings and hidden state
are 300 and 256, respectively. We adopt the SGD
optimizer with an initial learning rate of 0.1 and
decay rate of 0.5. The batch size is set to 16 and the
maximum training epoch is set to 15 with an early
stopping strategy. For the ER model, we use Adam
as the optimizer and set the learning rate to 0.0005.
The hidden size is 762 and the batch size is 8. The
maximum sentence length in all the experiments is
set to 128.

5 Results and Analysis

5.1 NER Results

The performance of the NER models is evaluated
using precision, recall and F-1. We consider both
the span of an entity and its type. Table 2 shows
the results of NER models on three datasets. To
compare with our context-aware NER model, we
use Flair as the baseline, which is a state-of-the-art
NER model on benchmarks in several domains (Ak-
bik et al., 2018). It shows that our context-aware
model achieves the best performance on most met-
rics. In particular, we observe the largest gain of

our model using contextual information on the syn-
thetic dataset. This is because that data was created
to contain more ambiguous entities and thus re-
quires dialog context to determine entity types.

Model Dataset P R F-1
Flair MOC - - -
Flair w/ context - 0.1 2.7 1.2
Flair Synthetic - - -
Flair w/ context 16.0 17.7 16.9
Flair WoW - - -
Flair w/ context 0.7 1.8 1.2

Table 2: Results of NER models (relative gains com-
pared to Flair in %).

5.2 ER Results

For the ER task, we evaluate the recall@n values
(n = 1, 3, 5), which measures the ranking ability
of the models. We compare our model with the
following two baselines:
Search. After performing entity retrieval through
Elasticsearch, we rank the candidate entities based
on their popularity, i.e., the number of views in last
60 days.
Ranking. Similar to our method, here we only use
entity and utterance-level matching scores, without
dialog context in the ranking model.

Table 3 shows the ER results when ground-truth
NER is provided as input. We can see that a rank-
ing model can significantly improve the top entity
relevance over the search baseline on all the three
datasets. Compared to the non-context ranking
model, our proposed context-aware model could
further improve the results, especially for R@1.

Model Dataset R@1 R@3 R@5
Search

MOC
- - -

Rank 64.5 29.4 2.8
Rank w/ context 65.0 29.7 2.9
Search

Synthetic
- - -

Rank 82.9 22.2 9.4
Rank w/ context 91.0 21.9 10.0
Search

WoW
- - -

Rank 82.1 28.8 11.2
Rank w/ context 89.1 29.2 11.2

Table 3: Results of ER models (relative gains compared
to baseline search in %) using ground-truth NER infor-
mation.

5.3 End-to-end NEL Results

In Section 5.2, the input of the ER task is the
ground-truth NER results. In the practical sce-
nario, the input is the prediction of the NER models.

30

Context Utterance Model NER ER Entity Description
w/o context
Search

led Zeppelin,
person

led Zeppelin,
band English rock band

w/o context
Rank

led Zeppelin,
person

Jason Bonham,
human

English hard rock
drummer (born 1966)

w/ context
Rank

led Zeppelin,
person

led Zeppelin,
band English rock band

In the 1968 three of
the genre most famous
acts Led Zeppelin,
Black Sabbath

I love led Zeppelin!
they have really
influenced many
bands. Groundtruth led Zeppelin,

person
led Zeppelin,

band English rock band

w/o context
Search

Nintendo,
device

Nintendo Switch,
hybrid video
game console

hybrid video game
console developed
by Nintendo

w/o context
Rank

Nintendo,
device

Nintendo,
business

Japanese multinational
video game and
consumer electronics
company

w/ context
Rank

Nintendo WII,
device

Wii,
home video

game console

seventh-generation
home video game
console by NintendoWell, So what gaming

platform do you prefer
console or computer?

Uh I don’t know
what a Nintendo
WII is Groundtruth Nintendo WII,

device

Wii,
home video

game console

seventh-generation
home video game
console by Nintendo

Table 4: Examples of NEL in open-domain conversations.

Therefore, we also evaluate the performance of end-
to-end NEL, where the predictions of NER models
are used for ER. For performance metrics, we com-
pare the predicted entity with the ground-truth one,
and compute precision, recall and F-1. The results
are shown in Table 5. Here we observe again that
a ranking model can significantly improve results,
and the context model yields further gain.

NER ER Dataset P R F-1
Flair Search

MOC
- - -

Flair Rank 62.1 59.7 60.6
w/ context w/ context 62.9 63.4 62.8
Flair Search

Synthetic
- - -

Flair Rank 68.2 68.9 68.4
w/ context w/ context 71.0 71.0 71.0
Flair Search

WoW
- - -

Flair Rank 62.0 62.0 62.1
w/ context w/ context 75.4 72.8 73.9

Table 5: End-to-end experimental results (relative gains
in % compared to the end-to-end model of Flair NER
and baseline ER search).

5.4 Case Study
Table 4 shows NER and ER results for two exam-
ple utterances along with their context. We can
see when there is an ambiguity in the current ut-
terance, our context-aware model can use context
information to correctly recognize the entities and
link them to the right entities in KB. In the first
example, the named entity is correctly recognized
by all the models, however, the model without con-
text failed in the ER task because of insufficient
information. In the second case, models without

using context information recognize a wrong entity
and then link it to a seemingly reasonable but not
the most appropriate entity.

5.5 Response Generation Results

We generate outputs for 100 distinct conversational
contexts in the WoW data set using using config-
urations: Baseline GPT2 and GPT2 with NEL.
Here, we provide crowd-worker annotators the con-
versational context along with the generated re-
sponse, without the associated knowledge extracted
through linking. We then ask the workers to evalu-
ate according to two metrics, appropriateness and
informativeness, on an ordinal scale from 0-2.

Our results show that in the generated responses,
GPT2 with NEL module is superior over baseline
GPT2 on both the appropriateness and informa-
tiveness metrics, suggesting that our solution can
better understand conversation context and is able
to generate informative and appropriate responses.

Model Appropr. Inform.
GPT2 - -
GPT2 w/ NEL 25.5 53.8

Table 6: Human evaluation of generated responses. (%,
relative gains compared to GPT2)

6 Conclusion

In this paper, we investigate NEL in multi-turn
open-domain conversations. Considering the char-
acteristic of dialogs, where the meaning of the cur-

31

rent utterance often varies depending on the con-
text, we design a context-aware NER model and an
ER model. Experimental results on three datasets
prove that using context information improves the
entity recognition and resolution performance. Ex-
trinsic evaluation on response generation also vali-
dates the effectiveness of the entity information.

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf.

2018. Contextual string embeddings for sequence
labeling. In COLING 2018, 27th International Con-
ference on Computational Linguistics, pages 1638–
1649.

Nabiha Asghar, Pascal Poupart, Jesse Hoey, Xin Jiang,
and Lili Mou. 2018. Affective neural response gen-
eration. In European Conference on Information Re-
trieval, pages 154–166. Springer.

Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke
Zettlemoyer, and Michael Auli. 2019. Cloze-
driven pretraining of self-attention networks. arXiv
preprint arXiv:1903.07785.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang
Tang. 2017. A survey on dialogue systems: Re-
cent advances and new frontiers. Acm Sigkdd Ex-
plorations Newsletter, 19(2):25–35.

Jason PC Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the Association for Computational Linguis-
tics, 4:357–370.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2018. Wizard
of wikipedia: Knowledge-powered conversational
agents. arXiv preprint arXiv:1811.01241.

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep joint entity disambiguation with local neural
attention. arXiv preprint arXiv:1704.04920.

Abbas Ghaddar and Philippe Langlais. 2018. Ro-
bust lexical features for improved neural net-
work named-entity recognition. arXiv preprint
arXiv:1806.03489.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, and

Michel Galley. 2018. A knowledge-grounded neu-
ral conversation model. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

Karthik Gopalakrishnan, Behnam Hedayatnia, Qin-
lang Chen, Anna Gottardi, Sanjeev Kwatra, Anu
Venkatesh, Raefer Gabriel, and Dilek Hakkani-
Tür. 2019. Topical-Chat: Towards Knowledge-
Grounded Open-Domain Conversations. In Proc. In-
terspeech 2019, pages 1891–1895.

Karthik Gopalakrishnan, Behnam Hedayatnia, Long-
shaokan Wang, Yang Liu, and Dilek Hakkani-Tür.
2020. Are Neural Open-Domain Dialog Systems
Robust to Speech Recognition Errors in the Dialog
History? An Empirical Study. In INTERSPEECH.

Clinton Gormley and Zachary Tong. 2015. Elastic-
search: the definitive guide: a distributed real-time
search and analytics engine. " O’Reilly Media,
Inc.".

Minlie Huang, Xiaoyan Zhu, and Jianfeng Gao. 2020.
Challenges in building intelligent open-domain dia-
log systems. ACM Transactions on Information Sys-
tems (TOIS), 38(3):1–32.

Yufan Jiang, Chi Hu, Tong Xiao, Chunliang Zhang,
and Jingbo Zhu. 2019. Improved differentiable ar-
chitecture search for language modeling and named
entity recognition. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3576–3581.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean,
Alan Ritter, and Dan Jurafsky. 2017. Adversar-
ial learning for neural dialogue generation. arXiv
preprint arXiv:1701.06547.

Chuan Meng, Pengjie Ren, Zhumin Chen, Christof
Monz, Jun Ma, and Maarten de Rijke. 2020. Refnet:
A reference-aware network for background based
conversation. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, pages
8496–8503.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Jonathan Raiman and Olivier Raiman. 2018. Deep-
type: multilingual entity linking by neural type sys-
tem evolution. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 32.

Avirup Sil, Gourab Kundu, Radu Florian, and Wael
Hamza. 2018. Neural cross-lingual entity linking.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27:3104–3112.

32

Chongyang Tao, Shen Gao, Mingyue Shang, Wei Wu,
Dongyan Zhao, and Rui Yan. 2018. Get the point of
my utterance! learning towards effective responses
with multi-head attention mechanism. In IJCAI,
pages 4418–4424.

Chongyang Tao, Wei Wu, Can Xu, Wenpeng Hu,
Dongyan Zhao, and Rui Yan. 2019. One time of
interaction may not be enough: Go deep with an
interaction-over-interaction network for response se-
lection in dialogues. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 1–11.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019a. Transfertransfo: A
transfer learning approach for neural network
based conversational agents. arXiv preprint
arXiv:1901.08149.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019b. Transfertransfo: A trans-
fer learning approach for neural network based con-
versational agents. ArXiv, abs/1901.08149.

Yu Wu, Wei Wu, Chen Xing, Can Xu, Zhoujun
Li, and Ming Zhou. 2019. A sequential match-
ing framework for multi-turn response selection in
retrieval-based chatbots. Computational Linguistics,
45(1):163–197.

Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang,
Ming Zhou, and Wei-Ying Ma. 2017. Topic aware
neural response generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 31.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. Luke: deep con-
textualized entity representations with entity-aware
self-attention. arXiv preprint arXiv:2010.01057.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2016. Joint learning of the em-
bedding of words and entities for named entity dis-
ambiguation. arXiv preprint arXiv:1601.01343.

Tom Young, Erik Cambria, Iti Chaturvedi, Hao Zhou,
Subham Biswas, and Minlie Huang. 2018. Aug-
menting end-to-end dialogue systems with common-
sense knowledge. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32.

Zhuosheng Zhang, Jiangtong Li, Pengfei Zhu, Hai
Zhao, and Gongshen Liu. 2018. Modeling multi-
turn conversation with deep utterance aggregation.
arXiv preprint arXiv:1806.09102.

Xueliang Zhao, Wei Wu, Can Xu, Chongyang Tao,
Dongyan Zhao, and Rui Yan. 2020. Knowledge-
grounded dialogue generation with pre-trained lan-
guage models. arXiv preprint arXiv:2010.08824.

Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan
Zhu, and Bing Liu. 2018a. Emotional chatting ma-
chine: Emotional conversation generation with in-
ternal and external memory. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32.

Hao Zhou, Tom Young, Minlie Huang, Haizhou Zhao,
Jingfang Xu, and Xiaoyan Zhu. 2018b. Com-
monsense knowledge aware conversation generation
with graph attention. In IJCAI, pages 4623–4629.

Li Zhou, Jianfeng Gao, Di Li, and Heung-Yeung Shum.
2020. The design and implementation of xiaoice, an
empathetic social chatbot. Computational Linguis-
tics, 46(1):53–93.

33

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 34–40
June 6–11, 2021. ©2021 Association for Computational Linguistics

Pretrain-Finetune Based Training of Task-Oriented Dialogue Systems in a
Real-World Setting

Manisha Srivastava
Amazon Inc.
Seattle, USA

mansri@amazon

Yichao Lu
Amazon Inc.
Seattle, USA

yichaolu@amazon

Riley Peschon
Amazon Inc.
Seattle, USA

peschon@amazon

Chenyang Li
Amazon Inc.
Seattle, USA
cli@amazon

Abstract

One main challenge in building task-oriented
dialogue systems is the limited amount of su-
pervised training data available. In this work,
we present a method for training retrieval-
based dialogue systems using a small amount
of high-quality, annotated data and a larger,
unlabeled dataset. We show that pretraining
using unlabeled data can bring better model
performance with a 31% boost in Recall@1
compared with no pretraining. The proposed
finetuning technique based on a small amount
of high-quality, annotated data resulted in
26% offline and 33% online performance im-
provement in Recall@1 over the pretrained
model. The model is deployed in an agent-
support application and evaluated on live cus-
tomer service contacts, providing additional
insights into the real-world implications com-
pared with most other publications in the do-
main often using asynchronous transcripts (e.g.
Reddit data). The high performance of 74%
Recall@1 shown in the customer service ex-
ample demonstrates the effectiveness of this
pretrain-finetune approach in dealing with the
limited supervised data challenge.

1 Introduction

Retrieval-based dialogue systems are popular in
task-oriented domains. A typical retrieval-based
system encodes the dialogue context and a large set
of candidate responses (templates) in a joint seman-
tic space, and then scores how appropriate each can-
didate is given the dialogue context; the template
with the highest score is selected as the response.
These systems can use a sequence-to-sequence
model (Kannan et al., 2016) or a dual-encoder style
architecture (Lu et al., 2017; Lowe et al., 2015) to
encode and score the context-response pair.

One major challenge for any task-oriented dia-
logue system is the scarcity of training data. High-
quality data with all the required annotations are
needed to train an accurate model. Such datasets

are not readily available, and collecting them is a
costly and labor-intensive process. A few synthetic
datasets (Weston et al., 2015; Asri et al., 2017;
Budzianowski et al., 2018) have been proposed
but they do not capture the real-world variations
and subtleties of the task-oriented dialogues. The
limited amount of supervised training data avail-
able makes it difficult to train these models from
scratch.

To overcome the issue of limited training data,
the idea of finetuning a pretrained model has be-
come a popular approach in other domains like
computer vision and is recently gaining popularity
in the natural language processing (NLP) domain.
Pretrained models in NLP such as ELMo (Peters
et al., 2018), OpenAI GPT (Radford et al., 2018),
and BERT (Devlin et al., 2018) have attracted a lot
of attention and achieved state-of-the-art accuracy
in multiple natural language understanding tasks.
In this paper, we present a methodology for train-
ing retrieval-based dialogue systems using a small
amount of supervised data and a large, low-quality,
unannotated dataset.

1. We demonstrate that finetuning a model (Lu
et al., 2019) pretrained using the unannotated
dataset performs better than directly finetun-
ing on the clean, annotated data.

2. We experiment with different finetuning loss
functions and show that a ranking based loss
function performs better than classification
loss for template-retrieval based dialogue sys-
tems.

3. We deploy the finetuned model in an agent
assistance application for customer service,
and present real-world results on live customer
contacts.

In the sections that follow, we describe the data
from the customer service domain that is used for
pretraining and finetuning the model in section 2.
In section 3, we explain how we pretrain the model

34

Raw text:
Customer: I want to cancel the shoes I ordered yesterday.
Agent: Welcome to Customer Service.
Agent: I am here to help you.
Agent: Give me a moment to look into this.

Training Sample:
Context: CUSTOMERSTART I want to cancel the
shoes I ordered yesterday. AGENTSTART Welcome to
Customer Service. AGENTSTART I am here to help
you. PROFILESTART cancellable, carrier, membership-
status. Response: Give me a moment to look into this.
Label: Positive

Figure 1: Training sample creation process. Given a
chat transcript and profile features, a training sample
is created by appending the dialogue turns and profile
features. True agent response is used to create positive
samples and random agent responses are used to create
negative samples.

using the next-turn prediction task along with the
results. Next, we present the proposed finetuning
strategy, and the associated experimental setup and
the results. In section 5, we present the real-world
results of the deployed model. Section 6 describes
the conclusion and direction for future work.

2 Data

In this work, we use data from the customer ser-
vice domain —customer service chats handled in
English. When customers contact customer service
regarding their issue (e.g., order tracking, payment
questions), the routing system connects the cus-
tomer to an agent based on the specific issue type.
Agents resolving customer issues have access to a
wide variety of profile information (e.g. customer
details, order status, and internal APIs) to execute
actions such as canceling or refunding an order.
For our experiments, we select a delivery-related
customer issue. In the following subsection, we ex-
plain how we collect the pretraining and finetuning
data.

2.1 Pretraining Data

The pretraining data include historical customer
service chat transcripts for a delivery-related issue.
It is important to note these transcripts only con-
tain the dialogue turns. Contextual information
(e.g. customer profile, order details, actions exe-
cuted by the agents) is either missing or inaccurate.
The pretraining dataset consists of a few hundred
thousand chats (see Table 1). The conversation in
these chat transcripts can exhibit high variability,
despite following the same customer issue, due to
policy changes, unconstrained conversations like

Table 1: Training data statistics.

DATASETS
PRETRAIN FINETUNE

TRAINING TEST TRAINING TEST

NUMBER OF
CHATS 382,688 2000 6366 400
NUMBER OF
AGENTS TURNS 8045059 4498 65908 3188

side talks, and agent locale variability.
Figure 1 shows part of a chat transcript and how

it is processed to create the training data. Each
agent turn in the transcript is converted into a train-
ing sample. To create the dialogue context, previ-
ous turns in the conversation history, prior to the
current agent turn, are prepended by a special to-
ken to indicate whether it is an agent or customer
turn. A separate token is used to distinguish pro-
file features (e.g. customer’s profile, order details)
from the dialogue turns. As explained in section 3,
pretraining is done using next sentence prediction
task and so it requires positive and negative context
response pairs. To create the pretraining dataset,
true agent responses create a positive pair, while
random agent responses create negative pairs. We
also use the incomplete and noisy profile informa-
tion that is available without any human annotation.
We call this pretrain training dataset.

2.2 Finetuning Data

The large pretraining dataset is not collected in a
standardized manner. As a result, said dataset is
noisy —there are inconsistencies in chat dialogues
and profile information (e.g. order details, cus-
tomer profile, and actions) is missing and inaccu-
rate. The finetuning dataset, in contrast, is collected
in a controlled manner using specialist agents to
ensure accurate and complete annotations.

The finetuning data consists of a few thousand
chats for the selected delivery issue, collected over
a period of 2 months, handled by a group of 20 spe-
cialist agents. These chats have all relevant annota-
tions (customer profile and order details) for each
dialogue turn. Agents are instructed to choose the
response from a template pool as much as possible,
free-typing only if the response does not exist in
the template pool. The pool consists of 85 template
responses. These responses are extracted from his-
torical chat transcripts and cover the most common
delivery-related use cases. The specialist agents
are trained to handle contacts in a constrained and
consistent manner without sacrificing the customer
experience. For example, they are trained to drive

35

Figure 2: Pretraining model architecture. Separate
transformer encoders are used to encode the dialogue
history (last turn, other turns), profile features, and re-
sponse. The encoded dialogue turns and profile are
passed through MLP to get the encoded context. The
encoded response and context are passed through bilin-
ear layer to get the final score of the pair.

the conversation towards the solution and avoid
side conversations. To ensure consistency, we insti-
tuted general rules to the agents on how and when
to greet, apologize, make policy exceptions, pro-
vide reassurance, etc. The agent training ensured
customers are not adversely affected in the process
of this constrained data collection.

The collected chats are processed in the same
way as shown in Figure 1 and explained in the
last section. The dataset, referred to as finetune
training dataset, is generated in the same way as
pretraining data with one caveat: for each conver-
sation context, negative samples are generated us-
ing templates scored high by the pretrained model,
as opposed to random sampling unrelated agent
responses. The number of negative samples is se-
lected using cross-validation.

2.3 Evaluation Data

We have two evaluation datasets – pretrain test
and finetune test. To create the pretrain test
dataset, we use historical chat transcripts from a
period that does not overlap with the pretrain train-
ing dataset. Each test sample includes conversation
context (previous turns and extracted profile fea-
tures) and random responses (including the true
agent’s response). During evaluation, the trained
model is used to rank the responses for each di-
alogue context. Similarly, to create the finetune
test dataset, we use the dataset collected from the
specialized agents. For each dialogue context, we
store the template response selected by the agent
as positive and all other template responses as neg-
ative.

Table 1 shows the statistics for each of the pre-
train and finetune datasets. During the evaluation,
the model ranks all responses for a given dialogue
context. We use Recall@1 as our evaluation met-
ric, which measures how many times the correct
response was ranked at the top by the model. We
also report MRR (mean reciprocal rank), which
is the harmonic mean of the rank of the correct
response.

3 Pretraining

In this section, we introduce the next sentence
prediction based pretraining used to pretrain the
model.

3.1 Model

Our binarized next sentence prediction pretrain-
ing is effectively a classification task, classifying a
pair of conversation context and agent response as
positive (appropriate) or negative (not appropriate).
The input to the pretraining model is the context (C)
response (R) pair where the conversation context
includes dialogue turns (last turn, other turns) and
profile features. The pretraining model is similar to
(Lu et al., 2019) as the response ranking model uses
multiple transformer-based (Vaswani et al., 2017)
encoders to encode different parts of the context
and the response.

The context is encoded using three transformer
encoders (Figure 2) that separately encode the pro-
file features, last-turn, and all other turns in the con-
text; see equation 1, 2, 3. Dot Product Attention
(Luong et al., 2015) is applied to the transformer
outputs. The transformer outputs are the key and
value, while separate query vectors are learned for
each output. Each query vector is randomly ini-
tialized and trained like other model parameters.
The encoded last turn, profile features, and other
turns are passed through a Multi-Layer Perceptron
to get the encoded context (EncC). The response
encoding (EmbR) is also obtained using equation
2 and 3.

EncC =MLP (Embother_turns

|Emblast_turn|Embprofile)
(1)

Embx = Attention(Tx, qx) (2)

Tx = Transformer(embx) (3)

where | is the concatenation, embx is a vector of
size e× n : e is the embedding dimension, n is the
number of words; Tx is a vector of size h×n : h is

36

Table 2: We present MRR and Recall@1 of the fine-
tuned models on the finetune test dataset. The base-
line ‘No pretraining’is a model without any pretrain-
ing, ‘Pretrained mode’is pretrained on pretrain training
dataset.

MODELS MRR (%) RECALL@1(%)

NO PRETRAINING(Mbaseline) 32.8 23.2
PRETRAINED MODEL(Mtuned) 60.6 54.6

the hidden size; qx is a query vector of dimension
h which is initialized randomly and trained along
with other parameters. Embx and EncC are both
vectors of dimension h. EncC and EmbR are then
passed through a bilinear layer that outputs a prob-
ability score grading how appropriate the candidate
response is given the context; see 4 and 5.

P [(yt = +1)|(C,R)] = Sigmoid(S) (4)

S = EncC · EmbR (5)

where yt ∈ {0, 1} is the label of context response
pair; P [(yt = +1)|(C,R)] is the probability that
the context response pair is positive; · is the dot
product operator. Since we treat this as a classifica-
tion problem, we use binary cross-entropy loss for
training.

3.2 Training Setup

We train the pretrained model (M) using the pre-
train training dataset as described in Section 2. We
use the transformer implementation provided by
MXNet Gluon NLP 1. We use 4 encoder layers,
4 heads in multi-head attention, hidden size of
512 and vocabulary size of 10K. The maximum
sequence length of the context is 180 tokens, last
turn is 35 tokens, profile feature is 6 tokens, and
response is 35 tokens. We train the model using
binary cross-entropy loss and stop when the valida-
tion MRR and Recall@1 start dropping.

We finetune the pretrained model on the finetune
training dataset and evaluate it on the finetune test
dataset. To finetune the model, we initialize the
model M with the pretrained model parameters and
run a few epochs on the finetune training dataset,
stopping when the validation performance begins
dropping. Let’s call this finetuned model Mtuned.
We also train a baseline model (Mbaseline) that is
another model like M but trained directly on the
small finetune training dataset.

1https://gluon-nlp.mxnet.io/

3.3 Results

Table 2 shows the MRR and Recall@1 on the fine-
tune test dataset. Mtuned demonstrates an average
improvement of 31.4% on Recall@1 and 28% on
MRR compared to Mbaseline. These results show
that pretraining on a large, unannotated dataset can
give significant performance boost over a model
with no pretraining.

4 Finetuning

Simple finetuning using the small finetune training
dataset can lead to overfitting. In this section, we
describe our finetuning approach, which incorpo-
rates regularization to avoid overfitting and the loss
function that better caters to the task of template
ranking.

4.1 Model

Due to the limited amount of finetune training data
available, simple finetuning M can lead to overfit-
ting —forgetting knowledge acquired during pre-
training. As shown in Table 3, simple finetuning
M on the finetune training dataset degrades the per-
formance of the model on the pretrain test data
significantly. In order to prevent the model from
forgetting, bothM andMtuned should have similar
performance on the pretrain test data.

4.1.1 Regularization
To prevent the forgetting issue, a fraction of the
pretrain training dataset is mixed with every batch
of the finetuning training dataset (He et al., 2019).
During each gradient descent step of finetuning,
one gradient step is taken on the finetune data
batch, with another gradient step on the pretrain
data batch.

4.1.2 Training loss
During pretraining, we use binary cross-entropy
loss (LBCE), classifying each context response pair
as positive or negative. Given context response
pairs and the corresponding labels, cross-entropy
loss can be calculated as follows:

LBCE =−
n∑

t=1

yt ∗ log(S(C,R))

+ (1− yt) ∗ log(1− S(C,R))
(6)

where yt ∈ 0, 1 is the label of the context response
pair (C,R); S(C,R) is calculated using equation
5. LBCE is limited by its inability to capture the
relative score of the templates —essentially the

37

Table 3: The performance of model M finetuned on the finetune training dataset with and without regularization.
We show that data-mix regularization is effective in maintaining the performance of the model on the pretrain test
dataset.

DATASETS
PRETRAIN TEST DATASET FINETUNE TEST DATASET

MRR(%) RECALL@1(%) MRR (%) RECALL@1 (%)

M(NO FINETUNING) 80.3 76.9 41.3 32.8
Mtuned WITH NO REGULARIZATION 33.7 22.5 60.6 54.6
Mtuned USING DATA-MIXING REGULARIZATION 78.7 75.1 60.7 54.5

base logic for ranking of templates. This is critical
for retrieval-based dialogue systems because, for
each context, all templates receive a ranking and
the top-ranked template from the pool is selected.

Hence, for finetuning, we chose a new loss func-
tion to incorporate relative scores of templates sim-
ilar to (Henderson et al., 2017). We directly min-
imize the negative log probability of the true re-
sponse given the context as shown below:

Lranking = −log(P (R/C)) ∝
eS(C,R)

∑n
i=1 c

S(C,Ri

(7)

where C is the context; R is the true agent re-
sponse; P (R|C) is the probability of the true re-
sponse given the context;Ri is ith response; n is all
possible responses; S(C,R) is the score of a pair
of context and response calculated using equation
5. Instead of normalizing over all Ri, we sample
10 responses from the template pool (including the
correct response). This new loss function better
represents the ranking problem.

4.2 Experimental Setup

For finetuning the model, we initialize the model
with the pretrained model parameters and finetune
all layers using the finetune training dataset.

4.3 Results

In this section, we study the effect of regularization
and the different loss functions on finetuning.

4.3.1 Regularization

The effect of regularization during finetuning is
summarized in Table 3. We show the MRR and
Recall@1 metrics on both the pretrain test and fine-
tune test datasets. As a baseline, we don’t finetune
the model (M) at all, but directly evaluate the pre-
trained model on both the test datasets. From the
results, we see that data-mix regularization main-
tains the performance of the model on the pretrain
test dataset.

Table 4: The performance of the finetuned model on the
finetune test dataset, the model trained using ranking
loss outperforms the cross-entropy loss based finetuned
model.

MRR (%) RECALL@1(%)

CROSS-ENTROPY LOSS 60.7 54.5
RANKING LOSS 63.9 58.3

4.3.2 Ranking Loss
Table 4 shows the result of changing the loss func-
tion from LBCE to Lranking. The result shows the
effect of different loss functions on M finetuned
using mix data regularization; the same effect is
seen with other regularization strategies. Changing
the loss function to Lranking improves the perfor-
mance of the model by 3% on MRR and 4% on
Recall@1 on the finetune test dataset.

5 Online Evaluation

5.1 Setup

We deployed the proposed model in a customer
service agent-support application that agents use
to resolve live customer contacts. The model is
deployed as a service using Amazon Sagemaker
2. The agent-support application calls the Sage-
maker endpoint with the current context (previous
dialogue turns and profile information), and the
model returns the highest scored response from the
template pool. The proposed model is able to rec-
ommend responses without any significant latency
impact on the overall application.

The agent-support application presents the
agents with the standard chat interface, except it
replaces the text box with the top-suggested re-
sponse from the model. Every time the customer
or the agent enters text into their chat window, the
model refreshes the response recommendations for
the next agent utterance. The agents can accept or
reject the model’s response recommendation. If
they reject the model’s recommendation, they can
type on their own. Since the model is deployed in
a human-in-the-loop setup, we use it to evaluate
the performance of the pretrained and finetuned

2https://docs.aws.amazon.com/sagemaker/

38

Table 5: The Recall@1 and % contacts resolved of pretrained and two finetuned models using cross-entropy and
ranking loss respectively on live customers. M is the pretrained model; Mtuned is finetuned model.

M Mtuned WITH LBCE Mtuned WITH Lranking

NUMBER OF CONTACTS 3094 3636 2212
RECALL@1 (%) 40.8 62.7 74.0
PERCENTAGE OF CONTACTS RESOLVED (%) 0.9 5.3 13.6

models on live customer contacts. We present the
results of the model on delivery related issue.

5.2 Results

Table 5 shows the online results for the three mod-
els on live customer contacts: pretrained model
(M) as explained in section 3, finetuned model
(MBCE) with BCE loss and data regularization;
and finetuned model (Mranking) with ranking loss
and data regularization. For each model, we cal-
culate Recall@1 as the fraction of total responses
that were accepted by the agents. We also report
the percentage of contacts resolved, which repre-
sents the percentage of contacts when the model’s
recommendations were accepted at every turn.

After finetuning using BCE, the Recall@1 of
the model showed an absolute increase of 22%
over the pretrained model. Finetuning using the
ranking loss outperformed the pretrained model
by 33%, and BCE finetuned model by 11%. For
the ranking loss based finetuning, the percentage
of contacts resolved completely using the model’s
recommendations went up by 13% compared to the
pretrained model.

5.3 Error Analysis

To better understand the model’s failure cases, we
manually read 100 turns where the agents rejected
the model’s recommended response and typed on
their own. For this study, we focus on the best
model - finetuned using ranking loss and data regu-
larization.

We found that 17% of the model’s errors were
caused because the conversation had gone off the
common path. The model is not able to recommend
the correct response in these cases because it has
not seen these types of conversations during the
training, leading to the template pool being unable
to cover many of said cases. Examples of why con-
versations may go long or off-track include, but are
not limited to, a customer being unhappy with the
solution, experiencing multiple issues within the
same chat, and/or participating in side conversa-
tions.

Another major reason for rejection was due to

missing and/or incomplete context data available
to the model. To contrast, this means agents had
access to a richer profile information than what was
available to the model. As a result, the model did
not have the relevant context to recommend the
right response. In 28% of the cases, there were
extra profile features available to the agents, such
as being able to check the carrier’s website, that
were not available to the model.

In dialogues, usually there is more than one cor-
rect response, giving room to agent’s subjectivity in
accepting/rejecting a model’s response. We found
that 15% of rejected turns occurred because the
agent decided to reject the model’s suggestion in
favor of a stylistically different but semantically
similar message. For example, some agents pre-
ferred closing the contact with ‘Thank you for con-
tacting ’while others preferred to directly say ‘Take
care and have a nice day ’.

6 Conclusion and Future Work

In this paper, we study a less explored approach of
finetuning a retrieval-based dialogue system based
on a small amount of high-quality, annotated data
that resulted in 26% offline and 33% online perfor-
mance improvement in Recall@1 over a pretrained
model.We deployed the model in an agent-support
application, and demonstarte that the proposed
model achieves 74% Recall@1, suggesting these
models are effective in assisting agents by recom-
mending text responses. The results demonstrate
the effectiveness of pretrain-finetune approach in
dealing with the limited supervised data challenge.
In this paper, we focus on a customer service deliv-
ery issue, but since this technique can scale to other
task-oriented dialog systems with a wide range of
applications.

We believe that additional investment in contex-
tual and profile features would help improve the
model performance. As discussed in the error anal-
ysis section, 28% of the model’s error is caused
due to missing context information. In addition,
manual study of the rejection reasons highlights
the issue of subjective evaluation. More investment
is needed in agent training and standardization of

39

annotation. We believe the model can significantly
benefit from better annotation and evaluation.

References
Layla El Asri, Hannes Schulz, Shikhar Sharma,

Jeremie Zumer, Justin Harris, Emery Fine, Rahul
Mehrotra, and Kaheer Suleman. 2017. Frames: A
corpus for adding memory to goal-oriented dialogue
systems. arXiv preprint arXiv:1704.00057.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. Multiwoz-a
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Tianxing He, Jun Liu, Kyunghyun Cho, Myle Ott, Bing
Liu, James Glass, and Fuchun Peng. 2019. Mix-
review: Alleviate forgetting in the pretrain-finetune
framework for neural language generation models.
arXiv preprint arXiv:1910.07117.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-
Hsuan Sung, László Lukács, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and Ray Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply. arXiv preprint arXiv:1705.00652.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias
Kaufmann, Andrew Tomkins, Balint Miklos, Greg
Corrado, Laszlo Lukacs, Marina Ganea, Peter
Young, et al. 2016. Smart reply: Automated re-
sponse suggestion for email. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 955–
964.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. arXiv preprint arXiv:1506.08909.

Yichao Lu, Phillip Keung, Shaonan Zhang, Jason Sun,
and Vikas Bhardwaj. 2017. A practical approach
to dialogue response generation in closed domains.
arXiv preprint arXiv:1703.09439.

Yichao Lu, Manisha Srivastava, Jared Kramer, Heba El-
fardy, Andrea Kahn, Song Wang, and Vikas Bhard-
waj. 2019. Goal-oriented end-to-end conversational
models with profile features in a real-world setting.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Industry Papers), pages 48–55.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

40

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 41–48
June 6–11, 2021. ©2021 Association for Computational Linguistics

Contextual Domain Classification with Temporal Representations

Tzu-Hsiang Lin, Yipeng Shi, Chentao Ye, Fan Yang, Weitong Ruan, Emre Barut, Wael Hamza, and Chengwei Su

Amazon Alexa AI

{tzuhsial,syipeng,ychentao,fyaamz,weiton,ebarut,waelhamz,chengwes}@amazon.com

Abstract

In commercial dialogue systems, the Spoken
Language Understanding (SLU) component
tends to have numerous domains thus context
is needed to help resolve ambiguities. Previ-
ous works that incorporate context for SLU
have mostly focused on domains where con-
text is limited to a few minutes. However,
there are domains that have related context that
could span up to hours and days. In this pa-
per, we propose temporal representations that
combine wall-clock second difference and turn
order offset information to utilize both recent
and distant context in a novel large-scale setup.
Experiments on the Contextual Domain Clas-
sification (CDC) task with various encoder ar-
chitectures show that temporal representations
combining both information outperforms only
one of the two. We further demonstrate that
our contextual Transformer is able to reduce
13.04% of classification errors compared to a
non-contextual baseline. We also conduct em-
pirical analyses to study recent versus distant
context and opportunities to lower deployment
costs.

1 Introduction

Voice assistants such as Amazon Alexa, Apple Siri,
Google Assistant and Microsoft Cortana provide
a wide range of functionalities, including listening
to music, inquiring about the weather, controlling
home appliances and question answering. To under-
stand user requests, the Spoken Language Under-
standing (SLU) component needs to first classify
an utterance into a domain, followed by identifying
the domain-specific intent and entities (Tur, 2011;
Su et al., 2018a), where each domain is defined for
a specific application such as music or weather. In
commercial systems, the number of domains tend
to be large, resulting in multiple possible domain in-
terpretations for user requests (Kim et al., 2018; Li
et al., 2019). For example, "play american pie" can
be interpreted as either playing a song or a movie.

Also, "what does your light color mean?" can be
classified as Question Answering, or as a complaint
which does not necessarily require a meaningful
response.

Multiple prior works have attempted to incor-
porate context in SLU to help resolve such am-
biguities. However, these works often report re-
sults on datasets with limited amount of training
data (Bhargava et al., 2013; Xu and Sarikaya, 2014;
Shi et al., 2015; Liu et al., 2015), or resort to synthe-
size contextual datasets (Gupta et al., 2018, 2019)
that may not reflect natural human interaction. Fur-
thermore, the majority of these works focus on do-
mains where session context is recent and collected
within a few minutes. Though this setup works well
for domains that bias towards immediate preceding
context such as Communication (Chen et al., 2016)
and Restaurant Booking (Henderson et al., 2014;
Bapna et al., 2017), there are also domains that
have useful context spanning over hours or even up
to days. In the SmartHome domain, it is natural for
users to turn on T.V., watch for a couple of hours
and then ask to turn it off. In the Notifications
domain, users setup alarms or timers which occur
hours and days away. We hypothesize that distant
context, if properly utilized, can improve perfor-
mance in instances where recent context cannot.

In this paper, we propose temporal representa-
tions to effectively leverage both recent and distant
context on the Contextual Domain Classification
(CDC) task. We introduce a novel setup that con-
tains both recent and distant context by including
previous 9 turns of context within a few days, so
that context not just come from minutes but can
also come from hours or days ago. We then pro-
pose temporal representations to indicate the close-
ness of each previous turn. The key idea of our
approach is to combine both wall-clock second dif-
ference (Conway and Mathias, 2019) and turn order
offset (Su et al., 2018b) so that a distant previous
turn can still be considered as important.

41

We conduct experiments on a large-scale dataset
with utterances spoken by users to a commercial
voice assistant. Results with various encoder ar-
chitectures show that combining both wall-clock
second difference and turn order offset outperforms
using only one of them. Our best result is achieved
with Transformer of 13.04% error reduction, which
is a 0.35% improvement over using only wall-clock
second difference and 2.26% over using only turn
order offset. To understand the role of context in
CDC, we conduct multiple empirical analyses that
reveal the improvements from context and discuss
trade-offs between efficiency and accuracy.

To summarize, this paper makes the following
contributions:

• A novel large-scale setup for CDC that show-
cases the usefulness of distant context, com-
paring to previous works whose datasets are
limited to thousands and context within min-
utes.

• Temporal representations combining wall-
clock second and turn-order offset informa-
tion that can be extended and applied to other
tasks.

• Empirical analyses that study context from 4
different aspects to guide future development
of commercial SLU.

2 Related Work

2.1 Contextual SLU
Context in commercial voice assistants may be-
long to widely different domains, as users expect
them to understand their requests in a single ut-
terance, which is different from the conventional
dialogue state tracking task (Williams et al., 2016).
Earlier works seek better representations of con-
text, such as using recurrent neural networks (Xu
and Sarikaya, 2014; Liu et al., 2015), or memory
networks to store past utterances, intents, and slot
values (Chen et al., 2016). Recently, Gupta et al.
(2019) proposes a self-attention architecture that
fuses multiple signals including intents and dia-
log act with a variable context window. On other
aspects of contextual SLU, Naik et al. (2018) pro-
poses a scalable slot carry over paradigm where
the model decides whether a previous slot value is
referred in the current utterance. For rephrased user
requests, Rastogi et al. (2019) formulates rephras-
ing as the Query Rewriting (QR) task and uses

sequence-to-sequence pointer generator networks
to perform both anaphora resolution and DST. In
contrast, our work proposes temporal representa-
tions to utilize both recent and distant context for
domain classification.

2.2 Temporal Information

Most previous works use recurrent neural networks
to model natural turn order (Shi et al., 2015; Gupta
et al., 2018). Assuming context follows a decay-
ing relationship, Su et al. (2018b) presents several
hand-crafted turn-decaying functions to help the
model focus on the most recent context. Kim and
Lee (2019) further expands upon this idea by learn-
ing latent turn-decaying functions with deep neural
networks. On the other hand, wall-clock informa-
tion has not been exploited until the recent Time
Mask module proposed in Conway and Mathias
(2019). From the lens of wall-clock, they show
that context importance does not strictly follow a
decaying relationship, but rather occurs in certain
time spans. Our work combines both wall-clock
and turn order information and models their rela-
tionship.

3 Methodology

In this section, we describe our model architecture
in Section 3.1 and our proposed temporal represen-
tations in Section 3.2.

3.1 Model Architecture

Our model is depicted in Figure 1 and consists of
3 components: (1) utterance encoder, (2) context
encoder, and (3) output network. We next describe
each component in detail.

Utterance Encoder We use a bi-directional
LSTM (Hochreiter and Schmidhuber, 1997) and
pre-trained word embeddings to encode the cur-
rent utterance into an utterance embedding. For
pre-trained word embeddings, we use FastText (Bo-
janowski et al., 2017) concatenated with Elmo (Pe-
ters et al., 2018) trained on an internal SLU dataset.

Context Encoder Context encoder is a hierar-
chical model that consists of a turn encoder and
a sequence encoder. For each previous turn, turn
encoder encodes 3 types of features: (1) utterance
text, (2) hypothesized domain, and (3) hypothe-
sized domain-specific intent, which are also used
in Naik et al. (2018). Utterance text is encoded
using the same model architecture as in utterance

42

Figure 1: Overview of our model and proposed temporal representations.

encoder. Hypothesized domain and intent are first
represented using one-hot encoding then projected
into embeddings. We stack the 3 representations,
perform max-pooling then feed into a 2 layer fully
connected neural network to produce a turn repre-
sentation. Temporal representations (Section 3.2)
are then applied to indicate their closeness. Fi-
nally, sequence encoder encodes the sequence of
temporal encoded turn representations into a sin-
gle context embedding that is fed to the output
network.

Output Network Output network concatenates
utterance embedding and context embedding as in-
put and feeds into a 2 layer fully-connected network
to produce classification logits.

Response Time Considerations State-of-the-
art contextual models encode the entire context and
utterance to learn coarse and fine relationships with
attention mechanisms (Gupta et al., 2019; Heck
et al., 2020). Since commercial voice assistants
need to provide immediate responses to users, en-
coding context and utterance is computationally
expensive such that the system would not respond
in-time at industrial-scale (Kleppmann, 2017). We
separate context encoder from utterance encoder
so that we can encode context when user is idle
or when the voice assistant is responding. More-
over, the hierarchical design allows us to cache
previously encoded turn representations to avoid
re-computation.

3.2 Temporal Representations

In this section, we present the temporal represen-
tations used in our experiments. For the following,
given previous turn t and its turn features ht(c)
from turn encoder, we denote its wall-clock second
difference and turn order offset as d∆sec, d∆turn.
For operators, we denote � and ⊕ as element-wise
multiplication and summation.

Time Mask (TM) (Conway and Mathias, 2019)
feeds d∆sec into a 2 layer network and sigmoid
function to produce a masking vector m∆sec that
is multiplied with the context feature hTc , and show
that important features occur in certain time spans.
The equations are given as follows.

e∆sec =Ws2 · φ(Ws1 · d∆sec + bs1) + bs2,
(1)

m∆sec = σ(e∆sec), (2)

htTM (c) = m∆sec � ht(c), (3)

Here Ws1,Ws2, bs1, bs2 are weight matrices and
bias vectors, φ and σ are ReLU activation and
sigmoid functions, and htTM (c) denotes the time
masked features. We also considered binning sec-
ond differences instead of working with d∆sec.
However, we find that binning significantly under-
performs compared to the latter.

Turn Embedding (TE) We first represent
d∆turn as a one-hot encoding then project it into a
fixed-size embedding e∆turn. We then sum the turn
embedding with context features as in positional

43

Temporal Representations Max-pooling LSTM Transformer

– 4.41 11.02 10.18
Time Mask 7.62 11.91 12.69
Turn Embedding 7.09 11.44 10.78
Turn Embedding over Time Mask 4.59 12.51 13.04
Time Mask over Turn Embedding 7.56 12.21 12.75
Time and Turn Embedding 10.13 11.31 11.79

Table 1: ARER % (↑) results computed against an utterance-only baseline with different temporal representations
and sequence encoders. "–" indicates that no temporal representation is applied. Best results are boldfaced.

encoding in Transformer (Vaswani et al., 2017).

htTE(c) = e∆turn ⊕ ht(c), (4)

It is natural and intuitive to assume that a closer
context is more likely to correlate with the cur-
rent user request. Assuming we are given user
requests “Where is Cambridge?" and “How is the
weather there?". It is more likely that the user is in-
quiring about weather in Cambridge if the second
request immediately follows the first, compared
to the case where these two requests are hours or
multiple turns apart. For a proper comprehension
of closeness, both wall-clock and turn order infor-
mation are needed, as having the same wall-clock
difference would require us to know the turn or-
der difference, and vice versa. Here we propose 3
representations that combines the two information
based on different hypotheses.

Turn Embedding over Time Mask (TEoTM)
provides turn order information on top of seconds.
We do so by first masking the context features us-
ing Time Mask then mark the relative order with
Turn Embedding. This variant assumes that the past
context is important despite the fact that they might
be distant in seconds.

htTEoTM (c) = e∆turn ⊕ (m∆sec � ht(c)), (5)

Time Mask over Turn Embedding (TMoTE)
applies wall-clock second and turn offset informa-
tion in reverse order of TEoTM by first summing
Turn Embedding and then multiplying it with Time
Mask. This assumes that second is more important
than turn order as it can overrule by masking when
needed.

htTMoTE(c) = m∆sec � (e∆turn ⊕ ht(c)), (6)

Time and Turn Embedding (TaTE) Our third
variant assumes wall-clock second and turn offset

have equal importance by removing the masking
sigmoid of Time Mask in Equation (1) and sum
with Turn Embedding.

htTaTE(c) = e∆sec ⊕ e∆turn ⊕ ht(c), (7)

4 Results

In this section, we first describe our experimen-
tal setup in Section 4.1, present our main results
in Section 4.2, followed by our analyses in Sec-
tion 4.3.

4.1 Experimental Setup

Dataset We use an internal SLU dataset that is
privatized so that users are not identifiable. Our
training, validation and test set contains on the
order of several million, several hundred thousand,
and one million utterances, respectively. For each
utterance, we collect the previous 9 turns within a
few days as context. Our dataset has a total of 24
domains that includes common voice assistant use
cases (Liu et al., 2019).

Metric For evaluation, we report Accuracy Rela-
tive Error Reduction Percentage (ARER %). ARER
% is computed with the following equation.

ARERctx =
(1−ACCutt)− (1−ACCctx)

1−ACCutt
,

(8)

Here ACCutt is the accuracy of an utterance-
only baseline that masks context information, and
ACCctx is the accuracy of a contextual model.

Implementation Details We set both FastText
and Elmo embedding dimensions to 300 and hid-
den dimension to 256 for all neural network layers,
hypothesized domain and intent, time and turn em-
beddings. We used a bi-directional LSTM for turn
encoder, uni-directional LSTM for sequence en-
coder and set both to 2 layers. For Transformer,

44

(a) (b)

Figure 2: (a) Left figure plots the ARER % (↑) with confidence intervals of our best model on different time interval
bins. (b) Right figure depicts the percentage of each bin within our dataset.

we used 1 layer with 4 heads. Dropout rate is set
to 0.2 for all fully-connected layers, and we used
Adam (Kingma and Ba, 2015) as optimizer with
learning rate set to 0.001. For utterances that do
not have context, we use a special <PAD> token
to pad the turn features. For consistency, we re-
port results averaging 3 random seeds. We use the
MXNet (Chen et al., 2015) framework to develop
our models.

4.2 Main Results

In Table 1, we report performance of temporal
representations with sequence encoders (1) Max-
pooling, (2) LSTM, and (3) Transformer, computed
with respect to an utterance-only baseline. For
all sequence encoders, temporal representations
combining both wall-clock second difference and
turn order offset achieved best results. Specifically,
Time and Turn Embedding works best for Max-
pooling, and Turn Embedding over Time Mask
works best for LSTM and Transformer. Trans-
former achieved the best results of 13.04%, im-
proving 0.35% over using wall-clock and 2.26%
using turn offset. Similar trends are observed with
LSTM and Max-pooling, with both information
outperforming using only one. In general, having
Time Mask performs better than Turn Embedding,
suggesting that wall-clock is more important than
turn offset in CDC. Also, despite being a natu-
ral time series encoder, temporal representations
further improve LSTM performance by up to an
additional 1.49%.

4.3 Analysis

In this section, we conduct analyses to better un-
derstand the role of context in CDC.

Utt Hyp-Domain Hyp-Intent ARER % (↑)
3 3 3 13.04

7 3 3 12.70
3 7 3 10.20
3 3 7 12.70

3 7 7 5.37
7 3 7 11.27
7 7 3 10.73

7 7 7 0.00

Table 2: Analysis on turn features used in Context En-
coder. 3 indicates the feature is used. 7 indicates the
feature is masked.

Recent & Distant Context To understand
whether distant context actually improves SLU, we
use the second difference of the first previous turn
d1

∆sec to indicate absolute closeness and divide the
test set into 3 non-overlapping interval bins: (1)
< 1 min, (2) < 24 hr, (3) > 24 hour, where (1)
represents recent context and (2), (3) are the more
distant context. We also include a fourth bin (4) No
Context for utterances that do not have context. Fig-
ure 2 depicts performance of our best model from
Section 4.2 on each bin. While improvements are
largest for (1), there are still statistically significant
improvements for the more distant (2) and (3), sug-
gesting that distant context is indeed helpful, albeit
decreases with distance and at a smaller scale. In-
terestingly, our best model performed worse on (4),
suggesting that models trained with context exhibit
certain biases when evaluating without context.

Amount of Context Next, we analyze the num-
ber of previous turns needed for CDC. We trained
and evaluated our best model from Section 4.2

45

Previous Turn Current Turn

Utterance buy stuff Utterance t.v.
Hyp-Domain Shopping Baseline SmartHome 7

Seconds 6.0 Best Model Shopping 3

Utterance play <entity1> Utterance <entity1> by <entity2>
Hyp-Domain Song Baseline AudioBooks 7

Seconds 54.0 Best Model Song 3

Utterance please read audio collection Utterance start <entity>
Hyp-Domain AudioBooks Baseline DeviceControl 7

Seconds 6235.0 (1 hr, 43 mins) Best Model AudioBooks 3

Utterance turn on <entity> Utterance turn off <entity>
Hyp-Domain SmartHome Baseline DeviceControl 7

Seconds 212421.0 (2 days, 11hrs) Best Model SmartHome 3

Table 3: Examples showing predictions of an utterance-only baseline and our best model from Section 4.2 with
context from the first previous turn. Our best model is able to make correct predictions by utilizing context from
recent and distant time ranges when the current turn utterance is ambiguous. We anonymize entities and modify
certain utterances for user privacy. Hypothesized domain-specific intents and additional previous turns are not
included for clarity.

using 1 and 5 previous turns, which resulted in
ARER% of 10.00%, and 12.86%, respectively.
Compared to 13.04% of using 9 previous turns,
this suggests that while more than 1 previous turn
is needed for performance, using 5 turns is com-
parable as using 9 turns and can potentially save
caching costs.

Where Does Context Improve SLU Most
CSLU works are motivated by rephrases and refer-
ence resolution (Chen et al., 2016; Rastogi et al.,
2019). Noticing that in both phenomena users fol-
low up their requests within the same domain, we
split our test set based on whether the previous
turn’s hypothesized domain (PTHD) is same as or
different from the target domain. Our model largely
improved ARER % by 22.82% on the PTHD Same
set, and has comparable performance of −0.03%
on the PTHD Different set. This suggests that our
model learns to carryover previous domain predic-
tion when the current utterance is ambiguous and
not over rely on them. We also include several ex-
amples with recent and distant context in Table 3
that exhibits this behavior.

Types of Context Information Last, we con-
ducted an ablation study of turn features used in
the context encoder. We mask 1 or retain 1 of the
3 features and show results in Table 2. The most
effective feature we observed is the previously hy-
pothesized domain, as masking domain yielded the
worst results, and keeping domain yielded the best

results. Since domain is a crude label, we hypothe-
size that previous domain predictions are sufficient
for CDC, and utterance text will be more useful for
more fine-grained tasks such as intent classification
or slot labeling.

The upside of this analysis comes from deploy-
ment costs. Since pre-trained Elmo embeddings
are computation heavy and may require GPU ma-
chines, using only hypothesized domain as turn
features can largely lower the costs as we can infer-
ence using CPUs while sacrificing little accuracy.

5 Conclusions

We presented a novel large-scale industrial CDC
setup and show that distant context also improves
SLU. Our proposed temporal representations com-
bining both wall-clock and turn order information
achieved best results for various encoder architec-
tures in a hierarchical model and outperforms us-
ing only one of the two. Our empirical analyses
revealed how previous turn helps disambiguation
and showed opportunities on reducing deployment
costs.

For future work, we plan to explore more turn
features such as responses, speaker and device in-
formation. We also plan to apply temporal represen-
tations on other tasks, such as intent classification,
slot labeling, and dialogue response generation.

46

6 Ethics Statement

Our dataset is annotated by in-house workers who
are compensated with above minimum wages. An-
notations were acquired for individual utterances
and not for aggregated sets of utterances. To pro-
tect user privacy, user requests that leak personally-
identifiable information (e.g., address, credit card
number) were removed during dataset collection.
As our model is a classification based which output
is within a finite label set, incorrect predictions will
not cause harm to the user besides an unsatisfactory
experience.

Acknowledgements

We would like to thank the anonymous reviewer’s
for their useful suggestions, Yuval Merhav and Bo
Xiao for their helpful feedback on the early ver-
sions of this paper, and Alan Packer for proofread-
ing during internal review process.

References
Ankur Bapna, G. Tür, Dilek Z. Hakkani-Tür, and Larry

Heck. 2017. Sequential dialogue context modeling
for spoken language understanding. In SIGDIAL
Conference.

A. Bhargava, A. Çelikyilmaz, Dilek Z. Hakkani-Tür,
and R. Sarikaya. 2013. Easy contextual intent pre-
diction and slot detection. 2013 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing, pages 8337–8341.

P. Bojanowski, E. Grave, Armand Joulin, and Tomas
Mikolov. 2017. Enriching word vectors with sub-
word information. Transactions of the Association
for Computational Linguistics, 5:135–146.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan
Zhang, and Zheng Zhang. 2015. Mxnet: A flex-
ible and efficient machine learning library for het-
erogeneous distributed systems. arXiv preprint
arXiv:1512.01274.

Yun-Nung Chen, Dilek Hakkani-Tur, Gokhan Tur, Jian-
feng Gao, and Li Deng. 2016. End-to-end memory
networks with knowledge carryover for multi-turn
spoken language understanding. In Proceedings of
Interspeech.

Rylan T. Conway and Lambert Mathias. 2019. Time
masking: Leveraging temporal information in spo-
ken dialogue systems. In SIGdial.

Arshit Gupta, Peng Zhang, Garima Lalwani, and
Mona Diab. 2019. CASA-NLU: Context-aware self-
attentive natural language understanding for task-
oriented chatbots. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language

Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1285–1290, Hong Kong, China. As-
sociation for Computational Linguistics.

Raghav Gupta, Abhinav Rastogi, and Dilek Hakkani-
Tür. 2018. An efficient approach to encoding con-
text for spoken language understanding. Proc. Inter-
speech 2018, pages 3469–3473.

Michael Heck, Carel van Niekerk, Nurul Lubis, Chris-
tian Geishauser, Hsien-Chin Lin, Marco Moresi, and
Milica Gasic. 2020. TripPy: A triple copy strategy
for value independent neural dialog state tracking.
In Proceedings of the 21th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 35–44, 1st virtual meeting. Association for
Computational Linguistics.

Matthew Henderson, Blaise Thomson, and Jason
Williams. 2014. The second dialog state tracking
challenge. In 15th Annual Meeting of the Special In-
terest Group on Discourse and Dialogue, page 263.
Citeseer.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9:1735–
1780.

Jonggu Kim and Jong-Hyeok Lee. 2019. Decay-
function-free time-aware attention to context and
speaker indicator for spoken language understand-
ing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3718–3726, Minneapolis, Minnesota. Association
for Computational Linguistics.

Young-Bum Kim, Dongchan Kim, Joo-Kyung Kim,
and Ruhi Sarikaya. 2018. A scalable neural
shortlisting-reranking approach for large-scale do-
main classification in natural language understand-
ing. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 3 (Industry Papers), pages 16–24.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Martin Kleppmann. 2017. Designing Data-Intensive
Applications. O’Reilly, Beijing.

Han Li, Jihwan Lee, Sidharth Mudgal, Ruhi Sarikaya,
and Young-Bum Kim. 2019. Continuous learn-
ing for large-scale personalized domain classifica-
tion. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3784–3794, Minneapolis, Minnesota. Association
for Computational Linguistics.

47

Chunxi Liu, Puyang Xu, and Ruhi Sarikaya. 2015.
Deep contextual language understanding in spoken
dialogue systems. In INTERSPEECH.

Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and
Verena Rieser. 2019. Benchmarking natural lan-
guage understanding services for building conversa-
tional agents. In 10th International Workshop on
Spoken Dialogue Systems Technology 2019.

Chetan Naik, Arpit Gupta, Hancheng Ge, Lambert
Mathias, and Ruhi Sarikaya. 2018. Contextual
slot carryover for disparate schemas. In INTER-
SPEECH.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Pushpendre Rastogi, Arpit Gupta, Tongfei Chen, and
Lambert Mathias. 2019. Scaling multi-domain dia-
logue state tracking via query reformulation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics. Association for Computational Linguis-
tics.

Yangyang Shi, Kaisheng Yao, Hu Chen, Yi-Cheng Pan,
Mei-Yuh Hwang, and Baolin Peng. 2015. Contex-
tual spoken language understanding using recurrent
neural networks. 2015 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 5271–5275.

Chengwei Su, Rahul Gupta, Shankar Ananthakrish-
nan, and Spyridon Matsoukas. 2018a. A re-
ranker scheme for integrating large scale nlu models.
2018 IEEE Spoken Language Technology Workshop
(SLT), pages 670–676.

Shang-Yu Su, Pei-Chieh Yuan, and Yun-Nung Chen.
2018b. How time matters: Learning time-decay at-
tention for contextual spoken language understand-
ing in dialogues. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2133–2142, New Orleans, Louisiana. Association
for Computational Linguistics.

Gokhan Tur. 2011. Spoken Language Understanding:
Systems for Extracting Semantic Information from
Speech.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, undefine-
dukasz Kaiser, and Illia Polosukhin. 2017. Attention
is all you need. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing

Systems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Jason D. Williams, Antoine Raux, and Matthew Hen-
derson. 2016. The dialog state tracking challenge
series: A review. Dialogue Discourse, 7:4–33.

Puyang Xu and Ruhi Sarikaya. 2014. Contextual
domain classification in spoken language under-
standing systems using recurrent neural network.
2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 136–
140.

48

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 49–55
June 6–11, 2021. ©2021 Association for Computational Linguistics

Bootstrapping a Music Voice Assistant with Weak Supervision

Sergio Oramas∗ and Massimo Quadrana∗ and Fabien Gouyon
Pandora Media LLC.

Oakland, USA
{soramas, mquadrana, fgouyon}@pandora.com

Abstract

One of the first building blocks to create a
voice assistant is the task of tagging entities
or attributes in user queries. This can be par-
ticularly challenging when the number of en-
tities are in the tenth of millions, as is the
case of music catalogs. Training slot tagging
models at an industrial scale requires large
quantities of accurately labeled user queries,
which are often hard and costly to gather.
On the other hand, voice assistants typically
collect plenty of unlabeled queries that often
remain unexploited. This paper presents a
weakly-supervised methodology to label large
amounts of voice query logs, enhanced with a
manual filtering step. Our experimental eval-
uations show that slot tagging models trained
on weakly-supervised data outperform models
trained on hand-annotated or synthetic data,
at a lower cost. Further, manual filtering of
weakly-supervised data leads to a very signif-
icant reduction in Sentence Error Rate, while
allowing us to drastically reduce human cura-
tion efforts from weeks to hours, with respect
to hand-annotation of queries. The method is
applied to successfully bootstrap a slot tagging
system for a major music streaming service
that currently serves several tens of thousands
of daily voice queries.

1 Introduction

Music listening is among the top-5 reasons of daily
usage of voice assistants in the US.1 Users can
have different goals when formulating a music-
related query to their home voice assistant or mo-
bile phones. For instance, users may look for a spe-
cific entity, which can be either explicit (e.g., “play
Led Zeppelin”) or implicit (e.g., “play the latest al-
bum by Foo Fighters”). They may also ask queries
without having a specific entity in mind (e.g., “play

∗Equal contribution.
1Source: https://www.pwc.com/us/en/advisory-

services/publications/consumer-intelligence-series/voice-
assistants.pdf

some reggae music”), or make open-ended requests
like “play something that I like” (Ostuni, 2019;
Volokhin and Agichtein, 2018).

Given a transcribed voice query, a fundamental
task towards its understanding is to identify entities
and musical attributes in it. However, this can be
a non-trivial task, especially when the catalog is
composed of possibly millions of different entities.
In such situations, the chances that the name of one
entity will overlap even partially with another en-
tity are non-negligible. It is even more likely to find
overlaps between entities and musical attributes, or
between entities and other commonly-used natural
language phrases in the query (Guy, 2018). For ex-
ample, the word “happy” is at the same time a song
by Pharrell Williams and an attribute belonging to
the “Mood” category in our taxonomy of musical
attributes. Mislabeling entities in a user query can
potentially lead to awkward user experiences.

Slot tagging, or slot filling, is traditionally tack-
led as a supervised sequence labeling problem and
it is often based on methods such as Recurrent Neu-
ral Networks (Goyal et al., 2018), Conditional Ran-
dom Fields (Reimers and Gurevych, 2017) or pre-
trained language models like BERT (Chen et al.,
2019). In real-world industrial applications, how-
ever, the choice and optimization of the Machine
Learning architecture is just the tip of the iceberg.
Most of the time and cost are actually spent in gath-
ering sufficient accurately-labeled training data.
This process generally requires the manual anno-
tation of up to millions of user queries, a process
that should be routinely repeated to keep up with
natural drifts in user queries due to, e.g., new inter-
ests from users or items that are added or removed
from the catalog of searchable products. Manual
annotation can be complemented, or even replaced,
with synthetically generated training data based on
patterns curated by experts (Goyal et al., 2018).
While synthetic generation unlocks the possibility
of gathering nearly infinite labeled training sam-

49

ples, it still requires solid domain expertise to create
a sufficiently rich set of patterns to cover as many
query variations as possible.

Both manual annotation and generation of train-
ing data requiring a significant financial and human
resources; another line of thoughts is to exploit un-
labeled query data, which is generally cheap and
abundant, and to label it via weak supervision.

Weak supervision –or distant supervision– has
demonstrated its suitability to a number of natural
language processing tasks such as relation extrac-
tion (Mintz et al., 2009) or entity recognition (Li-
son et al., 2020). Moreover, it has been shown as
a useful method to bootstrap conversational sys-
tems, being applied to intent detection (Mallinar
et al., 2019) or slot tagging (Surdeanu et al., 2011)
tasks. Given this success, flexible frameworks like
Snorkel (Ratner et al., 2017) have been created
to help on building weak supervision pipelines at
scale. However, these frameworks are not easily
adaptable to sequence labeling tasks (Lison et al.,
2020).

In this paper, we present our own methodology
inspired by weak supervision to label large sets
of transcribed voice queries with entities and at-
tributes from a catalog with millions of entries.
The resulting labels are, albeit noisy, sufficiently
accurate to be used for training slot tagging mod-
els. We show how our methodology allows us
to control the amount of noisy labels injected in
the training dataset by combining weak supervi-
sion and human filtering, and provide experimental
evidence of how it was exploited to successfully
bootstrap a slot tagging system that now serves tens
of thousands of voice queries every day in a ma-
jor music streaming platform. It is worth noticing
that the proposed methodology, while defined and
tested specifically for the music domain, is generic
enough to be applied to other voice search applica-
tions that face similar challenges, like e.g. Video
On-Demand (Rao et al., 2018) or online shopping.

2 Training Data Creation Methodology

Starting with large amounts of unlabeled voice
query transcripts,2 we automatically label selected
terms with respect to both a set of music enti-
ties (i.e., artists, albums and tracks) and to at-
tributes from an in-house taxonomy of musical

2In this paper we do not deal with the aspect of Automatic
Speech Recognition (ASR), i.e. transcribing voice audio sig-
nals to text. The terms “query” and “query transcript” are used
interchangeably.

attributes (e.g., genres, instruments, moods, etc.).
Some of these annotated queries are then discarded,
while the remainder are selected for training pur-
poses (see Section 3). This methodology requires
the following basic components:

• A large set of unlabeled queries (in the scale
of 100k+).

• A large catalog of entities (10M+).
• A taxonomy of attributes (1k+) classified into

semantic categories.

There are two main steps to our methodology.
First, a heuristic labeling function makes use of
corpus statistics and string matching rules to fully-
automatically label queries, while discarding some
queries whose annotations cannot be established
with sufficient confidence. Then, query patterns
are extracted from this first set of labeled queries,
and leveraged in a human filtering task where
erroneously-labeled queries are discarded.

2.1 Heuristic labeling
2.1.1 Categorizing Entities
A pre-processing step of the catalog of entities is
necessary before processing the queries. Indeed,
working with very large catalogs of entities implies
potential ambiguities between entity surface forms
and common natural language phrases or even at-
tributes from the taxonomy. For example, in tens
of millions of tracks, as those in our catalog, we
can find almost any word or expression as a track
name (see Table 1). Simple string matching cannot
disambiguate whether a user is asking for a specific
track, or saying anything else.

Our approach to tackle this issue is to separate
entities into three distinct subsets: the safe-set,
ignore-set and unsure-set, illustrated in Table 1.
The first subset is for entities for which we have
high confidence that, when appearing in a query,
the user is in fact referring to the entity, regardless
of the context (i.e, the other words present in the
query). In opposition, the second subset is for en-
tities for which we have high confidence that the
user is in fact not asking for that specific entity, but
saying something else. Finally, the third subset is
for entities where our confidence to assess any of
the two previous statements is low.

To decide on the subset of a given entity, we de-
fine the concepts of corpus frequency of an entity
e as the number of times its surface form appears
in the corpus of unlabeled queries, and intrinsic

50

popularity of an entity as the number of times
this entity has been interacted with in our prod-
uct (e.g., by considering number of streams, their
Click Through Rates, or through any other notion
of popularity relevant to the product at hand). We
empirically observed that whenever an entity has a
very high corpus frequency but very low intrinsic
popularity, it is highly likely that the user is not
referring to the entity in their query, even if there
is a perfect string matching between the surface
form of the entity and a text span in the query. This
observation led to the definition of simple rules for
entity categorization, making use of the following
concepts:

• Frequency-popularity ratio: is computed as
follows:

r(e) =
popularityRank(e)

frequencyRank(e)
(1)

where frequencyRank(e) is the ranking of
entity e with respect to its corpus frequency,3

and popularityRank(e) is instead its rank
with respect to its intrinsic popularity. We
compute r(e) for all entities in the catalog,
and then normalize to the [0, 1] range. Values
close to 1 will reflect cases where the entity
is very frequent in queries but not interacted
very much with in our product.

• Attribute overlap: Given T the set of all at-
tributes in the taxonomy we say that an en-
tity e has an overlap with T if every token in
the surface form of e pertains to T . For exam-
ple, the entity “Spanish House” has attribute
overlap, because “Spanish” and “House” are
both attributes in our taxonomy.

We then use simple rules based on two thresh-
olds τ and ε, with τ > ε, to assign entities to either
the safe-set, ignore-set or unsure-set. Given the
ratio r(e) of an entity e:

• If r(e) ≥ τ , e is added to the ignore-set. This
is likely a mismatch with a natural language
phrase or an attribute.

• If τ > r(e) ≥ ε, e is added to the ignore-
set or to the unsure-set, depending on their
attribute overlap: If there is attribute overlap,
it is added to the ignore-set, as this is likely a
mismatch with an attribute; otherwise they go
to the unsure-set.

3Higher frequency means higher rank.

Entity r(e) T overlap Category

Could You 0.99 no ignore-set
Play Music 0.99 no ignore-set
Xmas 0.99 yes ignore-set
You Did Something 0.94 no unsure-set
Country Joe 0.94 no unsure-set
Acoustic Piano 0.92 yes ignore-set
Little Snowflake 0.84 no safe-set
Spanish House 0.47 yes unsure-set
I am a Human 0.37 no safe-list

Table 1: Illustration of ambiguities between entities,
natural language sentences and taxonomy attributes:
Examples of actual entities (music tracks, albums or
artists) as found in our catalog, their r(e) ratio, whether
they overlap with our taxonomy C, and their corre-
sponding category. The categorization was performed
using τ = 0.99, ε = 0.90.

• If r(e) < ε, e is added to the unsure-set or to
the safe-set, depending also on their attribute
overlap: If there is attribute overlap they go
to the unsure-set; otherwise they go to the
safe-set.

Table 1 shows some actual examples of enti-
ties from our catalog, with the corresponding ratio,
attribute overlap and the resulting category. For
instance, Acoustic Piano is the name of a rather
unpopular album in our catalog which frequently
appears in user queries. Since it completely over-
laps with the attributes "acoustic" and "piano" of
our taxonomy and its frequency-popularity ratio is
between τ and ε, it is added the ignore-set.

2.1.2 Labeling Function

Once we have categorized all entities in the cat-
alog into the aforementioned three sets, we use
this information for disambiguation purposes in
the heuristic labeling process. Given a query, we
extract all n-grams and look for all the possible
matches with the entities within the union of the
safe and the unsure sets, and select the longest non-
overlapping matches. Then, we apply the following
rules:

• If any of the matched entities was categorized
in the unsure-set, we discard the whole query;

• Otherwise, the matched n-grams in the query
are labeled as the corresponding entity types
of the matched entities from the safe-set (e.g.,
artist, album, track). In case of multiple
matches (e.g., an artist and a song having the
same name) we pick the entity type with the
highest intrinsic popularity.

51

All entities classified in the ignore-set are simply
ignored in this process. After the labeling of en-
tities in the query, we look for matches in the list
of attributes from the taxonomy among the words
that were left unlabeled. The number of musical
attributes in the taxonomy is orders of magnitude
smaller than the number of entities, and the prob-
ability of a confusion between an attribute and a
natural language phrase is very low, so we choose
to rely on simple string matching to label the at-
tributes, once the entities are labeled in the query.

To illustrate this process, consider the query
“could you play the xmas song little snowflake”.
Our method finds three matches with the cata-
log of entities: “could you”, “xmas” and “little
snowflake”. The first two matches belong to the
ignore-set and the third one belongs to the safe-set
(see Table 1). Since no matched entity is classified
in the unsure-set, the query is not discarded. The
words in the query corresponding to the entity in
the safe-set “little snowflake” are labeled as an en-
tity (specifically a music track); the word “xmas”
belongs to our taxonomy (under the “theme” cate-
gory) and, since it does not overlap with any entity
annotation, is labeled as an attribute (specifically a
theme), see the final annotation in Figure 1.

2.2 Pattern Filtering via Human Curation
2.2.1 Pattern Extraction
For each heuristically labeled query, we extract
the corresponding pattern by substituting all the at-
tributes and entities in the query with a placeholder
that is assigned to its corresponding class. For
example, the pattern corresponding to the query
in Figure 1 is “could you play the [theme] song
[track]”, being [theme] and [track] the placeholders
of any theme attribute and any track name. Follow-
ing this process, we first extract the patterns of all
queries annotated by the heuristic labeling stage,
and then group queries belonging to the same pat-
tern. For example, the query “could you play the
Halloween song I want candy” belongs to the same
pattern of the query in Figure 1.

2.2.2 Human Filtering
After pattern extraction, a filtering process is ap-
plied, as follows. Given the set of extracted pat-
terns, we identify the vocabulary of words present
in those patterns, and compute their respective fre-
quency in the pattern corpus. This list of words is
presented to a human curator who –starting from
the most frequent words to the less frequent ones–

Figure 1: Example query

must identify words that should not be part of a
pattern, and discard them from the vocabulary. Op-
tionally, if the vocabulary of words is very large,
the curator can also select a frequency threshold
below which all words are discarded.

From the full set of extracted patterns, we then
keep only those patterns for which all words are
included in the cleaned-up vocabulary, and discard
the remaining patterns. Finally, all queries from the
remaining patterns will form the final set of filtered
queries.

This process helps us to avoid labeling errors
made by the heuristic labeling step, which can be
caused either by limitations of the method itself,
inconsistent queries made by users, ASR errors,
multilingual queries or entities not present in our
catalog. Removing queries with wrong labels is
fundamental to avoid noisy patterns and have a
clean training dataset. Take for example the query
“can you play la modelo by osona.” The extracted
pattern is “can you play [track] by osona”. The
word “osona” is not in our catalog of entities (there-
fore not labeled as an artist). It also very rarely
appears in the patterns. This word, and respective
pattern, are therefore discarded. Note that artist
“Ozuna” is in our catalog of entities. In this particu-
lar example, an error was probably introduced by
the ASR system.

3 Experimental Setup

We evaluate different quantities of weakly-
supervised labeled queries as training data for slot
tagging models, from a few thousands up to mil-
lions, on a sample of actual voice traffic collected
from our application. With the goal of showing
the potential of weakly-annotated training data, we
compare it to models trained on a dataset of human-
annotated queries and different synthetically gener-
ated datasets. All datasets are described in Table 2.

3.1 Manual and Synthetic Baselines
We asked two expert human annotators to annotate
a set of 7000 randomly selected queries from our
logs. They also had to discard all nonsense queries
from the original set (e.g., incomplete queries, un-
related queries, incomprehensible ASR transcrip-
tions). We kept only the non-discarded queries
having complete agreement between annotators.

52

Eventually, we obtained a set of 5000 manually
annotated queries. We used 70% of those for the
training of a slot tagging model which serves as our
first baseline (MAN). Then, we used 10% as our
validation set in all the approaches and baselines.
The remaining 20% (i.e., the test set) was used
to evaluate the performance of all trained models.
We used Sentence Error Rate (SER), i.e. the ratio
of queries with at least one slot classification error
over all queries, as our evaluation metric. For space
reasons we do not report slot-level metrics such F1
score, which showed strong correlation with SER
in our experiments.

We generated 4 additional baselines using syn-
thetic query generation to enhance the training set
(SYN). Synthetic queries have shown useful for
training slot tagging models in low resources sce-
narios (Goyal et al., 2018), providing the possibility
of introducing novel patterns, attributes or entities
in the training data. For our experiments, we started
from the patterns extracted using the procedure
described in Section 2.2.1 over the manual anno-
tated queries from the training set. Every pattern is
filled several times using the entities and attributes
available in our catalog and in the taxonomy.4 We
generated 4 different synthetic datasets of different
sizes, called respectively SYNS , SYNM , SYNL

and SYNXL in Table 2.

3.2 Weakly-Supervised Datasets

We compared the baseline annotations against four
different weakly-supervised training sets generated
using our methodology. We applied the heuristic la-
beling function (Section 2.1.2) on four random sam-
ples from our query logs, respectively containing
100k, 1M, 10M and 100M unlabeled queries. The
threshold hyper-parameters τ and ε were tuned on
the validation set. These datasets are respectively
called WSS , WSM , WSL and WSXL in Table 2
and have the same size of the synthetic datasets
described in the previous section.

Finally, we generated the WS(F) dataset with hu-
man filtering (see Section 2.2) on the same dataset
with 100M unlabeled queries used to generate
WSXL. Notice that, because of human filtering,
the resulting dataset WS(F) has a smaller number
of queries than WSL.

4Entities and attributes were sampled proportionally to
their intrinsic popularity.

3.3 Model architecture

In order to provide a fair comparison between the
several procedures to generate training data, we
trained the same architecture using the same proce-
dure for all datasets.

We used a single layer BiLSTM-CRF network
with 100 hidden units and pre-trained word embed-
dings of size 250 (Reimers and Gurevych, 2017).
We used a concatenation of FastText (Mikolov
et al., 2018) and Word2Vec (Mikolov et al., 2013)
word embeddings trained on an internal corpus of
artist biographies. The word embeddings were kept
fixed during training to reduce the risk of undesired
semantic shifts.

Each instance of the model was trained using
ADAM (Kingma and Ba, 2015) with batch size
100 and dropout 0.2 for a maximum of 100k iter-
ations. The initial learning rate was set to 0.001
and damped by factor 0.5 every 7.5k iterations. We
used early-stopping to terminate the training when-
ever the SER on the validation set did not improve
for at least 2.5k consecutive iterations. The ex-
perimentation was run using TensorFlow (Abadi
et al., 2016) and follows closely that of (Reimers
and Gurevych, 2017).

4 Results and Discussion

The test set presents a representative sample of the
queries that are effectively asked by users using our
voice assistant and hence provide valuable insights
of how the system will likely perform online. The
SER obtained by the BiLSTM-CRF model trained
on each of the training datasets is shown in Table 2.

We can immediately notice that the MAN base-
line is outperformed by all the SYN, WS and
WS(F) variants that we tested. The improvement
brought by weak supervision over the baseline
grows noticeably with size. When training using
small datasets, SYNS outperforms MAN and WSS .
However, the SER of models trained on SYN data
increases with training set size. We hypothesize
this behavior to be due to an amplification of the
bias coming from the relatively small amount of
patterns used in data generation. Indeed, in our
experimentation setup, we are focusing on a rela-
tively small amount of human-labeled queries. One
way of overcoming this issue would be to add more
hand-curated queries or patterns –with the corre-
sponding implications in terms of cost and time.
Further, research should be also be dedicated to
evaluate different ways to generate synthetic data.

53

Training
Dataset

Description Label # patterns # words # queries Test SER

MAN manually annotated queries MAN - - 5k 31.64
SYN synthetically generated queries SYNS 1k 630 33k 25.11

SYNM 1k 630 180k 26.75
SYNL 1k 630 875k 29.65
SYNXL 1k 630 3.5M 29.19

WS weakly-supervised annotation WSS 8k 732 33k 29.83
WSM 38k 2,105 180k 24.93
WSL 180k 8,785 875k 23.03
WSXL 805k 33,984 3.5M 21.94

WS(F) weakly-supervised annotation +
human filtering

WS(F) 101k 468 2.5M 13.58

Table 2: Different configurations of training datasets used in the experiments and respective performances as
evaluated by SER on the test set (smaller is better). We report the numbers of distinct patterns and words in the
patterns for the synthetic and weakly-supervised datasets, and the total number of training queries for every dataset.
Baselines are in italic. The best test SER overall is highlighted in bold.

In opposition, the weakly-supervised WS
datasets are able to feed the network with a set
of query patterns and annotations whose variety
naturally grows with size. This characteristic turns
out to be extremely beneficial, as evidenced by
the incremental reduction in SER with dataset size.
When considering the largest datasets, the models
trained on the WSXL dataset show a reduction in
SER of 9.7 w.r.t. the MAN baseline, 7.25 w.r.t. the
SYNXL dataset of the same size and of 3.17 w.r.t.
the best SYN dataset (SYNS).

We can however notice that the reduction in SER
slows down as size grows. One possible explana-
tion can be that the inherent noise in the data. As
shown in Table 2, the size of the vocabulary of
pattern words drastically increases with the query
sample size, implying more possibilities of having
wrongly annotated training queries. Once conver-
gence level is reached, manual curation is needed
to further improve the peformance of the model.
The WS(F) dataset showcases the improvements
that can be achieved enhancing the WSXL dataset
with a reasonable manual curation effort, removing
noise from the vocabulary of pattern words, and
therefore, from the training data. This simple but
effective curation step results in a reduction of 8.36
in SER w.r.t. the model trained on WSXL dataset
and a reduction of 18.06 w.r.t. the MAN baseline.

Moreover, the curation task followed to create
WS(F) is much faster than query annotation, not
only because the number of words to review is
smaller than the number of raw queries, but also be-
cause the task itself is easier. We measured that an
expert trained annotator is able to manually anno-
tate approximately 100 queries per hour, whereas

the pattern vocabulary can be curated following
our methodology in less than 4 hours. Therefore,
annotating 7000 queries by two annotators took ap-
proximately 140 hours, which is orders of magni-
tude more than the time needed for the vocabulary
curation proposed here.

5 Summary and Future Work

This paper presents a methodology to create train-
ing data for training slot tagging models inspired
by weak supervision. The methodology consists of
two steps. First, a simple heuristic query labeling
process is applied, that leverages corpus statistics
obtained from query logs and comparing them with
entity popularity metrics. Second, a pattern extrac-
tion and filtering process is applied to the labeled
queries, that makes use of human curation.

Our experimental evaluation clearly shows the
value of weak supervision for building training
datasets to bootstrap slot tagging models. We
show that training with large amounts of weakly-
supervised data generated from unlabeled voice
queries using the proposed methodology outper-
forms smaller yet reasonable amounts of hand-
annotated data. It also outperforms training with
large amounts of synthetic data generated from the
same hand-annotated data. We showed that the pro-
posed methodology can be combined with a much
less time-consuming word vocabulary curation task
with very significant reduction in the end model
Sentence Error Rate.

Future work should include experimenting with
other manual curation tasks, such as manual clean-
ing of remaining patterns after vocabulary curation,
which could help to increase even more model accu-

54

racy with a task still much faster than manual anno-
tation of queries. In addition, further study should
focus on how synthetic generated queries can com-
plement weakly-supervised datasets, which may
help not only in terms of accuracy, but also to
assess the quality of labeling of less frequently
queried entities or attributes. Moreover, other
model architectures could be experimented with,
such as pre-trained language models. Finally, ex-
periments could evaluate the applicability of our
weakly-supervised methodology to other domains
with very large catalogs of entities.

References

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale
machine learning. In 12th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 16), pages 265–283.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. BERT
for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909.

Anuj Kumar Goyal, Angeliki Metallinou, and Spyros
Matsoukas. 2018. Fast and scalable expansion of
natural language understanding functionality for in-
telligent agents. In Proceedings of the 2018 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Volume 3 (Industry Papers),
pages 145–152, New Orleans - Louisiana. Associa-
tion for Computational Linguistics.

Ido Guy. 2018. The characteristics of voice search:
Comparing spoken with typed-in mobile web search
queries. ACM Trans. Inf. Syst., 36(3):30:1–30:28.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Pierre Lison, Aliaksandr Hubin, Jeremy Barnes, and
Samia Touileb. 2020. Named entity recognition
without labelled data: A weak supervision approach.
arXiv preprint arXiv:2004.14723.

Neil Mallinar, Abhishek Shah, Rajendra Ugrani, Ayush
Gupta, Manikandan Gurusankar, Tin Kam Ho,
Q Vera Liao, Yunfeng Zhang, Rachel KE Bellamy,
Robert Yates, et al. 2019. Bootstrapping conversa-
tional agents with weak supervision. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 33, pages 9528–9533.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In 1st International Con-
ference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
1003–1011.

Vito Claudio Ostuni. 2019. “Just Play Something Awe-
some”: The personalization powering voice interac-
tions at Pandora. In Proceedings of the 13th ACM
Conference on Recommender Systems, RecSys ’19,
page 523, New York, NY, USA. Association for
Computing Machinery.

Jinfeng Rao, Ferhan Ture, and Jimmy Lin. 2018. Multi-
task learning with neural networks for voice query
understanding on an entertainment platform. In Pro-
ceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery Data Mining,
KDD ’18, page 636–645, New York, NY, USA. As-
sociation for Computing Machinery.

Alexander Ratner, Stephen H. Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. Proc. VLDB Endow., 11(3):269–282.

Nils Reimers and Iryna Gurevych. 2017. Optimal hy-
perparameters for deep lstm-networks for sequence
labeling tasks. CoRR, abs/1707.06799.

Mihai Surdeanu, Sonal Gupta, John Bauer, David Mc-
Closky, Angel X Chang, Valentin I Spitkovsky, and
Christopher D Manning. 2011. Stanford’s distantly-
supervised slot-filling system.

Sergey Volokhin and Eugene Agichtein. 2018. To-
wards intent-aware contextual music recommenda-
tion: Initial experiments. In The 41st International
ACM SIGIR Conference on Research & Develop-
ment in Information Retrieval, pages 1045–1048.

55

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 56–62
June 6–11, 2021. ©2021 Association for Computational Linguistics

Continuous Model Improvement for Language Understanding with
Machine Translation

Abdalghani Abujabal
Amazon Alexa AI, Germany
abujabaa@amazon.de

Claudio Delli Bovi
Amazon Alexa AI, Germany
boviclau@amazon.de

Sungho Ryu
Amazon Alexa AI, Germany

shryu@amazon.de

Turan Gojayev
Amazon Alexa AI, Germany
tgojayev@amazon.de

Yannick Versley
Amazon Alexa AI, Germany
yversley@amazon.de

Fabian Triefenbach
Amazon Alexa AI, Germany
triefen@amazon.de

Abstract

Scaling conversational personal assistants to a
multitude of languages puts high demands on
collecting and labelling data, a setting in which
cross-lingual learning techniques can help to
reconcile the need for well-performing natural
language understanding (NLU) with a desider-
atum to support many languages without incur-
ring unacceptable cost. In this paper, we show
that automatically annotating unlabeled utter-
ances using machine translation in an offline
fashion and adding them to the training data
can improve performance for existing NLU
features for low-resource languages, where a
straightforward translate-test approach as con-
sidered in existing literature would fail the la-
tency requirements of a live environment. We
demonstrate the effectiveness of our method
with intrinsic and extrinsic evaluation using a
real-world commercial dialog system in Ger-
man. We show that 56% of the resulting au-
tomatically labeled utterances had a perfect
match with ground-truth labels. Moreover, we
see significant performance improvements in
an extrinsic evaluation settings when manually
labeled data is available in small quantities.

1 Introduction

1.1 Motivation and Background

Voice-controlled personal assistants such as Ama-
zon Alexa or Google Assistant have scaled to a
large number of languages and see a constant in-
flux of new functionalities that are exposed via
the natural language interface. As a result, they
have seen much interest around the development of
multi-lingual and cross-lingual learning techniques
that take this setting into consideration.

Beyond a setting where no target language
data is available (language expansion, or cross-
lingual bootstrapping), ongoing development also
involves use cases where new functionalities from
a resource-rich language (typically English) as the

ApplianceOffIntent:

Turn offUtterance: in the

Slots: Device LocationO

light hallway

O

the

ActionTrigger O

Figure 1: An example NLU annotated utterance. Non-
slots are labeled with O (Other).

source language have to be integrated into exist-
ing training sets in the target language (feature
expansion), or even settings where target language
training data of current functionalities exists in
small quantities, but accuracy falls short of its
aim and an influx of unlabeled data in the tar-
get language exists and could be used for contin-
uous model improvement (feature improvement).
In this work, we consider feature improvement use
case for natural language understanding (NLU)
in low-resource languages. We define the task
of NLU as the combination of: (1) Intent Clas-
sification (IC), which classifies an utterance into
a fixed set of intent labels (e.g. ApplianceOff),
and (2) Slot Labeling, which classifies slot val-
ues into a predefined set of slot types (e.g.
SongName) (Weld et al., 2021). For example, as
shown in Figure 1, a valid NLU annotation for the
English utterance “turn off the light in the hallway”
would be: ApplianceOff: (turn, ActionTrigger),
(off, ActionTrigger), (light, Device), (hallway,
Location), where ApplianceOff is the intent la-
bel, and ActionTrigger, Device and Location

are the slot types. We leverage machine transla-
tion to automatically annotate unlabeled utterances
with intent and slot labels. Collecting and labeling
data for NLU is an expensive and time-consuming
process, hardly scalable to an increasing number of
languages without automation.

1.2 State of the Art and its Limitations

Many works on academic datasets naturally address
the language expansion setting, including zero-shot

56

learning results, or involve a multilingual learning
approach where similar amounts of training data for
each of the languages are available from the start.
However, we want to argue that the setting where
target-language data is available but considerably
smaller is particularly relevant in practice. Such an
imbalance is often due cost considerations (manual
annotation is expensive).

A first line of work on cross-lingual bootstrap-
ping has combined annotation transfer with (to
varying extent) either machine translation (MT)
or parallel corpora. Generally, MT has been har-
nessed either in translate-train or translate-test set-
tings. While in translate-train, source training data
e.g., in English is translated into the target lan-
guage (Gaspers et al., 2018), in translate-test, in-
coming unlabeled utterances in the target language
are translated into the source language and then
source NLU model is used to collect labels. For
the feature improvement use case, on one hand,
translate-train ignores the influx of unlabeled ut-
terances in the target language. On the other hand,
a translate-test approach is not directly applica-
ble to production use in a conversational agent be-
cause a system with MT in the loop would fail
the latency requirements for live use. As a con-
sequence, we propose to use the label projection
from the source language as a way to get more reli-
able labels than the existing target language model
on less confident-cases, and augmenting the tar-
get language training data with these automatically
labeled examples.

In sentiment classification, Mihalcea et al. (2007)
compare translation of a lexicon with translating
the training data (translate-train) or translating
the data to be annotated (translate-test) for cross-
lingual bootstrapping of sentiment classification.
Akbik et al. (2015) investigate cross-lingual boot-
strapping in the context of Semantic Role Labeling,
where a parallel corpus is first annotated with En-
glish labels which are then projected and filtered to
gain a target language training corpus. In dialogue
systems and conversational agent training, He et
al. (2013) show that adding some MT distortion
to the source-language training data in a translate-
test setting can be beneficial. Gaspers et al. (2018)
show that a translate-train approach that uses ma-
chine translation in conjunction with filtering based
on MT confidence can be successful in achieving
a smaller error rate, with a combination of trans-
lated and target-language manually annotated data

achieving the best possible error rate.
A second line of work concerns the use of

shared representations across languages to cross-
lingual transfer learning or learning of multilin-
gual representations, as demonstrated by Upad-
hyay et al. (2018) who compare translate-train
and translate-test approaches with zero-shot and
minimally supervised multilingual approaches. It
shows that the helpful bias from shared representa-
tions gives a boost in the minimally supervised
setting but is especially helpful when very few
target-language examples are available. Johnson
et al. (2019) and Do et al. (2019) show that these
effects generally also hold at a larger scale, and
that training data selection also helps when transfer
learning is used instead of machine translation in a
translate-train setting.

Finally, and partially relevant for feature im-
provement when a smaller-than-source amount of
target data is available, we have approaches that
perform data augmentation on the smaller target-
language training data: Malandrakis et al. (2019),
and Jolly et al. (2020) explore the use of sentence-
to-sentence paraphrasing and interpretation-to-
sentence generation approaches to generate labeled
paraphrases of conversational NLU training data.

1.3 Approach and Contribution

In this paper we investigate whether a translate-
test approach of doing machine translation and an-
notation projection of target-language utterances
with labels from the more resource-rich source lan-
guage can be used in a feature improvement setting,
where target-language training data is available but
in smaller quantities than in the source language.

Our approach, depicted in Figure 2, makes use
of MT in conjunction with an NLU model already
trained for the source language to annotate unla-
beled utterances. We assume that this reference
NLU model was previously trained on the fea-
tures of interest for the target language. Similar
to Gaspers et al. (2018), we also assume access to
an MT system trained on general-purpose parallel
data, but instead of relying on MT from reference to
target language, (forward MT), we consider MT in
the opposite direction i.e. from target to reference
language (backward MT). Our goal is to cheaply
improve NLU features using readily available MT
and NLU models. For example, we do not require
in-domain MT model.

Experimentally, we considered a scenario with
57

DE -> EN MT System

Intent: ApplianceOff
DE Annotation: Mach|ActionTrigger das|Other licht|Device
im|Other flur|Location aus|ActionTrigger

Label Projection

Intent: ApplianceOff
EN Annotation: Turn|ActionTrigger off|ActionTrigger
the|Other light|Device in|Other the|Other hallway|Location

DE: Mach das Licht im Flur aus

EN: Turn off the light in the hallway

EN NLU System

Figure 2: Given an unlabeled utterance in some target language e.g., German, our method translates it into a
reference language e.g., English using MT, labels it with intent and slot types using an (EN) NLU model, and
projects the labels back onto the unlabeled utterance.

English (EN) as reference language and German
(DE) as target language, and carried out both an
intrinsic and an extrinsic evaluation, where we se-
lected a set of five diverse NLU features to improve.
We compared against a baseline approach that gen-
erates synthetic training examples directly in the
target language.

We demonstrate the effectiveness of our method
using a real-world commercial dialog system in
German. We show that 56% of the resulting auto-
matically labeled utterances had a perfect match
with ground-truth labels. We also show that using
our method leads to 90% reduction in manually
labeled data, while achieving better performance.
In the remainder of the paper, Section 2 contains
details on the methods used, whereas Section 3 de-
scribes our experimental setup. Section 4 discusses
the results of our experiments.

2 Method

Given unlabeled utterances in a target language
e.g. German (DE), for example “mach das licht
im flur aus”, our goal is to automatically annotate
them with an intent label, and slot types for every
token, as shown in the example in Figure 1. To this
end, we consider the pipeline shown in Figure 2,
which consists of three components: (1) Machine
translation system, (2) NLU model, and (3) Label
projection model. First, the MT system translates
the unlabeled utterances into a reference language
e.g. English. For the German utterance above,
a valid English translation would be “turn off
the light in the hallway”. Note that we do not
make any assumption on the architecture of the
MT system, be it statistical or neural, or on the

way it is trained. We assume, however, a label
projection model trained on the same data as
the MT system. In a standard MT bootstrapping
setting (Gaspers et al., 2018) this is usually a
word alignment model, either embedded in the
MT system itself (as in phrase-based MT we
used in Section 3) or trained as a stand-alone
component. After translation, we use an English
NLU model on the translated utterances in order
to get predictions for the intent label and the
slot types.1 For the example above, the result
of this step would be the following annotated
utterance: [ApplianceOff turn/ActionTrigger
off /ActionTrigger the/Other light/Device
in/Other the/Other hallway/Location]. Finally,
we use the word alignment model to project the
slot types from the (EN) labeled utterances onto
the unlabeled (DE) utterances. For example, if
the two words ‘light’ and ‘licht’ are aligned, the
slot label of ‘light’ is copied over onto ‘licht’.
In our experiments (Section 3), we make use of
alignment models trained for the MT system to
avoid building standalone alignment models. For
the intent label, we simply copy it over from the
English labeled utterance to the German unlabeled
one.

For reasons of simplicity and better interpretabil-
ity, we used statistical machine translation (SMT)
as well as linear models (CRF and maximum en-
tropy) for the NLU component, however we believe
that the improvements gained with this method
would carry over to a case where neural MT and
transformer-based NLU components are used.

1Note that this NLU model is pre-trained independently
and it is completely decoupled from our pipeline.

58

3 Experimental Setup

In our experiments, we translate target-language
(German) utterances from live conversational agent
usage using an existing MT system (§3.1), tag these
using the English NLU system (§3.2) and project
the labels back onto the target language using word
alignments. We report results using first intrinsic
evaluation (How well does the translate-test ap-
proach perform in labeling the utterances?) and
then a full evaluation in a feature improvement set-
ting, and we evaluate these using a Semantic Error
Rate metric (SemER, §3.3).

3.1 MT System

We used an internal phrase-based MT system
trained with Moses (Koehn et al., 2007). The sys-
tem comprises a general-purpose MT model trained
on DE-EN parallel data. We plan to investigate the
usage of neural machine translation (NMT) mod-
els in the future. To better match the spoken user
utterances of an NLU system, training data of the
MT system is converted into spoken form using an
internal written-to-spoken converter. For example,

“1994” is converted to “nineteen ninety four”. The
MT model was fine-tuned on 4K in-domain par-
allel utterances. To project slot type labels from
the machine-translated English utterance (labeled
by the English NLU model) to the unlabeled Ger-
man utterance, we make use of the word alignment
model trained for the MT system (Dyer et al., 2013).
We opted for using a general-purpose MT model
since it is readily available, and hence cheaper (as
opposed to building in-domain MT model). Also,
using phrase-based MT enabled us to leverage the
word alignment model trained for MT for our label
projection step.

3.2 NLU System

We used Conditional Random Fields (Lafferty et al.,
2001) for slot labeling, and a Maximum Entropy
classifier for the IC task (Berger et al., 1996). The
English NLU system was trained on a large dataset
of NLU-annotated utterances. The training data
covers multiple domains e.g., HomeAutomation,
with a diverse set of intents and slot types, with
more than 200 intents and several hundreds of slot
types. For example, intents like PlayMusic and
slot types like City and SongName. The quality
of the reference NLU model (e.g., English) is im-
portant for our pipeline to work. Our assumption
is that English NLU models perform well, while

Feature #Auto labeled #Test utterances
utterances

DailyBriefing 21, 894 3, 530
PlayMusic 194, 180 66, 959
SendMessage 1, 690 1, 783
SmartHome 108, 210 29, 056
SetNotification 26, 074 9, 616

Table 1: The size of automatically labeled and test data
for each feature.

NLU models for other languages still suffer (most
industrial NLP applications support English pretty
well).

3.3 SemER Evaluation Metric

Following Gaspers et al. (2018) we report the Se-
mantic Error Rate (SemER), which is computed as
follows:

SemER =
#(slots+ intent errors)

#slots in reference+ 1

Errors correspond to the number of insertions, dele-
tions and substitutions for slots and the intent in a
recognized utterance.

Note that as the task of NLU is our main focus,
we report evaluation metrics on the NLU rather
intrinsically evaluating each component of our ap-
proach e.g., the MT model. We plan to invest in
this direction in the future. Moreover, while in-
trinsic evaluation measures of individual compo-
nents would assess their quality e.g., BLEU for MT,
there is no correlation between these measures and
NLU metrics. In other words, having higher BLEU
scores does not necessarily mean lower SemER.

3.4 Utterance Dataset

To simulate a continuous model improvement sce-
nario for DE, we selected a diverse set of features
that belong to different domains:

1. DailyBriefing, which enables users to play
daily briefing e.g., news,

2. PlayMusic, which enables playing music,

3. SendMessage, which allows users to exchange
messages,

4. SmartHome, which enables users to control
home appliances,

5. SetNotification, which enables users to set no-
tifications and reminders.

59

Model Size of training data SemER (%)
DE 6.4M 41.4
DE_0.5 3.7M 37.4
DE_0.7 3.2M 37.8
DE_grammars 1.0M 57.0

Table 2: The effect of filtering the data based on NLU
confidence. Using 0.5 achieved best results.

Features span across multiple intents with differ-
ent slot labels. For example, SmartHome supports
the intents of turning an appliance on and off, and
supports the slot lables of appliance names and
their locations. We assume that the five features
have been just launched either using grammars,
very little labeled data or using the approach of
Gaspers et al. (2018). Our goal is to continuously
improve performance on the five features using our
method.

For each feature, we randomly selected 10,000
manually labeled utterances from its training data.
Next, we generated five splits out of the 10,000
utterances: 100, 500, 1000, 5000 and 10,000. Each
split corresponds to the size of data, for example,
the split of 100 indicates that 100 manually labeled
utterances are used. For each split, we trained two
DE NLU models:

• Baseline model, which contains only manu-
ally labeled feature data, and

• Combined model, which contains both man-
ually and automatically labeled feature data.

Note that the training data of the NLU models con-
tain data for other features that were launched al-
ready. We report absolute SemER difference be-
tween the two models.

We collected 3,651,039 unlabeled DE utterances
in order to run the MT-based automatic annotation.
Table 1 shows the size of the automatically labeled
data for each feature. We also collected test data
for each feature (Table 1).

4 Results

4.1 Accuracy of Automatic Labeling
To intrinsically measure the accuracy of our
method, we collected 1.2 million labeled utterances
from features already launched in a real-world com-
mercial dialog system in German, and simulated
a scenario where the corresponding labels were
not available. We then used our method to label
them: we translated them into English, ran the

English NLU model on them, and projected back
all the predicted labels. We observed that 56.35%
of the resulting automatically labeled utterances
had a perfect match with ground-truth labels (i.e.,
they agreed on both the intent label and all the slot
types), while 81.87% of them agreed on the intent
only, with at least one unmatched slot type.

4.2 Effect of English NLU Confidence
We studied the effect of the English NLU model’s
prediction confidence. We collected 6.4M unla-
beled German utterances and then used our method
to annotate them. Each prediction (intent and slot
labels) is associated with a score ∈ [0, 1] that re-
flects the confidence of the English NLU model
about the prediction. We then trained three DE
NLU models: (1) DE, where confidence equals
0.0 i.e., 6.4M utterances are kept, (2) DE_0.5, and
(3) DE_0.7, where utterances whose confidence
score is greater than 0.5 and 0.7 are kept, respec-
tively. The three models were tested on the same
test set with 120K German utterances that were
manually transcribed and annotated with intents
and slot types. The test set spans multiple domains
with different intents and slot types. As shown in
Table 2, DE_0.5 outperformed other baselines, in-
dicating the importance of using NLU confidence
scores. We attribute this to the fact that some trans-
lations are malformed, and hence incorrectly la-
beled by the English NLU model. When incorrect
labels are propagated to the DE NLU model, they
negatively impact performance. We set the EN
NLU model’s confidence score to 0.5 for the sub-
sequent experiments.

We also trained an NLU model using ran-
domly sampled utterances from manually curated
grammars (DE_grammars), which achieved 57.0
SemER and was outperformed by DE_0.5, with
19.6 absolute SemER difference.

4.3 Feature Improvement
Table 3 shows the results on the five features,
showing the SemER difference between a base-
line (trained with the given number of hand-
annotated utterances) and a version with our pro-
posed method, combining the hand-annotated ut-
terances with additional data which has been auto-
matically labeled.

Combining manually and automatically labeled
data improves performance across features and
splits. The greatest gains are achieved for smaller
splits i.e., 100 and 500, which suggest that our

60

Split DailyBriefing PlayMusic SendMessage SmartHome SetNotification
100 −38.65 −26.98 −13.25 −74.34 −19.42
500 −10.72 −20.17 −1.47 −19.22 −9.97

1000 −7.24 −14.96 −0.88 −8.11 −7.5
5000 −1.69 −0.97 −0.21 +3.71 −0.18

10,000 −0.63 +2.72 −0.37 +3.12 −0.06

Table 3: SemER difference between the baseline and the combined model on the five features (lower is better).
Across features, using automatically labeled data improved performance.

method is especially effective for an early fea-
ture improvement. For example, the difference
in SemER between the baseline and the combined
model is −38.65 on DailyBriefing at 100 split. For
PlayMusic, SmartHome and SetNotification, the
SemER value of the Combined model at 100 split
is better than the one achieved by the baseline at
1000 split i.e., a reduction in labeled data of 90%.

As the size of manually labeled data increases
(i.e., larger splits), the positive effect of the auto-
matically labeled data decreases. For example, on
DailyBriefing, the SemER difference between the
baseline and Combined models is −0.63 absolute
at 10,000 split. For the largest split at 10,000, the
automatically labeled data hurts the performance
for PlayMusic and SmartHome, with SemER dif-
ference of +2.72 and +3.12, respectively. This is
largely due to cumulated errors in both the MT sys-
tem and the label projection module, which inject
noise in the downstream NLU task. To mitigate
this, we are currently investigating ways to automat-
ically combine training data with varying quality
for NLU. We also carried out similar experiments
to improve the same features in French and so far
observed the same trends. We are planning to ex-
pand our evaluation to other languages.

5 Conclusion

This paper presents a new method to automatically
annotate utterances with intents and slot types, lead-
ing to faster and cheaper early improvement of
features. Our method harnesses existing MT, En-
glish NLU and word alignment models which have
been trained on general-domain data but adapted
to our specific use case through preprocessing and
fine-tuning. Intrinsic evaluation results show that a
translate-test approach is a viable way to get data
labels in a way that is independent from the target
language production system, whereas our extrinsic
evaluation results suggest that the approach is es-

pecially useful when a given feature has not seen
extensive use yet.

We plan to address in future work whether cer-
tain properties of a given feature can predict the
viability of a translate-test approach in general and
data augmentation with translated examples in par-
ticular, and whether the use of neural machine trans-
lation models would suggest modifications to this
approach, as translations are often better but align-
ment results can be less clear-cut.

References
Alan Akbik, Laura Chiticariu, Marina Danilevsky, Yun-

yao Li, Shivakumar Vaithyanathan, and Huaiyu Zhu.
2015. Generating high quality proposition Banks for
multilingual semantic role labeling. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 397–407, Beijing,
China. Association for Computational Linguistics.

Adam L. Berger, Stephen Della Pietra, and Vincent
J. Della Pietra. 1996. A maximum entropy approach
to natural language processing. Computational Lin-
guistics, 22(1):39–71.

Quynh Ngoc Thi Do and Judith Gaspers. 2019. Cross-
lingual transfer learning with data selection for large-
scale spoken language understanding. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 1455–1460. Association
for Computational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM model 2. In Human Language Technolo-
gies: Conference of the North American Chapter of
the Association of Computational Linguistics, Pro-
ceedings, June 9-14, 2013, Westin Peachtree Plaza
Hotel, Atlanta, Georgia, USA, pages 644–648. The
Association for Computational Linguistics.

61

Judith Gaspers, Penny Karanasou, and Rajen Chatter-
jee. 2018. Selecting machine-translated data for
quick bootstrapping of a natural language under-
standing system. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2018, New Or-
leans, Louisiana, USA, June 1-6, 2018, Volume 3
(Industry Papers), pages 137–144. Association for
Computational Linguistics.

X. He, L. Deng, D. Hakkani-Tur, and G. Tur. 2013.
Multi-style adaptive training for robust cross-lingual
spoken language understanding. In 2013 IEEE Inter-
national Conference on Acoustics, Speech and Sig-
nal Processing, pages 8342–8346.

Andrew Johnson, Penny Karanasou, Judith Gaspers,
and Dietrich Klakow. 2019. Cross-lingual transfer
learning for japanese named entity recognition. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-
7, 2019, Volume 2 (Industry Papers), pages 182–189.
Association for Computational Linguistics.

Shailza Jolly, Tobias Falke, Caglar Tirkaz, and Daniil
Sorokin. 2020. Data-efficient paraphrase generation
to bootstrap intent classification and slot labeling for
new features in task-oriented dialog systems. In Pro-
ceedings of the 28th International Conference on
Computational Linguistics: Industry Track.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
ACL 2007, Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguistics,
June 23-30, 2007, Prague, Czech Republic. The As-
sociation for Computational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML
2001), Williams College, Williamstown, MA, USA,
June 28 - July 1, 2001, pages 282–289. Morgan
Kaufmann.

Nikolaos Malandrakis, Minmin Shen, Anuj Kumar
Goyal, Shuyang Gao, Abhishek Sethi, and Ange-
liki Metallinou. 2019. Controlled text generation for
data augmentation in intelligent artificial agents. In
Proceedings of the 3rd Workshop on Neural Genera-
tion and Translation@EMNLP-IJCNLP 2019, Hong
Kong, November 4, 2019, pages 90–98. Association
for Computational Linguistics.

Rada Mihalcea, Carmen Banea, and Janyce Wiebe.
2007. Learning multilingual subjective language via

cross-lingual projections. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics, pages 976–983, Prague, Czech Repub-
lic. Association for Computational Linguistics.

Shyam Upadhyay, Manaal Faruqui, Gökhan Tür, Dilek
Hakkani-Tür, and Larry P. Heck. 2018. (almost)
zero-shot cross-lingual spoken language understand-
ing. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP
2018, Calgary, AB, Canada, April 15-20, 2018,
pages 6034–6038. IEEE.

Henry Weld, Xiaoqi Huang, Siqi Long, Josiah Poon,
and Soyeon Caren Han. 2021. A survey of joint in-
tent detection and slot-filling models in natural lan-
guage understanding. CoRR, abs/2101.08091.

62

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 63–71
June 6–11, 2021. ©2021 Association for Computational Linguistics

A hybrid approach to scalable and robust spoken language understanding
in enterprise virtual agents

Ryan Price, Mahnoosh Mehrabani, Narendra Gupta, Yeon-Jun Kim
Shahab Jalalvand, Minhua Chen, Yanjie Zhao, Srinivas Bangalore

Interactions, LLC

Abstract
Spoken language understanding (SLU) extracts
the intended meaning from a user utterance and
is a critical component of conversational virtual
agents. In enterprise virtual agents (EVAs), lan-
guage understanding is substantially challeng-
ing. First, the users are infrequent callers who
are unfamiliar with the expectations of a pre-
designed conversation flow. Second, the users
are paying customers of an enterprise who de-
mand a reliable, consistent and efficient user
experience when resolving their issues. In this
work, we describe a general and robust frame-
work for intent and entity extraction utilizing a
hybrid of statistical and rule-based approaches.
Our framework includes confidence modeling
that incorporates information from all compo-
nents in the SLU pipeline, a critical addition
for EVAs to ensure accuracy. Our focus is on
creating accurate and scalable SLU that can be
deployed rapidly for a large class of EVA appli-
cations with little need for human intervention.

1 Introduction
Advances in speech recognition in recent years have
enabled a variety of virtual agents that answer ques-
tions, execute commands and engage in task-oriented
dialogs in customer care applications. Beyond the ac-
curate transcription of the user’s speech, these virtual
agents critically rely on interpreting the user’s utter-
ance accurately. Interpretation of a user’s utterance –
spoken language understanding (SLU) is broadly char-
acterized as extracting intents – expressions that refer
to actions, and entities – expressions that refer to ob-
jects. The entity expressions are further grounded to spe-
cific objects in the domain of the dialog (eg. latest
iphone→ iphone 11) or through world knowledge
(eg. Christmas→ 12/25).

SLU has been a topic of research for the past three
decades. Public data sets like ATIS (Price, 1990),
SNIPS (Coucke et al., 2018), and recently FSC (Lu-
gosch et al., 2019) have allowed for comparing var-
ious methodologies, including many recent develop-
ments driven by deep learning (Mesnil et al., 2014; Xu
and Sarikaya, 2013; Liu and Lane, 2016; Price, 2020;
Tomashenko et al., 2019). Such data sets are also a

reasonable proxy for the intent classification and entity
extraction handled by many consumer virtual agents
(CVAs), applications that provide single shot question-
answering and command-control services through smart-
speakers or smart-home appliances. However, in con-
trast to the CVAs and the aforementioned data sets, en-
terprise virtual agents (EVAs) provide customer care
services that rely on SLU in a dialog context to extract
a diverse range of intents and entities that are specific
to that business. SLU for EVAs encompasses a wide-
ranging set of challenges. Speech recognition needs
to be robust to varying microphone characteristics, di-
verse background noises, and accents. For EVAs, the
robustness is further underscored as they are expected
to deliver a better user experience to paying customers.
Furthermore, SLU in EVAs needs to extract entities
and intents that are specific to the domain of the en-
terprise. Matching expectations of novice users with
the capabilities of SLU systems is challenging (Glass,
1999). Unlike users of CVAs, the users of EVAs are
typically non-repeat users, who are not familiar with a
particular EVA’s conversational flow, leading them to
provide unexpected and uncooperative responses to sys-
tem prompts. Accordingly, EVAs need to contend with
a larger space of alternative intents in a given dialog
state. Other factors, like changes to the system that are
dictated by business needs and continuous development
of applications for new customers for which there is
no labeled data yet, create a strong need for an SLU
framework that can scale. Finally, while deep learning
models with large modeling capacity can offer excellent
results, latency at runtime is of great concern in paid
for services like EVAs so designing towards lower com-
putational complexity may be necessary (Tyagi et al.,
2020).

To address the several challenges that relate to SLU
in EVAs, we describe a general and robust framework
for intent and entity extraction. Our primary goal is
to create accurate and scalable SLU that can be widely
deployed for a large class of EVA applications with little
need for human intervention. We focus on techniques
for the extraction and grounding of general entities (eg.
dates, names, digit sequences) that are broadly used in
SLU for EVAs, and also address the critical need for the
extracted entities and intents to be associated with confi-
dence scores that could be used by the dialog manager to

63

ASR with SLM
Audio Text

Text Classifier
Intent

Includes Entity?

Yes/No

Entity Extraction

Confidence Model

EntityYes

Classification
Score

ASR Scores

Overall Confidence

Entity Extraction Score

Figure 1: Flow diagram of the proposed pipeline. The outputs of interest for our human-in-the-loop SLU system are
intents, entities, and overall confidence score.

either reprompt or to request human assistance. A vari-
ety of design considerations are discussed with insights
drawn from real world EVA applications. We know of
few previous studies having similar aim and scope of
work as ours. Early work on industrial SLU systems
sharing the aim of scalable SLU without human inter-
vention was described in (Gupta et al., 2005), though
without confidence modeling. An SLU pipeline is also
addressed in (Coucke et al., 2018), but with design con-
siderations made for CVA-like applications running on
a device. While Gupta et al. (Gupta et al., 2019) does
recognize that the needs of EVAs are different, their
work primarily focuses on a framework for joint intent
classification and slot filling that is modularized into
different components.

This paper presents a complete study of a deployed
SLU pipeline for handling intents and entities. The
models described have been deployed in applications
for Fortune 500 companies and a variety of design con-
siderations are discussed with insights drawn from these
real world EVA applications. In particular, we focus
on improving performance on entities and intents for
several core subtasks in a goal directed conversational
system, namely date capture, number capture and name
capture. Our contributions in this paper include (a) a
unified framework for intent and entity identification
(b) a synergistic combination of the robustness of sta-
tistical entity extraction models with rule-based value
grounding (c) uncertainty modeling through confidence
scoring and rejection criteria to maximize user expe-
rience (d) application of the framework for intent and
entity extraction to new applications without the need
for annotated data.

The outline of the paper is as follows. Section 2
provides an overview of the SLU framework for intent
classification and entity extraction. Our experiments are
presented in Sections 3, 4, and 5. Finally, conclusions
and future work are given in Section 6.

2 Framework for Intent and Entity
Extraction

In this section we describe the framework for simul-
taneous intent and entity extraction with confidence
modeling. An illustration of the overall pipeline is show
in Figure 1. We introduce the main components consist-

ing of ASR, Text Classification, Entity Extraction, and
Confidence Modeling depicted in Figure 1 in Sections
2.1, 2.2, 2.3, and 2.4, respectively. More details on the
specific manifestations these components take on for a
given task are described in Sections 3, 4, and 5.

2.1 ASR

The ASR systems used in our experiments consist
of hybrid DNN acoustic models trained to predict
tied context-dependent triphone HMM states with
cross-entropy and sequential loss functions using 81-
dimensional log-spectrum features. The pronunciation
dictionaries consist of hand-crafted pronunciations for
common words and grapheme-to-phoneme generated
pronunciations for the rest.

Grammar-based language models (GLMs) can be
very accurate in scenarios where the domain is con-
strained and the structure of likely utterances is pre-
dictable. Furthermore, GLMs have the advantage of not
requiring much training data and provide recognition
and semantic interpretation together, eliminating the
need for an intent classifier and entity extractor. While
there can be some overlap in GLMs used across simi-
lar dialog states making them attractive for immediate
deployment, to really achieve peak accuracy in a non-
trivial dialog state requires manual tuning by an expert,
which is an obstacle to deploying GLMs rapidly at scale.
Although it may seem that entity capture states in a well-
designed dialog would elicit predictable user responses
making them suitable for recognition with GLMs, in
our goal-oriented dialogs deployed in EVAs we have
observed that is not always the case. Statistical lan-
guage models (SLMs) paired with intent classifiers and
entity extraction methods can outperform GLMs. There-
fore, we use SLMs built from n-grams or a hybrid LM
combining SLMs and GLMs.

2.2 Intent Classification

We employ a linear Support Vector Machine (SVM)
for intent classification, using n-gram based TF-
IDF features. Although classifiers based on deep
neural networks have gained popularity in recent
years (Kim, 2014), linear classifiers remain as strong
baselines (Wang and Manning, 2012), particularly on
short text, with their ability to efficiently handle high-

64

dimensional sparse features, and their training stability
through convex optimization.

In SLU, the outputs from ASR are inherently uncer-
tain and erroneous. For example, an utterance corre-
sponding to “I want to buy a phone” may result in mul-
tiple recognition hypotheses: (“I want to buy phone”,
“Want to buy phone”, “I want a phone”), which we call
ASR n-best. Instead of relying only on the first best
ASR hypothesis, for intent extraction we use ASR n-
best for better robustness and accuracy. There is a long
history of leveraging information beyond the ASR 1-
best for SLU in the literature (Hakkani-Tür et al., 2006;
Li et al., 2020; Henderson et al., 2012).

To incorporate the ASR n-best information we take a
sample-based approach. In this approach, we treat the
hypotheses of an utterance as independent samples (with
equal sample weights that sum to one), hence the num-
ber of samples will be larger than the number of original
utterances. We apply this sample-augmentation process
in the training phase, to account for the uncertainties in
the ASR hypotheses. While in the testing phase, we first
obtain the model scores for those independent samples,
and then aggregate scores from the same utterance to
yield the final scores for decision making. We use equal
sample weights for hypotheses in the n-best because
the weighting schemes we have tried based on ASR
confidence for the entries in the n-best was not found to
improve classification accuracy. Additionally, we found
that an n-best list of three was sufficient for the tasks
studied in this paper and increasing the number further
just adds additional training time. The number of intents
modeled by the text classifiers for the date, number, and
name capture tasks we study ranges from approximately
20 to 40 different intents.

2.3 Entity Extraction

While increasingly accurate sequence tagging models
for named entity recognition (NER) have been devel-
oped over the years, NER on speech input adds another
complexity which cannot be mitigated by advanced al-
gorithms developed for text alone. For speech input,
recognition errors have to be accounted for at least in
the form of a confidence value on the extracted val-
ues. EVAs must handle different types of spoken en-
tities. Some appear with minor variations in surface
forms (lexical strings) and appear in contexts where
they are mostly unambiguous. For example, account
numbers and phone numbers appear in the form of digit
sequences of a predetermined length. Although ASR
errors present some difficulties, such entities can be di-
rectly captured by a rule-based system and require little
or no normalization. On the other hand, entities such
as dates can appear in many surface forms like “this
Monday”, “New Year’s day”, “on the 7th”, for example,
and their context can cause ambiguities which require
sequence tagging algorithms. In addition to sequence
tagging, normalization is needed to convert the entity to
the desired format. In any case, additional confidence

models to account for ASR errors are required.
We also address entity capture tasks such as last name

capture, that provide unique challenges in the context of
speech input, but also have structure that can be lever-
aged to improve capture accuracy. EVAs for customer
care dialogs must contend with a large number of unique
names. Furthermore, many names may occur rarely and
have unreliable pronunciations in the ASR lexicon. As a
result, the main challenge is accurately recognizing the
spoken name, rather than tagging and normalization. To
accurately capture last names we leverage the spelling of
the last name and utilize a hierarchical language model
which combines SLMs and grammars.

2.4 Confidence Modeling

In order to maintain the high standard of customer ex-
perience demanded of EVAs, our SLU system utilizes
a human-in-the-loop approach to ensure a sufficiently
low error rate of the SLU system. Only high-confidence
results from the SLU system are accepted, and utter-
ances with low SLU confidence are handed-off to hu-
man agents who label them in real-time instead of being
automated using the SLU output. The rejection of an
SLU output is based on comparing the overall confi-
dence measure for each utterance to a threshold. This
utterance-level semantic confidence score quantifies the
reliability of the information extracted from a spoken ut-
terance, including entities and intents. It has been shown
that combining speech recognition scores with seman-
tic features to train a confidence model is an effective
approach for semantic confidence estimation (Sarikaya
et al., 2005; Mehrabani et al., 2018; San-Segundo et al.,
2001). We use a logistic regression confidence model
that is trained by passing each utterance through the
SLU pipeline and the predicted result (intents and enti-
ties) is compared with the reference label containing the
spoken intents and entities. After this binary model is
trained, the following is used as the confidence measure:

p(ŷ = y|~x) = 1

1 + exp
(
−∑j λjxj

) (1)

where ~x is the confidence predictor feature vector, ŷ is
the predicted label (including all entities and intents)
and y is the reference label. Confidence predictors xj
depend on the inputs and outputs of the SLU system and
the feature weights that are estimated during confidence
model training are denoted by λj .

We used a number of ASR confidence scores, based
on posterior probabilities, as well as comparing the ASR
best path to alternative paths (Williams and Balakrish-
nan, 2009). Basic statistics of word-level scores were
computed to create utterance-level features. The num-
ber of ASR n-best was used as another feature as an
indication of ASR uncertainty (larger number of n-best
shows uncertainty). We also used the text classification
scores as semantic features. Another semantic feature
that we used was the predicted intent category encoded
as a 1-hot vector over the intent classes. ASR confi-

65

dence for digits or the number of digits in the ASR
n-best text were also added as features. Finally, since
for number and date capture dialog states we utilized
a text classifier that in addition to intent, showed if the
utterance included the relevant entity or not, we used
this as a binary feature which was an effective indicator
of semantic confidence.

3 Date Capture

In this section, we apply the described framework to the
task of date capture and we also describe our approach
to creating a generic date capture model in Section 3.1.
Typically, dialog-state specific models are built using
labeled data from a single dialog state to train an intent
classifier and entity extraction pipeline for the target
state. However, the generic date capture model enables
rapid deployment of models for date capture states in
new applications before any data can be collected.

At least four different components are essential for
capturing dates in speech input. 1) A language model
for ASR to reliably transcribe the input speech. 2) A
sequence tagger for identifying the span of transcribed
speech containing the date specifications. 3) A function
that takes into account chances of errors and computes
a confidence value in the extracted entity. Finally, 4)
a normalizer that converts the identified span into the
desired date format. In a fully rule-based approach, the
grammar-based LM performs the functions of all four
components. For ASR, we use an SLM trained on a
large corpus of utterances containing dates as well as ut-
terances containing different intents instead of date enti-
ties. For span identification we use a statistical sequence
tagger (MEMM (McCallum et al., 2000) or BLSTM-
CRF (Huang et al., 2015)) trained on date tagged data.
For entity extraction confidence, we use logistic regres-
sion models trained with scores from the tagger and
from text-based binary Date or No-Date classifiers.
For normalization, we use a rule-based approach apply-
ing a grammar to the tagged sequence of text.

While a large majority of users do provide a response
with a date to a system prompt requesting a date, a sig-
nificant number of users do not, and instead respond
with utterances expressing different intents that must
be robustly identified for the dialog to progress grace-
fully. We trained a text classifier as described in Sec-
tion 2.2, which in addition to many non-date related
intents such as Cancel Reservation, Billing
and Charges, and Live Agent, includes a Date
label, as well as Vague Date, for when the user re-
sponds with a partial date, such as only the month, rather
than an utterance with a date expression that could be
grounded to a specific date. A Vague Date intent can
be used to trigger a reprompting of the user to disam-
biguate. In the case that the sequence tagger detects
a date but the intent classifier does not return a Date
intent, the detected date entity is still returned by the
system. Including the DATE intent, there are a total of
41 intents in this date capture task.

The training, development and test sets consist of
approximately 53K, 5K, and 10K utterances labeled
by humans-in-the-loop, respectively. We compare the
proposed framework with an SLM and a MEMM se-
quence tagger against a grammar-based LM that has
been hand-tuned for accuracy on the target dialog state.
Confidence-based rejection is typically employed to en-
sure a sufficiently low error rate of EVAs at run-time.
Therefore, it is more informative to analyze the perfor-
mance of SLU systems by examining the error rate as
a function of the utterance rejection rate at different
thresholds, rather than just reporting the average error
rate at 100% automation. In this way, a suitable operat-
ing point at a low error rate can be selected to evaluate
the performance of an SLU system.

We plotted the error rate of accepted utterances versus
the percentage of utterances rejected using a confidence-
based threshold (FA-Rej curve) for each system in Fig-
ure 2. Both intent classification and entity extraction
performance are reflected in these plots because both
the intent and entity, if present, must be correct. We ob-
serve superior performance with the proposed approach,
noting that the proposed approach starts with a slightly
lower error rate but due to the effectiveness of the de-
signed confidence modeling, the gap in performance
between the two approaches grows considerably wider
as low-confidence utterances are rejected. At an oper-
ating point of 5% error, the proposed approach offers
about 10% more automation compared to the grammar-
based approach, a significant gain.

0 5 10 15 20 25 30 35 40
Rejection Rate

0

2

4

6

8

10

12

14

16

Er
ro

r R
at

e
of

 A
cc

ep
te

d
Ut

te
ra

nc
es

Error Rate vs. Rejection Rate for Date Capture State
Grammar
SLM+Tagger

Figure 2: The error rate of accepted utterances ver-
sus the percentage of utterances rejected using a
confidence-based threshold (FA-Rej curve) for a hand-
tuned grammar-based LM compared to the proposed
framework for a date capture state in a car rental dialog.

3.1 Generic Date Capture Model

Building out models for new dialog states and appli-
cations at scale is challenging under the paradigm of
collecting data for training dialog-state specific intent
classifiers and entity taggers. To address this issue, we
propose a modeling approach that enables deployment
of models for new capture states on day zero. First,
a representative set of dialog states for a given entity,
such as date, are identified and data from those states

66

is aggregated. For example, to build a generic date cap-
ture model date capture states pertaining to service start
or stop dates, hotel check-in dates, car rental pick-up
dates, service appointment dates, and so on are pooled
together. Then either rule-based or statistical models for
entity extraction are trained using the combined data.
There can be a “long tail” of unique dialog state specific
intents that may appear in one dialog state from one
application but would result in an invalid output that
can not be handled by the dialog manager in the dialog
state of another application. Thus, a set of fairly “uni-
versal” intents for this collection of dialog states must
be found. The generic model can then be applied to a
new target domain or task that is semantically similar
without additional training data. However, the generic
model does not generalize to new entity types, meaning
that a generic date capture model would be applied to
new date capture states only.

The training data for the generic date capture model
is aggregated across six date capture states from five
different EVA applications. Approximately 1.1 million
utterances were used for training the intent classifier and
entity extraction pipeline for the generic date capture
model. Testing is done on approximately 10K utter-
ances from a held-out date capture state from a novel
application whose data never appeared in the training
set. The generic intent classifier model supports 38
different intent classes that were determined based on
the intents observed in the cross-application training
data. The test data from the held-out dialog state con-
tains unique intents that are not covered by the intent
classifier because they did not occur in the other states
comprising the training data. We compare the generic
date capture model having a MEMM sequence tagger
to a dialog state specific model having an intent clas-
sifier and a BLSTM-CRF sequence tagger trained on
62K utterances from the target dialog state. We use
a BLSTM-CRF for the model trained on target dialog
state data because it improved performance slightly but
we use a MEMM in the case of the generic model be-
cause the BLSTM-CRF did not improve performance
on that data.

0 5 10 15 20 25 30
Rejection Rate

0

2

4

6

8

10

12

Er
ro

r R
at

e
of

 A
cc

ep
te

d
Ut

te
ra

nc
es

Error Rate vs. Rejection Rate for Date Capture With Generic Model
Dialog_State_Specific
Generic

Figure 3: FA-Rej curves for a generic model and a
dialog state specific model in a utility start of service
date capture state.

FA-Rej curves for both the generic and dialog state
specific SLU systems are shown in Figure 3. As ex-
pected, there is some loss in performance relative to the
dialog state specific model trained on data from the tar-
get dialog state. However, analysis of the errors reveals
that the performance on entity extraction is unchanged
and the loss is largely due to a few specific intents that
were not covered in the generic model in this case. Fur-
thermore, the generic model results in a loss of only
about 2.5% in automation at an operating point of 5%
error, which we believe is reasonable given that this
model can be deployed immediately once a new appli-
cation goes online since data from the target dialog state
or application is not required for training.

4 Number Capture

The goal in number capture dialog states is to capture
a long sequence of digits, such as phone or account
numbers. While the majority of users provide the nu-
meric input as requested by the system prompt, approx-
imately 30% of utterances do not include a digit se-
quence. Therefore the challenge in such dialog states
is two-fold: 1) ensuring that if the user provided a digit
sequence, it is captured accurately – a challenge due to
ASR errors (even if one digit is substituted or deleted,
the entire digit sequence is inaccurate) 2) if the user re-
sponds with a non-digit utterance, capture the provided
intents in the utterance.

Traditional SLU systems use ASR with a carefully
hand-tuned grammar-based LM to capture the digit se-
quence but a separate grammar needs to be designed
and tuned for every new application to cater to that
application’s intents so it is difficult to scale. In con-
trast, we demonstrate in Section 4.1 that our proposed
pipeline for generic digit sequence models, once trained,
can be applied to any utterance with digit sequences.
As an alternative to hand-tuned grammar-based mod-
els, DNN-based slot-filling models could be applied but
they typically require large amounts of domain-specific
annotated data for training.

We propose a hybrid grammar-based and statistical
approach that overcomes the limitations of grammar-
based models alone, yet is scalable and maintains high
accuracy. Following the framework described in Section
2, we use an SLM-based ASR system and train a text
classifier on the output for intent detection. A Number
label is used for all utterances that only include a digit
sequence, along with a broad set of other intent labels
to cover the approximately 30% of utterances that do
not include digit sequences. If an utterance is classified
as including a digit sequence via the Number label, a
rule-based system is used to extract and normalize the
number. Note that this approach yields the best accu-
racy for utterances in a specific dialog state since the
structure of the digit sequence is predetermined, but
for more general number capture an entity tagger could
be applied. The rule-based system finds the best digit
sequence match in any of the ASR n-best results. Addi-

67

tionally, we trained a confidence model to produce an
overall confidence score. An important factor in con-
fidence estimation for number capture is the presence
or absence of the digit sequence, and therefore we use
that as an additional binary confidence predictor fea-
ture. Furthermore, if a digit sequence is detected in the
utterance, ASR word scores for the recognized digits,
and the length of the digit sequence are used as input
features for the number capture confidence model.

Figure 4: FA-Rej curves for a hand-tuned grammar-
based LM compared to the proposed framework for a
phone/account number capture state.

We compare the proposed pipeline to a hand-tuned
application-specific grammar-based LM approach for
account/phone number capture. For this experiment, 2K
utterances with reference labels were used for testing,
and about 3M utterances for training. Note that only
a small subset of the training data (∼10%) which had
low SLU confidence with an existing grammar-based
system were labeled by humans in an online fashion.
The data to train the confidence model included about
300K utterances with online human labels. Results are
shown in Figure 4. The accuracy (at zero rejection) with
the proposed approach has improved by 2.35% absolute,
and at an operating point of 5% error, the proposed
approach offers 1.2% more automation compared to the
grammar-based approach. As shown the grammar-based
approach outperforms the SLM-based pipeline for error
rates of lower than 4%, which is due to several rounds of
careful hand-tuning of the grammar-based LM for some
of the less frequent utterances. However, the proposed
approach is still superior because of its flexibility to be
easily applied to any application.

4.1 Generic Number Capture Model
Following a methodology similar to the one described in
Section 3.1, a generic model for digit sequence capture
was built. Data for the generic number capture model
was pooled from five different applications containing
digit capture states with digit sequence lengths ranging
from 5-10 digits. In total, 715K utterances were used
for training an intent classifier that covered 69 unique
intents for these digit capture states, including a label
to indicate the presence of a digit sequence. Approxi-
mately 67% of the training utterances contained digit
sequences and the remaining 33% were only other in-
tents. As before, a rule-based system is used to extract

and normalize the number when the intent classifier pre-
dicts a digit sequence is present. To train a system-level
confidence model, a total of 88k held-out utterances
having human-in-the-loop annotated labels from the set
of five applications was used. The generic intent and
confidence models for digit capture were tested on a
test set from one of the five applications included in
the model using held-out data and compared to a dialog
state specific model trained with data from the target
application.

Similar to the results for the generic date capture
model in Section 3.1, we observe that the generic model
for number capture does perform slightly worse than
the dialog state specific model but still offers an accept-
able level of automation at an operating point of 5%
error. The number capture accuracy of the generic digit
capture model is approximately 1% lower than that of
dialog state specific model at zero rejection, and less
than 2% performance difference at other rejection rates.
Error rate versus rejection rate curves for the two models
are shown in Figure 5.

Figure 5: FA-Rej curves comparing a generic model
and a dialog state specific model for a number capture
dialog state.

5 Name Capture

Person name recognition is a difficult task in spoken
language understanding due to the size of the vocabulary
and confusions in name pronunciations (Yu et al., 2003;
Raghavan and Allan, 2005; Bruguier et al., 2016). In the
course of customer care dialogs users are often asked
to provide their last name for identification purposes.
There are a very large number of last names, some of
which are similar sounding like “Stuard”, “Stuart”, and
“Stewart”, making it difficult to accurately recognize
names in isolation. However, if the user is also asked
to provide the spelling as well that can be leveraged
to correctly capture the name. We observe that names
at the beginning of an utterance are very difficult for
ASR to recognise correctly but spelled letters are often
recognized more accurately and can be concatenated to
capture the name. To recognize potentially hundreds
of thousands of last names using a traditional n-gram
SLM or grammar, every possible last name and spelling
sequence should be encoded, resulting in a very large
LM. Instead, we propose a hierarchical language model,

68

which consists of sub language models derived from the
beginning sounds of the last names (hereafter, we call
this language model 1-layer LM). This is motivated by
the fact that the beginning of a name’s pronunciation
leads the rest of name and spelling sequence, unlike
other ASR tasks (see Figure 6a).

Still, asking the user to also spell their name does
not make the recognition task trivial. When spelling a
word, there are frequent confusion pairs such as ‘f and
s’, ‘b and v’, ‘p and t’ and ‘m and n’. To distinguish
between such confusion pairs, a common practice is to
use the NATO phonetic alphabet - “Sam S as in sierra
A as in alpha M as in Mike”. However, people tend to
use any word they can think of easily for distinguishing
the characters in their name, rather than adhering to
the NATO phonetic alphabet which may not be familiar
to many users. Thus, we added another layer of sub
grammar at the bottom of last name sub grammars in
the hierarchical language model to cover the NATO
phonetic alphabet, as well as a large number of other
words people use to distinguish characters (hereafter,
2-layer LM) shown in Figure 6b. Similar to the date and
number capture systems, our approach for last name
capture also incorporates an intent classifier covering a
set of intents which are likely to occur when last names
are not given.

a) 1-layer LM:

A_names.lm
B_names.lm
C_names.lm
…
Z_names.lm

A_names.lm:
allen a l l e n
allen a as in apple l like lab …
a l l e n allen
a as in apple l as in lab … allen

 ...

b) 2-layer LM:

A_names.lm
B_names.lm
C_names.lm
…
Z_names.lm

A_names.lm:
allen a l l e n
allen a as in A_words l like L_words …
a l l e n allen
a as in A_words l as in L_words … allen
…

A_words.lm:
apple
adam
animal
...

Figure 6: Last name LMs: a) 1-layer LM is trained
on name and spell as it is; b) 2-layer LM is trained on
names and spells but taking NATO words as another
LM component.

We compare four different systems to capture last
names in spoken input: 1) SVM classifier trained on
170K ASR hypotheses using bi-gram features and hu-
man annotated labels for the names; 2) 1-layer LM with
which we decode the utterances and then concatenate
the spelled letters to predict the last name. Note that
the usual ASR confidence score is used as prediction
confidence to draw the rejection curves; 3) 2-layer LM
which is used in the same way as the second system and
4) 2-layer LM with confidence model which is used in
the same way as the third system, but instead a confi-
dence model (described in Section 2.4) is exploited to
generate the confidence scores. The confidence model
is trained on a 29K data set with features consisting of
the ASR-based confidence scores and utterance length.

A test set containing 1K utterances labeled with
the last name by human annotators is used for testing.

Curves for the various systems on the test set are shown
in Figure 7. As expected, the SVM classifier performs
very poorly due to the problem of data sparsity in the
data set. We selected this approach as one of our base-
lines for comparison because it shows reasonable per-
formance on a first name capture task where the sparsity
of data is less than it is for last names. The second
algorithm in which we use the 1-layer LM to decode
the utterances and then concatenate the spelled letters
to determine the last names performs better on average
but it fails in many cases due to the inclusion of char-
acters that distinguish words in the utterance. However,
the 2-layer LM resolves many of those issues and it
significantly improves the accuracy, requiring far fewer
utterances to be rejected at an operating point of 5%
error. Confidence modeling only marginally helps per-
formance with the simple ASR confidence features used
and we suspect more informative features need to be
designed.

Figure 7: FA-Rej curves for last name capture.

6 Conclusions
SLU for EVAs encompasses a wide-ranging set of prac-
tical challenges and investigations into the design of
accurate and scalable SLU systems that can quickly be
deployed for new applications without requiring much
human intervention each time is warranted. In this paper,
we have presented an enterprise-grade deployed SLU
pipeline for handling intents and entities and demon-
strated its effectiveness across several real world sub-
tasks in a deployed customer care virtual agent. We have
also highlighted the importance of confidence model-
ing using features from each component in the pipeline.
The proposed approach to create generic date and digit
capture models for intents and entities allows for day
zero deployment of models for new applications. In the
future, we will incorporate word confusion networks
and lattices for the different capture tasks presented in
this paper.

69

References
Tony Bruguier, Fuchun Peng, and Françoise Beaufays.

2016. Learning personalized pronunciations for con-
tact names recognition. In Interspeech.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

James Glass. 1999. Challenges for spoken dialogue
systems. In Proceedings of the 1999 IEEE ASRU
Workshop, volume 696.

Arshit Gupta, AI Amazon, John Hewitt, and Katrin
Kirchhoff. 2019. Simple, fast, accurate intent classi-
fication and slot labeling for goal-oriented dialogue
systems. In 20th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue, page 46.

Narendra Gupta, Gokhan Tur, Dilek Hakkani-Tur, Srini-
vas Bangalore, Giuseppe Riccardi, and Mazin Gilbert.
2005. The at&t spoken language understanding sys-
tem. IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 14(1):213–222.

Dilek Hakkani-Tür, Frédéric Béchet, Giuseppe Riccardi,
and Gokhan Tur. 2006. Beyond asr 1-best: Using
word confusion networks in spoken language under-
standing. Computer Speech & Language, 20(4):495–
514.

Matthew Henderson, Milica Gašić, Blaise Thomson,
Pirros Tsiakoulis, Kai Yu, and Steve Young. 2012.
Discriminative spoken language understanding using
word confusion networks. In 2012 IEEE Spoken
Language Technology Workshop (SLT), pages 176–
181. IEEE.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751, Doha,
Qatar. Association for Computational Linguistics.

Mingda Li, Weitong Ruan, Xinyue Liu, Luca Soldaini,
Wael Hamza, and Chengwei Su. 2020. Improving
spoken language understanding by exploiting asr n-
best hypotheses. arXiv preprint arXiv:2001.05284.

Bing Liu and Ian Lane. 2016. Attention-based recurrent
neural network models for joint intent detection and
slot filling. In Interspeech, pages 685–689.

Loren Lugosch, Mirco Ravanelli, Patrick Ignoto,
Vikrant Singh Tomar, and Yoshua Bengio. 2019.
Speech Model Pre-Training for End-to-End Spoken
Language Understanding. In Proc. Interspeech 2019,
pages 814–818.

Andrew McCallum, Dayne Freitag, and Fernando CN
Pereira. 2000. Maximum entropy markov models
for information extraction and segmentation. In Icml,
volume 17, pages 591–598.

Mahnoosh Mehrabani, David Thomson, and Benjamin
Stern. 2018. Practical application of domain depen-
dent confidence measurement for spoken language
understanding systems. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 3 (Industry Papers),
pages 185–192.

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua
Bengio, Li Deng, Dilek Hakkani-Tur, Xiaodong He,
Larry Heck, Gokhan Tur, Dong Yu, et al. 2014. Using
recurrent neural networks for slot filling in spoken
language understanding. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 23(3):530–
539.

Patti Price. 1990. Evaluation of spoken language sys-
tems: The atis domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27, 1990.

Ryan Price. 2020. End-to-end spoken language under-
standing without matched language speech model
pretraining data. In ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7979–7983. IEEE.

Hema Raghavan and James Allan. 2005. Matching
inconsistently spelled names in automatic speech rec-
ognizer output for information retrieval. In Proceed-
ings of Human Language Technology Conference and
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 451–458, Vancouver, British
Columbia, Canada. Association for Computational
Linguistics.

Rubén San-Segundo, Bryan Pellom, Kadri Hacioglu,
Wayne Ward, and José M Pardo. 2001. Confi-
dence measures for spoken dialogue systems. In
2001 IEEE International Conference on Acoustics,
Speech, and Signal Processing. Proceedings (Cat. No.
01CH37221), volume 1, pages 393–396. IEEE.

Ruhi Sarikaya, Yuqing Gao, Michael Picheny, and
Hakan Erdogan. 2005. Semantic confidence measure-
ment for spoken dialog systems. IEEE Transactions
on Speech and Audio Processing, 13(4):534–545.

Natalia Tomashenko, Antoine Caubrière, and Yannick
Estève. 2019. Investigating adaptation and transfer
learning for end-to-end spoken language understand-
ing from speech. In Interspeech 2019, pages 824–828.
ISCA.

Akshit Tyagi, Varun Sharma, Rahul Gupta, Lynn Sam-
son, Nan Zhuang, Zihang Wang, and Bill Camp-
bell. 2020. Fast intent classification for spoken lan-
guage understanding systems. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 8119–8123.
IEEE.

70

Sida Wang and Christopher Manning. 2012. Baselines
and bigrams: Simple, good sentiment and topic clas-
sification. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 90–94, Jeju Island,
Korea. Association for Computational Linguistics.

Jason D Williams and Suhrid Balakrishnan. 2009. Esti-
mating probability of correctness for asr n-best lists.
In Proceedings of the SIGDIAL 2009 Conference,
pages 132–135.

Puyang Xu and Ruhi Sarikaya. 2013. Convolutional
neural network based triangular crf for joint intent
detection and slot filling. In ieee workshop on auto-
matic speech recognition and understanding, pages
78–83.

Dong Yu, Kuansan Wang, Milind Mahajan, Peter Mau,
and Alex Acero. 2003. Improved name recognition
with user modeling. In Eighth European Conference
on Speech Communication and Technology.

71

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 72–79
June 6–11, 2021. ©2021 Association for Computational Linguistics

Proteno: Text Normalization with Limited Data for Fast Deployment in
Text to Speech Systems

Shubhi Tyagi, Antonio Bonafonte, Jaime Lorenzo-Trueba, Javier Latorre∗

Amazon Alexa AI

Abstract
Developing Text Normalization (TN) systems
for Text-to-Speech (TTS) on new languages
is hard. We propose a novel architecture to
facilitate it for multiple languages while us-
ing data less than 3% of the size of the data
used by the state of the art results on En-
glish. We treat TN as a sequence classifi-
cation problem and propose a granular tok-
enization mechanism that enables the system
to learn majority of the classes and their nor-
malizations from the training data itself. This
is further combined with minimal pre-coded
linguistic knowledge for other classes. We
publish the first results on TN for TTS in
Spanish and Tamil and also demonstrate that
the performance of the approach is compara-
ble with the previous work done on English.
All annotated datasets used for experimenta-
tion will be released at https://github.
com/amazon-research/proteno.

1 Introduction
Text-to-speech synthesis (TTS) consists of a num-
ber of processing steps that control the conversion
of input text to output speech. Text normalization
(TN) is usually the first step for any TTS system.
It is defined as the process of mapping of written
text to its spoken form. As per Taylor (2009), semi-
otic class denotes things like numbers, dates, times,
etc. that are written differently from the way they
are verbalized. TN is the process of verbalizing
instances of such classes.

Most systems are entirely based on hard coded
rules which are neither scalable across languages
nor easy to maintain. Many machine learning based
techniques have been proposed for TN but they
still have heavy dependency on encoded linguis-
tic knowledge or require considerable amount of
annotated data making it difficult to scale.

The contributions of this paper are as follows:
i) Presenting Proteno, a novel architecture for TN

∗Work done while at Amazon

with a granular tokenization mechanism, which
requires minimal language specific rules, curtails
unacceptable errors and is transferable to a large
extent to multiple languages, ii) Establishing an
architecture which can be used to benchmark TN
baselines for multiple languages with limited anno-
tated data, iii) Release of annotated TN datasets for
Tamil and Spanish suitable for TTS systems.

As no benchmark datasets or baselines exist for
TN for TTS in Spanish and Tamil, we curated
datasets for both and evaluated Proteno on them.
We also use the best performing system for TN in
English and compare its results with previous work.

2 Related Work

In spite of the success of deep learning approaches
in other natural language processing tasks, the prob-
lem of TN for TTS systems still remains a chal-
lenging one (Sproat and Jaitly, 2016). Work has
been done to solve TN by pure encoder-decoder
methods particularly Recurrent Neural Networks
(Sproat and Jaitly, 2017; Zhang et al., 2019). How-
ever, authors have shown that even though such
models can perform well overall, occasionally they
can make “unacceptable errors" like reading “$2"
as “two pounds" and thus rendering the system
unsuitable for industrial TTS applications.

To curtail such unacceptable errors, previous
work based on semiotic classification (Sproat et al.,
2001; Ebden and Sproat, 2014; Zhang et al., 2019),
are encoded with measures like weighted Finite-
state Transducers (FSTs) introduced by Sproat
(1996). FSTs revolve around creating a weak cov-
ering grammar which encompasses language spe-
cific lexical information. Although such grammars
are easier to create as compared to a full blown
grammar, they still need prior knowledge of the
language and the language specific rules need to
be coded in the system (Sodimana et al., 2018).
To completely induce FST from training data, as
suggested by Zhang et al. (2019), diverse and large

72

amount of data is required. The data should repre-
sent all the forms a particular token can appear in a
given language. Such requirements for all semiotic
classes limit the reproducibility of such models for
a new language with limited annotated data. Other
language-agnostic approaches (A. Conkie and A.
Finch, 2020) also need large amounts of data (5M
sentences for each language) as parallel corpus and
can also result in unacceptable errors.

Our approach curtails such errors by breaking
down complex entities like dates into multiple to-
kens by a granular tokenization mechanism and
also by limiting which tokens can be accepted into
a class. This mechanism, we will see, also enables
the system to rely more on data and disambiguate
context for normalizations without requiring the
knowledge to be specifically coded in the system.

3 Proposed Approach
The target normalization can be directly predicted
from unnormalized text with a seq2seq architec-
ture (Sutskever et al., 2014) by treating TN as a
machine translation task (Zhang et al., 2019; Mans-
field et al., 2019) with the previously mentioned
limitations. A way to limit the unacceptable errors
in such systems would be to limit the kind of nor-
malizations the network can generate for a token
(Sproat and Jaitly, 2017).

On the other hand, solutions based on semiotic
classification convert TN into a sequence tagging
problem, where each class has associated mecha-
nisms for normalizing the corresponding unnormal-
ized token(s). It produces verbalizations by first
suitably tokenizing the input, then classifying the
tokens, and then verbalizing each token according
to its corresponding class. These approaches often
have a complex tokenization mechanism which is
not easily transferable across languages and also
need all the possible classes to be exhaustively de-
fined manually.

We solve both these problems by a granular tok-
enization mechanism which extends the concept of
semiotic classification to a granular level wherein
each unique unnormalized token to normalized to-
ken mapping can have a class of its own. The
majority of the classes and their appropriate nor-
malizations are automatically learnt from data.

Our classes represent whether a particular token
is of a certain type and convert unnormalized to-
kens into their normalized form. The goal is to man-
ually define the minimum possible set of classes
and all the other classes will be automatically learnt

from the data. The system learns when each class
should be applied. The solution is divided into 4
stages: i) Tokenization of unnormalized data, ii)
Data preparation, iii) Classifying unnormalized to-
kens into correct classes, iv) Normalizing tokens
using the corresponding class.

3.1 Tokenizer
Typically, TN approaches either assume pre-
segmented text by the rule-based standard (Ebden
and Sproat, 2014) which identifies multiword se-
quences as single segment like dates (Jan. 3, 2016)
according to pre-defined semiotic classes or train a
neural network for tokenization together with a nor-
malization model (Zhang et al., 2019). Proteno’s to-
kenization on the other hand, has elementary rules
and is deterministic. The segmentation is done by
splitting the sentences on spaces and then further
splitting the text when there is a change in the Uni-
code class. E.g., after splitting on spaces, a token
like ‘C3PO’ will be further split into [‘C’,‘3’,‘PO’].
Such tokenization enables the system to accurately
split complex entities like dates while eliminating
the need for a manually defined complex class for
them. The same tokenization mechanism was used
for all the languages tested. Hence, it is transfer-
able across a large group of languages which have
words separated by spaces.

3.2 Data Preparation
While collecting training data, first the unnormal-
ized data is tokenized according to the granu-
lar tokenization mechanism described above and
then each token is annotated with its correspond-
ing normalized form. Thus, we obtain unnor-
malized token to normalized token mappings.
E.g., a date occurrence ‘1/1/2020’ tokenized as
[‘1’,‘/’,‘1’,‘/’,‘2020’] is annotated as [‘first’,‘of’,
‘January’,‘’,‘twenty twenty’]. For such data annota-
tion, linguistic experts are not needed and this can
be done by anyone proficient in the target language.

From our experiments, we observe that for TN
the diversity in data is more important than the
quantity of data. It is better for the model to see
different kinds of normalizations. Hence, while col-
lecting the data, we try to ensure decent coverage
of different semiotic classes by having at least 25%
of tokens which need normalization (i.e., non-self).

3.3 Classes
Each class has 2 functions: i) Accepts: This func-
tion returns a Boolean value of whether a token is
accepted by the class. E.g., cardinal class accepts

73

only numeric tokens, ii) Normalize: This is a deter-
ministic function that transforms the unnormalized
token into its verbalized form

A token can be classified into a class only if it is
accepted by it. By restricting the classes a token is
accepted into, we limit the kind of normalization
output that can be generated. This prevents the
model from making unacceptable errors. A token
can be accepted by multiple classes which can give
different normalizations. In such cases, the model
is responsible for predicting the appropriate class
from the context. If multiple classes give the same
normalization for a token, then during inference it
doesn’t matter which class is chosen.

We have 2 kinds of classes: i) Pre-defined: We
define limited number of classes (∼10-15) contain-
ing basic normalization rules out of which only a
small subset (∼5) contain language specific verbal-
ization rules like cardinal, ordinal etc. Rules be-
hind the normalization logic for others like self, sil,
digit, roman numerals, etc. remain similar across
many languages, only the surface form of the nor-
malized version changes. E.g., self class indicates
that the input is to be passed through as it is and it
accepts tokens containing only alphabetical char-
acters. Sil is used to represent silence, which is
typically associated with punctuation. It accepts
only punctuation or other kinds of symbols which
should not be verbalized. Roman numerals also
have language agnostic logic to convert the roman
number into number form and pass it down to its
corresponding cardinal or ordinal class for gener-
ating desired normalization. ii) Auto Generated
(AG): Apart from pre-defined classes, the model
learns automatically generated classes from the
data by going through the unnormalized to normal-
ized token mappings in the dataset. If none of the
existing classes (pre-coded or AG) can generate the
target normalization for a token in the training data,
then a class is automatically generated which ac-
cepts only the token responsible for its generation.
Its normalize function returns the target normaliza-
tion observed in the annotated data for that token.
E.g., if “12→December" is observed in the dataset
and if none of the existing classes can generate this
normalization then a class “12_to_December_AG"
is created. This class accepts only “12" and its nor-
malize function returns “December". If multiple
normalizations are observed for an unnormalized
token in the dataset which cannot be generated by
existing classes then multiple AGs are stored. AGs

enable Proteno to learn majority of the normaliza-
tions automatically from data.

3.4 Classification & Normalization
We model TN as a sequence tagging problem
where the input is a sequence of unnormalized
tokens and the output is the sequence of classes
which can generate the normalized text. Before
training the classification model, we transform
the data to get unnormalized token to class map-
pings. E.g., [‘1’,‘/’,‘1’,‘/’,‘2020’] → [ordinal,
/_to_of_AG, 1_to_January_AG, sil, year]. We pre-
pare this data by going over the unnormalized to-
ken to normalized token mapping for a sentence
and identifying which existing classes can give the
target normalization. For a token there can be mul-
tiple matching classes. E.g., ‘2’ can be correctly
normalized by both cardinal and digit classes. In
such cases of multiple matching classes we pick
the least frequent class to increase the representa-
tion of infrequent classes. This compensates for the
imbalance present in the proportion of classes in
training set. A more optimum approach to handle
cases of multiple matching classes will be explored
in the future.

To classify the sequence of unnormalized tokens
to their corresponding classes we experimented
with 4 classifiers. We first train a first order Condi-
tional Random Fields (CRFs) (Lafferty et al., 2001)
and then train neural network (NN) based architec-
tures like Bi-LSTMs (Hochreiter and Schmidhuber,
1997), BiLSTM-CRFs (Huang et al., 2015) and
Transformers (Vaswani et al., 2017). We used word
embeddings from Mikolov et al. (2018) for NN
systems. i) CRF: The features used for each un-
normalized token in the model are - part of speech
tag, list of classes which accept the token as an
input, next token in sequence, suffix of the token
(from length 1-4), prefix of the token (from length
1-4), is the token in upper case, is the token nu-
meric and is the token capitalized, ii) Bi-LSTM &
BiLSTM-CRFs: Using word embeddings and list
of classes which accept the token as input features,
iii) Transformer: A Transformer with 6 heads with
word embeddings as input features.

For each token we renormalize the probabilities
predicted over all classes to only the classes which
accept the token. Hence, the model is restricted
to classify a token only to one of its few accepted
classes. If the system is unable to find a suitable
class for the given token (i.e., none of the given
classes accept that token) then it gives a empty

74

output instead of an incorrect normalization.

3.5 Aligning tokens in order of verbalization
One of the major challenges in automated TN is
handling realignment of tokens which may be re-
quired between the written and its spoken form.
Our method so far assumes monotonic alignment
between the written unormalized tokens and their
corresponding spoken normalizations. However,
this is not always true. For our chosen languages
we saw two exceptions: currency and measure
units. E.g., $3.45→ ‘Three dollars forty five cents’
and m2 → ‘squared metres’. Seq2seq models
can naturally learn such kind of realignment from
training data (Sproat and Jaitly, 2017). However,
they are susceptible to errors specially for limited
amount of training data for specific classes.

Thus, to limit errors in such cases we define
some rules. Proteno first recognises instances of
currency/measure in the text and prevents them
from further splitting by the granular tokenizer.
The currency/measure classes have the same gran-
ular tokenisation logic along with realignment con-
ditions. They further pass the final tokens to their
corresponding classes. Thus, an entity like ‘$45.18’
is transformed into [‘45’, ‘$’, ‘18’, ‘.’] and passed
to classes as 45→cardinal, $→$_to_dollars_AG,
18→cardinal, . →_to_cents_AG.

As all currency symbols have their own AGs
automatically generated from the data there will
always be a 1:1 mapping between a symbol and
its normalized form. As a result, this approach
eliminates the possibility of an unacceptable error
like normalizing $→ Pounds.

Classes like currency and measure contain rules
that are responsible for realignment only and hence
require limited knowledge to be transferred across
languages. The normalization is handled by the al-
ready learnt or defined classes. Thus, these classes
can be skipped or be used as is for any language
which has this kind of realignment.

4 Experiment Protocol
4.1 Datasets
As the goal of Proteno is to be applicable for multi-
ple languages, we evaluate the system across 3 lan-
guages. For experimentation with new languages
we chose Spanish and Tamil. Further, we evalu-
ate Proteno on English, to see how it compares
against a language which has more evolved TN
systems available. There are no benchmarked an-
notated TN for TTS datasets available for Tamil

and Spanish. i) Spanish: We gathered data from
Wikipedia by selecting sentences rich with entities
requiring normalization. Due to budget constraints
we could collect a dataset of only 135k tokens (5k
sentences), ii) Tamil: We annotate the data sourced
from English-Tamil parallel corpus (Ramasamy
et al., 2012) and Comparable Corpora (Eckart and
Quasthoff, 2013). From these datasets we sampled
500k tokens (30k sentences) with higher preference
towards sentences that needed normalization, iii)
English: We used a portion of the annotated data
from Sproat and Jaitly (2016). First, we run the Pro-
teno tokenizer over the unnormalized section of the
dataset and got unnormalized token to normalized
token mappings using elementary rules. By doing
so, we were able to correctly match only a por-
tion of the dataset due to its different tokenization.
And then, from this subset, 300k tokens (24.7k sen-
tences) were randomly sampled to keep the data
size comparable to that used for Tamil. This is
1.5% of the data used by Pramanik and Hussain
(2019) which used first 20M tokens and 3% of data
used by Zhang et al. (2019) which used first 10M
tokens.

4.2 Training & Evaluation
Train and test data were split by the ratio of 60:40.
We keep a higher test set proportion to have a chal-
lenging setting for the systems. Word Error Rate
(WER) is used as the evaluation metric for the dif-
ferent classifiers. We use this metric instead of
classification accuracy on the classes in order to
enable comparison of results from different TN ap-
proaches in the future, which may not use the same
tokenization mechanism and hence may not have
the same classes benchmarked by previous work.

WER is measured as Levenshtein Distance (Lev-
enshtein, 1966) between the model prediction and
the desired normalization. Hence, lower WER is
desirable. We also report classification accuracy to
illustrate that classification accuracy does not di-
rectly translate into WER. We first evaluate all the
classifiers on Spanish and then choose the classifier
with lowest WER for Tamil and English.

5 Results

5.1 Spanish

Due to lack of a standard baseline, we compare
the performance of Proteno on Spanish with an
existing rule based (RB) system. This is the pro-
duction TN system containing 1.7k lines of regular

75

expressions code which required extensive linguis-
tic knowledge and programming proficiency.

Normalization was required for 27% of tokens
in both the training and the test set. 10 classes
were pre-coded with normalization logic: self, sil,
spell, currency, unit, digit, cardinal, ordinal, ro-
man cardinal and roman ordinal out of which
only 5 had language specific normalization rules
(spell, cardinal_masculine, cardinal_feminine, or-
dinal_masculine and ordinal_feminine). 279 AGs
were generated from this dataset. The WER results
from different models is given in Table 1.

Models WER(Train) WER(Test)
RB System 2.3 2.3
CRF 0.3 1.02*
BiLSTM 0.03 0.89*
BiLSTM-CRF 0.04 0.89*
Transformer 1.2 2.3

Table 1: WER for CRF vs LSTM vs Transformer.
Fields in bold are indicative of best model. * signifies
statistically significant difference in comparison to RB

On the test set, all models except Trans-
formers showed statistically significant difference
(p<<0.01) in comparison to the RB system. We
can attribute the lower performance of Transform-
ers to lack of accepted classes as input features.

Although the numbers suggest that the NN mod-
els might be overfitting, we were not able to sig-
nificantly improve them using regularization tech-
niques. Introducing dropout from 0.1-0.3 increased
the train WER from 0.03 to 0.04 but did not impact
the test WER. Further increase in dropout increased
test WER. We also try replacing the cross entropy
loss with the Weighted Categorical Cross Entropy
Loss to avoid the model’s bias towards predicting
the dominant class (in this case ‘self’). This loss
function decreased the train WER from 0.03 to
0.027 but it did not impact the test WER.

For most of the classes CRFs and NN models
performed at par with each other. Classification
accuracy by the models is given in Table 2. How-
ever, low classification accuracy, though indica-
tive of inaccurate normalization, does not directly
translate into higher WERs. Multiple classes can
give the same normalization and thus there is no
unique correct class. This is particularly prevalent
in some cases of number instances where cardi-
nal_masculine and cardinal_feminine can be used
interchangeably.

Even though Transformers give unstable perfor-
mance in class prediction, they still give a low
enough WER. This particular iteration has a bias
towards predicting cardinal_ masculine over car-
dinal_ feminine. This bias changes with different
iterations but the WER remains consistent as the
normalization output remains unaffected.

5.2 Tamil
For Tamil, we have 8 pre-coded classes
(self_english, self_tamil, sil, spell, currency, digit,
cardinal and ordinal) out of which only 3 are en-
coded with language specific normalization logic
(cardinal, ordinal and spell) and 74 AGs were gen-
erated from the dataset. To normalize text on Tamil
corpus, we trained the system which performed
the best on Spanish i.e., BiLSTMs with the same
configurations. The model gave a WER=0.6 on the
train set and WER=3.3 on the test set. The token
proportion and high-level classification accuracy
results for the tokens are detailed in Table 3.

5.3 English
To evaluate the potential of the approach and bench-
mark it with existing work we trained Proteno on
English. The model had 8 pre-coded classes (self,
sil, spell, cardinal, ordinal, digit, roman, units,
year) out of which only 4 classes contained lan-
guage specific rules (spell, cardinal, ordinal, year).
2658 AGs were generated from the data. The num-
ber of AGs in English are significantly higher than
the ones generated for Tamil or Spanish as English
tends to use much more abbreviations in written
form as compared to the other two languages. The
model achieved a WER=0.47 on the train set and
a WER=2.6 on the test set. High level classifi-
cation accuracies are detailed in Table 3. Out of
the 99.26% correctly normalized tokens, 88.2%
of the non-self tokens were normalized via AGs
i.e., 88.2% of the normalizations were learnt auto-
matically from data without relying on pre-coded
linguistic knowledge.

It is not possible to directly compare our results
with previous work done on English TN (Pramanik
and Hussain, 2019; Zhang et al., 2019) as these
works report classification accuracy on 16 manu-
ally defined classes and not WER. Moreover, Pro-
teno does not have the same set of classes due to its
granular tokenization mechanism. It also uses only
1.5%-3% of the dataset used by them and further
splits it into train and test set. It cannot use the
full dataset due to differing tokenization mecha-

76

Token Proportion CRF BiLSTM BiLSTM-CRF Transformers
Train Test Train Test Train Test Train Test Train Test

Accuracy 99.7 99.1 99.9 99.01 99.99 98.9 93.0 92.8
Accuracy per class

‘self’ 70.5 70 100 100 100 99.9 100 99.9 100 99.8
‘sil’ 13.24 13 99.7 99.8 100 99.5 99.99 99.6 100 98.7

Others 98.0 93.2 99.9 93.06 99.9 95.9 44.2 48.3
‘es_num_by_num_cardinal’ 2.14 2.1 99.9 99.2 99.9 99.2 99.9 98.6 3.85 2.4

‘es_cardinal_feminine’ 3.8 3.8 98.9 96.7 100 93.5 99.9 92.8 37.7 41.6
‘es_ordinal_masculine’ 0.38 0.4 95.2 96.7 99.7 96.7 100 97.1 0 1.9

‘spell’ 0.62 0.57 98.7 96.0 100 75.2 100 71.1 99.6 99.3
‘es_cardinal_masculine’ 1.75 2.16 98.2 89.2 100 98.8 99.8 98.6 87.0 88.1
‘es_ordinal_feminine’ 0 0.00004 n/a 0.0 n/a 0 n/a 0 n/a 100

‘mean’ 7.63 8 97.6 92.6 99.9 89.7 99.9 88.5 47.9 51.9

Table 2: Token proportions and classification accuracy across systems for Spanish. ‘mean’ depicts the average
accuracy of the remaining pre-coded and all the AG classes. Bold font highlights the best results

Language Proportion of Proportion of Accuracy on Accuracy on Overall
self tokens other tokens self tokens other tokens Accuracy

Train Test Train Test Train Test Train Test Train Test
Tamil 0.73 0.75 0.27 0.25 99.99 99.99 99.94 96.49 99.98 99.12
English 0.72 0.71 0.28 0.29 99.97 99.99 99.55 97.5 99.85 99.26

Table 3: Token proportions and classification accuracy for Tamil and English

Plain Punct Date Cardinal Verbatim Measure Ordinal Decimal Digit Fraction Letters
Train Proportion 70.2 18.8 6.13 1.13 0.82 0.21 0.11 0.20 0.04 0.0 2.39
Test Proportion 70.3 18.7 6.08 1.30 0.71 0.19 0.15 0.16 0.04 0.001 2.27

Proteno 99.9 100 98.16 99.08 96.97 96.09 73.05 90.0 41.30 100.0 79.18
P&H 99.4 99.9 99.7 99.4 99.4 97.1 98.0 98.9 79.5 92.3 97.1

Z 99.9 99.9 99.5 99.4 99.9 97.2 98.1 100 86.4 81.3 97.5

Table 4: English Classification Accuracy: Proteno vs Pramanik and Hussain (2019) vs Zhang et al. (2019)

nisms which result into mismatch in the alignment
between the unnormalized token and their corre-
sponding normalized forms. However, we extract
their pre-defined categories on the dataset we used
and evaluate how many tokens within them were
normalized correctly. In Table 4 we compare Pro-
teno accuracy with the accuracy reported by Pra-
manik and Hussain (2019) (P&H) and by Zhang
et al. (2019) (Z). It illustrates the token normal-
ization accuracy achieved by Proteno on the test
dataset for all the categories which had instances
in the small subset we have used.

Proteno performs at par with the other systems
for most of the categories in spite of seeing much
fewer instances in the train set. For complex enti-
ties likes date Proteno gave 98.16% accuracy on
the 6% tokens available in test set. The system
(Z) gives 99.5% accuracy on its set by using a cov-
ering grammar learnt from large amounts of data.
We observe comparable performance for another
complex category like measure. On the other hand,
we see a significant drop in Proteno’s performance

when normalizing ordinal and digit. This is due to
low representation of these classes during training
and hence during inference the model has a bias
towards predicting cardinal over them when seen
in similar context. This bias can be addressed by
having a more equitable representation of instances
of cardinals, ordinals and digits during training.

6 Conclusions
We propose a novel architecture suitable for scal-
ing Text Normalization for TTS across languages
using minimal language specific rules, limited an-
notated dataset and while curbing unacceptable er-
rors which makes it suitable for fast deployment in
industry applications. We treat Text Normalization
as a sequence classification problem while propos-
ing a granular tokenizer which enables majority of
normalizations to be automatically learnt from data.
We experiment across 3 languages: Spanish, Tamil
and English, while pre-coding maximum 5 classes
with language specific logic. We also demonstrate
that datasets of the order of 135k-500k tokens can
give competitive performance while still being of a

77

size practical for hand annotation.
Proteno consists of i) a granular tokenizer based

on Unicode classes, ii) a classifier of tokens into
classes, either predefined or added based on the
tokenized data, and iii) the class verbalizers, either
defined by linguists for predefined classes or au-
tomatically learnt from the data. BiLSTMs give
the best performance with WER=0.89 for Spanish,
WER=3.3 for Tamil and WER=2.6 for English. In
English, 88.2% of the normalizations were learnt
automatically from data while using less than 3% of
the data used in previous work (Zhang et al., 2019;
Pramanik and Hussain, 2019) and still showed com-
parable performance.

Given the simplicity of this architecture, we be-
lieve that Proteno can be used to benchmark TN for
many languages with limited annotated data. How-
ever, languages which are not separated by space or
highly inflected languages will be a challenge for
the proposed system (Nikulásdóttir and Guðnason,
2019). We leave the adaptation of Proteno to more
challenging languages for future work.

Acknowledgements

We would like to thank Denys Savin, Yvonne Flory,
Tarek Badr and Anton Nguyen for their founda-
tional contributions to the project and developing
the production pipeline.

References
A. Conkie and A. Finch. 2020. Scalable Multilingual

Frontend for TTS. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 6684–6688.

Peter Ebden and Richard Sproat. 2014. The Kestrel
TTS text normalization system. Natural Language
Engineering, 21:333–353.

Thomas Eckart and Uwe Quasthoff. 2013. Statistical
Corpus and Language Comparison on Comparable
Corpora, pages 151–165. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput., 9(8):1735–
1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF Models for Sequence Tagging.
CoRR, abs/1508.01991.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional Random Fields:

Probabilistic Models for Segmenting and Label-
ing Sequence Data. In Proceedings of the Eigh-
teenth International Conference on Machine Learn-
ing, ICML ’01, pages 282–289, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Vladimir Iosifovich Levenshtein. 1966. Binary codes
capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady, 10(8):707–710.
Doklady Akademii Nauk SSSR, V163 No4 845-848
1965.

Courtney Mansfield, Ming Sun, Yuzong Liu, Ankur
Gandhe, and Björn Hoffmeister. 2019. Neural text
normalization with subword units. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Industry
Papers), pages 190–196, Minneapolis, Minnesota.
Association for Computational Linguistics.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in Pre-Training Distributed Word Represen-
tations. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Anna Björk Nikulásdóttir and Jón Guðnason. 2019.
Bootstrapping a Text Normalization System for an
Inflected Language. Numbers as a Test Case. In
Proc. Interspeech 2019, pages 4455–4459.

Subhojeet Pramanik and Aman Hussain. 2019. Text
normalization using memory augmented neural net-
works. Speech Communication, 109:15–23.

Loganathan Ramasamy, Ondřej Bojar, and Zdeněk
Žabokrtský. 2012. Morphological Processing for
English-Tamil Statistical Machine Translation. In
Proceedings of the Workshop on Machine Trans-
lation and Parsing in Indian Languages (MTPIL-
2012), pages 113–122.

Keshan Sodimana, Pasindu De Silva, Richard Sproat,
A Theeraphol, Chen Fang Li, Alexander Gutkin,
Supheakmungkol Sarin, and Knot Pipatsrisawat.
2018. Text normalization for bangla, khmer, nepali,
javanese, sinhala, and sundanese tts systems. In 6th
International Workshop on Spoken Language Tech-
nologies for Under-Resourced Languages (SLTU-
2018), pages 147–151, 29–31 August, Gurugram, In-
dia.

Richard Sproat. 1996. Multilingual text analysis for
text-to-speech synthesis. Natural Language Engi-
neering, 2(4):369–380.

Richard Sproat, Alan W. Black, Stanley Chen, Shankar
Kumar, Mari Ostendorf, and Christopher Richards.
2001. Normalization of Non-standard Words. Com-
put. Speech Lang., 15(3):287–333.

Richard Sproat and Navdeep Jaitly. 2016. RNN
Approaches to Text Normalization: A Challenge.
CoRR, abs/1611.00068.

78

Richard Sproat and Navdeep Jaitly. 2017. An RNN
Model of Text Normalization. In Proc. Interspeech
2017, pages 754–758.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. CoRR, abs/1409.3215.

Paul Taylor. 2009. Text-to-Speech Synthesis. Cam-
bridge University Press.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR, abs/1706.03762.

Hao Zhang, Richard Sproat, Axel H. Ng, Felix
Stahlberg, Xiaochang Peng, Kyle Gorman, and
Brian Roark. 2019. Neural Models of Text Normal-
ization for Speech Applications. Computational Lin-
guistics, pages 1–49.

79

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 80–88
June 6–11, 2021. ©2021 Association for Computational Linguistics

Addressing the Vulnerability of NMT in Input Perturbations

Weiwen Xu1, 2 ∗, Ai Ti Aw1 †, Yang Ding1, Kui Wu1, Shafiq Joty3
1Institute for Infocomm Research, A*STAR

2The Chinese University of Hong Kong
3Nanyang Technological University

wwxu@se.cuhk.edu.hk
{aaiti, ding_yang, wuk}@i2r.a-star.edu.sg

srjoty@ntu.edu.sg

Abstract

Neural Machine Translation (NMT) has
achieved significant breakthrough in perfor-
mance but is known to suffer vulnerability to
input perturbations. As real input noise is dif-
ficult to predict during training, robustness is a
big issue for system deployment. In this paper,
we improve the robustness of NMT models by
reducing the effect of noisy words through a
Context-Enhanced Reconstruction (CER) ap-
proach. CER trains the model to resist noise
in two steps: (1) perturbation step that breaks
the naturalness of input sequence with made-
up words; (2) reconstruction step that defends
the noise propagation by generating better and
more robust contextual representation. Exper-
imental results on Chinese-English (ZH-EN)
and French-English (FR-EN) translation tasks
demonstrate robustness improvement on both
news and social media text. Further fine-
tuning experiments on social media text show
our approach can converge at a higher position
and provide a better adaptation.

1 Introduction

Recent techniques (Bahdanau et al., 2014; Wu et al.,
2016; Vaswani et al., 2017) in NMT have gained re-
markable improvement in translation quality. How-
ever, robust NMT that is immune to real input noise
remains a big challenge for NMT researchers. Real
input noises can exhibit in many forms such as
spelling and grammatical errors, homophones re-
placement, Internet slang, new words or even a
valid word used in an unfamiliar or a new context.
Unlike humans who can easily comprehend and
translate such texts, most NMT models are not ro-
bust to generate appropriate and meaningful trans-
lations in the presence of such noises, challenging
the deployment of NMT system in real scenarios.

∗Work was done when the author was a staff in Institute
for Infocomm Research, A*STAR.

†Corresponding Author

Input 通宵打游戏上分贼快
Ref. It’s super-fast to gain scores when playing games

over the night.
MT Play the game all night and take points thief fast.
CER Play games all night to score points quickly.
Input 我已剪短了我的发,剪断了惩罚,剪一地伤透我

的尴尬。。。。
Ref. I have cut my hair, i cut off the punishment, i away

the awkwardness that hurt me.
MT I got my punishment, got rid of my embarrassment.
CER I cut short my hair , cut off punishment , and cut

off my embarrassment that hurts me.

Table 1: Examples of NMT’s vulnerability in trans-
lating text containing noisy words (“zei" → “thief",
“chengfa"→ “punishment"). CER mitigates the effect
of noisy words.

Noisy words have long been discussed in previ-
ous work. Aw et al. (2006) proposed the normaliza-
tion approach to reduce the noise before translation.
Tan et al. (2020a,b) addressed the character-level
noise directly in the NMT model. Though these
approaches addressed the effect of noisy words to
some extent, they are limited to spelling errors,
inflectional variations, and other noises definable
during training. In addition, strong external su-
pervision like a parallel corpus of noisy text trans-
lation or dictionary containing the translation of
those noisy words are hard and expensive to obtain;
they are also not practical in handling real noises
as noisy words can exhibit in random forms and
cannot be fully anticipated during training.

Belinkov and Bisk (2018) pointed out NMT mod-
els are sensitive to small input perturbations and if
this issue is not addressed, it will continue to bot-
tleneck the translation quality. In such cases, not
only the word embeddings of perturbations may
cause irregularities with the local context, the con-
textual representation of other words may also get
affected by such perturbations (Liu et al., 2019).
This phenomenon applies to valid words in unfa-
miliar context as well, which will also cause the
translation to fail as illustrated in Table 1 (case 2).

80

In this paper, we define “noisy word” as a valid
or invalid word that is uncommonly used in the
context or not observed frequently enough in the
training data. When encoding a sentence with such
a noisy word, the contextual representation of other
words in the sentence are affected by the “less
jointly trained" noisy word embeddings. We refer
this process as “noise propagation". Noise propa-
gation can extend to the decoder and finally distort
the overall translation.

The main intuition of our proposed method is
to minimize this noise propagation and reduce the
irregularities in contextual representation due to
these words via a Context-Enhanced Reconstruc-
tion (CER) approach. To reduce the sensitivity of
contextual towards noisy words in the encoder, we
inject made-up words randomly to the source side
of the training data to break the text naturalness.
We then use a Noise Adaptation Layer (NAL) to
enable a more stable contextual representation by
minimizing the reconstruction loss. In the decoder,
we add perturbations with a semantic constraint
and apply the same reconstruction loss. Unlike ad-
versarial examples which are crafted to cause the
target model to fail, our perturbation process does
not have such constraint and does not rely on a
target model. Our input perturbations are randomly
generated, representing any types of noises that can
be observed in real-world usage. This makes the
perturbation process generic, easy and fast. Follow-
ing (Cheng et al., 2018), we generate semantically
related perturbations in the decoder to increase the
diversity of the translations.

Together with NAL, our model shows its ability
to resist noises in the input and produce more ro-
bust translations. Results on ZH-EN and FR-EN
translation significantly improve over the baseline
by +1.24 (MT03) and +1.4 (N15) BLEU on news
domain, and +1.63 (Social), +1.3 (mtnt18) on so-
cial media domain respectively. Further fine-tuning
experiments on FR-EN social media text even wit-
ness an average improvement of +1.25 BLEU over
the best approach.

2 Related Work

Robust Training: Robust training has shown to
be effective to improve the robustness of the mod-
els in computer vision (Szegedy et al., 2013). In
Natural Language Processing, it involves augment-
ing the training data with carefully crafted noisy
examples: semantically equivalent word substitu-

tions (Alzantot et al., 2018), paraphrasing (Iyyer
et al., 2018; Ribeiro et al., 2018), character-level
noise (Ebrahimi et al., 2018b; Tan et al., 2020a,b),
or perturbations at embedding space (Miyato et al.,
2016; Liang et al., 2020). Inspired by Lei et al.
(2017) that nicely captures the semantic interac-
tions in discourse relation, we regard noise as a dis-
ruptor to break semantic interactions and propose
our CER approach to mitigate this phenomenon.
We make up “noisy” words randomly to act as ran-
dom noise in the input to break the text naturalness.
Our experiment demonstrates its superiority in mul-
tiple dimensions.

Robust Neural Machine Translation: Methods
have been proposed to make NMT models resilient
not only to adequacy errors (Lei et al., 2019) but
also to both natural and synthetic noise. Incorpo-
rating monolingual data into NMT has the capacity
to improve the robustness (Sennrich et al., 2016a;
Edunov et al., 2018; Cheng et al., 2016). Some non
data-driven approaches that specifically designed
to address the robustness problem of NMT (Sper-
ber et al., 2017; Ebrahimi et al., 2018a; Wang et al.,
2018; Karpukhin et al., 2019; Cheng et al., 2019,
2020) explored effective ways to synthesize adver-
sarial examples into the training data. Belinkov
and Bisk (2018) showed a structure-invariant word
representation capable of addressing multiple typo
noise. Cheng et al. (2018) used adversarial stability
training strategy to make NMT resilient to arbitrary
noise. Liu et al. (2019) added an additional pho-
netic embedding to overcome homophone noise.

Meanwhile, Michel and Neubig (2018) released
a dataset for evaluating NMT on social media text.
This dataset was used as a benchmark for WMT 19
Robustness shared task (Li et al., 2019) to improve
the robustness of NMT models on noisy text. We
show our approach also benefits the fine-tuning
process using additional social media data.

3 Approaches

We propose a Context-Enhanced Reconstruction
(CER) approach to learn robust contextual repre-
sentation in the presence of noisy words through a
perturbation step and a reconstruction step in both
encoder and decoder during model training. Fig-
ure 1 shows the architecture.

The perturbation step automatically inserts
made-up words in the input sequence x to gen-
erate a noisy example x′. The noisy example mim-
ics input where text naturalness is broken due to

81

Embedding Layer

Self-attention Layer

NALFFN

y y'
Perturb

× N

𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

Embedding Layer

Self-attention Layer

FFNNAL

x x'
Perturb

N ×

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟x

Enc-Dec
Attention Layer

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟
y

Made-up Words Semantic Constraint

Self-attention Layer

NAL

FFN/Enc-Dec
Attention

(a) Architecture

Self-attention Layer

FFN/Enc-Dec
AttentionNAL

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟

(b) Training Process

(c) Testing Process

𝑒𝑒𝑥𝑥 𝑒𝑒𝑥𝑥𝑥

𝑐𝑐𝑥𝑥 𝑐𝑐𝑥𝑥𝑥

𝑒𝑒𝑦𝑦 𝑒𝑒𝑦𝑦𝑦

𝑐𝑐𝑦𝑦 𝑐𝑐𝑦𝑦𝑦

the
…

sius made10000
…

made1

Figure 1: The architecture of CER (a), and the use of NAL in training (b) and testing (c). The solid lines indicate
the flow for original input, while the dotted lines for noisy input, generated in the perturbation step.

the noisy words. Similarly, we perturb the output
sequence y to y′ using a semantic constraint to
generate noisy examples for the decoder to have
more diversity in the translations.

The reconstruction step in the model aims to re-
store the contextual representation cx

′
of x′ to be

similar to its corresponding original contextual rep-
resentation cx in the encoder. Specifically, under
the Transformer architecture (Figure 1), the recon-
struction step aims to stabilize and minimize the
disruption of attention distribution for a word over
the whole input in the presence of inserted noise.
The stabilization is needed for both clean and noisy
words as both of their contextual representations
are affected. For a noisy word, reconstruction re-
duces the attention to itself and encourages the
construction of the contextual representation to
leverage more on its clean neighbors. For clean
words, reconstruction works as a denoise module
to mitigate the interference of noisy words. For cy

′

in the decoder, the aim is to generate more exam-
ples with similar context as cy. The reconstruction
helps to normalize the contextual representation of
semantically similar words.

3.1 Perturbing Input Text with Noise
We insert made-up words, representing any kinds
of noise, to disturb the contextual representation
during training. To create those words, we build
a made-up dictionary D−x with M made-up words.
As shown in Figure 1(a), made-up words are sim-
ply indexed slots in D−x , whose embeddings are
randomly initialized with no prior restriction and
updated during training just as valid words. During
the perturbation step, we randomly select multiple

positions in each input sequence based on proba-
bility σx and replace the words with any arbitrary
made-up words in D−x .

For the decoder, as the aim is not to insert noise
but to increase the diversity of translation, we add
small perturbations with a semantic constraint to
make the model robust. Specifically, we randomly
select multiple positions in each target sequence
with a probability σy and perturb the corresponding
words. For the word yi chosen to be perturbed, we
create a dynamic set Vyi consisting of m words
having the highest cosine similarity with it (exclud-
ing yi). We average the embeddings of the words
in Vyi as the perturbation for yi.

Vyi = top_m
yj∈Dy,j 6=i

(cos(eyi , eyj)) (1)

ey
′
i =

1

m

∑

yj∈Vyi

eyj (2)

Where Dy is the target dictionary, eyj is the target
word embedding for yj and ey

′
i is the perturbed

embedding for yi.

3.2 Reconstructing Contextual
Representation

As the injected noise in x′ affects the self-attention
mechanism in producing correct contextual repre-
sentation, we regularize the contextual representa-
tion using a Noise Adaptation Layer (NAL) imme-
diately after the self-attention layer as depicted in
Figure 1(a). This NAL is trained together with the
NMT model and used as a reconstruction module
during testing (See Figure 1(b),(c)).

Formally, let cxl and cx
′
l be the outputs of the

self-attention in the l-th encoder layer for x and x′

82

respectively. We train the NAL by:

Lxnal(θxnal) =
1

|S|
∑

(x,y)∈S

N∑

l=1

||cxl −NAL(cx
′
l)||2 (3)

Where θxnal are parameters of NAL, S is the train-
ing corpus and N is the encoder layer size. Given
cx
′
, NAL attempts to output a more correct con-

textual representation guided by cx. We use a sin-
gle layer feed-forward network (FFN) in (Vaswani
et al., 2017) as our NAL implementation. Similarly,
the reconstruction loss for decoder is:

Lynal(θynal) =
1

|S|
∑

(x,y)∈S

N∑

l=1

||cyl −NAL(cy
′
l)||2 (4)

3.3 Model Training
We apply the perturbation step at the embedding
layer, see Figure 1. The inserted noise in x′ and y′

would also receive gradient from the final loss func-
tion and update just like other clean words. NAL is
added at each Transformer layer where the outputs
are only used to calculate the reconstruction loss
and not passed to the next layer. On the other hand,
the output of FFN is propagated to the next layer
as usual. The reconstruction step mainly serves as
a stabilizer to prevent the noise from propagating.

The final training objective L is the combina-
tion of the above three loss functions, the original
translation loss, the reconstruction loss for the en-
coder and the reconstruction loss for the decoder.
Both λx and λy are set empirically to count for the
relative importance.

L = Lnmt(θnmt) + λxLxnal(θxnal) + λyLynal(θynal) (5)

4 Experiment Settings

Experiments are conducted on ZH-EN and FR-EN
translation tasks for both news and social media
domains. We also use social media text to fine-tune
the NMT systems on FR-EN.

4.1 Data
ZH-EN: The training data consists of 1.25M sen-
tence pairs extracted from LDC. For news domain,
we use NIST MT02 as the development set and
select the best model to test MT03, MT04, MT05,
MT06 and MT08 news test sets. For social media
domain, we create a test set (Social) consisting of
2000 sentences with three human annotated refer-
ences. The source sentences are collected from pub-
lic social media platforms in four Chinese-speaking

regions: Mainland China, Hong Kong, Taiwan and
Singapore 1.
FR-EN: We use the same datasets as Michel and
Neubig (2018). The training set consists of 2.16M
sentence pairs extracted from europarl-v7 and
news-commentary-v10. We use the newsdiscuss-
dev2015 as development set and evaluate the model
on two news test sets, newstest2014 (N14) and
newsdiscusstest2015 (N15). We also evaluate on
two social media test sets: mtnt18 (Michel and
Neubig, 2018) and mtnt19 (Li et al., 2019).
FR-EN Fine-Tuning: We use the noisy training
set (mtnttrain) provided by Michel and Neubig
(2018) to fine-tune the FR-EN model.

We use fairseq’s implementation of Trans-
former (Ott et al., 2019). In evaluation, we report
case-insensitive tokenized BLEU for ZH-EN (Pap-
ineni et al., 2002) and sacre-BLEU (Post, 2018)
for FR-EN. Following Michel and Neubig (2018),
we do not use development set but only report best
results on three social media test sets.

We segment the Chinese words using THU-
LAC (Li and Sun, 2009) and tokenize both French
and English words using tokenize.perl2. We
apply BPE (Sennrich et al., 2016b) to get sub-word
vocabularies for the encoder and decoder, both with
20K merge operations.

The hyper-parameters setting is the same as
transformer-base in (Vaswani et al., 2017)
except that we set dropout rate as 0.4 in all our
experiments. Our proposed models are trained on
top of Transformer baseline for efficiency purpose,
where additional parameters from the embeddings
of D−x and ReL are uniformly initialized. The
madeup dictionary size M is set to 10,000. The
size of dynamic set m is set to 3. The probability
σx and σy are both set to 0.1 and balance coefficient
λx and λy are both set to 1.

4.2 Baseline Models
We use Transformer as our baseline.
ZH-EN: We compare with Wang et al. (2018);
Cheng et al. (2018, 2019). Wang et al. (2018) use
a data augmentation approach by randomly replac-
ing words in source and target sentences with other
in-dictionary words. Cheng et al. (2018) use ad-
versarial stability training to make NMT resilient
to noise. Cheng et al. (2019) employ a white-box
approach to synthesize adversarial examples.

1Available at https://github.com/wwxu21/
CER-MT.

2https://github.com/moses-smt/mosesdecoder

83

Model MT02 (DEV) MT03 MT04 MT05 MT06 MT08 News Ave. Social
Existing systems

Wang et al. (2018) 47.13 46.68 47.41 46.66 46.62 38.46 45.17 23.20
Cheng et al. (2018) 46.10 44.07 45.61 43.45 44.44 34.94 42.50 21.27
Cheng et al. (2019) 47.06 46.48 47.39 46.58 46.95 37.38 44.96 22.74

Our systems
Transformer 46.98 46.35 47.27 46.35 46.77 38.20 45.00 22.41
+ CER-Enc 47.65 46.72 47.53 47.06 47.04 38.53 45.38 23.81
+ CER 48.34 47.59 48.21 47.29 47.64 39.33 46.01 24.04

Table 2: Case-insensitive BLEU scores (%) on ZH-EN translation. MT02 is our development set.

Model N14 N15 mtnt18 mtnt19
Exising systems

Wang et al. 29.2 31.1 25.0 28.1
Michel and Neubig 28.9 30.8 23.3 26.2
Zhou et al.* N.A. N.A. 24.5 30.3

Our systems
Transformer 29.7 31.0 25.2 28.0
+ CER-Enc 30.4 31.7 26.1 28.7
+ CER 30.7 32.4 26.5 29.1

Table 3: sacreBLEU (%) on FR-EN translation task.
*Zhou et al. use more data to train their model.

FR-EN: In addition to Wang et al. (2018), we com-
pare with Michel and Neubig (2018); Zhou et al.
(2019); Vaibhav et al. (2019) on FR-EN or FR-EN
Fine-Tuning tasks. Michel and Neubig (2018) do
the first benchmark of the noisy text translation
tasks in three languages. Vaibhav et al. (2019)
leverage effective synthetic noise to make NMT re-
silient to noisy text. We implement their approach
on Transformer backbone. For a fair comparison,
we limit the data to train back-translation mod-
els only with mtnttrain. Zhou et al. (2019) adopt
a multitask transformer architecture with two de-
coders, where the first decoder learns to denoise
and the second decoder learns to translate from the
denoised text. They adopt the approach proposed
by Vaibhav et al. (2019) to synthesize the noisy text
for their first decoder.

We do not compare our model with (Berard et al.,
2019; Helcl et al., 2019) as they use much more
out-domain data, a great number of monolingual
data and a bigger Transformer model, and hence
not comparable with our experimental settings.

5 Results and Analysis

5.1 Comparison with Baseline Models

Table 2 and Table 3 show the performance on ZH-
EN and FR-EN tasks. We show the results of ap-
plying CER only to the encoder (+ CER-Enc), and
to both the encoder and decoder (+ CER).

As illustrated, our approach improves the news

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

mtnt2018 mtnt2019 Social
△

B
L

E
U

+Semantics +Dropout
+Gaussian +Random
+Madeup

Figure 2: BLEU improvements compared to Trans-
former baseline shown in Table 2 and Table 3 when
applying noise-insertion methods.

text translations on all test sets for both ZH-EN and
FR-EN and outperforms the Transformer baseline
in terms of average BLEU by +1.01 and +1.2 on
ZH-EN and FR-EN respectively, illustrating the
superiority of our approach.

The performance on social media test sets shows
significant improvement with up to +1.63 BLEU
over Transformer and +0.84 BLEU over the best ap-
proach (Wang et al., 2018) on ZH-EN. For FR-EN,
our model outperforms Wang et al. (2018) by +1.5
and +1.0 BLEU on mtnt18 and mtnt19 respectively.
Zhou et al. (2019) use mtnttrain and TED (Qi et al.,
2018) to synthesize noisy sentences for their first
decoder, hence effectively they are exploiting in-
domain data during training and thus not quite a fair
comparison in the evaluation. Nevertheless, CER
still significantly outperforms Zhou et al. (2019) by
+2.0 BLEU on mtnt18.

5.2 Effect of Noise

We investigate the effect of different noise-insertion
methods by dynamically inserting noise into the
source side of the original training set using differ-
ent strategies with a same probability σx.
Madeup: Our approach to add made-up words.
Semantics: We test our semantic constraint in the
decoder to assess if it benefits the encoder.

84

-0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

mtnt2018 mtnt2019 Social

△
B

L
E

U

CER-inactive CER-con
CER-D CER

22
23
24
25
26
27
28
29
30

mtnt2018 mtnt2019 Social

B
L

E
U

Transformer
CER-inactive
CER-con
CER-D
CER

Figure 3: BLEU scores of CER variants.

Dropout: We replace word embeddings with all-0
vectors, similar to enlarging the dropout rate.
Gaussian: Following the feature-level perturba-
tions of Cheng et al. (2018), we add the Gaussian
noise to a word embedding to simulate the noise.
Random: We replace a word with an arbitrary word
in the dictionary. This would result in a valid word
being placed in an unreasonable context.

Figure 2 shows the BLEU improvement of var-
ious noise-insertion methods on social media test
sets. We find that nearly all kinds of noise-insertion
methods improve the robustness of MT with the
exception of Dropout. Since we have already set
the dropout rate to an optimal rate, inserting ad-
ditional Dropout noise does not increase but de-
creases the performance. As shown, Madeup im-
proves the performance nearly twice than the rest
of the noise-insertion methods. We conjecture
Semantics, Dropout and Gaussian may be small
and not diverse enough to simulate the real noisy
words. Both Random and Madeup can break the
text coherence. However, Random uses a random
in-dictionary word, which can place a valid word in
an unreasonable context and cause its embedding
to update in a wrong direction. In fact, this method
improves the robustness of NMT models at the cost
of those replaced words. Our Madeup can entirely
avoid this cost as we use made-up words to work as
noisy words and does not cause any context change
of all in-dictionary words.

5.3 Effect of NAL

To further gain insights on how NAL helps improve
the robustness of NMT models. We create three
variants to aid our analysis:
CER-inactive: We do not activate NAL at testing
time. The contextual representation is feed directly
into later FFN. This variant is to test the effective-
ness of NAL.
CER-con: We remove NAL but only add a con-

Model mtnt18 mtnt19
Existing systems

Michel and Neubig 30.3 N/A
Wang et al. 35.1 36.7
Zhou et al. 31.7 32.8
Vaibhav et al. 36.0 37.5

Our systems
Transformer (Base) 25.2 28.1
+FT 35.2 37.4
+FT w/ CER 37.3 38.7

Table 4: sacreBLEU on FR-EN fine-tuning task.

straint to ensure {cx, cx′} and {cy, cy′} to be close
respectively at training time. This forces the self-
attention layer to reconstruct the correct contextual
representation itself. This variant is to demonstrate
the necessity to set apart the context generation
module (self-attention layer) and the reconstruc-
tion module (NAL).
CER-D: We borrow the adversarial stability train-
ing strategy proposed in Cheng et al. (2018) here.
In this variant, NAL is replaced by a discriminator
and θxnal and θynal are changed to the adversarial
learning loss in Cheng et al. (2018). The purpose
is to assess the effectiveness of NAL and the dis-
criminator in context reconstruction.

Figure 3 shows the results of the three variants
on three social media test sets. From the figure, we
make the following observations.

NAL is effective at Test Time. The activation
of NAL at test time helps to produce more reli-
able contextual representation. Notably, NAL gains
+1.19 BLEU on Social.

NAL needs to be learnt separately. As shown in
CER-con, by forcing self-attention layer to do both
tasks (context generation and reconstruction), the
performance improvement gets affected by at least
0.4 BLEU.

NAL is more effective than a discriminator to
guide reconstruction. The improvements are less
significant in all test sets when using a discrimi-
nator (CER-D) comparing to CER. Therefore, we
can conclude that NAL is more effective than a dis-
criminator to reconstruct the perturbed contextual
representation and CER outperforms all variants.

5.4 FR-EN Fine-Tuning on Social Media Text

We fine-tune the same Transformer model in Ta-
ble 3 with the social media data mtnttrain (+FT)
and further include CER in the fine-tuning (+FT
w/ CER). Table 4 shows our performance (+FT
w/ CER) with other four fine-tuning approaches
on mtnttrain. It shows that our CER also bene-

85

Model Social
Google Translate 38.59

Ours
Baseline 39.01

+FT 40.56 (+3.97%)
+FT w/ CER 40.82 (+4.64%)

Table 5: Case-insensitive BLEU scores (relative im-
provement) on large-scale ZH-EN translation system.

fits the fine-tuning process and outperforms all the
approaches in two noisy test sets. Specifically, it
gains +2.1 and +1.3 BLEU over +FT on mtnt18
and mtnt19 and outperforms Vaibhav et al. (2019)
by +1.3 and +1.2 BLEU respectively.

5.5 Experiments on Large-Scale Datasets

We first train a ZH-EN baseline model using 25M
sentence pairs, which are mainly in news domain.
Similar to the setting in Table 4, we apply both
simple finetuning (+FT) and our CER (+ FT w/
CER) approach using 125K social media training
data. We evaluate those models on Social. We also
include the performance of Google Translate 3 here
to show the competitiveness of our baseline model.

As shown in Table 5, our CER approach can still
benefit the fine-tuning process even on the strong
baseline. It should be noted that the baseline has al-
ready maintained high robustness with large-scale
training data where improvement in such a model
is hard to obtain. In fact, 125K in-domain data can
only contribute to 1.55 BLEU improvement. Under
this circumstance, the 0.26 BLEU improvement
brought by CER should be highly valued consid-
ered no additional fine-tuning data is used.

6 Conclusions

In this work, we propose an approach to reduce the
vulnerability of NMT models to input perturbations.
Our input perturbation is easy, fast and not specific
to a target victim model. Experimental results show
our proposed approach improves the robustness
on both news and social media text and helped to
improve the translation of real input.

7 Acknowledgments

The work was supported in part by Defence Science
and Technology Agency (DSTA), Singapore.

3https://translate.google.com/

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. arXiv preprint arXiv:1804.07998.

AiTi Aw, Min Zhang, Juan Xiao, and Jian Su. 2006. A
phrase-based statistical model for SMS text normal-
ization. In Proceedings of the COLING/ACL 2006
Main Conference Poster Sessions, pages 33–40, Syd-
ney, Australia. Association for Computational Lin-
guistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In International Conference on Learning Rep-
resentations.

Alexandre Berard, Ioan Calapodescu, and Claude
Roux. 2019. Naver labs europe’s systems for the
wmt19 machine translation robustness task. In
Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day
1), pages 526–532, Florence, Italy. Association for
Computational Linguistics.

Yong Cheng, Lu Jiang, and Wolfgang Macherey. 2019.
Robust neural machine translation with doubly ad-
versarial inputs. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4324–4333, Florence, Italy. Associa-
tion for Computational Linguistics.

Yong Cheng, Lu Jiang, Wolfgang Macherey, and Jacob
Eisenstein. 2020. AdvAug: Robust adversarial aug-
mentation for neural machine translation. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, Online. Associa-
tion for Computational Linguistics.

Yong Cheng, Zhaopeng Tu, Fandong Meng, Junjie
Zhai, and Yang Liu. 2018. Towards robust neural
machine translation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1756–
1766, Melbourne, Australia. Association for Compu-
tational Linguistics.

Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Semi-
supervised learning for neural machine translation.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1965–1974, Berlin, Germany.
Association for Computational Linguistics.

Javid Ebrahimi, Daniel Lowd, and Dejing Dou. 2018a.
On adversarial examples for character-level neural

86

machine translation. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics, pages 653–663, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018b. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
31–36, Melbourne, Australia. Association for Com-
putational Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489–500, Brussels, Belgium. Association for
Computational Linguistics.

Jindich Helcl, Jindich Libovick, and Martin Popel.
2019. Cuni system for the wmt19 robustness task.
In Proceedings of the Fourth Conference on Ma-
chine Translation (Volume 2: Shared Task Papers,
Day 1), pages 539–543, Florence, Italy. Association
for Computational Linguistics.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885, New
Orleans, Louisiana. Association for Computational
Linguistics.

Vladimir Karpukhin, Omer Levy, Jacob Eisenstein, and
Marjan Ghazvininejad. 2019. Training on synthetic
noise improves robustness to natural noise in ma-
chine translation. arXiv preprint arXiv:1902.01509.

Wenqiang Lei, Xuancong Wang, Meichun Liu, Ilija
Ilievski, Xiangnan He, and Min-Yen Kan. 2017.
Swim: A simple word interaction model for implicit
discourse relation recognition. In Proceedings of the
Twenty-Sixth International Joint Conference on Arti-
ficial Intelligence, IJCAI-17, pages 4026–4032.

Wenqiang Lei, Weiwen Xu, Ai Ti Aw, Yuanxin Xiang,
and Tat Seng Chua. 2019. Revisit automatic error
detection for wrong and missing translation – a su-
pervised approach. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 942–952, Hong Kong, China. As-
sociation for Computational Linguistics.

Xian Li, Paul Michel, Antonios Anastasopoulos,
Yonatan Belinkov, Nadir Durrani, Orhan Firat,
Philipp Koehn, Graham Neubig, Juan Pino, and Has-
san Sajjad. 2019. Findings of the first shared task on
machine translation robustness. In Proceedings of
the Fourth Conference on Machine Translation (Vol-
ume 2: Shared Task Papers, Day 1), pages 91–102,

Florence, Italy. Association for Computational Lin-
guistics.

Zhongguo Li and Maosong Sun. 2009. Punctuation as
implicit annotations for Chinese word segmentation.
Computational Linguistics, 35(4):505–512.

Hongru Liang, Wenqiang Lei, Paul Yaozhu Chan,
Zhenglu Yang, Maosong Sun, and Tat-Seng Chua.
2020. Pirhdy: Learning pitch-, rhythm-, and
dynamics-aware embeddings for symbolic music. In
MM ’20: The 28th ACM International Conference
on Multimedia, Virtual Event / Seattle, WA, USA, Oc-
tober 12-16, 2020, pages 574–582. ACM.

Hairong Liu, Mingbo Ma, Liang Huang, Hao Xiong,
and Zhongjun He. 2019. Robust neural machine
translation with joint textual and phonetic embed-
ding. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 3044–3049, Florence, Italy. Association for
Computational Linguistics.

Paul Michel and Graham Neubig. 2018. MTNT: A
testbed for machine translation of noisy text. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 543–
553, Brussels, Belgium. Association for Computa-
tional Linguistics.

Takeru Miyato, Andrew M Dai, and Ian Good-
fellow. 2016. Adversarial training methods for
semi-supervised text classification. arXiv preprint
arXiv:1605.07725.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting bleu
scores. arXiv preprint arXiv:1804.08771.

Ye Qi, Devendra Sachan, Matthieu Felix, Sarguna Pad-
manabhan, and Graham Neubig. 2018. When and
why are pre-trained word embeddings useful for neu-
ral machine translation? In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 529–535, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging NLP models. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),

87

pages 856–865, Melbourne, Australia. Association
for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Matthias Sperber, Jan Niehues, and Alex Waibel. 2017.
Toward robust neural machine translation for noisy
input sequences. In International Workshop on Spo-
ken Language Translation (IWSLT).

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2013. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199.

Samson Tan, Shafiq Joty, Min-Yen Kan, and Richard
Socher. 2020a. It’s morphin’ time! Combating
linguistic discrimination with inflectional perturba-
tions. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2920–2935, Online. Association for Computa-
tional Linguistics.

Samson Tan, Shafiq Joty, Lav Varshney, and Min-Yen
Kan. 2020b. Mind your inflections! Improving NLP
for non-standard Englishes with Base-Inflection En-
coding. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 5647–5663, Online. Associa-
tion for Computational Linguistics.

Vaibhav Vaibhav, Sumeet Singh, Craig Stewart, and
Graham Neubig. 2019. Improving robustness of ma-
chine translation with synthetic noise. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1916–1920, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham
Neubig. 2018. SwitchOut: an efficient data aug-
mentation algorithm for neural machine translation.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
856–861, Brussels, Belgium. Association for Com-
putational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Shuyan Zhou, Xiangkai Zeng, Yingqi Zhou, Antonios
Anastasopoulos, and Graham Neubig. 2019. Im-
proving robustness of neural machine translation
with multi-task learning. In Proceedings of the
Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), pages 565–571, Flo-
rence, Italy. Association for Computational Linguis-
tics.

88

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 89–96
June 6–11, 2021. ©2021 Association for Computational Linguistics

Cross-lingual Supervision Improves Unsupervised Neural Machine
Translation

Mingxuan Wang1 Hongxiao Bai2 Hai Zhao2 Lei Li1
1ByteDance AI Lab, Beijing, China

{wangmingxuan.89,lileilab}@bytedance.com
2 Department of ComputeScience and Engineering, Shanghai Jiao Tong University

{baippa, zhaohai} @cs.sjtu.edu.cn

Abstract

We propose to improve unsupervised neural
machine translation with cross-lingual super-
vision (CUNMT), which utilizes supervision
signals from high resource language pairs to
improve the translation of zero-source lan-
guages. Specifically, for training En-Ro sys-
tem without parallel corpus, we can leverage
the corpus from En-Fr and En-De to collec-
tively train the translation from one language
into many languages under one model. Simple
and effective, CUNMT significantly improves
the translation quality with a big margin in
the benchmark unsupervised translation tasks,
and even achieves comparable performance to
supervised NMT. In particular, on WMT’14
En-Fr tasks CUNMT achieves 37.6 and 35.18
BLEU score, which is very close to the large
scale supervised setting and on WMT’16 En-
Ro tasks CUNMT achieves 35.09 BLEU score
which is even better than the supervised Trans-
former baseline.

1 Introduction

Neural machine translation (NMT) has achieved
great success and reached satisfactory translation
performance for several language pairs (Bahdanau
et al., 2015; Gehring et al., 2017; Vaswani et al.,
2017). Such breakthroughs heavily depend on the
availability of colossal amounts of bilingual sen-
tence pairs, such as the some 40 million parallel
sentence pairs used in the training of WMT14 En-
glish French Task. As bilingual sentence pairs are
costly to collect, the success of NMT has not been
fully duplicated in the vast majority of language
pairs, especially for zero-resource languages. Re-
cently, (Artetxe et al., 2018b; Lample et al., 2018a;
?) tackled this challenge by training unsupervised
neural machine translation (UNMT) models using
only monolingual data, which achieves consider-
ably high accuracy, but still not on par with that of
the state of the art supervised models.

DeEn

Fr

(a) Pivot NMT

DeEn

(b) Unsupervised NMT

DeEn

Fr

(c) CUNMT w/o Para.

DeEn

Fr

(d) CUNMT w/ Para.

Figure 1: Different settings for zero-resource NMT.
Full edges indicate the existence of parallel training
data. Dashed blue edges indicate the target translation
pair. “CUNMT w/o Para.” jointly train several unsu-
pervised pairs in one model with unsupervised cross-
lingual supervision. “CUNMT w/ Para.” train unsuper-
vised directions with supervised cross-lingual supervi-
sion, such as jointly train unsupervised En-De with
supervised En-Fr.

Most previous works focused on modeling the
architecture through parameter sharing or proper
initialization to improve UNMT. We argue that
the drawback of UNMT mainly stems from the
lack of supervised signals, and it is beneficial
to transfer multilingual information across lan-
guages. In this paper, we take a step towards prac-
tical unsupervised NMT with cross-lingual su-
pervision (CUNMT) — making the most of the
signal from other language. We investigate two
variants of multilingual supervision for UNMT.
a) CUNMT w/o Para.: a general setting where un-
related monolingual data can be introduced. For
example, using monolingual Fr data to help the
training of En-De (Figure 1(c)). b) CUNMT w/
Para.: a relatively strict setting where other bilin-
gual language pairs can be introduced. For ex-
ample, we can naturally leverage parallel En-Fr
data to facilitate the unsupervised En-De transla-

89

tion (Figure 1(d)).

We introduce cross-lingual supervision which
aims at modeling explicit translation probabilities
across languages. Taking three languages as an
example, suppose the target unsupervised direc-
tion is En → De and the auxiliary language is
Fr. Our target is to model the translation prob-
ability p(De|En) with the support of p(Fr|En)
and p(De|Fr). For forward cross-lingual super-
vision, the system NMTFr→De serves as a teacher,
translating the Fr part of parallel data (En,Fr) to
De. The resulted synthetic data (En,Fr,De) can
be used to improve our target system NMTEn→De.
For backward cross-lingual supervision, we trans-
late the monolingual De to Fr with NMTDe→Fr,
and then translate Fr to En with NMTFr→En. The
resulted synthetic bilingual data (De,En) can be
used for NMTEn→De as well.

Our contributions can be summarized as fol-
low: a) Empirical evaluation of CUNMT on six
benchmarks verifies that it surpassed individual
MT models by a large margin of more than 3.0
BLEU points on average, and also bested several
strong competitors. Particularly, on WMT’16 En-
Ro tasks, CUNMT surpass the supervised base-
line by 0.7 BLEU, showing the great potential for
UNMT. b) CUNMT is very effective in the use of
additional training data. MBART or MASS intro-
duces billions of sentences, while CUNMT only in-
troduces tens of millions of sentences and achieves
super or comparable results. It shows the impor-
tance of introducing explicit supervision.

2 The Proposed CUNMT

CUNMT is based on a multilingual machine trans-
lation model involving supervised and unsuper-
vised methods with a triangular training structure.
The original unsupervised NMT depends only on
monolingual corpus, therefore the performances
of these translation directions cannot be guaran-
teed.

Formally, given n different languages Li, xi de-
notes a sentence in language Li. Di denotes a
monolingual dataset of Li, and Di,j denotes a par-
allel dataset of (Li, Lj). We use E to indicate the
set of all translation directions with parallel data
andW to indicate the set of all unsupervised trans-
lation directions respectively. The goal of CUNMT

is to minimize the log likelihood of both unsuper-

Backward Crosslingual Supervision Forward Crosslingual Supervision

TS

J

TSTS

TS

J

P(t |s)
P(t | g (s))

P(s | g (t))

P(s | g s→j(s)) P(j | g j→t(j)) P(fs→j(s) |s) P(fj→t(j) | j)

Direct Supervision

Figure 2: Forward and backward cross lingual trans-
lation for auxiliary data. The dashed blue arrow indi-
cates target unsupervised direction. The solid arrow in-
dicates using the parallel data. The dashed black arrow
indicates generating synthetic data.

vised and supervised directions:

LCUNMT =
∑

i,j∈W
LUi→j+

∑

i,j∈E
LSi→j+

∑

i,j∈W+E
L̂i→j

(1)
where LUi→j is the unsupervised direct supervi-
sion, and LSi→j is the direct supervised supervi-
sion, and L̂i→j is the indirect supervision.

2.1 Direct & Cross-lingual Supervision
Direct supervision We will first introduce the
notion of direct supervision loss, which only con-
sider the translation probability between two dif-
ferent languages.

For supervised machine translation models,
given parallel dataset Ds,t with source language
Ls and target language Lt, we use LSs→t to denote
the supervised training loss from language Ls to
language Lt. The training loss for a single sen-
tence can be defined as:

LSs→t = E(xs,xt)∼Ds,t [− logP (xt|xs)]. (2)

For unsupervised machine translation models,
only monolingual dataset Ds and Dt are given.
We use LUs→t to denote the unsupervised training
loss from language Ls to language Lt. We use
Bs→t to denote this back translation procedure.
After that, we can use these data to train the model
with supervised method from Ls to Lt. The losses
of the dual structural are:

LBt→s =Exs∼Ds [− logP (xs|gs→t(xs)],
LBs→t =Ext∼Dt [− logP (xt|gt→s(xt)],

(3)

where gs→t(xs) translate the sentence in language
Ls to Lt, that is, the back translation of xs. Then

90

the total loss of an unsupervised machine transla-
tion is:

LU = LBt→s + LBs→t. (4)

Cross-lingual supervision When extend to the
multilingual scenario, it is natural to introduce in-
direct supervision across languages. Given n dif-
ferent languages, for each language pair (Li, Lj),
we can easily obtain the translation probability of
P (xi|xj) through the direct supervised model LS
or LU . We use L̂s→t to indicate the indirect super-
vised loss, which can be defined as:

L̂s→t =
n∑

i=0,i 6=s,t
λiL̂s→i→t (5)

where λ is the coefficient. T
Due to the lack of triples data (Li, Lk, Lj), it is

difficult to directly estimate the cross translation
loss L̂s→i→t. We therefor propose the backward
and forward indirect supervision to calculate the
cross loss:

L̂s→j→t = Ext∼Dt [− logP (xt|gt→j→s(xt))]
+ Exs∼Ds [− logP (fs→j→t(xs)|xs)]

(6)

where gt→j→s(xt) is the indirect backward trans-
lation which translate xt to language Ls and
fs→j→s(xt) is the indirect forward translation
which translate xs to language Lt.

2.2 Training Procedure of CUNMT

The procedure of CUNMT includes two main
steps: multi-lingual pre-training and iterative
multi-lingual training.

Multi-lingual Pre-training Due to the ill-posed
nature, it is also important to find a good initializa-
tion to associate the source side languages and the
target side languages. We propose a Multi-lingual
Pre-training approach, which jointly train the un-
supervised auto-encoder and supervised machine
translation. Intuitively, the multi-lingual joint pre-
training can take advantage of transfer learning
and thus benefit the low resource languages. Apart
form the monolingual data, pre-training can also
leverage the bilingual parallel data. We suggest the
supervised data provides strong signal to optimize
the network, which also advantage the unrelated
unsupervised NMT pre-training. For example, it
is beneficial to use the supervised En-Fr model to
initialize the unsupervised De-Fr model.

Indirect Supervised Training The goal is to
train a single system that minimize the jointly loss
function of LCUNMT.

Generally, CUNMT can be applied to a restrict
unsupervised scenario where only monolingual
are provided, and also can be extended to a un-
restricted scenario where parallel data are intro-
duced. For the sake of simplicity, we describe
our method on three language pairs, which can be
easily extended to more language pairs. Suppose
that the three languages are denoted as the triad
(En,Fr,De), and we have monolingual data for
all the three languages and also bilingual data for
En-Fr. The target is to train an unsupervised En
→Fr system. The detailed method is as follows:

1. Sample batch of monolingual xEn, xFr, xDe
sentences from DEn, DFr, DDe

2. Sample batch of parallel sentence from
DEn,Fr to generate supervised data S

3. Back translate xEn, xFr, xDe to generate
pseudo data B

4. Indirect back translate xEn, xFr, xDe to gen-
erate pseudo data Bi

5. Indirect forward translate xEn, xFr, xDe to
generate pseudo data F i

6. Merge B, Bi, F i and S to jointly train
CUNMT.

7. Repeat 1-6 until convergence.

For indirect or direct supervision, we follow the
Equation (6), which will adopts one step forward
translation if parallel data is provided. Since we
train all directions in one model, the pseudo data
will include all directions. In this setting, it con-
tains: En ↔ Fr, En ↔ De, Fr ↔ De with both
direct and indirect directions.

3 Experiments

3.1 Datasets and Settings
We conduct experiments including (De,En,Fr),
(Fr,En,De), and (Ro,En,Fr). For monolin-
gual data of English, French and German, 20
million sentences from available WMT mono-
lingual News Crawl datasets were randomly se-
lected. For Romanian monolingual data, all of the
available Romanian sentences from News Crawl
dataset were used and and were supplemented
with WMT16 monolingual data to yield a total of
in 2.9 million sentences. For parallel data, we use
the standard WMT 2014 English-French dataset
consisting of about 36M sentence pairs, and the

91

(Fr,En,De) (De,En,Fr) (Ro,En,Fr)
En-Fr Fr-En En-De De-En En-Ro Ro-En

Supervised Transformer 41.0 - 34.0 38.6 34.3 34.0
Comparison systems of UNMT
UNMT (Lample et al., 2018c) 25.1 24.2 17.2 21.0 21.2 19.4
EMB (Lample and Conneau, 2019) 29.4 29.4 21.3 27.3 27.5 26.6
MLM (Lample and Conneau, 2019) 33.4 33.3 26.4 34.3 33.3 31.8
MASS (Song et al., 2019) 37.5 34.9 28.3 35.2 35.2 33.1
MBART (Liu et al., 2020) - - 29.8 34.0 35.0 30.5
CUNMT

CUNMT w/o Para. 32.90 31.93 23.03 31.01 33.23 32.34
CUNMT w/ Para. 34.37 32.77 23.99 31.98 33.95 33.15
CUNMT + Forward 35.88 33.64 26.50 33.11 34.12 33.61
CUNMT + Backward + Forward 37.60 35.18 27.60 34.10 35.09 33.95

Table 1: Main results comparisons. MASS uses large scale pre-training and back translation during fine-tuning.
MBART employ large scale multi-lingual pretraining with billions sentences. The last four lines are the results of
our method.

standard WMT 2014 English-German dataset con-
sisting of about 4.5M sentence pairs. For anal-
yses, we also introduce the standard WMT 2017
English-Chinese dataset consisting of 20M sen-
tence pairs. Consist with previous work, we re-
port results on newstest 2014 for English-French
pair, and on newstest 2016 for English-German
and English-Romanian.

In the experiments, CUNMT is built upon Trans-
former models. We use the Transformer with 6
layers, 1024 hidden units, 16 heads. We train
our models with the Adam optimizer, a linear
warm-up and learning rates varying from 10−4 to
5 × 10−4. The model is trained on 8 NVIDIA
V100 GPUs. We implement all our models in Py-
Torch based on the code of (Lample and Conneau,
2019)1. All the results are evaluated on BLEU
score with Moses scripts, which is in consist with
the previous studies.

3.2 Main Results
The main results of similar pairs are shown in Ta-
ble 1. We make comparison with three strong un-
supervised methods:

• MLM (Lample and Conneau, 2019) uses
large scale cross-lingual data to train the
mask language model and then fine-tune on
unsupervised NMT.
• MASS (Song et al., 2019) is a sequence to

sequence model pre-trained with billions of
1https://github.com/facebookresearch/

XLM

monolingual data.
• MBART (Liu et al., 2020) introduces tens of

billions monolingual data to pre-train a deep
Transformer model.

CUNMT is very efficient in the use of multi-lingual
data. While the pretrained language model is ob-
tained through several hundred times larger mono-
lingual or cross-lingual corpus, CUNMT achieves
superior or comparable results with much less
cost.

The model was improved by using synthetic
data of cross translation that is based on the
jointly trained model. The results of “CUNMT

+ Forward” are from the model tuned by only 1
epoch with about 100K sentences. This method
is fast and the performances are surprisingly ef-
fective. The “CUNMT + Forward + Backward”
denotes that, besides forward translation, we also
use monolingual data and cross translate it to the
source language. This method yielded the best
performance by outperforming the “CUNMT w/o
Para.” by more than 3 BLEU score on average.
The improvements show great potential for intro-
ducing indirect cross lingual supervision for unsu-
pervised NMT.

When compared with supervised approaches,
CUNMT shows very promising performance. For
the large scale WMT14 En-Fr tasks, the gap be-
tween CUNMT and supervised baseline is closed
to 3.4 BLEU score. And for the medium WMT16
En-Ro task, CUNMT performs even better than the
supervised approach.

92

4 Analyses

In this part, we conduct several studies on CUNMT

to better understand its setting.

20 40 60 80 100 120

24.0

24.5

25.0

25.5

26.0

26.5

En-De

Fw
Bw

20 40 60 80 100 120

32.0

32.5

33.0

33.5

34.0

34.5

35.0

En-Ro

Fw
Bw

Figure 3: Results comparison for CUNMT fine-tuning
with different auxiliary data. “Bw” only adopts cross-
lingual backward translation synthetic data, and “Fw”
only adopts cross-lingual forward translation synthetic
data. The black horizontal is the baseline of UNMT.
The horizontal axis is epoch and the vertical axis is the
BLEU score. Epoch size is 100K sentences.

Backward or Forward Here we have explored
the effect of cross-lingual backward supervision
and cross-lingual forward supervision, and plot
the performance curves along with the training
procedure in Figure 3. The comparison system
is CUNMT trained only with monolingual data.
To make a fair comparison, we use “CUNMT w/
Para.” as the baseline model and fine-tuning it
with only indirect forward supervision or indirect
backward supervision. We conduct experiments
on WMT16 En-De and En-Ro tasks. Clearly,
the forward supervision outperforms the backward
one with big margins, which shows the importance
of introducing the forward supervision for mul-
tilingual UNMT. It is still interesting to find that
only introducing the indirect backward translation
achieves better results than the unsupervised base-
line.

We suppose the reasons for the performance gap
is that, a) The UNMT baseline has included the
traditional direct back translation, therefore the
information gain from indirect backward transla-
tion is limited compared to the forward transla-
tion. b) The indirect forward translation provides
a more direct way to model the relation across dif-
ferent languages. The results in consist with the
previous research that pivot translation can help
low resource language translation.

Robustness on Parallel Data Scale As shown
in Table 4, CUNMT is robust to the parallel data

Auxiliary Direction En-Ro Ro-En
En-De 34.86 33.18
En-De (50%) 34.72 32.85
En-De (25%) 34.52 32.33

Table 2: Robustness of Parallel Data Scale. Mainly
evaluated on unsupervised En-Ro direction with dif-
ferent auxiliary parallel data settings.

scale. The results also dovetail with the unsuper-
vised En-Fr experiments in Table 1. As it turns
out the smaller parallel data of En-De was able to
significantly improve the performance of unsuper-
vised En-Fr translation. We then reduce the scale
of the parallel data En-De and surprisingly find
that even with only 25% supervised data, CUNMT

still works well. The experiments demonstrate that
CUNMT is robust and has great potential to be ap-
plied to practical systems.

Auxiliary Direction En-Ro Ro-En
En-Fr 35.09 33.95
En-De 34.86 33.18
En-Zh 33.85 32.86
En-De-Fr 35.26 34.20

Table 3: Effects of the Auxiliary Language. Mainly
evaluated on unsupervised En-Ro direction with differ-
ent parallel data settings.En-Fr,En-De and En-Zh are
the auxiliary parallel data for training En-Ro. En-De-
Fr is the combination of the En-De and En-Fr parallel
data.

Importance of the Auxiliary Language Table
3 shows effects of the auxiliary language. We first
switch the parallel data from En-Fr to En-De, the
performance is almost consistent. We then switch
the parallen data to En − Zh, where Zh is dis-
similar with Ro, the performance increases. This
is in line with our expectations, that similar lan-
guages make it easier for transfer learning. Fi-
nally, we extend the parallel data to En-De and
En-Fr, and achieves further benefits. Compared
with , we suggest the language similarity is more
important than the auxiliary data scale.

Benefits as All in One Model In table 4, the
performance of supervised directions are shown
to illustrate the effects on which jointly training
a single system has First, we test the baseline su-
pervised system, that is, only En → Fr and
Fr → En are conducted on the model. Due to
difference in model architecture, the performance

93

System En-Fr Fr-En
Supervised Training 39.70 36.62
CUNMT + Forward 39.26 36.82
CUNMT + Backward 39.12 36.20

Table 4: Translation performance on supervised direc-
tions of CUNMT.

of CUNMT is slightly lower than that of its state of
the art counterparts. Also, some techniques such
as model average are not applied, and two direc-
tions are trained in one model. In CUNMT, the
performance of supervised directions drops a lit-
tle, but in exchange, the performances of zero-shot
directions are greatly improved and the model is
convenient to serve for multiple translation direc-
tions.

Strategies of Synthetic Data Generation For
the synthetic data generation, the reported results
are from greedy decoding for time efficiency. We
compared the effects of sample strategies on the
language setting of (Ro,En,De) where En-De is
the supervised direction. The results based on
beam search generation for En → Ro is 34.86,
and 33.18 for En → Fr in terms of BLEU. Com-
pared with greedy decoding, the performance of
beam search is slightly inferior. A possible reason
is that the beam search makes the synthetic data
further biased on the learned pattern. The results
suggest that CUNMT is exceedingly robust to the
sampling strategies when performing forward and
backward cross translation.

5 Related Work

Multilingual NMT It has been proven low re-
source machine translation can adopt methods to
utilize other rich resource data in order to develop
a better system. These methods include multilin-
gual translation system (Firat et al., 2016; John-
son et al., 2017), teacher-student framework (Chen
et al., 2017), or others (Zheng et al., 2017). Apart
from parallel data as an entry point, many at-
tempts have been made to explore the usefulness
of monolingual data, including semi-supervised
methods and unsupervised methods which only
monolingual data is used. Much work also has
been done to attempt to marry monolingual data
with supervised data to create a better system,
some of which include using small amounts of par-
allel data and augment the system with monolin-
gual data (Sennrich et al., 2016; He et al., 2016;

Wang et al., 2018; Gu et al., 2018; Edunov et al.,
2018; Yang et al., 2020). Others also try to uti-
lize parallel data of rich resource language pairs
and also monolingual data (Ren et al., 2018; Wang
et al., 2019; Al-Shedivat and Parikh, 2019; Lin
et al., 2020). (Ren et al., 2018) also proposed a tri-
angular architecture, but their work still relied on
parallel data of low resource language pairs. With
the joint support of parallel and monolingual data,
the performance of a low resource system can be
improved.

Unsupervised NMT In 2017, pure unsuper-
vised machine translation method with only
monolingual data was proven to be feasible. On
the basis of embedding alignment (Artetxe et al.,
2017; Lample et al., 2018b), (Lample et al.,
2018a) and (Artetxe et al., 2018b) devised simi-
lar methods for fully unsupervised machine trans-
lation. Considerable work has been done to im-
prove the unsupervised machine translation sys-
tems by methods such as statistical machine trans-
lation (Lample et al., 2018c; Artetxe et al., 2018a;
Ren et al., 2019; Artetxe et al., 2019), pretraining
models (Lample and Conneau, 2019; Song et al.,
2019), or others (Wu et al., 2019), and all of which
greatly improve the performance of unsupervised
machine translation.

Our work attempts to utilize both monolin-
gual and parallel data, and combine unsupervised
and supervised machine translation through mul-
tilingual translation method into a single model
CUNMT to ensure better performance for unsuper-
vised language pairs.

6 Conclusion

In this work, we propose a multilingual machine
translation framework CUNMT incorporating dis-
tant supervision to tackle the challenge of the un-
supervised translation task. By mixing different
training schemes into one model and utilizing un-
related bilingual corpus, we greatly improve the
performance of the unsupervised NMT direction.
By joint training, CUNMT can serve all transla-
tion directions in one model. Empirically, CUNMT

has been proven to deliver substantial improve-
ments over several strong UNMT competitors and
even achieve comparable performance to super-
vised NMT. In the future, we plan to build a uni-
versal CUNMT system that is applicable in a wide
span of languages.

94

References
Maruan Al-Shedivat and Ankur Parikh. 2019. Con-

sistency by agreement in zero-shot neural machine
translation. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL:HLT), Volume 1 (Long and
Short Papers), pages 1184–1197, Minneapolis, Min-
nesota.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017.
Learning bilingual word embeddings with (almost)
no bilingual data. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (ACL) (Volume 1: Long Papers), pages
451–462, Vancouver, Canada.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2018a. Unsupervised statistical machine transla-
tion. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 3632–3642, Brussels, Belgium.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2019. An effective approach to unsupervised ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 194–203, Florence, Italy.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018b. Unsupervised neural ma-
chine translation. In International Conference on
Learning Representations (ICLR).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations (ICLR).

Yun Chen, Yang Liu, Yong Cheng, and Victor O.K.
Li. 2017. A teacher-student framework for zero-
resource neural machine translation. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (ACL) (Volume 1: Long
Papers), pages 1925–1935, Vancouver, Canada.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 489–500, Brussels, Belgium.

Orhan Firat, Baskaran Sankaran, Yaser Al-onaizan,
Fatos T. Yarman Vural, and Kyunghyun Cho. 2016.
Zero-resource translation with multi-lingual neu-
ral machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 268–277,
Austin, Texas.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Convolu-
tional sequence to sequence learning. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning (ICML), volume 70 of Proceedings

of Machine Learning Research, pages 1243–1252,
International Convention Centre, Sydney, Australia.

Jiatao Gu, Hany Hassan, Jacob Devlin, and Vic-
tor O.K. Li. 2018. Universal neural machine trans-
lation for extremely low resource languages. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL:HLT), Volume 1 (Long Papers), pages 344–
354, New Orleans, Louisiana.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu,
Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual learning
for machine translation. In Advances in Neural In-
formation Processing Systems (NeurIPS) 29, pages
820–828.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the
Association for Computational Linguistics (TACL),
5:339–351.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Guillaume Lample, Alexis Conneau, Ludovic De-
noyer, and Marc’Aurelio Ranzato. 2018a. Unsu-
pervised machine translation using monolingual cor-
pora only. In International Conference on Learning
Representations (ICLR).

Guillaume Lample, Alexis Conneau, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou.
2018b. Word translation without parallel data. In
International Conference on Learning Representa-
tions (ICLR).

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018c.
Phrase-based & neural unsupervised machine trans-
lation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5039–5049, Brussels, Belgium.

Zehui Lin, Xiao Pan, Mingxuan Wang, Xipeng Qiu,
Jiangtao Feng, Hao Zhou, and Lei Li. 2020. Pre-
training multilingual neural machine translation by
leveraging alignment information. arXiv preprint
arXiv:2010.03142.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. arXiv
preprint arXiv:2001.08210.

Shuo Ren, Wenhu Chen, Shujie Liu, Mu Li, Ming
Zhou, and Shuai Ma. 2018. Triangular architecture
for rare language translation. In Proceedings of the

95

56th Annual Meeting of the Association for Compu-
tational Linguistics (ACL) (Volume 1: Long Papers),
pages 56–65, Melbourne, Australia.

Shuo Ren, Zhirui Zhang, Shujie Liu, Ming Zhou, and
Shuai Ma. 2019. Unsupervised neural machine
translation with smt as posterior regularization. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence (AAAI), 33:241–248.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (ACL) (Volume 1: Long Papers),
pages 86–96, Berlin, Germany.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: Masked sequence to se-
quence pre-training for language generation. In Pro-
ceedings of the 36th International Conference on
Machine Learning (ICML), volume 97 of Proceed-
ings of Machine Learning Research, pages 5926–
5936, Long Beach, California, USA.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NeurIPS) 30, pages 5998–6008.

Yijun Wang, Yingce Xia, Li Zhao, Jiang Bian, Tao
Qin, Guiquan Liu, and Tie-Yan Liu. 2018. Dual
transfer learning for neural machine translation with
marginal distribution regularization. In Proceed-
ings of AAAI Conference on Artificial Intelligence
(AAAI), pages 5553–5560, New Orleans, USA.

Yiren Wang, Yingce Xia, Tianyu He, Fei Tian, Tao Qin,
ChengXiang Zhai, and Tie-Yan Liu. 2019. Multi-
agent dual learning. In International Conference on
Learning Representations (ICLR).

Jiawei Wu, Xin Wang, and William Yang Wang. 2019.
Extract and edit: An alternative to back-translation
for unsupervised neural machine translation. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL:HLT), Volume 1 (Long and Short Papers),
pages 1173–1183, Minneapolis, Minnesota.

Jiacheng Yang, Mingxuan Wang, Hao Zhou, Chengqi
Zhao, Weinan Zhang, Yong Yu, and Lei Li. 2020.
Towards making the most of bert in neural machine
translation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 9378–
9385.

Hao Zheng, Yong Cheng, and Yang Liu. 2017.
Maximum expected likelihood estimation for zero-
resource neural machine translation. In Proceedings
of the Twenty-Sixth International Joint Conference
on Artificial Intelligence (IJCAI), pages 4251–4257.

96

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 97–104
June 6–11, 2021. ©2021 Association for Computational Linguistics

Should we find another model?: Improving Neural Machine Translation
Performance with ONE-Piece Tokenization Method without Model

Modification

Chanjun Park1†, Sugyeong Eo1†, Hyeonseok Moon1†, Heuiseok Lim1∗
1Korea University, South Korea

{bcj1210, djtnrud, glee889, limhseok}@korea.ac.kr

Abstract

Most of the recent natural language process-
ing (NLP) studies are based on the pretrain-
finetuning approach (PFA). However for small
and medium-sized industries with insufficient
hardware, there are many limitations in servic-
ing latest PFA based NLP application software,
due to slow speed and insufficient memory.
Since these approaches generally require large
amounts of data, it is much more difficult to
service with PFA especially for low-resource
languages. We propose a new tokenization
method, ONE-Piece, to address this limitation.
ONE-Piece combines morphologically-aware
subword tokenization and vocabulary commu-
nicating method, which has not been care-
fully considered before. Our proposed method
can also be utilized without modifying the
model structure. We experiment by applying
ONE-Piece to Korean, a morphologically-rich
and low-resource language. We revealed that
ONE-Piece with vanilla transformer model
can achieve comparable performance to the
current Korean-English machine translation
state-of-the-art model.

1 Introduction

Recent studies using pretrain-finetuning approach
(PFA) technique have achieved state-of-the-art
(SOTA) performance in many natural language pro-
cessing (NLP) tasks and are becoming the latest
trend (Devlin et al., 2018; Yang et al., 2019; Rad-
ford et al., 2019; Brown et al., 2020; Liu et al.,
2019; Clark et al., 2020). To utilize the PFA, a
large amount of pre-training data and a system with
sufficient computing power are required. For exam-
ple, T5 (Raffel et al., 2019) was trained with 11 B
parameters and 1 T tokens in order to get SOTA
performance, and for GPT3 (Brown et al., 2020),
170 B parameters were required to train a model to
demonstrate the best performance.

†All authors contributed equally.
∗Corresponding author.

The trend of model research based on PFA raises
two problems. First, it is hard to expect a similar
performance for the low-resource setting. This is
because most studies based on the PFA technique
rely on large amounts of data (Zoph et al., 2016).
But for low-resource languages, it is difficult to
provide the comparable amount of data required by
recent papers. Second, it is necessary to overturn
the existing model and pre-train a new model from
scratch to create a PFA-based model that follows
the latest research trends.

Since the PFA-based model requires many pa-
rameters, companies without adequate server or
graphic processing unit (GPU) environments may
have many difficulties in configuring the service
environment and utilizing the latest model (Park
et al., 2020b). Therefore, new approaches are re-
quired to ensure high performance for low-resource
languages and companies lacking extensive server
and GPU environments.

To solve this problem, many researches are be-
ing conducted on the way of improving the perfor-
mance of NLP application software without chang-
ing the model through data pre and post-processing,
typically in machine translation (Pal et al., 2016;
Currey et al., 2017; Banerjee and Bhattacharyya,
2018; Koehn et al., 2018; Kudo, 2018; Park et al.,
2020b). Reflecting this trend, we conducted a study
on an optimized tokenization that can improve the
performance of neural machine translation (NMT)
without changing the model.

We propose two perspectives for optimized tok-
enization. First, we analyze the limitations of byte
pair encoding (BPE) (Sennrich et al., 2015) and sen-
tencepiece (Kudo and Richardson, 2018), which
can easily be applied to various languages. Due to
its language-agnostic characteristic, these methods
are currently used as the defaults in language model
research and existing tokenization methods. How-
ever, there are 7,111 languages around the world.
More than 50 million people speak 25 languages

97

as their mother tongue that have various morpho-
logical characteristics such as isolating language,
agglutinative language, and fusional language. Con-
sidering this, it seems hard to assert that applying
sentencepiece and BPE always produce the best
performance.

Second, we focus on the problem that there is
not enough discussion about the corpus used in
tokenizer training. Several studies that applied BPE
and sentencepiece use a merged bilingual corpus,
that combines two language corpora into one, when
training its tokenizer (Song et al., 2019; Liu et al.,
2020). However in these studies, merged bilingual
corpus is utilized without sufficient comparative
analysis.

In this study, tokenization methods which lever-
aging merged bilingual corpora and separate bilin-
gual corpora are denoted as Vocabulary Commu-
nicating (VC) and Vocabulary Separating (VS), re-
spectively. We denote VC and VS as vocabulary
methods and compare the performance of each
method in NMT. In other words, we further fig-
ure out the optimal tokenization method through
comparative experiments on various tokenization
methods.

All the experiments are made on a Korean
dataset, which is a representative of low-resource
and morphologically rich language (MRL). In
particular, we propose ONE-Piece that combines
the VC method and morphological segmentation
followed by sentencepiece. Through comparative
experiments with tokenization methods currently
used in NLP research, such as BPE and sentence-
piece, we revealed that ONE-Piece can encourage
the optimal performance in Korean-English ma-
chine translation. The contributions of our study
are as follows:

• We proposed a new subword tokenization
method, ONE-Piece, which leveraging morpho-
logical segmentation and vocabulary communi-
cating method. Through ONE-Piece, we can ob-
tain better performance than the existing tok-
enization methods such as BPE and sentence-
piece.

• Based on linguistic analysis, we showed that con-
structing corpus for training tokenizer is an im-
portant factor that has a critical influence on ma-
chine translation performance.

• We presented a new viewpoint for pre-processing
that can improve translation performance without
modifying model structure. Our proposal consid-

ered industrial service and demonstrated high
speed and performance without using PFA.

2 Proposed Method

This study proposes an optimal tokenization
method for improving machine translation perfor-
mance from the viewpoints of morphological seg-
mentation and vocabulary method. We derive an
optimal tokenization method for Korean-English
machine translation by conducting a case study
that combines the morphological segmentation and
vocabulary method.

2.1 Morphologically-Aware SentencePiece
Korean is classified as an agglutinative language
according to its type of morphemes. Due to the
nature of agglutinative languages, one word can
comprises substantive (noun/pronoun/numeral) fol-
lowed by postposition, or the stem followed by the
ending. Table 1 shows the result of tokenizing Ko-
rean sentences through BPE (Sennrich et al., 2015),
sentencepiece (Kudo and Richardson, 2018), and
morphological segmentation using MeCab-ko.

In the case of BPE and sentencepiece, the postpo-
sitions ‘가 (ga),는 (neun),를 (leul),의 (ui),인 (in)’
have not been properly separated from the substan-
tives. This failures in separating the postpositions
from the substantives can lead to mistranslation of
entities and grammartically incorrect translation.
Generally, the postposition indicates the grammat-
ical relationship to the substantive and plays an
important role in organizing the meaning of words.
Therefore, miss-separating the postpositions can
lead to the incorrect translation of the whole sen-
tence, and misunderstanding of the semantic rela-
tionship.

Also, in the case of BPE and sentencepiece, the
entities (red-common noun, blue-proper noun) are
over-tokenized. Both methods tokenize sentences
based on frequency and probability without consid-
ering linguistic characteristics. This can lead to in-
appropriate segmentation between substantives and
postpositions, or between stems and endings. These
problems can be alleviated by employing morpho-
logical segmentation. In this study, we quantita-
tively analyze the effect of morphological segmen-
tation in NMT, and propose the optimal method of
leveraging it by combining sentencepiece.

2.2 Why MeCab-ko?
We use Konlpy (Park and Cho, 2014) for morpho-
logical segmentation of Korean sentences. Konlpy

98

Target Sentence BPE sentencepiece MeCab-ko
The number of diag-
noses started to soar,
just as Lorna and Judith
predicted, indeed hoped,
that it would

진단/ 숫자는/ 급

증@@/했고/ 로@@/
나와/ 주@@/디@@/
스가/ 예상@@/했고/
진@@/실로/ 그들이/
바랬@@/던/것처럼

_진단/_숫자는/_급증/
했고/_로/나와/_주/디/
스가/_예상/했고/_진/
실로/_그들이/_바/랬/
던/_것처럼’

진단/ 숫자/는/ 급증/
했/고/ 로나(NNP)/와/
주디스(NNP)/가/ 예상/
했/고/ 진실로/ 그/들/
이/바랬/던/것/처럼

Instead of blaming par-
ents for causing autism,
Asperger framed it as a
lifelong, polygenetic dis-
ability

자폐@@/증을/부모의/
탓@@/으로/ 돌리는/
대신/ 아스@@/퍼@@/
거는/ 그것을/ 장기

적인/ 다@@/기@@/
원의/장애@@/로

_자폐/증을/_부모
의/_탓/으로/_돌리
는/_대신/_아스/퍼/
거는/_그것을/_장기적
인/_다/기/원의/_장애/
로

자폐증/을/ 부모/의/ 탓/
으로/돌리/는/대신/아
스퍼거(NNP)/는/ 그것/
을/장기/적/인/다/기원/
의/장애/로

Table 1: Comparison of BPE, sentencepiece and MeCab-ko segmentation results.

is an open-source Korean morphological analyzer
package which provides 6 morphological analyz-
ers: MeCab-ko, Kkma, Komoran, Hannanum, Okt,
and Twitter. In this study, we select an analyzer
that shows the best performance among them by
experimenting morphological analysis for up to 1
M characters. In particular, since inference speed
is a very important factor in the industry field, we
focused on the time required for morphological
analysis. The inference time required for each ana-
lyzer is shown in Figure 1.

100 101 102 103 104 105 106

Number of characters

0

2

4

6

8

10

12

Ti
m

e
(s

ec
)

Hannanum
Kkma
Komoran
MeCab-ko
Okt
Twitter

Figure 1: Inference time of morphological analyzer

As shown in Figure 1, MeCab-ko shows the best
results compared to other morphological analyz-
ers. It takes 0.3353 secs in processing 1 M charac-
ters. Additionally, through experiments on different
number of characters, we can see that MeCab-ko
conducts analysis of the input sequence at a sta-
ble speed despite the exponential increase in the
number of characters. For these reasons, we adopt

MeCab-ko by its high processing speed and stabil-
ity in character length.

2.3 Vocabulary Communicating Method

The VC method has been used in several PFA-
based models. In MASS (Song et al., 2019), a 60K
vocabulary was extracted by composing the source
and target language into a merged bilingual corpus.
In mBART (Liu et al., 2020), the CC25 corpus was
composed of a total of 25 languages extracted from
CommonCrawl (CC) (Lample and Conneau, 2019;
Wenzek et al., 2019) and used for unified vocab-
ulary extraction. When using the VC method in
mBART, there is a generalization effect for unseen
languages. However, this effect has not been suf-
ficiently discussed for languages that do not share
an alphabet, and no quantitative basis for a gener-
alization effect has been proposed. In this study,
we conducted probing for this approach through
quantitative analysis.

In practical cases, source and target languages
often communicate to each other; source language
is contained in target sentences, and vice versa. In
the case of our training data, approximately 6.9%
of source sentences contains English tokens. For
instance, domain specific terms such as "Host IP"
can not be replaced by Korean token and constitute
Korean sentences in its original form.

For the case of VS method, each language only
contributes to the processing of corresponding lan-
guage corpus, and different tokenizers are applied
to the source and target sentences. If a vocabulary
is extracted according to the VS method, source
language dictionary is composed by reflecting only
small fraction of the target languages, which is con-

99

Figure 2: Overall Architecture of NMT training process using ONE-Piece model

tained in source sentences. In this case, target lan-
guage token, which is not contained in source lan-
guage dictionary but contained in target language
dictionary, is treated as unknown.

The VC method can alleviate this problem. As
previously mentioned, the VC method construct a
merged corpus and the vocabulary extracted from
this merged corpus is identically applied to the
source and target sentences. By using VC method,
the source and target language can interact within
the same vocabulary and are mutually reference-
able. Therefore, the source and target language can
interact within the same vocabulary and are mutu-
ally referenceable. This can lead to full understand-
ing of target language tokens in source sentences
and vice verssa.

2.4 ONE-Piece
ONE-Piece is a subword tokenization method that
utilizes morphological analysis and the VC method.
By applying morphological analysis, characteris-
tics of an agglutinative language, that a single word
can comprises multiple morphemes, can be consid-
ered. Then by following sentencepiece, applying
VC method, can alleviate the out of vocabulary
(OOV) problem.

The ONE-piece can be obtained by following
processes. First, from a parallel corpus P , which
is consist of source sentences S = {Si}Ni=1 and
target sentences T = {Ti}Ni=1, merged corpus M
is created. More specifically, this procedures can
be described as follows:

Si = {sji}
ni
j=1

Ti = {tji}
mi
j=1

(1)

sji denote jth word of source sentence Si, which
is segmented by whitespace, and ni indicate the
word length of Si. Similarly, tji denote jth word,
and mi indicate the word length of target sentence
Ti, which is segmented by whitespace.

We apply morphological analyzer to agglutina-
tive language. In this paper, source sentences is
re-segmented by morpheme-units, through morpho-
logical analyer. This can be denoted as equation
(2).

Segi =MA(Si) = {segji }
ki
j=1 (2)

MA indicates morphological analyzer for source
language. By MA, morpheme-unit-segmented sen-
tence Segi is generated from source sentence Si.
ki denotes morpheme-token length of Segi. Since
a word comprises one or more morphemes, ki is
always equal to or greater than ji. Then by combin-
ing all the Segi and Ti into one, merged corpus M
is generated as equation (3).

M = [T1, . . . , TN , Seg1, . . . , SegN] (3)

M is composed of both source language and
target language. As M is created, we can generate
ONE-piece by training sentencepiece model by M .

Figure 2 is an overall architecture that describes
the process of training NMT model by leveraging
ONE-Piece. For Korean sentences in the source
part, morphological segmentation is performed
with MeCab-ko, and English sentences correspond-
ing to the target side are segmented by whites-
pace. After combining source sentences and tar-
get sentences, we train sentencepiece model by
using them. In this process, ONE-Piece model is

100

created. Through ONE-Piece, input sentences are
segmented into subwords and fed into the encoder
and decoder for training NMT model.

3 Experiments

3.1 Dataset and Experimental Setting
We utilized Korean-English parallel corpora from
3 different data sources for our dataset: the AI
Hub Korean-English parallel corpus1, OpenSub-
titles2, and the IWSLT-17 TED corpus (Cettolo
et al., 2017). We constructed 2.7 M sentence pairs
from these data sources. For better NMT perfor-
mance, we applied parallel corpus filtering to our
corpus and construct 2.2 M sentence pairs for train-
ing. We applied the same filtering method as Park
et al. (2020a). We randomly selected 5,000 sen-
tence pairs from our training data for validation
and used IWSLT-16 and IWSLT-17 test sets, which
is consist of 1,143 and 1,429 sentence pairs, for
performance evaluation.

Since our ultimate purpose is to check whether
the performance of the NMT model can be im-
proved only by the subword tokenization method
without changing the model, we adopt vanilla trans-
former as our baseline. The performance evaluation
of translation results was conducted based on the
BLEU score (Papineni et al., 2002). To measure the
score, we adopted multi-bleu.perl script3 in Moses.

3.2 Experimental Results
3.2.1 Verification of the Effectiveness of the

VC Method
In this section, we experimentally compare and ver-
ify the performance of Korean-English machine
translation using VC and VS methods. By applying
each method to BPE and sentencepiece, we inves-
tigate the impact of the vocabulary method in the
performance of NMT. The experimental results are
shown in Table 2.

In sentencepiece, the VC method outperforms
the VS method by 1.34 BLEU score on the IWSLT-
16 test set and 0.99 BLEU score on the IWSLT-
17 test set. Conversely for BPE, the VS method
outperforms the VC method by 2.78 BLEU score
on the IWSLT-16 test set and 2.42 BLEU score on
the IWSLT-17 test set. There are some cases where

1https://aihub.or.kr
2http://opus.nlpl.eu/

OpenSubtitles-v2018.php
3https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

Tokenization
Method

IWSLT-16
(BLEU)

IWSLT-17
(BLEU)

VC SP 21.63 19.11
VS SP 20.29 18.12
VC BPE 17.47 15.42
VS BPE 20.25 17.84

Table 2: Korean-English NMT results applying differ-
ent vocabulary method in BPE and sentencepiece. SP
refers to sentencepiece.

the VS method yields a more superior performance
than the VC method, depending on the tokenization
algorithm. In other words, the VC method does not
show consistently superior performance to the VS
method.

Currently, many studies have employed the VC
method based tokenizer as a default choice, regard-
less of the tokenization algorithm. From this exper-
iment, we revealed that the current default option
may not be the optimal choice depending on the
selection of the tokenization algorithm. We fur-
ther show that selecting vocabulary method is an
important factor that significantly affects machine
translation performance. This indicates that the vo-
cabulary method must be considered when adopt-
ing a tokenization algorithm to ensure the optimal
machine translation performance.

3.2.2 Verification of the Effectiveness of
Morphological Segmentation

In this section, we verify the impact of the morpho-
logical segmentation. We experimented two tok-
enization methods using MeCab-ko in Korean cor-
pus. The first method is to segment by morpheme
units, and the second method is to add sentence-
piece after this process, as first suggested by Park
et al. (2019). Whereas Park et al. (2019) used VS
method based tokenizers in all of their experiments,
we utilized VS method based tokenizers for this
experiment. Our results are shown in Table 3.

Tokenization
Method

IWSLT-16
(BLEU)

IWSLT-17
(BLEU)

VS SP 20.29 18.12
VS MeCab-ko 19.61 17.08
VS MeCab-ko+SP 19.78 17.49

Table 3: Korean-English NMT results using MeCab-ko.
All experiments are implemented using the VS method.
sentencepiece is denoted as SP.

101

Applying sentencepiece after morphological seg-
mentation demonstrates better performance in both
the IWSLT-16 and IWSLT-17 test sets compared to
the MeCab-ko based segmentation without senten-
cepiece. However, our results show that applying
morphological segmentation for tokenizer training
yields overall performance degradation in both test
sets. This is contrary to the experimental results of
Park et al. (2019), which claim that morphological
analysis consistently improves machine translation
performance. The main difference between our ex-
periment and Park et al. (2019) is the vocabulary
method. From these results, we can infer that the
effect of applying morphological segmentation on
NMT is relatively different depending on the vo-
cabulary method. This indicates that prior to apply-
ing morphological segmentation, the vocabulary
method must be considered to get improved NMT
performance.

3.2.3 Verification of the ONE-Piece
ONE-Piece differs from existing tokenizers in that
it utilizes VC method and the morphological seg-
mentation followed by sentencepiece. In this sec-
tion, we verify the effectiveness of ONE-Piece by
comparing NMT performance using various pre-
processing strategies based on the VC method. The
results are shown in Table 4.

Tokenization
Method

IWSLT-16
(BLEU)

IWSLT-17
(BLEU)

VC Word 7.98 7.16
VC Character 16.39 17.06
VC BPE 17.47 15.42
VC sentencepiece 21.63 19.11
ONE-Piece (ours) 24.95 22.58

Table 4: Korean-English NMT results of different to-
kenization algorithms. All the experiments are imple-
mented using the VC method.

Compared to the VC-based tokenizer, ONE-
Piece produces at least 3.32 BLEU score supe-
rior translation performance. This result suggests
that further improvement can be made by applying
ONE-Piece to other existing sentencepiece-based
NMT models.

In sections 3.2.1 and 3.2.2, we revealed that vo-
cabulary method and morphological segmentation
significantly affect the NMT performance, but nei-
ther of these consistently improve the NMT perfor-
mance by themselves. However as shown in table

4, by properly combining these two factors, we can
derive mutual supplementation effect which lead
to a meaningful improvement in the translation per-
formance. This can be viewed as the new criteria
for constructing corpus for training tokenizer.

3.2.4 Comparison with Existing Studies
We compare the performance of vanilla transformer
model applying ONE-Piece with the performance
of mBART(Liu et al., 2020). mBART was trained
with 610 M params and 5.6 B tokens from the CC
corpus. mBART utilized morpheme based segmen-
tation using MeCab-Ko in the Korean corpus and
applied sentencepiece in the English corpus, which
is the same tokenization method as VS MeCab-ko
in Table 3.

mBART MeCab-ko ONE-Piece
IWSLT-17
(BLEU)

24.6 17.08 22.58

model
parameter

610M 32M 32M

Table 5: Comparison of proposed ONE-Piece model
with mBART.

As shown in Table 5, when the same tokeniza-
tion method used in mBART was applied to the
baseline model, the performance was 7.52 BLEU
lower than that of mBART. However, by applying
ONE-Piece to the baseline model, the performance
difference narrowed to a 2.02 BLEU score. This
shows that applying ONE-Piece enables the vanilla
transformer model to have similar performance to
the SOTA model. Although the baseline model us-
ing ONE-Piece did not exceed the performance
of mBART, it is a notable result considering that
the number of parameters required by the baseline
model is 32 M, approximately 5% of the number
of parameters compared to mBART.

The significance of this experiment is that simply
by changing the tokenization method, a model with
a small number of parameters can achieve a similar
performance to SOTA model, which is trained with
a more advanced algorithm and larger number of
parameters.

4 Conclusion

In this study, we proposed a new tokenization
method called ONE-Piece. This can provide the
best performance in Korean-English machine trans-
lation compared with other tokenization methods.

102

Our results quantitatively confirmed the effect of
the vocabulary method and morphological segmen-
tation on NMT performance. Furthermore, we ex-
perimentally proved that the VC method and mor-
phological segmentation cannot consistently im-
prove the performance of NMT by themselves. Our
results showed that significant and consistent per-
formance improvement can only be achieved in
NMT if they are properly used together. By using
ONE-Piece, the vanilla transformer model shows
comparable translation performance to the mBART.
Accordingly, we expect that companies that have
difficulties using the latest PFA-based model, due
to an inadequate server environment, will be able to
utilize our proposed model to provide sufficiently
good performance.

Acknowledgments

This research was supported by the MSIT(Ministry
of Science and ICT), Korea, under the ITRC (Infor-
mation Technology Research Center) support pro-
gram (IITP-2018-0-01405) supervised by the IITP
(Institute for Information & Communications Tech-
nology Planning & Evaluation), Institute for Infor-
mation & communications Technology Planning
& Evaluation (IITP), grant funded by the Korean
government (MSIT) (No. 2020-0-00368, A Neural-
Symbolic Model for Knowledge Acquisition and
Inference Techniques) and MSIT(Ministry of Sci-
ence and ICT), Korea, under the ICT Creative Con-
silience program(IITP-2021-2020-0-01819) super-
vised by the IITP(Institute for Information & com-
munications Technology Planning Evaluation).

References

Tamali Banerjee and Pushpak Bhattacharyya. 2018.
Meaningless yet meaningful: Morphology grounded
subword-level nmt. In Proceedings of the Sec-
ond Workshop on Subword/Character LEvel Models,
pages 55–60.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,
Niehues Jan, Stüker Sebastian, Sudoh Katsuitho,
Yoshino Koichiro, and Federmann Christian. 2017.
Overview of the iwslt 2017 evaluation campaign. In
International Workshop on Spoken Language Trans-
lation, pages 2–14.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than genera-
tors. arXiv preprint arXiv:2003.10555.

Anna Currey, Antonio Valerio Miceli-Barone, and Ken-
neth Heafield. 2017. Copied monolingual data im-
proves low-resource neural machine translation. In
Proceedings of the Second Conference on Machine
Translation, pages 148–156.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Philipp Koehn, Huda Khayrallah, Kenneth Heafield,
and Mikel L Forcada. 2018. Findings of the wmt
2018 shared task on parallel corpus filtering. In Pro-
ceedings of the Third Conference on Machine Trans-
lation: Shared Task Papers, pages 726–739.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. arXiv preprint arXiv:1804.10959.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. arXiv
preprint arXiv:2001.08210.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Santanu Pal, Sudip Kumar Naskar, Mihaela Vela, and
Josef van Genabith. 2016. A neural network based
approach to automatic post-editing. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 281–286.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Chanjun Park, Gyeongmin Kim, and HeuiSeok Lim.
2019. Parallel corpus filtering and korean optimized
subword tokenization for machine translation. In
The 31st Annual Conference on Human Cognitive
Language Technology, pages 221–224.

103

Chanjun Park, Yeonsu Lee, Chanhee Lee, and
Heuiseok Lim. 2020a. Quality, not quantity? : Ef-
fect of parallel corpus quantity and quality on neural
machine translation. In The 32st Annual Conference
on Human Cognitive Language Technology, pages
363–368.

Chanjun Park, Yeongwook Yang, Kinam Park, and
Heuiseok Lim. 2020b. Decoding strategies for im-
proving low-resource machine translation. Electron-
ics, 9(10):1562.

Eunjeong L. Park and Sungzoon Cho. 2014. Konlpy:
Korean natural language processing in python. In
Proceedings of the 26th Annual Conference on Hu-
man Cognitive Language Technology, Chuncheon,
Korea.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. Mass: Masked sequence to sequence
pre-training for language generation. arXiv preprint
arXiv:1905.02450.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-
mand Joulin, and Edouard Grave. 2019. Ccnet: Ex-
tracting high quality monolingual datasets from web
crawl data. arXiv preprint arXiv:1911.00359.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5753–5763.

Barret Zoph, Deniz Yuret, Jonathan May, and
Kevin Knight. 2016. Transfer learning for low-
resource neural machine translation. arXiv preprint
arXiv:1604.02201.

104

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 105–112
June 6–11, 2021. ©2021 Association for Computational Linguistics

Autocorrect in the Process of Translation — Multi-task Learning
Improves Dialogue Machine Translation

Tao Wang1,2, Chengqi Zhao1, Mingxuan Wang1, Lei Li1, Deyi Xiong3∗
1ByteDance AI Lab

2School of Computer Science and Technology, Soochow University, Suzhou, China
3College of Intelligence and Computing, Tianjin University, Tianjin, China

{wangtao.960826, zhaochengqi.d, wangmingxuan.89}@bytedance.com
{lilei.02}@bytedance.com

dyxiong@tju.edu.cn

Abstract

Automatic translation of dialogue texts is a
much needed demand in many real life scenar-
ios. However, current neural machine transla-
tion systems usually deliver unsatisfying trans-
lation results of dialogue texts. In this pa-
per, we conduct a deep analysis of a dia-
logue corpus and summarize three major is-
sues on dialogue translation, including pro-
noun dropping (ProDrop), punctuation drop-
ping (PunDrop), and typos (DialTypo). In
response to these challenges, we propose a
joint learning method to identify omission and
typo in the process of translating, and utilize
context to translate dialogue utterances. To
properly evaluate the performance, we pro-
pose a manually annotated dataset with 1,931
Chinese-English parallel utterances from 300
dialogues as a benchmark testbed for dia-
logue translation. Our experiments show
that the proposed method improves transla-
tion quality by 3.2 BLEU over the baselines.
It also elevates the recovery rate of omit-
ted pronouns from 26.09% to 47.16%. The
code and dataset are publicly available at
https://github.com/rgwt123/DialogueMT.

1 Introduction

Remarkable progress has been made in Neural Ma-
chine Translation (NMT) (Bahdanau et al., 2015;
Wu et al., 2016; Lin et al., 2020; Liu et al., 2020)
in recent years, which has been widely applied
in everyday life. A typical scenario for such ap-
plication is translating dialogue texts, in particu-
lar the record of group chats or movie subtitles,
which helps people of different languages under-
stand cross-language chat and improve their com-
prehension capabilities.

However, traditional NMT models translate texts
in a sentence-by-sentence manner and focus on the
formal text input, such as WMT news translation

∗Corresponding author.

(1)
Nancy怎么了?
[她]drop是不是哭了啊。

MT What happened to Nancy?
Did you cry?

REF What happened to Nancy?
Did she cry?

(2) Nancy怎么了[?]drop是不是哭了啊。
MT Did Nancy cry?
REF What happened to Nancy? Did she cry?
(3) Nancy怎么[乐]typo?
MT How happy is Nancy?
REF What happened to Nancy?

Table 1: Examples of ProDrop (1), PunDrop (2) and
DialTypo (3). MT is translation results from Google
Translate while REF is references.

(Barrault et al., 2020), while the translation of di-
alogue must take the meaning of context and the
input noise into account. Table 1 shows examples
of dialogue fragment in Chinese and their transla-
tion in English. Example (1) demonstrates that the
omission in traditional translation (e.g., dropped
pronouns in Chinese) leads to inaccurate translation
results.

Despite its vast potential application, efforts of
exploration into dialogue translation are far from
enough. Existing works (Wang et al., 2016; Maruf
et al., 2018) focus on either extracting dialogues
from parallel corpora, such as OpenSubtitles (Lison
et al., 2019), or leveraging speaker information for
integrating dialogue context into neural models.
Also, the lack of both training data and benchmark
test set makes current dialogue translation models
far from satisfying and need to be further improved.

In this paper, we try to alleviate the afore-
mentioned challenges in dialogue translation. We
first analyze a fraction of a dialogue corpus
and summarize three critical issues in dialogue
translation, including ProDrop, PunDrop, and
DialTypo. Then we design a Multi-Task Learn-
ing (MTLDIAL) approach that learns to self-correct
sentences in the process of translating. The model’s

105

encoder part automatically learns how to de-noise
the noise input via explicit supervisory signals
provided by additional contextual labeling. We
also propose three strong baselines for dialogue
translation, including repair (REPAIRDIAL) and
robust (ROBUSTDIAL) model. To alleviate the
challenges arising from the scarcity of dialogue
data, we use sub-documents in the bilingual paral-
lel corpus to enable the model to learn from cross-
sentence context.

Additionally as for evaluation, the most com-
monly used BLEU metric (Papineni et al., 2001)
for NMT is not good enough to provide a deep look
into the translation quality in such a scenario. Thus,
we build a Chinese-English test set containing sen-
tences with the issues in ProDrop, PunDrop and
DialTypo, attached with the human translation
and annotation. Finally, we get a test set of 300
dialogues with 1,931 parallel sentences.

The main contributions of this paper are as fol-
lows: a) We analyze three challenges ProDrop,
PunDrop and DialTypo, which greatly impact
the understanding and translation of a dialogue.
b) We propose a contextual multi-task learning
method to tackle the analyzed challenges. c) We
create a Chinese-English test set specifically con-
taining those problems and conduct experiments to
evaluate proposed method on this test set.

2 Analysis on Dialogue Translation

There were already some manual analyses of trans-
lation errors, especially in the field of discourse
translation. Voita et al. (2019) study English-
Russian translation and find three main challenges
for discourse translation: deixis, ellipsis, and
lexical cohesion. For Chinese-English transla-
tion, tense consistency, connective mismatch, and
content-heavy sentences are the most common is-
sues (Li et al., 2014).

Different from previous works, we mainly an-
alyze the specific phenomena in dialogue trans-
lation. We begin with a study on a bilingual di-
alogue corpus (Wang et al., 2018).1 We trans-
late source sentences into the target language at
sentence level and compare translation results
with reference at dialogue level. Around 1,000
dialogues are evaluated, and the results are re-
ported in Table 2. From the statistic, we ob-
serve two persistent dialogue translation problems:
pronoun dropping (ProDrop), punctuation drop-

1https://github.com/longyuewangdcu/tvsub

Types of phenomena Frequency
Correct 88.1%
ProDrop 4.3%
PunDrop 3.2%
Incorrect segmentation 2.4%
Other translation errors 2.0%

Table 2: Manual evaluation of dialogue samples.

ping(PunDrop). The phenomenon is consistent
with the issue we collect in practical Instant Mes-
saging (IM) chat scenarios, except for typos since
the analyzed dialogue corpus has been proofread
to remove typos.

2.1 Pronoun Dropping

Pronouns are frequently omitted in pro-drop lan-
guages (Huang, 1989), such as Chinese, Japanese,
Korean, Vietnamese, and Slavic languages. Such
phenomenon are more frequent in dialogue, where
the interlocutors are both aware of what’s omit-
ted in the context. However, when translating a
pro-drop language into a non-pro-drop language
(e.g., English)2, it is hard to translate those omit-
ted pronouns, resulting in grammatical errors or
semantic inaccuracies in the target language. The
first conversation in Table 1 is an example.

2.2 Punctuation Dropping

In dialogue scenarios, such as IM software, punc-
tuation is often omitted and users tend to segment
sentences with spaces. The problem becomes much
serious in languages with no spaces, such as Chi-
nese, Japanese, Korean, and Thai. Table 1 shows
this phenomenon in Example (2).

2.3 Dialogue Typos

Typo repairing is another fundamental but very
challenging practical problem. In dialogue transla-
tion, typos or misspellings are very common, which
dramatically undermine the quality of translation
output produced by machine translation. Table 1
shows this phenomenon in Example (3).

3 Approach to NMTDIAL

This section aims to propose a unified framework
that facilitates NMT to correct noisy inputs in dia-
logue neural machine translation (NMTDIAL). The
framework includes three different methods, which
are REPAIRDIAL, ROBUSTDIAL and MTL-
DIAL.

2https://en.wikipedia.org/wiki/Pro-drop_language

106

Nancy 怎么 了 ？ 她 是不是 哭 了 啊

Nancy 怎么 了 ？<sep> 她 是不是 哭 了 啊 <eos>

 Nancy 怎么 了 <sep> 是不是 哭 了 阿 <eos>

What happened to Nancy ? Did she cry ?

What happened to Nancy ? <sep> Did she cry ? <eos>

 0 0 0 3 2 0 0 1 0

PunDrop ProDrop DialTypo

(a)

①

③

②

Encoder Decoder

Encoder Decoder

Encoder Decoder

Decoder Encoder

(b)

Figure 1: Overall diagram of NMTDIAL. (a) demonstrates the process of data generation, and (b) displays the
three proposed methods. ①/②/③ represent REPAIRDIAL, ROBUSTDIAL and MTLDIAL respectively.

3.1 Contextual Perturbation Example
Generation

The most challenging problem for NMTDIAL is
the data distribution gap between training and in-
ference stage, where the training data are clean
sentence-level pairs while the test data are noisy
dialogue-level conversations.

To bridge the distribution gap, the first step is to
generate perturbation examples based on training
instances. The data generation mainly consists of
two steps. The first step is to obtain sub-documents
with cross-sentence context, and the second step
is to generate examples with word perturbations
within sub-documents. Figure 1a shows a complete
process.
Cross-sentence Context It is difficult to acquire
dialog-level parallel training data. As an alternative
approach, we use parallel document data to catch
dependencies across sentences.

Formally, let xd = {x(1), x(2), · · · , x(M)} be a
source-language document containing M source
sentences. And yd = {y(1), y(2), · · · , y(M)} is the
corresponding target-language document contain-
ing the same number of sentences as that of the
source document. To get more context information,
we randomly sample consecutive sub-document
pairs (xd, yd) of N sentences (i.e., snippet pairs
from aligned documents). We set N ∈ [1, 10] in
this paper.

We use a special token <sep> as the separa-
tor to concatenate sentences into a parallel sub-
document {(xd, yd)}, as shown in Figure 1a.
Contextual Perturbation We then consider gener-
ating perturbation example x′d from xd with re-
spect to sub-document context. For ProDrop,

PunDrop and DialTypo, we build a Chinese
pronoun table TProDrop, a common punctuation
table TPunDrop and a Chinese homophone table
TDialTypo respectively.

For ProDrop and PunDrop, we tra-
verse source sentences of xd, discard pro-
nouns/punctuation in these sentences with a
probability of 30% and record deletion positions
with corresponding labels (see details below);
to construct a typo, we choose a word with a
probability of 1%, of which 80% is replaced with
one of its homophones according to TDialTypo

and 20% is replaced with another random word.
We determine these percentages by observing the
generated perturbation data. For annotation labels,
we tag correct words with 0, words of DialTypo
with 1, ProDrop words with 2 and PunDrop
words with 3.

Finally we get xd, x′d and their corresponding
label sequences `x, `′x. `x is a sequence of all 0s.

3.2 NMTDIAL Base Models

With the created training data, we first introduce
two methods for NMTDIAL as our strong baselines,
which will be elaborated here for model compari-
son.
REPAIRDIAL A natural way for NMTDIAL is to
train a dialog repair model to transform dialogue
inputs into forms that an ordinary NMT system
can deal with. REPAIRDIAL involves training a
repair model to transform x′d to xd and a clean
translation model that translates xd to yd. As a
pipeline method, REPAIRDIAL may suffer from
error propagation.
ROBUSTDIAL We extend the robust NMT

107

(Cheng et al., 2018) to dialogue-level translation.
Specifically, we take both the original (xd, yd) and
the perturbated (x′d, yd) bilingual pairs as training
instances. So the model is more resilient on dia-
logue translation. During the inference stage, the
robust model directly translates raw inputs into the
target language.

3.3 MTLDIAL

ROBUSTDIAL has the potential to handle trans-
lation problems caused by noisy dialogue inputs.
However, the internal mechanism is rather implicit
and in a black box. Therefore, the improvement is
limited, and it is not easy to analyze the improve-
ment. To address this issue, we introduce a context-
aware multi-task learning method MTLDIAL for
NMTDIAL.

As shown in③ of Figure 1b, the only difference
is that we have a contextual labeling module based
on the encoder. We denote the final layer output of
the Transformer encoder asH . For each token hi in
H = (h1, h2, ..., hm), the probability of contextual
labeling is defined as:

P (pi = j|X) = softmax(W · hi + b)[j] (1)

where X = (x1, x2, ..., xm) is the input sequence,
P (pi = j|X) is the conditional probability that
token xi is labeled as j (j ∈ 0, 1, 2, 3 as defined
above).

Here we make the labeling module as simple as
possible, so that the Transformer encoder can be-
have like BERT (Devlin et al., 2019), learning more
information related to perturbation and guiding the
decoder to find desirable translations.

During the training phrase, the model takes
(xd, x

′
d, `x, `

′
x, yd) as the training data. The learn-

ing process is driven by optimizing two objectives,
corresponding to sequence labeling as auxiliary
loss (LSL) and machine translation as the primary
loss (LMT) in a multi-task learning framework.

LSL = −log(P (`x|xd) + P (`′x|x′d)) (2)

LMT = −log(P (yd|xd) + P (yd|x′d)) (3)

The two objective are linearly combined as the
overall objective in learning.

L = LMT + λ · LSL (4)

λ is coefficient. During experiments, we set as
follows according the best practice:

λ = max(1.0− update_num
105

, 0.2) (5)

where update_num is the number of updating
steps during training.

We introduce multi-task learning for two reasons:
1) The labeling performance reflects the model’s
understanding of sentences containing the men-
tioned phenomena. 2) Contextual Labeling can be
seen as a pre-training process based on the BERT-
like model, and explicit guidance can enable the
encoder to learn more about the information we
annotate.

3.4 Modeling Dialogue Context

The modes for exploring dialogue context during
decoding can be divided into offline and online.
For the offline setting, all sentences in a dialogue
are concatenated one by one with <sep>. The
concatenated sequence is translated, and the target
translation for each sentence can be easily detected
according to the separator <sep>.

The offline mode can be used for dialogue trans-
lation where the entire source dialogue has already
been available before translation (e.g., movie sub-
titles). However, we continuously get new source
sentences for online chat and need to generate cor-
responding translations immediately. We refer to
this mode as the online setting.

We experiment with two online methods. One
is online-cut where the current sentence is concate-
nated to the previous context with the separator
<sep>. The trained NMTDIAL model then trans-
lates the concatenated sequence and the last target
segment is used as the translation for the current
source sentence. The other is online-fd. Online-fd
is a force decoding method. It forces the decoder
to use translated history and continues decoding
instead of re-translating the entire concatenated
sequence. Online-fd brings more consistent trans-
lation.

4 Experiments

4.1 Test Set

For better evaluation of NMTDIAL, we create a
Chinese-English test set covering all issues dis-
cussed above based on the corpus we analyze in
the second section. Statistics on the built test set
are displayed in Table 3. Building such a test set
is hard and time-consuming as we need to perform
manual selection, translation and annotation.

As for translation quality evaluation, we use
other metrics in addition to BLEU. For PunDrop
and DialTypo, we evaluate BLEU scores on sen-

108

Item Count
#dialogues 300
#sentence pairs 1,931
#total tokens 19,155/15,976
#average tokens 9.92/8.27
#ProDrop 299
#PunDrop 542
#DialTypo 203

Table 3: Statistics on the test set. “/” denote numbers
in Chinese and English separately.

tences containing missing punctuation or typos
according to the annotation information. As for
ProDrop, we evaluate the translation quality by
the percentage of correctly recovering and translat-
ing the dropped pronouns.

4.2 Settings
We adopt the Chinese-English corpus from
WMT20203, with about 48M sentence pairs, as our
bilingual training data D. We select newstest2019
as the development set. After splicing, we get
Ddoc with 1.2M pairs and corresponding pertur-
bated dataset D′ and D′doc with 48M and 1.2M
pairs respectively.

We use byte pair encoding compression algo-
rithm (BPE) (Sennrich et al., 2016) to process all
these data and limit the number of merge operations
to a maximum of 30K. In our studies, all translation
models are Transformer-big, including 6 layers for
both encoders and decoders, 1024 dimensions for
model, 4096 dimensions for FFN layers and 16
heads for attention.

During training, we use label smoothing = 0.1
(Szegedy et al., 2016), attention dropout = 0.1 and
dropout (Hinton et al., 2012) with a rate of 0.3 for
all other layers. We use Adam (Kingma and Ba,
2015) to train the NMT models. β1 and β2 of
Adam are set to 0.9 and 0.98, the learning rate is
set to 0.0005, and gradient norm 5. The models
are trained with a batch size of 32,000 tokens on 8
Tesla V100 GPUs during training. During decod-
ing, we employ beam search algorithm and set the
beam size to 5. We use sacrebleu (Post, 2018) to
calculate uncased BLEU-4 (Papineni et al., 2001).

4.3 Results of Offline Setting
The offline mode aims at using the entire source
dialogue for translation. We experiment with all
the methods in the offline setting, and the results

3This corpus includes News Commentary, Wiki Titles,
UN Parallel Corpus, CCMT Corpus, WikiMatrix and Back-
translated news.

Methods Overall Details
BLEU ProDrop PunDrop DialTypo

BASE 32.7 26.09% 28.2 24.0
REPAIRDIAL 34.0 29.77% 31.2 27.4
ROBUSTDIAL 34.1 45.48% 33.0 28.8
MTLDIAL 35.9 47.16% 34.3 28.7
GOLD+BASE 36.8 97.32% 34.6 36.8

Table 4: Experiment results on our constructed di-
alogue translation test set in offline setting. The
GOLD+BASE represents translations of completely
correct inputs (without ProDrop, PunDrop or
DialTypo) using BASE model, which is used to
show the oracle results with Transformer on the test
set.

Methods
Overall Details
BLEU ProDrop PunDrop DialTypo

BASE 32.8(+0.1) 19.06%(-7.03%) 28.1(-0.1) 22.3(-1.7)
REPAIRDIAL 33.8(-0.2) 24.75%(-5.02%) 32.0(+0.8) 28.3(+0.9)
ROBUSTDIAL 34.2(+0.1) 36.79%(-8.69%) 32.7(-0.3) 28.9(-0.5)
MTLDIAL 35.3(-0.6) 34.78%(-12.38%) 34.3(-0.0) 28.6(-0.1)
GOLD+BASE 37.1(+0.3) 96.66%(-0.66%) 35.3(+0.7) 35.9(-0.9)

Table 5: Results on our constructed dialogue transla-
tion test set in online setting at the sentence level.

are shown in Table 4. BASE is a Transformer-big
model trained with D and Ddoc. GOLD+BASE
represents the oracle result on this test set. We can
see that MTLDIAL has achieved the best results,
reducing the gap between testwrong and testgold
from 4.1 to 0.9. Compared with ROBUSTDIAL

and MTLDIAL, REPAIRDIAL performs relatively
poorly. We believe that this is due to the error
propagation caused by the pipeline.

From the specific indicators, we can draw the
following conclusions: 1) DialTypo has a very
obvious impact on BLEU, and the gap between
BASE and GOLD+BASE is more than 12 points;
2) The recovery of ProDrop is a relatively dif-
ficult task. Although compared with BASE, the
current best result of 47.16% has been greatly im-
proved, but is still far away from the golden result
97.32%; 3) PunDrop seems to be a relatively easy
task for each method to address.

4.4 Results of Online Setting

The online mode only makes use of previous con-
text during translation. An extreme situation of
online setting is that there is no context, that is,
sentence-level translation. We show the results of
all the methods on the test set at the sentence level
in Table 5. Despite the lack of context, our ap-
proaches can still bring general benefits. We find
that ProDrop relies heavily on context, especially
for MTLDIAL, where the absence of context results
in a 12.38% drop in performance. This is in line

109

0 1 2 3 4 5
context length

34.0

34.5

35.0

35.5

36.0

36.5

37.0

BL
EU

32%

34%

36%

38%

40%

42%

44%

46%

48%

50%

Ac
cu

ra
cy

BLEU-online-cut
BLEU-online-fd
BLEU-offline

Accuracy-online-cut
Accuracy-online-fd
Accuracy-offline

Figure 2: Overall BLEU and ProDrop recovery per-
formance (Accuracy) of MTLDIAL with different con-
text length. Dash lines are the offline results.

Data Precison Recall F1

validation
ProDrop 61.3 48.7 54.3
PunDrop 80.0 63.6 70.9
DialTypo 85.3 64.2 73.2

test
ProDrop 48.6 32.2 38.8
PunDrop 96.6 87.9 92.1
DialTypo 83.3 31.0 45.2

Table 6: Labeling performance on the validation/test
set.

with our expectations, as in many cases machine
translation system heavily depends on context to
fulfill the dropped pronouns.

We further experiment on how context lengths
can affect NMTDIAL. The results are shown in Fig-
ure 2. In the online-cut setting, we can see that us-
ing previous few sentences as context may improve
overall BLEU score, but continuously adding more
preceding texts will lead to a continuous decline.
Online-fd performs well because using historical
translation records to continue decoding can bring
more consistent translation results. For the recov-
ery accuracy of ProDrop, online-cut is better than
online-fd in contrast, because forced decoding may
cause wrong pronoun transmission.

5 Analysis

5.1 Labeling Performance

To better understand how our proposed MTLDIAL

make sense, we calculate the labeling performance
on both validation and test set. Table 6 shows the
overall performance. The validation set follows the
same processing progress of training data, while the
test set is the real dialogue data set built manually.

The proposed model obtains 54.3% F1 score
on the validation set for ProDrop, 70.9% for

zh en

(1)

艾丽最近怎么样了
她已经不在我的律所了
什么 (她/she)为什么走了
(她/she)开了自己的律所

What’s going on with Ellie?
She is no longer in my law firm.
What, why are you/is she going?
I open my/She opens her own law firm.

(2) 琼斯 (我/I)问你件事 Jones asked/, I want to ask you something.

(3)
他上次帮我私下搞
(他/He)差点工作都丢了

He helped me out in private last time.
I/He nearly lost my/his job.

Table 7: Examples of ProDrop recovery errors.

i you he she we they
0

20

40

60

80

nu
m

be
r

total
DIALMTL
BASE

Figure 3: ProDrop recovery performance of BASE
and contextual MTLDIAL. Total means the total num-
ber of occurrence of corresponding pronouns in the test
set. We ignore pronouns with a total occurrence num-
ber less than 5.

PunDrop, and 73.2% for DialTypo. When
testing on the real test data, the performance on
ProDrop has declined a lot because of the dif-
ference between synthetic training/validation data
and real test data. Especially noteworthy is the fact
that F1 score of DialTypo drops the most, reach-
ing 26%, because of its low recall. It may be due
to the considerable difference between the typos
generated by our automatic method and the actual
distribution.

5.2 Effects of Pronoun Correcting

We further explore the auto-correction of specific
pronouns. As shown in Figure 3, we can find that
pronouns such as I/you, which occur mostly in the
corpus, generally have a higher recovery success
rate. We believe this is due to the data imbalance.
Compared with BASE, MTLDIAL has a much
better performance. While ProDrop recovery ac-
curacy has been improved, it still has not achieved
50%. The most common error is that the model
does not capture any context or captures previous
inappropriate context. We summarize frequently-
occurring recovery errors in Table 7.

6 Related Work

Our work is related with both dialogue translation
and robust training.
Dialogue Translation

110

There has been some work on building bilingual
dialogue data sets for the translation task in recent
years. Wang et al. (2016) propose a novel approach
to automatically construct parallel discourse cor-
pus for dialogue machine translation and release
around 100K parallel discourse data with manual
speaker and dialogue boundary annotation. Maruf
et al. (2018) propose the task of translating Bilin-
gual Multi-Speaker Conversations. They introduce
datasets extracted from Europarl and Opensubtitles
and explore how to exploit both source and target-
side conversation histories. Bawden et al. (2019)
present a new English-French test set for evaluating
of Machine Translation (MT) for informal, written
bilingual dialogue. Recently WMT2020 has also
proposed a new shared task - machine translation
for chats,4 focusing on bilingual customer support
chats (Farajian et al., 2020).
Robust Training

Neural models have been usually affected by
noisy issues. Many efforts (Li et al., 2017; Sperber
et al., 2017; Vaibhav et al., 2019; Yang et al., 2020)
focus on data augmentation to alleviate the problem
by adding synthetic noise to the training set. How-
ever, generating noise has always been a challenge,
as natural noise is always more diversified than
artificially constructed noise (Belinkov and Bisk,
2018; Anastasopoulos, 2019; Anastasopoulos et al.,
2019).

7 Conclusions

In this paper, we manually analyze challenges in di-
alogue translation and detect three main problems.
In order to tackle these issues, we propose a multi-
task learning method with contextual labeling. For
deep evaluation, we construct dialogues with trans-
lation and detailed annotations as a benchmark test
set. Our proposed model achieves substantial im-
provements over the baselines. What is more, we
further analyze the performance of contextual la-
beling and pronoun recovery errors.

Acknowledgments

We thank the bilingual speakers for test set con-
struction, and the anonymous reviewers for sug-
gestions. Deyi Xiong is partially supported by the
Natural Science Foundation of Tianjin (Grant No.
19JCZDJC31400) and the Royal Society (London)
(NAF\R1\180122).

4http://www.statmt.org/wmt20/chat-task.html

References
Antonios Anastasopoulos. 2019. An analysis of source-

side grammatical errors in nmt. In Proceedings of
the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
213–223.

Antonios Anastasopoulos, Alison Lui, Toan Q Nguyen,
and David Chiang. 2019. Neural machine transla-
tion of text from non-native speakers. In NAACL-
HLT (1).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015.

Loïc Barrault, Magdalena Biesialska, Ondřej Bojar,
Marta R Costa-jussà, Christian Federmann, Yvette
Graham, Roman Grundkiewicz, Barry Haddow,
Matthias Huck, Eric Joanis, et al. 2020. Find-
ings of the 2020 conference on machine translation
(wmt20). In Proceedings of the Fifth Conference on
Machine Translation, pages 1–55.

Rachel Bawden, Sophie Rosset, Thomas Lavergne, and
Eric Bilinski. 2019. Diabla: A corpus of bilingual
spontaneous written dialogues for machine transla-
tion. arXiv preprint arXiv:1905.13354.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In International Conference on Learning Rep-
resentations.

Yong Cheng, Zhaopeng Tu, Fandong Meng, Junjie
Zhai, and Yang Liu. 2018. Towards robust neural
machine translation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers, pages 1756–
1766. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT (1).

M Amin Farajian, António V Lopes, André FT Mar-
tins, Sameen Maruf, and Gholamreza Haffari. 2020.
Findings of the wmt 2020 shared task on chat trans-
lation. In Proceedings of the Fifth Conference on
Machine Translation, pages 65–75.

Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhut-
dinov. 2012. Improving neural networks by
preventing co-adaptation of feature detectors.
CoRR, abs/1207.0580.

CT James Huang. 1989. Pro-drop in chinese: A gener-
alized control theory. In The null subject parameter,
pages 185–214. Springer.

111

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Junyi Jessy Li, Marine Carpuat, and Ani Nenkova.
2014. Assessing the discourse factors that influ-
ence the quality of machine translation. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 283–288.

Yitong Li, Trevor Cohn, and Timothy Baldwin. 2017.
Robust training under linguistic adversity. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 21–27.

Zehui Lin, Xiao Pan, Mingxuan Wang, Xipeng Qiu,
Jiangtao Feng, Hao Zhou, and Lei Li. 2020. Pre-
training multilingual neural machine translation by
leveraging alignment information. arXiv preprint
arXiv:2010.03142.

Pierre Lison, Jörg Tiedemann, Milen Kouylekov, et al.
2019. Open subtitles 2018: Statistical rescoring of
sentence alignments in large, noisy parallel corpora.
In LREC 2018, Eleventh International Conference
on Language Resources and Evaluation. European
Language Resources Association (ELRA).

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Sameen Maruf, André FT Martins, and Gholamreza
Haffari. 2018. Contextual neural model for trans-
lating bilingual multi-speaker conversations. WMT
2018, page 101.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. Bleu: a method for automatic eval-
uation of machine translation. In ACL.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
1715–1725.

Matthias Sperber, Jan Niehues, and Alex Waibel. 2017.
Toward robust neural machine translation for noisy
input sequences. In International Workshop on Spo-
ken Language Translation (IWSLT).

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 2818–2826.

Vaibhav Vaibhav, Sumeet Singh, Craig Stewart, and
Graham Neubig. 2019. Improving robustness of ma-
chine translation with synthetic noise. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1916–1920.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019.
When a good translation is wrong in context:
Context-aware machine translation improves on
deixis, ellipsis, and lexical cohesion. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 1198–1212.

Longyue Wang, Zhaopeng Tu, Shuming Shi, Tong
Zhang, Yvette Graham, and Qun Liu. 2018. Trans-
lating pro-drop languages with reconstruction mod-
els. In Thirty-Second AAAI Conference on Artificial
Intelligence.

Longyue Wang, Xiaojun Zhang, Zhaopeng Tu, Andy
Way, and Qun Liu. 2016. Automatic construction of
discourse corpora for dialogue translation.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Jiacheng Yang, Mingxuan Wang, Hao Zhou, Chengqi
Zhao, Weinan Zhang, Yong Yu, and Lei Li. 2020.
Towards making the most of bert in neural machine
translation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 9378–
9385.

112

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 113–120
June 6–11, 2021. ©2021 Association for Computational Linguistics

LightSeq: A High Performance Inference Library for Transformers

Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang, Lei Li
ByteDance AI Lab

{wangxiaohui.neo, xiongying.taka, weiyang.god}@bytedance.com
{wangmingxuan.89, lileilab}@bytedance.com

Abstract
Transformer, BERT and their variants have
achieved great success in natural language pro-
cessing. Since Transformer models are huge
in size, serving these models is a challenge for
real industrial applications. In this paper, we
propose LightSeq, a highly efficient inference
library for models in the Transformer family.
LightSeq includes a series of GPU optimiza-
tion techniques to to streamline the computa-
tion of neural layers and to reduce memory
footprint. LightSeq can easily import models
trained using PyTorch and Tensorflow. Exper-
imental results on machine translation bench-
marks show that LightSeq achieves up to 14x
speedup compared with TensorFlow and 1.4x
compared with FasterTransformer, a concur-
rent CUDA implementation. The code is avail-
able at https://github.com/bytedance/
lightseq.

1 Introduction

Sequence processing and generation have been fun-
damental capabilities for many natural language
processing tasks, including machine translation,
summarization, language modeling, etc (Luong
et al., 2015; Qi et al., 2020; Dai et al., 2019). In
recent years, with the introduction of Transformer
model (Vaswani et al., 2017b), many pre-trained
language models such as BERT, GPT, and mRASP
have also been widely used in these tasks (Devlin
et al., 2019; Radford et al., 2019; Yang et al., 2020;
Lin et al., 2020).

However, the parameters of these models be-
come increasingly large, which causes the high
latency of inference and brings great challenges
to the deployment (Kim and Hassan, 2020). The
current popular inference systems are not neces-
sarily the best choice for the online service of se-
quence processing problems. First, training frame-
works, such as TensorFlow and PyTorch, require
accommodating flexible model architectures and
backward propagation, which introduce additional

memory allocation and extra overhead of using
fine-grain kernel functions. Therefore, the direct
deployment of the training framework is not able to
make full use of the hardware resource. Taking an
example of machine translation, the Transformer
big model currently takes roughly 2 seconds to
translate a sentence, which is unacceptable in both
academia and industry (Edunov et al., 2018; Hsu
et al., 2020). Second, current optimizing compilers
for deep learning such as TensorFlow XLA (Abadi
et al., 2017), TVM (Chen et al., 2018) and Ten-
sor RT (Vanholder, 2016) are mainly designed for
fixed-size inputs. However, most NLP problems
enjoy variable-length inputs, which are much more
complex and require dynamic memory allocation.
Therefore, a high-performance sequence inference
library for variable-length inputs is required. There
are several concurrent CUDA libraries which share
a similar idea with our project, such as Faster-
Transformer 1 and TurboTransformers (Fang et al.,
2021).

We will highlight three innovative features that
make LightSeq outperforms similar projects. First,
we replace a straightforward combination of fine-
grained GPU kernel functions in TensorFlow or
PyTorch implementations with coarse-grain fused
ones, which avoid high time cost introduced by a
mass of kernel function launches and GPU mem-
ory I/O for intermediate results. As a result, Light-
Seq reduces the atomic kernel functions by four
times compared with Tensorflow approaches. Sec-
ond, we specially design a hierarchical auto regres-
sive search method to speed up the auto-regressive
search. Third, we propose a dynamic GPU memory
reuse strategy. Different from fixed-length inputs,
sequence processing tackles the variable-length in-
puts, which bring difficulty for memory allocation.
LightSeq proposes to pre-define the maximal mem-
ory for each kernel function and shares the GPU

1https://github.com/NVIDIA/
FasterTransformer

113

Models Decoding MethodsInference Libraries
Transformer GPT VAE BERT Multilingual Beam Search Diverse Beam Search Sampling

FasterTransformer ! ! % ! % ! ! !

TurboTransformers ! % % ! % % % %

LightSeq ! ! ! ! ! ! ! !

Table 1: Features for FasterTransformer, TurboTransformers and our proposed LightSeq. LightSeq supports the
most features for a comprehensive set of Transformer models.

memory across non-dependent ones. As a result,
LightSeq reduces eight times memory allocation
without loss of inference speed. As a benefit, Light-
Seq enjoys several advantages:

Efficient LightSeq shows better inference perfor-
mance for generation tasks. For example, in
machine translation benchmarks, LightSeq
achieves up to 14 times speedup compared
with TensorFlow and 1.4 times speedup com-
pared with FasterTransformer.

Functional LightSeq supports more architecture
variants, such as BERT, GPT, Transformer,
and Variational Autoencoders (VAEs). Fur-
ther, LightSeq provides different search algo-
rithms, such as beam search, diverse beam
search and probabilistic sampling (Vijayaku-
mar et al., 2018). Table 1 shows the functional
comparison between FasterTransformer2, Tur-
boTransformers3, and LightSeq in text gener-
ation tasks.

Convenient LightSeq is easy to use, which con-
tains a serving system and efficient CUDA im-
plementations. The popular models, such as
BERT, Roberta, GPT, VAEs, MT Transformer,
and Speech Transformer can be directly de-
ployed online without code modification. For
user-specific architectures, LightSeq supports
multiple model reuse, which can be easily
adapted with only a few lines of code modifi-
cation.

2 LightSeq Approach

Transformer-based NLP models mainly consist of
two components during inference: the feature cal-
culation layer and the output layer, as shown in
Figure 1.

2As of this writing, we use FasterTransformer v2.1 for
comparison.

3we use TurboTransformers for comparison at commit
0eae02ebadc8b816cd9bb71f8955a7e620861cd8

The feature calculation layer is mainly based on
self-attention mechanism and feature transforma-
tion, which is actually implemented by matrix mul-
tiplication and a series of I/O-intensive operations
such as element-wise (e.g., reshape) and reduce
(e.g., layer normalization).

The output layer slightly changes in different
tasks, such as classification in NLU tasks or search
(e.g., beam search) in NLG tasks. This layer is usu-
ally composed of the Softmax over vocabulary,
probability sorting, cache refreshing, etc., which
are essentially I/O-intensive.

These two components pose challenges for effi-
cient inference:

• The fine-grained call of I/O-intensive GPU
kernel function brings a huge amount of GPU
memory I/O, which becomes the performance
bottleneck of feature calculation.

• Redundant calculations exist due to the fact
that we only need a few tokens/labels with the
highest probability instead of all in classifica-
tion or search for the output layer.

• Dynamic shape in variable sequence length
and auto-regressive search makes it difficult to
achieve memory reuse within or between re-
quests, which leads to a large number of GPU
memory allocation during model service.

LightSeq employs a series of innovative meth-
ods to address these challenges to accelerate model
development, such as fusion of multiple kernel
functions to reduce I/O overhead, hierarchical opti-
mization of search algorithms to erase redundant
calculations, and reuse of dynamic GPU memory
to avoid run-time allocation. The following is a
detailed introduction to these methods.

2.1 Operation Fusion

Transformer feature calculation layer needs to be
highly optimized since it is ubiquitous in various

114

你 好 。

Encoder

Layer

… …

<BOS> Hello

Decoder

Layer

Linear

+Softmax

Linear

+Softmax

Hello .

Encoder

Beam

Search

Decoder

…
Multi-Head 
Attention

Add & Norm

Feed Forward

Add & Norm

Feed Forward

Add & Norm

Multi-Head 
Attention

Add & Norm

Add & Norm

Masked 
Multi-Head 
Attention

… …
Encoder

Layer
Encoder

Layer

Encoder

Layer

Encoder

Layer

Encoder

Layer

Encoder

Layer

Encoder

Layer

Encoder

Layer

Decoder

Layer

Decoder

Layer

Decoder

Layer

Decoder

Layer

Decoder

Layer

Figure 1: The process of sequence to sequence generation using Transformer model with beam search.

NLP tasks today. In most deep learning frame-
works, such as TensorFlow and PyTorch, it is imple-
mented by a straightforward combination of fine-
grained kernel functions from standard libraries
provided by hardware manufacturers, which in-
troduces high time cost due to a mass of kernel
function launches and GPU memory I/O for inter-
mediate results.

Taking layer normalization implemented by Ten-
sorFlow as an example, there are still three kernel
launches4 and two intermediate results (mean and
variance) even with the help of optimizing com-
pilers like TensorFlow XLA (Abadi et al., 2017).
As a comparison, we can write a custom kernel
function dedicated to layer normalization based on
the CUDA toolkit, which produces only one kernel
launch without intermediate results.

LightSeq implements the Transformer feature
calculation layer with general matrix multiply
(GEMM) provided by cuBLAS5 and custom ker-
nel functions. The detailed structure is shown in
Figure 2. Combination of fine-grained operations
between GEMM operations is fused into one cus-
tom kernel function. In consequence, there are only
six custom kernel functions and six GEMM in a
Transformer encoder layer, which is usually more
than four times less than its corresponding imple-
mentation in common deep learning frameworks
like TensorFlow or PyTorch.

2.2 Hierarchical Auto Regressive Search

LightSeq supports a comprehensive set of output
layers, such as sentence-level and token-level clas-
sification, perplexity calculation for language mod-

4Two for reduce mean operations and one for calcula-
tion of the final result.

5https://developer.nvidia.com/cublas

Y = Y ⋅ WO + b

Y = S ⋅ V

Reshape Y

Reshape Q, K, V

S = Q ⋅ K

Softmax

Q, K, V = X ⋅ (WQ, WK, WV) + b

LN and Residual

X = Xe + Xp

LN and Residual

Y = Y ⋅ W1

 and RELUb1

Y = Y ⋅ W2 + b2

Self

Attention

FFN

Custom Kernel

CuBLAS GEMM

Figure 2: The structure of optimized Transformer en-
coder layers in LightSeq.

els, and auto-regressive search like beam search, di-
verse beam search and top-k/top-p sampling (Holtz-
man et al., 2020). Redundant calculations often ex-
ist in these output layers since we only need a few
labels/tokens with the highest probability instead
of all of them. Auto-regressive search is relatively
complicated, and we will discuss it in the next para-
graph. For the other types of output layers, we can
simply replace Softmax with the probability cal-
culation of token/label with the highest logits,
which brings more obvious benefit when the size
of vocabulary or labels is large.

Auto-regressive search is widely used in ma-
chine translation and text generation. LightSeq
proposes Hierarchical Auto Regressive Search
(HARS) method to erase redundant calculations
and parallel computing. Here we take the most
used beam search method as an example to intro-

115

duce the proposed HARS method.
In one step of the beam search process, given

the logits, we need to perform two calculations
over the whole vocabulary:

1. Compute the conditional probability using
Softmax and write the intermediate result
into GPU memory.

2. Read the intermediate result from GPU mem-
ory and select the top-k beams and tokens by
sequential probability.

These two calculations are highly time-
consuming since the vocabulary size is usually in
tens of thousands of scales. For example, they
account for a latency proportion of 30% in Trans-
former base models.

In order to reduce the input size of these two
calculations, LightSeq introduces a two-stage strat-
egy that is widely employed in the recommended
system: retrieve and re-rank.

Before the probability computation and top-k
selection, the retrieve is carried out first. For each
beam, we calculate as follows:

1. Randomly divide logits into k groups.

2. Calculate the maximum of group i, denoted
as mi

3. Calculate the minimum of mi, denoted asR,
which can be regarded as a rough top-k value
of logits.

4. Select logits larger thanR and write them
into GPU memory.

The retrieve is co-designed based on GPU char-
acteristics and logits distribution. Hence it is
efficient and effective:

• Efficient. The retrieve is implemented by one
kernel function and can be executed within a
dozen instruction cycles.

• Effective. After the retrieve, only dozens of
candidates were selected.

After the retrieve, the original two calculations of
beam search will be carried out on the small set of
candidates, named as Hierarchical Auto Regressive
Search.

Figure 3 is a detailed illustration of the proposed
hierarchical strategy. In the original beam search

2
1

4
3

2
7

4
4

3
1

5
5

1
8

2
6

4
7

4 5
8

4 4 5 7 8

Retrieve-1

Retrieve-2

Re-rank

2
1

4
3

2
7

4
4

3
1

5
5

1
8

2
6

1 1 1 2 2 2 3 3 4 4 4 5 5 6 7 8
Directly sorting

Figure 3: An illustration of the proposed hierarchical
strategy. In this case, beam size is 2 and vocabulary
size is 8. Each row represents logits in a beam.

method, we need to compute the probability and
select the top-k over the whole vocabulary. How-
ever, by hierarchical method, we only need to pick
a small set of candidates from each beam and then
perform probability computation and top-k selec-
tion.

2.3 Dynamic GPU Memory Reuse

In order to save GPU memory occupancy and avoid
allocation of GPU memory during the model serv-
ing, LightSeq pre-defines the maximum of dynamic
shapes, such as the maximal sequence length. At
the start of the service, each intermediate result in
the calculation process is allocated GPU memory
to its maximum. Besides, GPU memory is shared
for non-dependent intermediate results.

Through this memory reuse strategy, on a T4
graphics card, we can deploy up to 8 Transformer
big models6 at the same time, so as to improve
graphics card utilization in low frequency or peak-
shifting scenarios.

3 Experiments

In this section, we will show the improvements
of LightSeq with different GPU hardware and pre-
cisions. We first analyze the GPU occupation of
LightSeq during inference to investigate if Light-
Seq can make full use of GPU resources. Then, we
make a fair comparison with TensorFlow, PyTorch,
FasterTransformer, and TurboTransformers on ma-
chine translation and text generation to show the
efficiency of LightSeq.

6Under the configuration of 8 batch size, 256 sequence
length, 4 beam size and 30000 vocabulary size.

116

Cast

39.7%Top-k

3.2%
Element-wise Sum

2.5%

GEMM

24.5%

Others

30.1%

(a) TensorFlow with Float16.

GEMM

87.0%

Cache Refreshing

6.4% Layer Normalization

3.6%
HARS2.9% Others0.1%

(b) LightSeq with Float16.

GEMM

82.0%

Cache Refreshing

10.1% Layer Normalization

3.0% HARS
2.6% Others2.3%

(c) LightSeq with Float32.

Figure 4: Proportion of computation occupation. GEMM is the main indicator and the larger number indicates the
higher computation efficiency.

(1, 32)
(1, 64)

(16, 32)
(16, 64)

(32, 32)
(32, 64)

(64, 32)
(64, 64)

(128, 32)
(128, 64)

(Batch size, Seq len)

1

2

3

4

5

6

Sp
ee

du
p

TensorFlow
PyTorch
FasterTransformer
LightSeq

(a) P4 speedup in Float32.

(1, 32)
(1, 64)

(8, 32)
(8, 64)

(32, 32)
(32, 64)

(64, 32)
(64, 64)

(128, 32)
(128, 64)

(Batch size, Seq len)

2

4

6

8

10

12

14

16

Sp
ee

du
p

TensorFlow
PyTorch
FasterTransformer
LightSeq

(b) T4 speedup in Float16.

Figure 5: Speedup on Transformer with beam search compared with FasterTransformer, TurboTransformers and
PyTorch implementation. The baseline is TensorFlow implementation.

3.1 Experiment Settings

We test the generation performance of LightSeq
on two latest NVIDIA inference GPU Tesla P4
and T4, choosing TensorFlow, PyTorch, and Faster-
Transformer implementations as a comparison. An-
other related library, TurboTransformers, mainly
focuses on the Transformer encoder and is not pow-
erful enough for text generation. Its speedup for
sequence generation compared to TensorFlow is
only about 15%, and it only supports Float32 on
GPU. Therefore we do not compare with it.

The experiments on machine translation are con-
ducted on the popular WMT14 English to German
translation tasks. The hyper-parameters setting re-
sembles transformer base model (Vaswani et al.,
2017a). Specifically, we reduce the vocabulary size
of both the source language and target language to
50K symbols using the sub-word technique (Bo-
janowski et al., 2017).

The experiments on text generation are con-
ducted on a randomly initialized Transformer

model and test dataset. Results of Tensorflow and
FasterTransformer are obtained from the scripts
in the source code of FasterTransformer. The se-
quence length is used for limiting the total size in
the generation test, and the values for top-k and
top-p are the most selected settings in our deploy-
ments.

3.2 GPU Occupation of LightSeq

We first analyze the GPU occupation to verify the
efficiency of LightSeq. The experiments are con-
ducted on Tesla T4 card with the GPU profiling
toolkit. The latency of each module is shown in Fig-
ure 4 with both Float16 and Float32 precision. We
classify the operation into three categories: GEMM,
cache refreshing, and others. GEMM latency is the
most important indicator, which shows the pro-
portion of matrix calculations occupying the GPU
calculation.

After optimization, we can find that:

• GEMM operation in LightSeq accounts for
117

(1, 32)
(1, 64)

(32, 32)
(32, 64)

(128, 32)
(128, 64)

(Batch size, Seq len)

1

2

3

4

5

6
Sp

ee
du

p

TensorFlow
FasterTransformer
LightSeq

(a) Top-p = 0.75.

(1, 32)
(1, 64)

(32, 32)
(32, 64)

(128, 32)
(128, 64)

(Batch size, Seq len)

1

2

3

4

5

6

Sp
ee

du
p

TensorFlow
FasterTransformer
LightSeq

(b) Top-k = 32.

Figure 6: T4 speedup on Transformer with sampling
compared with FasterTransformer in Float16. Light-
Seq outperforms FasterTransformer in most cases.

87% and 82% respectively for Float16 and
Float32, accounting for most of the inference
time. However, in the original TensorFlow
model, GEMM operations account for only
25%. This shows that beam search optimiza-
tion has achieved good results.

• Cast and other operations in TensorFlow are
expensive, which launches over 80 different
GPU kernels. In LightSeq, we fuse cast opera-
tions into weight loading, and other operations
into more efficient implementations.

• The latency of cache refreshing in LightSeq
accounts for 6% and 10% respectively, which
are not negligible but hard to be optimized fur-
ther. Possible solutions include reducing the
amount of cache, such as reducing the number
of decoder layers, reducing cache precision,
etc.

The results demonstrate that LightSeq has been
optimized to a disabling extent and greatly in-
creases the speed of inference. Another interest-
ing finding is that Float16 is more efficient than
Float32. A possible explanation is that Float16 oc-
cupies less memory. Therefore the cache refreshing
and memory I/O operations potentially take less
time.

3.3 Comparison on Machine Translation
The comparison between LightSeq, TensorFlow,
PyTorch and FasterTransformer are shown in Fig-
ure 5. We group the test set into different buckets
according to the sequence length and batch size.
For example, the x-axis (a, b) indicates that the
batch size is a and the sequence length is b. The

y-axis is the speedup compared with TensorFlow
baseline. The results provide several interesting
findings:

• For both LightSeq and FasterTransformer, the
speedup gap for smaller batch size or shorter
sequence length is much larger.

• The speedup for T4 is larger than P4. The
main reason is that T4 is more powerful than
P4 and has much room for improvement.

• In most cases, LightSeq performs better than
FasterTransformer. For larger batch size and
longer sequences, the gap increases. While
for smaller batch size, FasterTransformer per-
forms better.

• PyTorch is slightly slower than TensorFlow
in P4 and faster in T4, which indicates that
LightSeq also greatly outperforms PyTorch in
all cases.

The findings provide some guidance for opti-
mization work in the future. There is almost no
space to accelerate the inference by fusion of non-
computationally intensive operators, especially for
small batch size. Future work is recommended
to focus on optimizing GEMM operations which
account for 80% to 90% of the total computation
time.

Finally, we compare TurboTransformers with Py-
Torch by the translation demo7. As of this writing,
only decoder layers of MT Transformer in float32
precision is supported, so we only compare the la-
tencies of decoder layers without beam search and
cache refreshing. In the final results, TurboTrans-
formers only achieves about 2x speedup for differ-
ent batch sizes and sequence lengths. So Turbo-
Transformers has no comparability with LightSeq
in machine translation tasks (As TurboTransformer
repo says, “TurboTransformer will bring 15.9% per-
formance improvements on RTX 2060 GPU. We
are still working on decoder model optimization.”).

3.4 Comparison on Text Generation

In the text generation scenario, the sampling strat-
egy is applied to improve the diversity of gener-
ation. Among which, top-k and top-p sampling
strategies are more popular.

7https://github.com/
TurboNLP/Translate-Demo/tree/
443e6a46fefbdf64282842b6233a8bd0a22d6aeb

118

Figure 6 shows the performance comparison of
Transformer base with top-k/top-p sampling. The
values of top-k and top-p are added in the x-axis.
The results provide following findings:

• In most cases, LightSeq achieves greater
speedup than FasterTransformer. Unlike re-
sults in machine translation, LightSeq per-
forms better for smaller batch size and shorter
sequence, while FasterTransformer performs
better for larger batch size and longer se-
quence.

• The speedup in generation tasks are not as
large as machine translation. It is mainly
because of the lower complexity of sam-
pling methods than beam search, reducing the
benefits obtained from operation fusion and
HARS.

4 Conclusion

In this paper, we address the deployment problem
of expensive sequence models and present an effi-
cient inference library LightSeq for sequence pro-
cessing and generation, reducing the gap between
the performance of big models and the require-
ment of online services. Comparisons with Faster-
Transformer show that we perform better in both
machine translation and text generation. In future
work, we will focus on exploring more techniques
to achieve a more significant speedup, including ef-
ficient integer-arithmetic-only inference and sparse
GEMM computations.

Acknowledgments

We would like to thank the colleagues in machine
translation service and advertisement service to
support our experiments in online environments
and apply LightSeq into real-time systems.

References
Martı́n Abadi, Michael Isard, and Derek Gordon Mur-

ray. 2017. A computational model for tensorflow:
an introduction. In Proceedings of the 1st ACM SIG-
PLAN International Workshop on Machine Learning
and Programming Languages, MAPL@PLDI 2017,
Barcelona, Spain, June 18, 2017, pages 1–7. ACM.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lian-
min Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. 2018. TVM:
An automated end-to-end optimizing compiler for
deep learning. In 13th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI
18), pages 578–594, Carlsbad, CA. USENIX Asso-
ciation.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Car-
bonell, Quoc Viet Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language models
beyond a fixed-length context. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
2978–2988. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018,
pages 489–500. Association for Computational Lin-
guistics.

Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
2021. Turbotransformers: an efficient GPU serv-
ing system for transformer models. In PPoPP ’21:
26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Virtual Event, Re-
public of Korea, February 27- March 3, 2021, pages
389–402. ACM.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Yi-Te Hsu, Sarthak Garg, Yi-Hsiu Liao, and Ilya
Chatsviorkin. 2020. Efficient inference for neural
machine translation. In Proceedings of SustaiNLP:
Workshop on Simple and Efficient Natural Language
Processing, pages 48–53, Online. Association for
Computational Linguistics.

Young Jin Kim and Hany Hassan. 2020. FastFormers:
Highly efficient transformer models for natural lan-
guage understanding. In Proceedings of SustaiNLP:
Workshop on Simple and Efficient Natural Language
Processing, pages 149–158, Online. Association for
Computational Linguistics.

119

Zehui Lin, Xiao Pan, Mingxuan Wang, Xipeng Qiu,
Jiangtao Feng, Hao Zhou, and Lei Li. 2020. Pre-
training multilingual neural machine translation by
leveraging alignment information. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, On-
line, November 16-20, 2020, pages 2649–2663. As-
sociation for Computational Linguistics.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portu-
gal, September 17-21, 2015, pages 1412–1421. The
Association for Computational Linguistics.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu,
Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming
Zhou. 2020. Prophetnet: Predicting future n-gram
for sequence-to-sequence pre-training. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: Findings, EMNLP
2020, Online Event, 16-20 November 2020, pages
2401–2410. Association for Computational Linguis-
tics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Han Vanholder. 2016. Efficient inference with tensorrt.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017a. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017b. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 6000–6010.

Ashwin K. Vijayakumar, Michael Cogswell, Ram-
prasaath R. Selvaraju, Qing Sun, Stefan Lee, David J.
Crandall, and Dhruv Batra. 2018. Diverse beam
search for improved description of complex scenes.
In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educa-
tional Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018,
pages 7371–7379. AAAI Press.

Jiacheng Yang, Mingxuan Wang, Hao Zhou, Chengqi
Zhao, Weinan Zhang, Yong Yu, and Lei Li. 2020.

Towards making the most of BERT in neural ma-
chine translation. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, Febru-
ary 7-12, 2020, pages 9378–9385. AAAI Press.

120

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 121–129
June 6–11, 2021. ©2021 Association for Computational Linguistics

Practical Transformer-based Multilingual Text Classification

Cindy Wang
Sentropy Technologies
cindy@sentropy.io

Michele Banko
Sentropy Technologies
mbanko@sentropy.io

Abstract

Transformer-based methods are appealing for
multilingual text classification, but common
research benchmarks like XNLI (Conneau
et al., 2018) do not reflect the data avail-
ability and task variety of industry applica-
tions. We present an empirical comparison
of transformer-based text classification mod-
els in a variety of practical monolingual and
multilingual pretraining and fine-tuning set-
tings. We evaluate these methods on two dis-
tinct tasks in five different languages. De-
parting from prior work, our results show that
multilingual language models can outperform
monolingual ones in some downstream tasks
and target languages. We additionally show
that practical modifications such as task- and
domain-adaptive pretraining and data augmen-
tation can improve classification performance
without the need for additional labeled data.

1 Introduction

While the development of natural language un-
derstanding (NLU) applications often begins with
high-resource languages such as English, there is a
need to create products that are accessible to speak-
ers of the world’s nearly 7,000 languages. Only
5% of the world’s population is estimated to speak
English as a first language.1

The growth of NLU-centric products within di-
verse language markets is evidenced by the increase
in language support for popular consumer applica-
tions such as virtual assistants, Web search, and so-
cial media platforms. As of mid-2020, Google As-
sistant supported 44 languages on smartphones, fol-
lowed by Siri (21 languages) and Amazon Alexa (8
languages). At the start of 2021, Google Search and
Microsoft Bing supported 149 and 40 languages
respectively. Also at this time, Twitter officially
supported a total of 45 languages with Facebook
reaching over 100 languages.

1CIA World Factbook

Advances in multilingual language models such
as multilingual BERT (mBERT; Devlin et al., 2019)
and XLM-RoBERTa (XLM-R; Conneau et al.,
2020) which are trained on massive corpora in
over 100 languages, show promise for fast iteration
and deployment of NLU applications. In theory,
cross-lingual approaches reduce the need for la-
beled training data in target languages by enabling
zero- or few-shot learning. Additionally, they en-
able simplified model deployment compared to the
use of many monolingual models. On the other
hand, evaluations show that scaling to more lan-
guages causes dilution (Conneau et al., 2020) and
consequently cite the relative under-performance
of multilingual models on monolingual tasks (Vir-
tanen et al., 2019; Antoun et al., 2020).

Recent studies (Hu et al., 2020; Rust et al., 2020)
have explored tradeoffs of multi versus monolin-
gual model paradigms. However, we observe that
existing multilingual text classification benchmarks
are designed to measure zero-shot cross-lingual
transfer rather than supervised learning (Conneau
et al., 2018; Yang et al., 2019), though the latter is
more applicable to industry settings. Thus, the goal
of this paper is to evaluate multilingual text classifi-
cation approaches with a focus on real applications.
Our contributions include:

• A comparison of state-of-the-art language
models spanning monolingual and multilin-
gual setups, evaluated across five languages
and two distinct tasks;

• A set of practical recommendations for fine-
tuning readily available language models for
text classification; and

• Analyses of industry-centric challenges such
as domain mismatch, labeled data availability,
and runtime inference scalability.

2 Multilingual Text Classification

We consider a series of practical components for
building multilingual text classification systems.

121

Lang. Model Pretraining Corpus Tokenizer Param.

EN RoBERTa (Liu et al., 2019) Various (160GB) BPE 125M
DE German BERT (deepset.ai, 2019) German Wikipedia, OpenLegalData, and

news articles (12 GB)
SentencePiece 110M

ES BETO (Cañete et al., 2020) Various (18.4GB) WordPiece 110M
FR CamemBERT (Martin et al., 2020) OSCAR (138GB) SentencePiece 110M
JA Japanese BERT (Suzuki and Taka-

hashi, 2019)
Japanese Wikipedia (2.6GB) MeCab+Wordpiece 110M

MULTI XLM-RoBERTa (Conneau et al.,
2019)

CC-100 (2.5 TB) EN (301GB), DE (67GB),
ES (53GB), FR (57GB), JA (69GB)

SentencePiece 270M

Table 1: Pretraining corpora, tokenizers, and size (# parameters) of the language models used in our experiments.

2.1 Pretrained Transformer Language
Models

Transfer learning using pretrained language models
(LMs) which are then fine-tuned for downstream
tasks has emerged as a powerful technique for NLU
applications. In particular, models using the now-
ubiquitous transformer architecture (Vaswani et al.,
2017), such as BERT (Devlin et al., 2019) and its
variants, have obtained state of the art results in
many monolingual and cross-lingual NLU bench-
marks (Wang et al., 2019a; Raffel et al., 2020; He
et al., 2021).

One drawback of data-hungry transformer mod-
els is that they are time- and resource-intensive
to train. In our experiments, we consider LMs
pretrained on both monolingual and multilingual
corpora, and analyze the effects of combining these
models with other NLU system components.

For monolingual LMs, we use BERT models
pretrained on corpora in each target language. The
one exception is English, where we use RoBERTa,
a BERT reimplementation that exceeds its perfor-
mance on an assortment of tasks (Liu et al., 2019).

For multilingual LMs, we use XLM-R, which
significantly outperforms mBERT on cross-lingual
benchmarks and is competitive with monolingual
models on monolingual benchmarks such as GLUE
(Wang et al., 2019b). All of the pretrained models
used are accessible from the Hugging Face (Wolf
et al., 2020) model hub, and their details are sum-
marized in Table 1.

2.2 Domain-Adaptive and Task-Adaptive
Pretraining

Though pretrained language models have hundreds
of millions of parameters and are trained on di-
verse corpora, they are not guaranteed to gener-
alize to all tasks and domains. For downstream
tasks, a second phase of pretraining on a smaller
domain- or task-specific corpus has been shown to

provide performance improvements. Gururangan
et al. (2020) compare domain-adaptive pretraining
(DAPT), which uses a large corpus of unlabeled
domain-specific text, and task-adaptive pretrain-
ing (TAPT), which uses only the training data of a
particular task. The primary difference is that the
task-specific corpus tends to be much smaller, but
also more task-relevant. Therefore, while DAPT
is helpful in both low- and high-resource settings,
TAPT is much more resource-efficient and outper-
forms DAPT when sufficient data is available.

In our experiments, we evaluate both approaches,
using the classification task training data as the
TAPT corpus and in-domain unlabeled data as the
DAPT corpus (see Section 3 for details). BERT and
RoBERTa are pretrained with a masked language
modeling (MLM) objective, a cross-entropy loss on
randomly masked tokens in the input sequence. We
similarly use the MLM objective when performing
DAPT and TAPT.

2.3 Supervised Fine-Tuning

We consider three settings for supervised fine-
tuning of language models for downstream classifi-
cation tasks (N is the number of target languages).

• mono-target (N final models): Fine-tune a
monolingual LM on the training data in each
target language

• multi-target (N final models): Fine-tune
XLM-R on the training data in each target
language

• multi-all (one final model): Fine-tune XLM-R
on the concatenation of all training data

To represent sequences for classification, we use
the final LM hidden vectorsB ∈ Rl×H correspond-
ing to each of the l input tokens.2 We then compute
average and max pools over the sequence length

2Though only the hidden vector for the first ([CLS]) to-
ken is typically used (Devlin et al., 2019), we find that the
pooled sequence summary attains better results on our tasks.

122

Dataset Task Lang. Unlab. Train Test

CLS Sentiment EN 105k 6k 6k
(AMAZON) DE 317k 6k 6k

FR 58k 6k 6k
JA 294k 6k 6k

HATEVAL Hate speech EN - 10k 3k
(TWITTER) ES - 5k 1.6k

Table 2: The target tasks, languages, and number of
training and test examples in each dataset.

layer and concatenate them to create the aggregate
representation C ∈ R2H . Finally, the summary
vector C is passed to a classification layer where
we compute a standard cross-entropy loss.

2.4 Data Augmentation

In real applications, labeled data is often available
in high resource languages such as English but
sparse or nonexistent in others. We experiment
with machine translation3 as a form of cross-lingual
data augmentation, which has been shown to im-
prove performance on multilingual benchmarks
(Singh et al., 2019). In single target language set-
tings, we translate training data from other lan-
guages into the target language, yielding N times
the number of training examples. In the multi-all
setting, we translate data from every language into
every other language, yielding N(N − 1) times
the number of training examples. At training time,
we directly include the translated examples in the
training corpus. Following the pretraining conven-
tion of XLM-R, we do not use special markers to
denote the input language.

3 Data

We choose sentiment analysis and hate speech de-
tection as evaluation tasks due to their relevance to
industry applications and the availability of mul-
tilingual datasets. An overview of the datasets is
shown in Table 2.

3.1 Sentiment Analysis

The Cross-Lingual Sentiment dataset (CLS; Pret-
tenhofer and Stein, 2010)4 consists of AMAZON

product reviews in four languages and three prod-
uct categories (BOOKS, DVD, and MUSIC). Each
review includes title and body text, which we con-
catenate to create the input example. The dataset

3https://cloud.google.com/translate
4We use the processed version of this dataset provided by

Eisenschlos et al. (2019).

Hashtag Train Test Test†

#NoDACA 99.36 34.26 99.60
#EndDACA 98.31 33.87 98.39
#BuildThatWall 100.0 24.89 95.99
#BuildTheDamnWall 100.0 62.07 100.0
#NoAmnesty 100.0 48.25 100.0
#SendThemBack 82.02 68.29 87.80
#DeportThemAll 100.0 83.15 99.46

Table 3: Percentage of hateful class by anti-immigrant
hashtags in HATEVAL (non-exhaustive list). †Denotes
the relabeled test set.

contains training and test sets with balanced binary
sentiment labels, as well as 50-320k unlabeled ex-
amples per language. We sample 10k unlabeled
examples from each language for DAPT.

3.2 Hate Speech Detection

The HATEVAL dataset (Basile et al., 2019) con-
tains tweets in English and Spanish annotated for
the presence of hate speech targeting women and
immigrants. Examples were collected by querying
Twitter for users with histories of sending or receiv-
ing hateful messages, as well as keywords related
to women and immigrants.

Relabeling English Test Data During experi-
mentation, we found that English example labels
were inconsistent across the training and test sets.
For instance, many test examples containing anti-
immigration hashtags were mislabeled as non-
hateful while similar examples were labeled as
hateful in the training set (see Table 3). We man-
ually relabeled 641 examples in the test set and
release the relabeled data for future research.5,6

Unlabeled Twitter Data Since no unlabeled cor-
pus is provided, we collected a sample of 10k ran-
dom tweets per language from November 2020,
which we use for DAPT.

4 Experimental Setup

Preprocessing and Tokenization We apply min-
imal preprocessing to both datasets, replacing
URLs and Twitter usernames with <url> and
<user> tokens. At all stages of training, we use the
default tokenizers associated with each pretrained

5Prior work (Stappen et al., 2020) has also noted this
discrepancy and proposed repartitioning the train and test sets.
We instead relabeled the test set due to the large number of
mislabeled examples.

6https://github.com/sentropytechnologies/
hateval2019-relabeled

123

Model DE FR JA

mBERT 84.3 86.6 81.2
MultiFiT 92.2 91.4 86.2

Model EN ES

Majority label 36.7 37.0
SVM + tf-idf 45.1 70.1
1st place submissions 65.1 73.0

Table 4: Prior results (macro-F1) for CLS (Eisenschlos
et al., 2019, top) and HATEVAL (Basile et al., 2019,
bottom).

LM (see Table 1) and truncate sequences with more
than 512 tokens.

Training We use 80% of each training set for
training and the rest for validation. During DAPT
and TAPT, we train using the MLM objective for
10 epochs. During supervised fine-tuning, we train
for 5 epochs. We use the default hyperparameters
for all pretrained LMs and apply dropout of 0.4 to
the final classification layer.

Evaluation We report the test set macro-
averaged F1 score for both datasets. (For CLS,
this is equivalent to accuracy since the classes are
balanced.) For reference, prior results on CLS and
HATEVAL are shown in Table 4.

5 Results and Analysis

We report results for all experiments in Table 5. For
both datasets, (1) TAPT and DAPT and (2) data
augmentation with machine translations improve
model performance. These strategies, which re-
quire no additional labeled data, improve macro-F1
score by between 0.6-1.5% for CLS and between
0.3-4.3% for HATEVAL. Even without DAPT,
which is often the most expensive step, applying
TAPT and/or data augmentation alone improves
performance in all settings and languages except
HATEVAL EN.

CLS For languages where extremely high-
resource monolingual LMs are available (EN and
FR), models perform best in the mono-target set-
ting, in which a monolingual LM is fine-tuned
on target language data. This is consistent with
prior findings that XLM-R suffers from fixed model
capacity and vocabulary dilution (Conneau et al.,
2019). However, for DE and JA, which are not low-
resource languages but whose monolingual LM
pretraining corpora are relatively limited in size

and domain (see Table 1), XLM-R models perform
better.

HATEVAL On average, XLM-R models perform
better on HATEVAL than those fine-tuned from
monolingual LMs. Unlike for CLS, this is true
even in EN, suggesting that for some classification
tasks, the LM pretraining corpus is not as impor-
tant for downstream task performance as XLM-R’s
larger model capacity and cross-lingual transfer.
Though scores were much higher for the relabeled
EN dataset than the original, the effects of LM fine-
tuning, TAPT, DAPT, and data augmentation were
consistent.

5.1 Not All Classification Tasks Are Created
Equal

The two text classification tasks we evaluate are sig-
nificantly different from both an annotation and a
modeling perspective. Sentiment is a well-defined
facet of language, and language model represen-
tations have even been shown to encode semantic
information about it (Radford et al., 2017). Mean-
while, defining and identifying hate speech is much
more nuanced, even for humans. Hate speech de-
tection is confounded by many factors that require
not only immediate context of the input but also
cultural and social contexts (Schmidt and Wiegand,
2017). The difference in the types of information
that models need to encode for each task may ex-
plain why monolingual LMs, which tend to encode
better lexical information than multilingual LMs
(Vulić et al., 2020), can outperform XLM-based
models when fine-tuned for sentiment analysis but
not for hate speech detection.

5.2 Cross-lingual Transfer

Prior work has established that multilingual LMs
benefit from the addition of more languages dur-
ing pretraining up to a point, after which limited
model capacity and vocabulary dilution cause per-
formance to degrade on downstream tasks – this is
referred to as the curse of multilinguality (Conneau
et al., 2019). Though this is reflected in the results
of CLS EN and FR, other models fine-tuned from
XLM-R exhibit gains from cross-lingual transfer.
In particular, for CLS JA and HATEVAL EN, the
best-performing models benefit not only from mul-
tilingual pretraining corpora but also from multilin-
gual task training data.

These results suggest that when fine-tuning LMs
for downstream tasks, XLM-R is a robust baseline.

124

CLS HATEVAL

Model Adapt. Aug. EN DE FR JA AVG EN EN† ES AVG AVG†

mono-target

RoBERTa (EN)
BERT (OTHERS)

× × 94.70.4 90.90.6 95.20.0 88.70.3 92.4 44.45.3 58.56.2 75.60.6 60.0 67.1
X 95.30.3 92.00.2 95.60.3 89.30.02 93.0 46.12.6 60.63.2 76.01.7 61.0 68.3

TAPT × 94.90.1 91.60.1 95.40.1 89.30.3 92.8 45.41.9 59.92.7 76.11.1 60.8 68.0
X 95.00.4 92.30.4 95.80.2 89.70.4 93.2 44.71.5 59.21.7 76.91.4 60.8 68.0

TAPT+
DAPT

× 94.90.4 91.80.2 95.50.3 89.50.2 92.9 48.01.5 63.12.6 76.31.1 62.2 69.7
X 95.30.1 93.00.8 95.90.1 89.90.4 93.5 46.04.3 60.24.4 76.90.6 61.4 68.5

multi-target

XLM-RoBERTa

× × 92.50.4 93.00.2 92.50.3 90.40.5 92.1 47.22.0 61.41.9 74.80.5 61.0 68.1
X 93.30.1 94.00.2 93.80.2 90.30.3 92.8 45.61.6 59.32.5 77.01.1 61.3 68.1

TAPT × 92.70.5 93.50.5 93.90.3 90.30.1 92.6 47.02.7 62.43.3 76.11.4 61.6 69.2
X 93.40.6 94.00.3 93.80.5 90.50.4 92.9 47.91.3 63.51.5 77.90.9 62.9 70.7

TAPT+
DAPT

× 93.10.6 93.00.5 93.60.1 90.80.3 92.6 49.92.5 65.62.4 76.51.0 63.2 71.0
X 94.00.3 94.10.4 93.80.3 91.10.4 93.2 46.62.1 61.72.5 78.10.8 62.3 69.9

multi-all

XLM-RoBERTa

× × 92.40.3 92.60.4 93.30.4 90.40.4 92.2 48.43.5 63.14.5 77.50.4 62.9 70.3
X 93.40.3 93.30.2 94.00.2 90.40.5 92.8 49.83.5 66.04.6 77.80.9 63.8 71.9

TAPT × 92.50.4 93.00.3 93.90.3 90.90.3 92.6 48.42.7 64.23.5 77.40.9 62.9 70.8
X 93.50.4 93.40.5 94.10.2 91.10.2 93.0 50.02.2 66.52.6 77.80.6 63.9 72.2

TAPT+
DAPT

× 92.70.3 93.30.2 94.00.3 91.20.3 92.8 47.13.9 62.75.3 77.41.0 62.3 70.1
X 93.50.3 93.80.2 94.30.3 91.40.2 93.3 50.71.1 67.41.4 77.70.7 64.2 72.6

Table 5: CLS and HATEVAL results (macro-F1) averaged over five random seeds. The best results for each target
language test set are bolded, and standard deviations are shown in subscripts. Model denotes the supervised fine-
tuning setting. Adapt. denotes the adaptive pretraining setting: × (no adaptive pretraining), TAPT (task-adaptation
only), or TAPT+DAPT (task- and domain-adaptation). Aug. denotes whether the training data was augmented with
machine-translated examples. For HATEVAL, we report results for both the original and relabeled† test sets.

Model Data DE FR JA ES

multi-target target 94.1 93.8 91.1 78.1
multi-all all 93.8 94.3 91.4 77.7
zero-shot EN 92.7 92.6 88.5 72.1

Table 6: Zero-shot learning versus best multilingual ap-
proaches. Data denotes language of training data. We
fine-tune XLM-R and use DAPT, TAPT, and data aug-
mentation for all models shown.

In cases where knowledge transfer from a monolin-
gual LM might be difficult (e.g. due to a limited
pretraining corpus or specialized downstream task),
XLM-R may even outperform its monolingual com-
petitors.

5.3 Are Target Language Labels Needed?

Zero-shot learning is a topic of significant inter-
est in multilingual NLU research (Conneau et al.,
2018, 2019; Artetxe and Schwenk, 2019). In this
context, we use zero-shot learning to refer to learn-
ing a classification task without observing training
examples in the target language. Such an approach
would allow practitioners to train a classification
model using labeled data in a high-resource lan-

guage such as EN and deploy it in other languages
for which labels are not available.

To evaluate the viability of zero-shot approaches
for our tasks, we compare the best performing mod-
els from the experiments in Table 5 with models
trained only on EN training data. We report the
test set results for each of the non-EN target lan-
guages in Table 6. Zero-shot models are compet-
itive with previously published baselines (Table
4), which demonstrates the effectiveness of cross-
lingual transfer in models like XLM-R. However,
models trained using target language labels still out-
perform them by a large margin. Since obtaining a
small number of target language labels is straight-
forward and typically required for validation in
real applications, the need for zero-shot learning is
reduced in practical scenarios.

5.4 Speed and Memory Usage

The deployment of multilingual NLU systems
varies significantly depending on the number of
downstream task models trained and the model ar-
chitectures used. For instance, the mono-target and
multi-target settings induce one model per target

125

Figure 1: Inference time (top) and memory usage
(bottom) benchmarks. XLM-R results not shown at
batch sizes 32 and 64 due to GPU memory restraints.
Environment details: transformers v3.1.0,
PyTorch v1.4.0, python v3.7.4, Linux.
CPU: x86_64 (fp16=False, RAM=15GB).
GPU: Tesla P100-PCIE-16GB, RAM=16GB,
power=250.0W, perf. state=0).

language. Conversely, multi-all models have more
consistent end-task performance and do not require
the added complexity and latency of language de-
tection.

We use the Hugging Face library to benchmark
the pretrained transformer models used in our ex-
periments. We measure the inference time and
memory usage of a single forward pass on a sin-
gle Nvidia Tesla P100 GPU. Results are shown in
Figure 1.

Monolingual BERT models in different lan-
guages are nearly identical in inference speed, but
vary slightly at small batch sizes. RoBERTa has
more parameters than BERT, but the impact on
inference time and memory is small. XLM-R is
also comparable with monolingual models at small
batch sizes, but its memory usage becomes pro-
hibitively large at batch sizes larger than 32. For
certain applications such as those with real-time
inference, this may not be important since the most
common batch size is 1. Overall, the main tradeoff
we observe is between the complexity of deploying
N language-specific models and the high parame-
ter count of a single multilingual model.

6 Related Work

6.1 Multilingual Classification Benchmarks
XNLI (Conneau et al., 2018) and PAWS-X (Yang
et al., 2019) are commonly used as representative
benchmarks for cross-lingual text classification (Hu
et al., 2020; Conneau et al., 2019). However, both
datasets are designed for evaluating zero-shot cross-
lingual transfer. While useful, they do not reflect
practical scenarios where (1) a small amount of
labeled data obviates zero-shot approaches, and
(2) target language test data are not semantically
aligned.

Meanwhile, benchmarks for supervised multi-
lingual text classification are limited. Artetxe and
Schwenk (2019) propose Language-Agnostic SEn-
tence Representations (LASER) and evaluate them
on Multilingual Document Classification Corpus
(MLDOC; Schwenk and Li, 2018). Eisenschlos
et al. (2019) later show that their multilingual fine-
tuning and bootstrapping approach, MultiFit, out-
performs LASER and mBERT on CLS and ML-
DOC. The recently released Multilingual Amazon
Reviews Corpus (MARC; Keung et al., 2020) is
similar to CLS, but contains a different set of lan-
guages and large-scale training sets. Rust et al.
(2020) perform a systematic evaluation similar
to ours, comparing monolingual and multilingual
BERT models on seven monolingual sentiment
analysis datasets. Unlike our work, they do not con-
sider multilingual test sets or cross-lingual transfer
during training (as in the multi-all setting). None of
the above evaluate practical training modifications,
XLM-R, or tasks with class imbalance.

6.2 Hate Speech Detection
Due to the increased volume and consequence of
online content moderation in recent years, there is a
growing body of work on multilingual hate speech
data and methodology. The Multilingual Toxic
Comment Classification Kaggle challenge (Jigsaw,
2019) included a multilingual test set of Wikipedia
talk page comments annotated for toxicity. More
recently, Glavaš et al. (2020) introduced XHATE-
999, an evaluation set of 999 semantically aligned
test instances annotated for abusive language in
five typologically diverse languages. Similar to our
work, they compare state-of-the-art monolingual
and multilingual transformer models. However,
both the Jigsaw dataset and XHATE-999 are de-
signed for evaluating zero-shot transfer and do not
contain multilingual training data.

126

Other multilingual hate speech studies have
largely combined separate existing monolingual
datasets for evaluation (Pamungkas and Patti, 2019;
Sohn and Lee, 2019; Aluru et al., 2020; Corazza
et al., 2020; Zampieri et al., 2020). To avoid do-
main mismatch effects across languages, we use the
HATEVAL dataset (Basile et al., 2019), for which
all examples were collected simultaneously.

Previously evaluated approaches include LSTM
architectures and feature selection (Pamungkas and
Patti, 2019; Corazza et al., 2020), as well as us-
ing transformers for fine-tuning (Sohn and Lee,
2019) or feature extraction (Stappen et al., 2020).
Aluru et al. (2020) show that fine-tuning from
transformer-based language models generally out-
performs other methods, including cross-lingual
fixed representations like LASER.

7 Conclusion

We conduct an empirical evaluation of transformer-
based methods for multilingual text classification
in a variety of pretraining and fine-tuning settings.
We evaluate our results on two multilingual datasets
spanning five languages: CLS (sentiment analysis)
and HATEVAL (hate speech detection). Addition-
ally, we contribute a relabeled version of HATE-
VAL to address mislabeled test examples and enable
meaningful comparisons in future work.

Our results and analysis show that practical meth-
ods such as task- and domain-adaptive pretrain-
ing and data augmentation using machine trans-
lations consistently improve model performance
without requiring additional labeled data. We fur-
ther show that multilingual model performance can
vary based on task semantics, and that monolingual
models are not always guaranteed to outperform
massively multilingual models like XLM-R due to
its large pretraining corpora and increased capacity.

Our work points to a number of future direc-
tions, including cross-domain and cross-task trans-
fer, low-resource and few-shot learning, and practi-
cal alternatives to large multilingual models such
as distillation.

Acknowledgements

We wish to thank Boya (Emma) Peng, Alexander
Wang, and Thomas Boser for discussions and feed-
back on this work. Thanks also to the anonymous
reviewers whose detailed suggestions helped im-
prove its clarity and usefulness.

References
Sai Saket Aluru, Binny Mathew, Punyajoy Saha, and

Animesh Mukherjee. 2020. Deep learning mod-
els for multilingual hate speech detection. arXiv
preprint arXiv:2004.06465.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
AraBERT: Transformer-based model for Arabic lan-
guage understanding. In Proceedings of the 4th
Workshop on Open-Source Arabic Corpora and Pro-
cessing Tools, with a Shared Task on Offensive Lan-
guage Detection, pages 9–15, Marseille, France. Eu-
ropean Language Resource Association.

Mikel Artetxe and Holger Schwenk. 2019. Mas-
sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transac-
tions of the Association for Computational Linguis-
tics, 7:597–610.

Valerio Basile, Cristina Bosco, Elisabetta Fersini,
Debora Nozza, Viviana Patti, Francisco Manuel
Rangel Pardo, Paolo Rosso, and Manuela San-
guinetti. 2019. SemEval-2019 task 5: Multilin-
gual detection of hate speech against immigrants and
women in Twitter. In Proceedings of the 13th Inter-
national Workshop on Semantic Evaluation, pages
54–63, Minneapolis, Minnesota, USA. Association
for Computational Linguistics.

José Cañete, Gabriel Chaperon, Rodrigo Fuentes, Jou-
Hui Ho, Hojin Kang, and Jorge Pérez. 2020. Span-
ish pre-trained bert model and evaluation data. In
PML4DC at ICLR 2020.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Michele Corazza, Stefano Menini, Elena Cabrio, Sara
Tonelli, and Serena Villata. 2020. A multilingual
evaluation for online hate speech detection. ACM
Trans. Internet Technol., 20(2).

127

deepset.ai. 2019. Open sourcing german bert. https:
//deepset.ai/german-bert.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Julian Eisenschlos, Sebastian Ruder, Piotr Czapla,
Marcin Kadras, Sylvain Gugger, and Jeremy
Howard. 2019. Multifit: Efficient multi-lingual lan-
guage model fine-tuning. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5706–5711.

Goran Glavaš, Mladen Karan, and Ivan Vulić. 2020.
XHate-999: Analyzing and detecting abusive lan-
guage across domains and languages. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 6350–6365, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks.
In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics,
pages 8342–8360. Association for Computational
Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-task
benchmark for evaluating cross-lingual generaliza-
tion. CoRR, abs/2003.11080.

Jigsaw. 2019. Jigsaw multilingual toxic comment
classification. https://www.kaggle.com/c/
jigsaw-multilingual-toxic-comment-
classification.

Phillip Keung, Yichao Lu, György Szarvas, and
Noah A. Smith. 2020. The multilingual Amazon
reviews corpus. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4563–4568, Online. As-
sociation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Louis Martin, Benjamin Muller, Pedro Javier Or-
tiz Suárez, Yoann Dupont, Laurent Romary, Éric
de la Clergerie, Djamé Seddah, and Benoît Sagot.
2020. CamemBERT: a tasty French language model.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
7203–7219, Online. Association for Computational
Linguistics.

Endang Wahyu Pamungkas and Viviana Patti. 2019.
Cross-domain and cross-lingual abusive language
detection: A hybrid approach with deep learning
and a multilingual lexicon. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics: Student Research Workshop,
pages 363–370, Florence, Italy. Association for
Computational Linguistics.

Peter Prettenhofer and Benno Stein. 2010. Cross-
language text classification using structural corre-
spondence learning. In Proceedings of the 48th An-
nual Meeting of the Association for Computational
Linguistics, pages 1118–1127.

Alec Radford, Rafal Józefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. CoRR, abs/1704.01444.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian
Ruder, and Iryna Gurevych. 2020. How good is your
tokenizer? on the monolingual performance of mul-
tilingual language models.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10, Valencia, Spain. Associa-
tion for Computational Linguistics.

Holger Schwenk and Xian Li. 2018. A Corpus for
Multilingual Document Classification in Eight Lan-
guages. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Jasdeep Singh, Bryan McCann, Nitish Shirish Keskar,
Caiming Xiong, and Richard Socher. 2019. Xlda:
Cross-lingual data augmentation for natural lan-
guage inference and question answering.

Hajung Sohn and Hyunju Lee. 2019. Mc-bert4hate:
Hate speech detection using multi-channel bert for
different languages and translations. 2019 Inter-
national Conference on Data Mining Workshops
(ICDMW), pages 551–559.

128

Lukas Stappen, Fabian Brunn, and B. Schuller. 2020.
Cross-lingual zero- and few-shot hate speech detec-
tion utilising frozen transformer language models
and axel. ArXiv, abs/2004.13850.

Masatoshi Suzuki and Ryo Takahashi. 2019.
Pretrained japanese bert models. https:
//github.com/cl-tohoku/bert-japanese.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma,
Juhani Luotolahti, Tapio Salakoski, Filip Ginter, and
Sampo Pyysalo. 2019. Multilingual is not enough:
Bert for finnish. arXiv preprint arXiv:1912.07076.

Ivan Vulić, Edoardo Maria Ponti, Robert Litschko,
Goran Glavaš, and Anna Korhonen. 2020. Probing
pretrained language models for lexical semantics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7222–7240.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019a. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. In Advances in Neural Infor-
mation Processing Systems, volume 32, pages 3266–
3280. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the Pro-
ceedings of ICLR.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Yinfei Yang, Yuan Zhang, Chris Tar, and Jason
Baldridge. 2019. PAWS-X: A cross-lingual adver-
sarial dataset for paraphrase identification. In Pro-
ceedings of EMNLP 2019, pages 3685–3690.

Marcos Zampieri, Preslav Nakov, Sara Rosenthal, Pepa
Atanasova, Georgi Karadzhov, Hamdy Mubarak,
Leon Derczynski, Zeses Pitenis, and Çağrı Çöltekin.
2020. SemEval-2020 task 12: Multilingual offen-
sive language identification in social media (Offen-
sEval 2020). In Proceedings of the Fourteenth
Workshop on Semantic Evaluation, pages 1425–
1447, Barcelona (online). International Committee
for Computational Linguistics.

129

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 130–137
June 6–11, 2021. ©2021 Association for Computational Linguistics

An Emotional Comfort Framework for Improving User Satisfaction in
E-Commerce Customer Service Chatbots

Shuangyong Song, Chao Wang, Haiqing Chen, Huan Chen
Alibaba Groups, Hangzhou 311121, China

{shuangyong.ssy,chaowang.wc,haiqing.chenhq,shiwan.ch}
@alibaba-inc.com

Abstract

E-commerce has grown substantially over the
last several years, and chatbots for intelligent
customer service are concurrently drawing at-
tention. We presented AliMe Assist, a Chi-
nese intelligent assistant designed for creat-
ing an innovative online shopping experience
in E-commerce. Based on question answer-
ing (QA), AliMe Assist offers assistance ser-
vice, customer service, and chatting service.
According to the survey of user studies and
the real online testing, emotional comfort of
customers’ negative emotions, which make up
more than 5% of whole number of customer
visits on AliMe, is a key point for providing
considerate service. In this paper, we propose
a framework to obtain proper replies to cus-
tomers’ emotional questions. The framework
takes emotion classification model as a core,
and the final reply selection is based on topic
classification and text matching. Our exper-
iments on real online systems show that the
framework is very promising.

1 Introduction

A chatbot is considered as a question answering
system in which experts provide knowledge on
users’ behest. Meanwhile, chatbots are not just
question answering systems, since they can carry
out a lot of tasks depending on how you design
it (Zhu et al., 2018). As chatbot has become an
important solution to rapidly increasing customer
service demands in recent years, many companies
have recently launched their own intelligent cus-
tomer service (ICS) chatbots for providing cus-
tomer service, such as Lenovo (Li et al., 2018),
Fujitsu (Okuda and Shoda, 2018), JD.com (Zhu,
2019) and Alibaba (Li et al., 2017).

For customers’ emotional questions, proper emo-
tional comfort can help improve the service. This
is not only applicable to customer service staffs,
but also a key point of ICS chatbots, while demon-
strating human-like service is the ultimate goal of

ICS chatbots. Emotional quotient (EQ) has been
a core competence of chatbot (Zhou et al., 2020),
and about EQ, we can roughly categorize it into
two key components: identifying users’ emotions
and giving users proper emotional responses. Be-
sides, chatbots’ EQ is domain-specific, since it is
mainly based on emotion analyzing, and emotion-
analyzing technologies are mostly domain specific.

In this paper, we introduce an emotional com-
fort framework for the e-commerce chatbots. E-
commerce customers usually complain of slow de-
livery, poor quality of goods and difficulty of con-
tacting sellers, etc. Traditional question answering
based ICS chatbots may just reply customers with
some pieces of ‘knowledge’ such as ‘how to speed
up the delivery’, ‘how to report the quality issues
of goods’ and ‘how to contact sellers’. Without
responses that are emotionally appropriate, ICS
robots are too ‘robotic’ to users. Human-like em-
pathy and appropriate emotional reply can help the
users regain their confidence and move forward
with a positive attitude. Besides, in our framework
we don’t consider emotional response generation
models, such as (Huo et al., 2020) and (Zhou et al.,
2018), since we should meet the high Queries-per-
second (QPS) needs of real online applications.

Figure 1 gives two simple examples for the com-
parison of traditional ICS chatbots and emotional
ICS chatbots, which are without or with emotional
comforts. Without emotional comfort, the response
appears abruptly.

2 Related Work

Classification model: classification model train-
ing is strongly based on extraction of textual seman-
tic features, and textual semantic features can be
roughly separated into word- (or character-) level
features (Wang et al., 2018; Song et al., 2017; Kus-
ner et al., 2015) , n-gram level features (Yin et al.,
2016; Wan et al., 2016) and sentence level features
(Shen et al., 2018; Arora et al., 2016).

130

(a) Without comforts (b) With comforts

Figure 1: Comparison of conversations with or without
emotional comforts.

1) Word-level features: Kusner et al. (Kus-
ner et al., 2015) proposed word mover’s distance
(WMD), a distance function between two docu-
ments, which measures the minimum traveling dis-
tance from the embedded words of one document
to another one. WMD achieved good performance
in the document classification task (Ma et al., 2018).
Referring to WMD, Song et al. (Song et al., 2017)
proposed Word Similarity Maximization (WSM),
which is a faster method for calculating similarity
between two short texts with word embeddings, and
WSM can achieve even better results than WMD
on short text classification task. Wang et al. (Wang
et al., 2018) proposed a novel classification model
that considers correlation between embeddings of
category labels and word embeddings (LEAM),
which has further enriched the word-level features
of text classification.

2) N-gram level features: Yin et al. (Yin et al.,
2016) proposed Attention based CNN (ABCNN)
model to extract n-gram features of each of two
texts, and then combine those features as input of
Logistic regression model to obtain semantic sim-
ilarity between two texts. Wan et al. proposed a
MV-LSTM model, which utilize Bi-LSTM model
to obtain multiple positional sentence representa-
tions as a kind of ‘dynamic’ n-gram features.

3) Sentence level features: Arora et al. (Arora
et al., 2016) represent a sentence with a weighted
average of word embeddings, with their projection
onto the first principal component across all sen-
tences in the corpus removed. Shen et al. (Shen

et al., 2018) thoroughly analyzed the effect of pool-
ing mechanisms on representing sentences with
simple word embeddings. With those sentence-
level features, classification task, text sequence
matching task and some other feature based tasks
can all achieve good performance.

In our sentiment classification model and topic
classification model, we combine those multiple-
level features, and prove that our model can achieve
significantly improved results.
Emotional chatbot: the most famous emotional
chatbot is Xiaoice (Zhou et al., 2020), which was
designed about 6 years ago. Understanding and
responding to users’ emotions are two dimensions
of the ability of emotional chatbots. For realizing
a human-like customer service chatbot, we try to
understand users’ emotions with an emotion classi-
fication model, and detect topics in user questions
with a topic classification model. Then for respond-
ing users’ emotions, we design an emotional com-
fort framework including matching based comfort,
comfort with considering both emotion and topic,
and a base comfort with just considering emotion.
Text matching: text matching needs to capture the
rich interaction structures in the matching process,
and this process can be conducted between abstract
features of two texts (Yin et al., 2016; Hu et al.,
2014; Qiu and Huang, 2015) or between word em-
bedding of two texts (Pang et al., 2016; Hu et al.,
2014; Lu and Li, 2013) . In papers (Yin et al.,
2016; Hu et al., 2014; Qiu and Huang, 2015) (the
ARC-I model in (Hu et al., 2014)), they all extract
features from each of those two texts and then com-
bine those features as the input of final Logistic
regression model. In papers (Pang et al., 2016; Hu
et al., 2014; Lu and Li, 2013) (the ARC-II model
in (Hu et al., 2014)), they all take the interaction
matrix of two texts as input of their models, and
extract features from the given interaction matrix
to evaluate similarity between two texts. In our
matching-based emotional comfort part, we com-
bine a BCNN model (Yin et al., 2016), which is
with a text interaction on abstract feature level, and
a MatchPyramid model (Pang et al., 2016), which
is with a text interaction on word embedding level,
to obtain an eligible performance for online service.

3 Framework Description

Our proposed framework consists of two parts (Fig-
ure 2), offline part and online part, and each of them
consists of three components. With the offline part,

131

we want to realize the ability to understand users’
emotions as detailed as possible, and with the on-
line part, we sequentially run increasingly general
comfort strategies for responding users’ emotions
on a larger scale.

Figure 2: Framework of emotional comfort in ICS chat-
bots.

Offline Part: 1) Emotion classification model
is trained with considering word-level features, n-
gram level features and sentence level features. We
consider seven different emotions as fear, abuse,
disappointed, aggrieved, anxious, anger and grate-
ful. 2) Topic classification model is trained with a
same way as the emotion classification model, and
we choose 35 high frequency service classes, such
as ‘complaints about the quality of service’ and
‘complaints of slow Delivery’, etc. 3) Knowledge
construction is for collecting some user questions
with very specific content that needs to response
emotional comforts. Those specific questions are
with high frequency, but they are hard to be clas-
sified into a topic or cannot get well treated with
just topic-level comforts. For each question, our
service experts will design a professional reply, and
for each ‘question-reply’ pair we call it as a piece
of ‘knowledge’.

Online Part: 1) Knowledge-based comfort is
for users with specific questions, and we use a
text-matching model to match a user’s question
and the high-frequent questions in collected pieces
of knowledge. If we can get a prepared question,
which has the biggest similarity with the given
user’s question and also the similarity value is big-
ger than a particular threshold, the corresponding
reply will be taken as the emotional comfort result
to this user. 2) Emotion & topic comfort means
the comfort based on both users’ emotions and the
topics of users’ questions. 3) Emotion-level com-
fort is a backup component to the emotion & topic
comfort, since we cannot list all topics. So for other
emotional queries without listed topics, we use this
component to reply a general emotional response.

Figure 3: Examples of comforts: (a) emotion-level; (b)
emotion & topic level; (c) knowledge-based level

Figure 3 gives examples of online emotional
comforts. (a) shows an emotion-level comfort ex-
ample. This user just complains, without any topic
or any reason, so we can just give this user a very
general comfort. (b) shows a comfort considering
both emotions and topics. This user complains
about service, so we can pointedly give a comfort
about service. (c) shows a user’s complain about
bad robot service, and for this kind of questions
with very specific content, we utilize knowledge-
based matching models to give proper responses.

4 Offline Part

4.1 Emotion Classification
Emotion classification is the base and core of whole
emotional comfort framework. We propose an
ensemble classification model MLC (Multi-Level
feature based Classification), which combines sen-
tence level features, n-gram level features and word-
level features. Figure 4 gives the description of this
model, and from left to right, sentence level fea-
tures, n-gram level features and word-level features
are respectively obtained. Given the word embed-
ding of which the dimension is set as M, we also
define a series of embedding of labels (emotions)
of which the dimension is also set as M. Below we
discuss the feature extraction steps:

1) Sentence level features: Simple Word-
Embedding based Models (SWEM) (Shen et al.,
2018), which employs simple pooling strategies
operated over word embeddings, shows close per-
formance to some classic CNN- or RNN-based
text matching models or classification models. In
our work we use those simple pooling strategies
to obtain sentence-level features of users’ ques-

132

Figure 4: Emotion classification model.

tions for the emotion classification task. For com-
bining the features obtained from average-pooling
strategy and max-pooling strategy, two different
methods are proposed as concatenating method
and hierarchical method. Under the design idea of
whole emotion classification model, we choose the
SWEM-concat method to combine SWEM-max
features and SWEM-avg features.

2) n-gram level features: Traditional CNN is
used to obtain n-gram level features, and n is a vari-
ate denoting the convolution window size. In this
paper, we set n as 2, 3 and 4 respectively, and for
each window size, 16 convolution kernels are used
to extract plentiful information from the original
word embedding matrix. Pooling steps are similar
as that in extraction of sentence level features.

3) Word-level features: We use the Label-
Embedding Attentive Model (LEAM) proposed in
(Wang et al., 2018) to extract word-level features.
LEAM embeds the words and labels in the same
joint space for text classification. It utilizes label
descriptions for increasing the interaction between
labels and words, which can obtains deeper con-
sideration of semantic information of words. In
our model, each ‘label’ means a kind of emotion,
such as ‘anger’ or ‘disappointment’, etc. In our
online service, 6 negative emotions and a ‘grateful’
emotion are considered.

Finally, features of different levels are put to-
gether for the output layer trained with logistic
regression model.

4.2 Topic Classification

We summarize high frequent service topics with
referring the experience of service experts, and
then use the same model design with the emotion

classification step to realize topic classification.

4.3 Knowledge Construction

Besides ICS chatbots, we also have human cus-
tomer services. For extracting users’ high frequent
questions and also the high-quality replies, we can
all refer to the chat log data of human customer
services. We combine the chat log of chatbots and
human customer services together, and utilize a
self-adapting clustering method proposed in (Song
et al.) to cluster similar user questions. With the
arrangement of professional service experts, we
finally choose 649 high-frequent user questions as
basis of constructing ‘question-reply’ pairs. For
each high-frequent user question, we collect ref-
erenceable replies from log of human customer
services. Then with those referenceable replies,
professional service experts can reorganize them
to obtain final 649 ‘question-reply’ pairs as our
‘knowledge base’.

5 Online Part

5.1 Knowledge-based Comfort

Figure 5: The workflow of retrieval-based QA systems.

We utilize a retrieval-based QA system (Yu
et al., 2018) to realize knowledge-based comfort,
of which the workflow is shown in figure 5. Col-
lected knowledge base is indexed by Lucene, and
for each emotional user question, we recall top K
pieces of candidate knowledge from Lucene index,
and then rerank those candidates to get a final reply.
Similarity computation in ‘Knowledge Reranking’

133

module is the key component, and with different
situations we have designed different models.

An unsupervised text similarity computation
model: For making our framework applicable to
some domains with no domain-sensitive labeled
data, we use an unsupervised text matching model
to rank candidates and decide which is most similar
with the given user question. We use Word Simi-
larity Maximization (WSM) (Song et al., 2017),
which is an optimization of Word Mover’s Dis-
tance (WMD) proposed in (Kusner et al., 2015), to
realize this unsupervised text matching step. Com-
pared to WMD, WSM can get a normalized similar-
ity value restricted to [0,1] instead of the distance
value of WMD of which is not normalized, and
computational complexity of WSM can be greatly
decreased compared to WMD.

A supervised deep text similarity computa-
tion model: With the discussion of ‘text match-
ing’ in related work section, we choose two well-
performing models, MatchPyramid (Pang et al.,
2016) and BCNN (Yin et al., 2016), as baselines,
and we realize a combined model PBmatch, with
considering features in both MatchPyramind and
BCNN. Feature extraction steps of MatchPyramind
and BCNN are separated and then on the Logistic
regressions step, features extracted from both mod-
els are combined together, and the whole frame-
work makes a joint training of both models.

5.2 Emotion & Topic Comfort

Emotion classification and topic classification are
all run on a given user question, and for each
possible ‘emotion+topic’ combination, our service
experts have set different comfortable replies for
realizing diversified emotional comfort. These
‘emotion+topic’ sensitive replies are randomly re-
sponded when needed.

5.3 Emotion-level Comfort

Similar with the description in above subsection,
with user questions without obvious topical con-
tent, we just consider the emotional information
contained in questions. For each emotion, our ser-
vice experts have also set different emotion-level
comfortable replies for realizing diversified emo-
tional comfort. Compared with comfortable replies
considering both emotion and topic, emotion-level
comfortable replies are more general, which are
like the example in figure 3(a).

6 Experiments and Evaluations

6.1 Dataset and Evaluation Metric

Dataset: 1) Emotion classification dataset: Since
we annotate that just about 5% of user questions are
with emotion, a manual labeling on all user ques-
tions for emotion classification is a waste. We first
extract some suspicious emotional questions with
an emotional dictionary, which is empirically col-
lected, and then we published crowdsourcing tasks
with checking and revising those dictionary-based
labels. Each question was labeled by 3 annotators,
with one of the given emotions or ’no emotion’. If
3 annotators give 3 different labels, we delete this
question, otherwise we label this question as the
emotion labeled by at least 2 annotators. Finally,
we got a totally 46,000 labeled questions with 8
different classes: 6 negative emotions, 1 grateful
emotion and a class ‘other’.

2) Topic classification dataset: Similar with the
creation of the emotion classification dataset, we
also firstly extract some suspicious topical ques-
tions with an empirically collected topical dictio-
nary, which contains 35 topics such as ‘poor service
attitude’, ‘recharge slow’ and ‘urging a refund’, and
similar crowdsourcing tasks were also published.
Finally, we got totally 98,000 labeled questions.

3) Text matching dataset: For creating enough
dataset for training the text matching model, we
implement following strategies: we randomly se-
lect 10,000 user questions from chatbot log, and
top 15 candidates for each of them can be obtained
with Lucene index. Then 8 service experts labeled
those candidates with right/wrong, and some exam-
ples are shown in Table 1. Serious data unbalance
shows in above labeled data, since just 14.3% can-
didates are labeled as right ones (positive samples).
For balancing the data, we randomly extract about
20% candidates, which are labeled as wrong, of
whole dataset as negative samples.

User questions Candidate knowledge titles Labels

The seller does not
refund, how should
I do?

After my application, the seller still won’t refund,
how should I do? right

Seller does not refund shipping charge, how should I do? wrong

Buyer does not finish payment after a successful auction. wrong

Fill a fault phone
number

Can I change the phone number if I have filled a fault one? right

I filled a fault phone number, how should I do? right
I filled a fault phone number. Does it impact my ticket
service? wrong

Table 1: Examples of Labeled Training Dataset (Trans-
lated into English).

Evaluation Metric: User Satisfaction.
Same as other kind chatbots, accuracy rating of

134

single-turn response can also be taken to measure
the performance of an ICS chatbot. However, ‘User
Satisfaction’ is a much more important metric for
ICS domain and we also take it as a mirror of the
performance of our proposed framework. In prac-
tice, about 1.5K conversation sessions per day are
labeled by users with a satisfaction degree of 1,2
and 3, which respectively mean ‘very satisfied’,
‘so-so’ and ‘unsatisfied’. We take the percentage of
the label ‘1’ as final ‘User Satisfaction’.

We choose the final period of data for ‘User
Satisfaction’ evaluation as from Oct. 15, 2020 to
Nov. 15, 2020, which consist of almost 20,000
labeled data by user research experts. Besides, our
emotional comfort framework was deployed in the
online system on Oct. 31, 2020.

6.2 Results and Discussions

CNN SWEM LEAM MLC
Fear 0.680 0.688 0.652 0.701

Abuse 0.940 0.925 0.889 0.945
Disappointed 0.902 0.921 0.905 0.920

Aggrieved 0.840 0.821 0.812 0.847
Anxious 0.921 0.949 0.911 0.953
Anger 0.930 0.948 0.932 0.955

Grateful 0.955 0.987 0.952 0.997
Total 0.881 0.891 0.865 0.903

Table 2: Comparison of emotion classification models

First, we check the performance of the emotion
classification model. Table 2 gives an emotion-
level performance comparison of different models,
which are CNN, SWEM, LEAM and our model.
With more diversified features, our model can get
better results than all the baseline models. And a
total precision of 0.903 has reached the standard of
online service when we set an optimum threshold
of the classification probability as 0.625. Besides,
topic classification is with a same model design
of emotion classification. Since the topics are too
many to show up all of them, we just give a total
precision result comparison in table 3.

CNN SWEM LEAM MLC
Total 0.801 0.809 0.793 0.817

Table 3: Comparison of topic classification models

Table 4 gives the comparison of different models’
performance on text matching, and we can see the
PBmatch model can get a higher F-value than ei-
ther BCNN or MatchPyramid models, with setting
an optimum threshold. Besides, the two unsuper-
vised models can also get passable experimental

Models Threshold Precision Recall F-value
WMD 0.73 0.823 0.782 0.802
WSM 0.75 0.845 0.823 0.834
BCNN 0.87 0.876 0.858 0.862

MatchPyramid 0.93 0.873 0.866 0.869
PBmatch 0.85 0.901 0.878 0.889

Table 4: Comparison of Text Matching Models.

results. For the Lucene recalling before the text
matching step, we set the maximum number of re-
called candidates as 20, considering the high ‘query
per second’ (QPS) demand of our online system.

Comfort strategies Knowledge- Emotion- & topic- Emotion-
Percentages 21.64% 26.69% 51.67%

Table 5: Percentages of Different Comfort Strategies.

Table 5 gives the coverages of different comfort
strategies on emotional user questions. We can
see the emotion-level comfort strategy is with the
largest percentage, since most of the user questions
are usually very short and the emotional expression
of users are without specific content or specific
topics.

Without our framework With our framework
User Satisfaction 0.214 0.301

Table 6: User Satisfaction with or without Our Frame-
work on Negative Emotions.

Table 6 shows the comparison results of user
satisfaction with or without our framework on 6
negative emotions. We can see that those chat ses-
sions with users’ negative emotions have a very
low user satisfaction, and our emotional comfort
framework can help slightly raise the user satis-
faction with 8.7 percent. Table 7 shows the com-
parison results of user satisfaction with or without
our framework on the grateful emotion. With our
framework, users may feel more comfortable and
satisfied with the responses to their grateful emo-
tion. So, more human-like service can get more
customers’ satisfaction.

Without our framework With our framework
User Satisfaction 0.589 0.723

Table 7: User Satisfaction with or without Our Frame-
work on the Grateful Emotion.

7 Conclusion

In this paper, we focus on an emotional comfort
framework in e-commerce chatbots, and the ex-
periments show such a framework can effectively

135

improve user satisfaction. About the future work,
we will consider more emotions in this framework.
Besides, we will automatically evaluate users’ satis-
faction with technologies on emotion analysis and
sequence labeling.

References
Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2016.

A simple but tough-to-beat baseline for sentence em-
beddings.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network archi-
tectures for matching natural language sentences.
Advances in neural information processing systems,
27:2042–2050.

Pei Huo, Yan Yang, Jie Zhou, Chengcai Chen, and
Liang He. 2020. Terg: Topic-aware emotional re-
sponse generation for chatbot. In 2020 International
Joint Conference on Neural Networks (IJCNN),
pages 1–8. IEEE.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From word embeddings to doc-
ument distances. In International conference on ma-
chine learning, pages 957–966.

Feng-Lin Li, Minghui Qiu, Haiqing Chen, Xiong-
wei Wang, Xing Gao, Jun Huang, Juwei Ren,
Zhongzhou Zhao, Weipeng Zhao, Lei Wang, et al.
2017. Alime assist: An intelligent assistant for cre-
ating an innovative e-commerce experience. In Pro-
ceedings of the 2017 ACM on Conference on Infor-
mation and Knowledge Management, pages 2495–
2498.

Yang Li, Qingliang Miao, Ji Geng, Christoph
Alt, Robert Schwarzenberg, Leonhard Hennig,
Changjian Hu, and Feiyu Xu. 2018. Question
answering for technical customer support. In
CCF International Conference on Natural Language
Processing and Chinese Computing, pages 3–15.
Springer.

Zhengdong Lu and Hang Li. 2013. A deep architecture
for matching short texts. Advances in neural infor-
mation processing systems, 26:1367–1375.

Yinglong Ma, Peng Zhang, and Jiangang Ma. 2018.
An ontology driven knowledge block summarization
approach for chinese judgment document classifica-
tion. IEEE Access, 6:71327–71338.

Takuma Okuda and Sanae Shoda. 2018. Ai-based chat-
bot service for financial industry. Fujitsu Scientific
and Technical Journal, 54(2):4–8.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengx-
ian Wan, and Xueqi Cheng. 2016. Text matching as
image recognition. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 30.

Xipeng Qiu and Xuanjing Huang. 2015. Convolutional
neural tensor network architecture for community-
based question answering. In Twenty-Fourth inter-
national joint conference on artificial intelligence.

Dinghan Shen, Guoyin Wang, Wenlin Wang, Mar-
tin Renqiang Min, Qinliang Su, Yizhe Zhang, Chun-
yuan Li, Ricardo Henao, and Lawrence Carin.
2018. Baseline needs more love: On simple word-
embedding-based models and associated pooling
mechanisms. arXiv preprint arXiv:1805.09843.

Shuangyong Song, Haiqing Chen, and Zhiwei Shi.
2017. Intention classification of user queries in in-
telligent customer service system. In 2017 Inter-
national Conference on Asian Language Processing
(IALP), pages 83–86. IEEE.

Shuangyong Song, Yao Meng, and Zhongguang Zheng.
Summarizing microblogging users with existing
well-defined hashtags. International Journal of
Asian Language Processing, 23(2):111–125.

Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu,
Liang Pang, and Xueqi Cheng. 2016. A deep ar-
chitecture for semantic matching with multiple po-
sitional sentence representations. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 30.

Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe
Zhang, Dinghan Shen, Xinyuan Zhang, Ricardo
Henao, and Lawrence Carin. 2018. Joint embedding
of words and labels for text classification. arXiv
preprint arXiv:1805.04174.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and
Bowen Zhou. 2016. Abcnn: Attention-based convo-
lutional neural network for modeling sentence pairs.
Transactions of the Association for Computational
Linguistics, 4:259–272.

Jianfei Yu, Minghui Qiu, Jing Jiang, Jun Huang,
Shuangyong Song, Wei Chu, and Haiqing Chen.
2018. Modelling domain relationships for transfer
learning on retrieval-based question answering sys-
tems in e-commerce. In Proceedings of the Eleventh
ACM International Conference on Web Search and
Data Mining, pages 682–690.

Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan
Zhu, and Bing Liu. 2018. Emotional chatting ma-
chine: Emotional conversation generation with in-
ternal and external memory. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32.

Li Zhou, Jianfeng Gao, Di Li, and Heung-Yeung Shum.
2020. The design and implementation of xiaoice, an
empathetic social chatbot. Computational Linguis-
tics, 46(1):53–93.

Hongyuan Zhu, Qi Liu, Nicholas Jing Yuan, Chuan
Qin, Jiawei Li, Kun Zhang, Guang Zhou, Furu Wei,
Yuanchun Xu, and Enhong Chen. 2018. Xiaoice

136

band: A melody and arrangement generation frame-
work for pop music. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 2837–2846.

Xiaoming Zhu. 2019. Case ii (part a): Jimi’s growth
path: Artificial intelligence has redefined the cus-
tomer service of jd. com. In Emerging Champions
in the Digital Economy, pages 91–103. Springer.

137

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 138–145
June 6–11, 2021. ©2021 Association for Computational Linguistics

Language Scaling for Universal Suggested Replies Model
Qianlan Ying∗1, Payal Bajaj∗2, Budhaditya Deb2, Yu Yang1, Wei Wang†3,
Bojia Lin1, Milad Shokouhi2, Xia Song2, Yang Yang1, and Daxin Jiang1

1Microsoft, Beijing, China
2Microsoft, Bellevue, Washington, USA

3Qualtrics, Seattle, Washington, USA
{qiying,Payal.Bajaj,Budha.Deb,yanyu}@microsoft.com
{bojial,milads,xiaso,yayan,djiang}@microsoft.com

tskatom@gmail.com
Abstract

We consider the problem of scaling automated
suggested replies for Outlook email system to
multiple languages. Faced with increased com-
pute requirements and low resources for lan-
guage expansion, we build a single universal
model for improving the quality and reduc-
ing run-time costs of our production system.
However, restricted data movement across re-
gional centers prevents joint training across
languages. To this end, we propose a multi-
task continual learning framework, with auxil-
iary tasks and language adapters to learn uni-
versal language representation across regions.
The experimental results show positive cross-
lingual transfer across languages while reduc-
ing catastrophic forgetting across regions. Our
online results on real user traffic show signif-
icant gains in CTR and characters saved, as
well as 65% training cost reduction compared
with per-language models. As a consequence,
we have scaled the feature in multiple lan-
guages including low-resource markets.

1 Introduction

Automated suggested replies or smart replies (SR)
assist users to quickly respond with a short, generic,
and relevant response, without users having to type
in the reply. SR is an increasingly popular feature
in many commercial applications such as Gmail,
Outlook, Skype, Facebook Messenger, Microsoft
Teams, and Uber (Kannan et al., 2016; Henderson
et al., 2017a; Shang et al., 2015; Deb et al., 2019;
Yue Weng, 2019). While the initial versions of
this feature mostly targeted English users, making
it available in multiple languages and markets is
important not only from the perspective of prod-
uct expansion but also from a linguistic inclusivity
point of view.

In this paper we consider the problem of rapid
scaling of the SR feature to multiple languages for

∗Both authors contributed equally in the paper.
†Work performed at Microsoft Research.

Outlook. To develop such a system at production
scale, we are faced with the following challenges.

- Model management: Language scaling in-
creases the effort of training, deploying, and man-
aging per-language models, which needs to be repli-
cated for each language. In addition, one model
per language increases the storage and compute
requirements for the production servers, which can
increase costs and occurrences of run-time issues.

- Data constraints: Developing models at pro-
duction quality requires considerable effort in data
collection and management. Due to regional mar-
ket share and infrastructure constraints, rich and
domain-specific data may not be available for all
languages.

- Data privacy and security policies: Regional
policies enforce data to be located in correspond-
ing regions. For example, Spanish and Portuguese
data are stored in North American (NAM) clus-
ters while French data is stored in European (EUR)
clusters. Data movement across regions is not al-
lowed and this prevents leveraging commonly used
multi-lingual co-training methods which require all
the data stored to be in the same place.

To reduce the cost of model management, we
propose to build a single universal SR model, ca-
pable of serving multiple languages and markets.
To overcome data constraints, we propose to use
augmentation with machine-translated (MT) data
for languages without supervised data. To over-
come privacy constraints, we propose a continual
learning framework, where the model is trained se-
quentially across regions. To alleviate catastrophic
forgetting (French, 1999; McCloskey and Cohen,
1989) in the continual learning process, we rein-
force the universal properties via multi-task learn-
ing approach with public task-agnostic data, and
an adapter-based model architecture that leverages
domain-specific SR data and MT data.

Our experimental results followed with improve-
ments shown on real user traffic illustrate the ef-

138

fectiveness of the approach. As a consequence,
we have rapidly scaled the feature in several lan-
guages including low-resource markets. Multi-
lingual training for universal models is often very
tricky to work in practice (especially with our data
constraints). Thus, we demonstrate a significant
accomplishment of a multi-lingual SR system run-
ning at production scale on millions of users, which
saves resources while improving performance.

2 Core SR Model

The SR feature is similar to open-domain chat-
bots and task-oriented conversational agents, (Zhou
et al., 2020; Henderson et al., 2019b; Fadhil and
Schiavo, 2019; Xu et al., 2017; Okuda and Shoda,
2018; Kopp et al., 2018). In terms of usage, SR
is closer to the latter, in that it assists users to
complete a reply, instead of continuing an open-
ended dialog. Following commonly used IR-based
models in commercial SR applications (Hender-
son et al., 2017b; Deb et al., 2019), we use a dual
encoder matching model for our SR system.

The matching model has two parallel encoders
projecting input message and corresponding reply
into a common representation space. Different en-
coders such as feed-forward and BiLSTM layers
can be used here (Henderson et al., 2017a; Deb
et al., 2019). More recently, (Devlin et al., 2018;
Liu et al., 2019; Yang et al., 2019; Henderson et al.,
2019a,b) show considerable improvements with
transformer-based pre-trained models. Our English
SR model uses a BERT equivalent (Devlin et al.,
2018) encoder, while our mono-lingual baselines
in other languages use BiLSTM encoders.

The model is trained on one-on-one message-
reply (m-r) pairs from commercial email data. We
minimize the symmetric loss function. It is a modi-
fied softmax on dot products between m-r encod-
ing in equation 1 where si,j = eφ(mi)·φ(rj). As
described in (Deb et al., 2019), it was shown to
improve the relevance by targeting at bi-directional
conversational constraints.

p(mi, ri) =
si,i∑

j si,j +
∑
k sk,i − si,i

(1)

IR-based model requires a fixed response set. To
generate that, we collect differentially private (DP)
(Gopi et al., 2020) and anonymized replies, filtered
for sensitive content from the training data which
preserves user privacy while mining actual user
responses. Furthermore, we use human curation

(a)

(b)

Figure 1: (a) Matching model architecture with sym-
metric loss and TLM/MLM cross-entropy loss. (b)
Multi-task continual training loop for EUR->NAM-
>LRL clusters.

to edit responses for cultural-sensitivity, gender-
neutrality, etc. DP filtration requires a large amount
of data due to low yields. For low-resource markets,
we translate English responses with human curation
for cultural adaptation to languages and locales.

During prediction, we compute the matching
score (·) between the message and pre-computed
response set vectors. Similar to (Henderson et al.,
2017a; Deb et al., 2019), we add a language-model
(LM) penalty representing the popularity of re-
sponses to bias the predictions towards more com-
mon ones. Translated responses inherit the penalty
score from the corresponding English responses.
Using this score in equation 2 we first select top N1

responses, and down-select to top N2 after dedupli-
cation using lexical clustering, before presenting to
users.

Score = φ(mi) · φK(rk)) + αLMK(rk) (2)

3 Universal SR Model

The universal SR model consists of parallel encoder
architecture trained using symmetric loss function

139

similar to the core SR model. We initialize the
m-r encoders with InfoXLM (Chi et al., 2020),
an XLM-Roberta (Conneau et al., 2019) equiva-
lent multi-lingual model as shown in as Figure 1(a)
which creates language-agnostic text representation
across 100 languages. The encoder is pre-trained
with both publicly available and internal propri-
etary corpora and has shown good cross-lingual
transfer capabilities on benchmarks such as XNLI
(Conneau et al., 2018).

Using a universal pre-trained model in itself en-
ables language expansion. However, as we dis-
cuss next, data movement constraints made train-
ing the universal model tricky, with performance
frequently worse than single mono-lingual models.

3.1 Continual Learning

Joint training of universal encoders has led to
enormous progress on standard benchmarks and
industrial applications such as (Ranasinghe and
Zampieri, 2020; Gencoglu, 2020).

However, privacy policies restrict the data move-
ment across geographic clusters. This prevents the
joint training at a single compute cluster. As a re-
sult, we train the model sequentially in a continual
learning fashion by fine-tuning the model in one
region, and then continue training in another.

The actual sequence of how this is conducted is
important. We observed that keeping English at the
last stage provides the best performance. This is
likely because English data (which frequently con-
tains bilingual data through code-switching) cov-
ers a large proportion in pre-training corpora, thus
serving as an anchor in subsequent training stage
to maintain the universal properties of the model.

3.2 Multi-task Learning

Training the SR model in multiple stages can lead
to catastrophic forgetting, where new knowledge
easily supplants old knowledge. This problem can
be alleviated to some extent by freezing layers of
the pre-trained encoders but is still significant after
the model is fine-tuned with large corpora.

Several papers have leveraged self-supervised
pre-training tasks based on bi-lingual parallel cor-
pora to create or enhance cross-lingual representa-
tions (Devlin et al., 2018; Conneau et al., 2019; Chi
et al., 2020). Following such approaches, we ex-
periment with Translation Language Model (TLM)
(Lample and Conneau, 2019) in continual learning
to preserve the universal properties of the model.

A total of 79M translation pairs from WikiMa-
trix (Schwenk et al., 2019) and MultiParaCrawl
(Aulamo et al., 2020) data including the languages
considered in production are extracted as train-
ing data. In addition, we conduct an ablation
study on auxiliary task selection by comparing with
Masked Language Model (MLM) (Devlin et al.,
2018) trained on 370M samples from Wikipedia.

The multi-task training alternates between SR
and auxiliary tasks according to a set proportion of
mini-batches in an epoch. The proportion controls
the trade-offs between the tasks, to achieve the
desired levels of performance in the system.

3.3 Data Augmentation

Native supervised data (m-r pairs) is currently not
available for low-resource languages. In such cases,
English data is leveraged to generate pseudo m-r
pairs using machine-translation (MT). We utilize
MT data in continual learning process with auxil-
iary tasks, or with adapters (Houlsby et al., 2019)
by introducing additional parameters in the trans-
former layers. When training with adapters, we
freeze all parameters except the adapters.

3.4 Universal Model Training Loop

The production system targets 5 high-resource lan-
guages (HRL): Spanish (ES), Portuguese (PT),
French (FR), German (DE), Italian (IT) with rich
native data, and 5 low-resource languages (LRL):
Chinese (ZH), Japanese (JA), Dutch (NL), Czech
(CS) and Hungarian (HU) without any supervised
data. English (EN) serves as pivot language in
our experiments. As shown in Table 1, the data is
distributed across Europe (EUR), North America
(NAM) and a dedicated cluster storing MT data
for LRL. Data movement across these regions is
not allowed. Public task-agnostic data for auxiliary
tasks in 8 languages is accessible in all regions.

Region Languages Category

EUR DE, IT, FR High-resource

NAM ES, PT, EN High-resource

LRL ZH, JA, NL, CS, HU Low-resource*

Table 1: Regional distribution of training data for dif-
ferent languages. *: data translated from EN.

We train the model sequentially in 3 stages as
shown in Figure 1(b). First, we jointly train the
model in EUR for FR, DE, and IT. Next, we move
the model to NAM and continue train with EN, ES,

140

and PT along with auxiliary task. Finally, in LRL,
we train the model on machine translated m-r pairs
along with original EN data in 2 different ways:
(1) jointly train with auxiliary task, or (2) infuse
the model with low-resource language adapters. In
all stages, we freeze the embedding layer of the
encoder during fine-tuning. According to previous
studies (Lee et al., 2019; Peters et al., 2019), freez-
ing partial layers can maintain the model quality
while reducing training time during fine-tuning. We
observed that freezing embedding layer provides a
good balance between micro-batch size per GPU
(low if no layers are frozen) and learning capacity
of the model (low if many layers are frozen).

3.5 Universal Model Graph for Serving

For deployment, we create a composite graph with
pre-computed response vectors of all languages em-
bedded into the main model. A separate language
identifier switches the prediction vectors to the pre-
dicted language of the input at run-time. Besides,
several auxiliary models are added in online system
to decide whether to trigger the universal model
according to the characteristics of input message
such as length and detected language.

4 Experiments and Results

The training data is collected and processed with-
out any eyes access from commercial users in Out-
look email system. To be more specific, we filter
50M m-r pairs from one-to-one conversations for
each high-resource language, and translate 20M
m-r pairs for each low-resource language. Con-
sidering the m-r length distribution, we truncate
m-r pairs to (96, 64) tokens as training data, and
filter out messages longer than 96 tokens during
inference, so that the model is more focused on
providing quick responses to short messages. The
response set size for each language is 20K, filtered
or trans-created from English native data.

In all three stages of training, we use an effective
batch size of 16K. We utilize the Adam optimizer
(Kingma and Ba, 2014) with weight decay and
set peak learning rates as [5e-4, 3e-4, 1e-4] for
three stages respectively. We train up to 30 epochs
from which the best model is selected based on
validation set loss over all languages.

For MLM/TLM objectives, we use single-token
masking, the task proportion is set as 0.5. The
final loss of the model is sum of symmetric loss
and auxiliary task loss. For adapters, we use the

hidden dimension of 256 in the bottleneck architec-
ture and initialize these parameters with a normal
distribution of mean 0 and standard deviation 0.01.
According to our observation, high standard devi-
ation for initialization can cause divergence. All
experiments are conducted with 16 Nvidia V100-
32GB GPU cards.

During prediction, we pick top N1 = 30 re-
sponses according to equation 2, and then cluster
the ranked results and down-select N2 = 3 re-
sponses as final prediction.

4.1 Offline Evaluation Metrics and Sets
We compute evaluation metrics based on two kinds
of evaluation sets. The first test set samples m-
r pairs, where reply is contained in the response
set (GoldenMR) and is used for computing the
ranking metric, Mean Reciprocal Rank: MRR =
1
N

∑N
i=1

1
Ranki

, for the top 15 predictions.
The second set consists of general m-r pairs

(GenMR) where the reply is not restricted to the
response set. weighted-ROUGE metrics is com-
puted on final 3 responses with the reference
response over uni/bi/tri-grams (W_ROUGE =∑3

i=1
1
wi
ROUGEi(Ref,Repk)), with weights of

1 : 2 : 3 proportions.
We use ∼50K GoldenMR and 500K GenMR

dataset for each language. For languages with-
out native data, an evaluation proxy with MT data
is used for model selection before online deploy-
ment. We give a higher preference to ROUGE as it
showed higher correlation to our online metrics.

4.2 Online Evaluation Metrics
For the deployed models in production, we measure
the following online metrics on real user traffic.

Click-through rate (CTR): the ratio of the
count of replied emails with SR clicks over all
emails that the feature is rendered.

Usage: the ratio of count of replied emails with
SR clicks to all replied emails. This captures the
contribution of SR to all Email replies.

Char-saved: the average number of characters-
saved by clicking the selected reply.

4.3 Results
The model is evaluated on the international markets
we are expanding to. English is excluded as EN
model is well established. Results on baseline (ex-
isting per-language production models) and univer-
sal models for high-resource markets are reported
in Table 2. Results targeting new markets without

141

any native data are reported in Table 3. Entries in
the tables are defined as follows:

BiLSTM: Per-language (mono-lingual) produc-
tion models for non-EN markets as the baseline and
also the control setting of online A/B tests. Here
the encoders have shared embedding size of 320
and 2 BiLSTM layers with hidden size of 300.

UniPLM-[NAM/EUR]: Universal model cre-
ated by fine-tuning pre-trained multi-lingual en-
coders for EUR and NAM regions respectively.

UniPLM-HRL: The model across the first 2
stages with the universal training loop in Figure
1(b). In the second stage, the model is fine-tuned
along with TLM auxiliary task with multi-lingual
unsupervised data. This is the first universal model
candidate that breaks down the data boundary
across High-Resource Languages (HRL).

Reg Lang Model MRR W_ROUGE

EUR DE BiLSTM-de 0.3263 0.0685
UniPLM-EUR 0.4185 0.0698
UniPLM-HRL 0.3323 0.0663

FR BiLSTM-fr 0.4569 0.0642
UniPLM-EUR 0.4721 0.0647
UniPLM-HRL 0.4135 0.0624

IT BiLSTM-it 0.3300 0.0330
UniPLM-EUR 0.4819 0.0385
UniPLM-HRL 0.4186 0.0360

NAM ES BiLSTM-es 0.3248 0.0511
UniPLM-NAM 0.3186 0.0565
UniPLM-HRL 0.3319 0.0552

PT BiLSTM-pt 0.4383 0.0552
UniPLM-NAM 0.4216 0.0577
UniPLM-HRL 0.4154 0.0563

Table 2: Evaluation on HRL (EUR and NAM) with
UniPLM-HRL via continual multi-task learning and
production baselines. The best results are in bold.

For new languages without native data, we con-
tinue to train the base universal model (UniPLM-
HRL) with MT data with two approaches.

UniPLM-All-CL: The UniPLM-HRL model ex-
ported to LRL region trained with MT data (and
native EN data) with SR and TLM multi-task ob-
jectives.

UniPLM-All-ADP: The model trained with MT-
adapter, with all parameters frozen except for
adapters parameters.

4.4 Model Quality Analysis

Table 2 compares the universal model UniPLM-
HRL with both per-language baselines and per-
region models. Table 3 shows the results with the
low-resource languages, which are trained with

Reg Lang Model MRR W_ROUGE

EUR DE UniPLM-HRL 0.3323 0.0663
UniPLM-All-CL 0.3103 0.0686

FR UniPLM-HRL 0.4135 0.0624
UniPLM-All-CL 0.4207 0.0659

IT UniPLM-HRL 0.4186 0.0360
UniPLM-All-CL 0.4274 0.0374

NAM ES UniPLM-HRL 0.3319 0.0552
UniPLM-All-CL 0.3160 0.0551

PT UniPLM-HRL 0.4154 0.0563
UniPLM-All-CL 0.3783 0.0561

LRL ZH UniPLM-HRL 0.1365 0.0740
UniPLM-All-CL 0.2638 0.0869
UniPLM-All-ADP 0.3024 0.0901

JA UniPLM-HRL 0.1475 0.1010
UniPLM-All-CL 0.3281 0.1106
UniPLM-All-ADP 0.3719 0.1180

NL UniPLM-HRL 0.0638 0.0371
UniPLM-All-CL 0.1822 0.0436
UniPLM-All-ADP 0.2490 0.0480

CS UniPLM-HRL 0.0366 0.0386
UniPLM-All-CL 0.1312 0.0441
UniPLM-All-ADP 0.2612 0.0526

HU UniPLM-HRL 0.0420 0.0356
UniPLM-All-CL 0.0779 0.0776
UniPLM-All-ADP 0.2615 0.0907

Table 3: Results with UniPLM-All-CL and UniPLM-
All-ADP continually augmented with MT data.

data augmentation approach involving MT data,
with multi-task learning or adapters.

Per-language vs. Universal Model: The BiL-
STM production models serve as strong baselines
and have comparable MRR for UniPLM-NAM in
ES and PT (Table 2). UniPLM-EUR has better
performance than the BiLSTM production models.
Overall, the Uni-PLM models have comparable or
better performance than the monolingual baselines.

UniPLM-NAM/EUR vs. UniPLM-HRL: Ta-
ble 2 also shows no appreciable difference in
ROUGE metrics when training the model in 2
stages. In addition, the model outperforms BiL-
STM per-language models on MRR on ES, DE,
FR, and IT.

The above two comparisons show that for high-
resource languages, we do not suffer significant
degradation in quality with single stage and two-
stage universal models.

Performance on LRL: Table 3 compares
the UniPLM-All-CL and UniPLM-All-ADP with
UniPLM-HRL model on low-resource languages.
While UniPLM-HRL shows poor ranking perfor-
mance, UniPLM-All-CL significantly improves on
all metrics for LRL, while preserving the ROUGE
performance on the other 5 languages. With

142

adapters, UniPLM-All-ADP outperforms other
models on all metrics in low-resource languages
while keeping the performance unchanged (as a
result of freezing the UniPLM-HRL model) in both
EUR and NAM.

Overall, the results demonstrate the effective-
ness of MT data augmentation in low-resource lan-
guages. We observe slight performance degrada-
tion on EUR and NAM languages caused by con-
tinual training on MT data. This may be due to im-
perfect translation. However we can mitigate these
losses with MT-adapters which are quite promising
as they increase the parameters by just 4.3% and
even improves training efficiency as we can freeze
all other parameters during fine tuning.

Reg Lang Model MRR W_ROUGE

EUR DE UniPLM-HRL 0.3323 0.0663
-TLM 0.3643 0.0701

-TLM+MLM 0.3070 0.0596

FR UniPLM-HRL 0.4135 0.0624
-TLM 0.3772 0.0583

-TLM+MLM 0.4126 0.0606

IT UniPLM-HRL 0.4186 0.0360
-TLM 0.4284 0.0359

-TLM+MLM 0.4035 0.0343

NAM ES UniPLM-HRL 0.3319 0.0552
-TLM 0.2958 0.0543

-TLM+MLM 0.3023 0.0537

PT UniPLM-HRL 0.4154 0.0563
-TLM 0.4176 0.0561

-TLM+MLM 0.4234 0.0559

Table 4: Results with variations on UniPLM-HRL. -
TLM denotes removing TLM and -TLM+MLM de-
notes replacing with MLM in continual learning.

Reg Lang Model MRR W_ROUGE

EUR DE UniPLM-HRL 0.3323 0.0663
+EUR 0.4272 0.0708

FR UniPLM-HRL 0.4135 0.0624
+EUR 0.4818 0.0660

IT UniPLM-HRL 0.4186 0.0360
+EUR 0.4851 0.0388

NAM ES UniPLM-HRL 0.3319 0.0552
+EUR 0.2125 0.0456

PT UniPLM-HRL 0.4154 0.0563
+EUR 0.3298 0.0505

Table 5: Results with 2-stage and replay-based contin-
ual learning. +EUR denotes replaying UniPLM-HRL
with EUR m-r pairs.

4.5 Ablation Studies
MLM and TLM auxiliary tasks: Table 4 investi-
gates contributions of auxiliary tasks in UniPLM-

HRL model. We remove TLM objective as -TLM
which represents continue training only on SR
task, and replace TLM with MLM objective as
-TLM+MLM which represents joint training with
SR and MLM tasks. UniPLM-HRL with TLM
task shows improvements over MLM task and also
outperforms single SR task for W_ROUGE for all
languages except DE. We hypothesize that TLM
uses bi-lingual corpora which helps align represen-
tations for semantically similar text from different
languages in task-specific fine-tuning. Furthermore,
TLM objective can be interpreted as maximizing
mutual information between cross-lingual contexts
implicitly (Chi et al., 2020). It demonstrates that
such inductive biases in auxiliary tasks are impor-
tant for cross-lingual transfer in universal models.

Replay in continual learning: We continue to
train the UniPLM-HRL model by rehearsing the
old data in EUR as +EUR. In Table 5, +EUR we
see severe regression on NAM languages, despite
the improvement on EUR languages. The replay
concept in continual learning (McClelland, 1998)
fails here due to the two reasons. First, forgetting
is the quintessential mode of continual learning.
Second, EUR iteration doesn’t contain the pivot
language English training data. Continual learning
requires delicately maintaining the universal prop-
erties through knowledge anchors which is difficult
to achieve in practice.

4.6 Online Results
Based on the offline metrics, we selected UniPLM-
HRL as the first candidate for online tests in our
production system. Using BiLSTM per-language
model as the control, we conducted a 2-week A/B
test with 5% user traffic for each model per lan-
guage/region. Table 6 presents the results for dif-
ferent languages. We observe statistically signifi-
cant gain in ES (CTR) and FR (Char-saved). While
there are regressions in other languages, they are
not statistically significant (p > 0.5)

Lang CTR (p-val) Usage (p-val) Char-saved (p-val)

ES 4.20% (0.0163) 7.71% (0.0001) -0.91% (0.6592)
PT 0.00% (0.3690) 0.00% (0.3264) 3.32% (0.2737)
FR -3.51% (0.1636) -3.14% (0.2773) 5.08% (0.0495)
IT -3.62% (0.4506) -7.59% (0.1515) 7.03% (0.0602)
DE 2.80% (0.5147) -1.07% (0.8233) 5.39% (0.1193)

Table 6: Online metrics for UniPLM-HRL model. The
control model is BiLSTM in each language. The num-
bers with p-val < 0.05 are in bold.

Overall, the universal model is generally better
143

or at par compared to their mono-lingual baselines.
This has allowed us to deploy the universal model
to 100% of users in the 5 languages. An extended
universal model supporting low-resource languages
is getting deployed during the writing of this paper.

Compared with per-language separate model
building, the effort of model training, inference
stack and deployment can be substantially reduced,
though the process of training data and response
collection, and human evaluation for all our tar-
geted languages are still required. Overall, around
65% training and performance improvement time
cost can be saved with one single universal model
target at 5 languages. We expect even higher amor-
tized serving costs reductions as the approach is
scaled to more languages.

5 Conclusions

This paper presents our approach of scaling auto-
mated suggested replies with one universal model.
Faced with compute resource and data privacy con-
straints, we propose a multi-task continual learn-
ing framework with auxiliary tasks, and data aug-
mentation with adapter-based model architecture.
The universal model in production saves significant
compute resources and model management over-
head, while allowing us to train across regional
data boundaries. In addition, the process allows us
to cold-start in new markets even when no super-
vised data exists. Based on the promising offline
and online results, we have deployed the model in
several languages and plan to extend the process
for 20 languages around the world.

References
Mikko Aulamo, Umut Sulubacak, Sami Virpioja, and

Jörg Tiedemann. 2020. Opustools and parallel cor-
pus diagnostics. In Proceedings of The 12th Lan-
guage Resources and Evaluation Conference, pages
3782–3789.

Zewen Chi, Li Dong, Furu Wei, Nan Yang, Sak-
sham Singhal, Wenhui Wang, Xia Song, Xian-
Ling Mao, Heyan Huang, and Ming Zhou. 2020.
Infoxlm: An information-theoretic framework for
cross-lingual language model pre-training. arXiv
preprint arXiv:2007.07834.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Alexis Conneau, Guillaume Lample, Ruty Rinott, Ad-
ina Williams, Samuel R Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. arXiv preprint
arXiv:1809.05053.

Budhaditya Deb, P. Bailey, and M. Shokouhi. 2019.
Diversifying reply suggestions using a matching-
conditional variational autoencoder. In NAACL-
HLT.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ahmed Fadhil and Gianluca Schiavo. 2019. De-
signing for health chatbots. arXiv preprint
arXiv:1902.09022.

Robert M French. 1999. Catastrophic forgetting in con-
nectionist networks. Trends in cognitive sciences,
3(4):128–135.

Oguzhan Gencoglu. 2020. Large-scale, language-
agnostic discourse classification of tweets during
covid-19. Machine Learning and Knowledge Ex-
traction, 2(4):603–616.

Sivakanth Gopi, Pankaj Gulhane, Janardhan Kulkarni,
Judy Hanwen Shen, Milad Shokouhi, and Sergey
Yekhanin. 2020. Differentially private set union.
arXiv preprint arXiv:2002.09745.

Matthew Henderson, Rami Al-Rfou’, Brian Strope,
Yun-Hsuan Sung, László Lukács, Ruiqi Guo, San-
jiv Kumar, Balint Miklos, and Ray Kurzweil. 2017a.
Efficient Natural Language Response Suggestion for
Smart Reply. CoRR, abs/1705.00652.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-
Hsuan Sung, László Lukács, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and Ray Kurzweil. 2017b. Effi-
cient natural language response suggestion for smart
reply. arXiv preprint arXiv:1705.00652.

Matthew Henderson, Inigo Casanueva, Nikola Mrkšić,
Pei-Hao Su, Tsung-Hsien Wen, and Ivan Vulić.
2019a. Convert: Efficient and accurate conver-
sational representations from transformers. arXiv
preprint arXiv:1911.03688.

Matthew Henderson, Ivan Vuli’c, Daniela Gerz,
Iñigo Casanueva, Paweł Budzianowski, Sam Coope,
Georgios Spithourakis, Tsung-Hsien Wen, Nikola
Mrksi’c, and Pei-Hao Su. 2019b. Training neural re-
sponse selection for task-oriented dialogue systems.
In Proceedings of ACL.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

144

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias
Kaufmann, Andrew Tomkins, Balint Miklos, Gre-
gory S. Corrado, László Lukács, Marina Ganea, Pe-
ter Young, and Vivek Ramavajjala. 2016. Smart Re-
ply: Automated Response Suggestion for Email. In
KDD.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Stefan Kopp, Mara Brandt, Hendrik Buschmeier,
Katharina Cyra, Farina Freigang, Nicole Krämer,
Franz Kummert, Christiane Opfermann, Karola
Pitsch, Lars Schillingmann, et al. 2018. Conver-
sational assistants for elderly users–the importance
of socially cooperative dialogue. In Proceedings of
the AAMAS Workshop on Intelligent Conversation
Agents in Home and Geriatric Care Applications
co-located with the Federated AI Meeting, volume
2338.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Jaejun Lee, Raphael Tang, and Jimmy Lin. 2019. What
would elsa do? freezing layers during transformer
fine-tuning. arXiv preprint arXiv:1911.03090.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

James L McClelland. 1998. Complementary learning
systems in the brain. a connectionist approach to ex-
plicit and implicit cognition and memory. Annals of
the New York Academy of Sciences, 843:153.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109–165. El-
sevier.

Takuma Okuda and Sanae Shoda. 2018. Ai-based chat-
bot service for financial industry. Fujitsu Scientific
and Technical Journal, 54(2):4–8.

Matthew E Peters, Sebastian Ruder, and Noah A Smith.
2019. To tune or not to tune? adapting pretrained
representations to diverse tasks. arXiv preprint
arXiv:1903.05987.

Tharindu Ranasinghe and Marcos Zampieri. 2020.
Multilingual offensive language identification
with cross-lingual embeddings. arXiv preprint
arXiv:2010.05324.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun,
Hongyu Gong, and Francisco Guzmán. 2019. Wiki-
matrix: Mining 135m parallel sentences in 1620
language pairs from wikipedia. arXiv preprint
arXiv:1907.05791.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short-text conversation.
arXiv preprint arXiv:1503.02364.

Anbang Xu, Zhe Liu, Yufan Guo, Vibha Sinha, and
Rama Akkiraju. 2017. A new chatbot for customer
service on social media. In Proceedings of the 2017
CHI Conference on Human Factors in Computing
Systems, pages 3506–3510.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5753–5763.

Franziska Bell Gokhan Tur Yue Weng, Huaixiu Zheng.
2019. Occ: A smart reply system for efficient in-app
communications. arXiv preprint arXiv:1907.08167.

Li Zhou, Jianfeng Gao, Di Li, and Heung-Yeung Shum.
2020. The design and implementation of xiaoice, an
empathetic social chatbot. Computational Linguis-
tics, 46(1):53–93.

145

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 146–153
June 6–11, 2021. ©2021 Association for Computational Linguistics

Graph-based Multilingual Product Retrieval
in E-Commerce Search

Hanqing Lu
Amazon Search

luhanqin@amazon.com

Youna Hu
Amazon Search

ynhu@amazon.com

Tong Zhao
Amazon Personalization
zhaoton@amazon.com

Tony Wu
Amazon Search

tonywu@amazon.com

Yiwei Song
Amazon Search

ywsong@amazon.com

Bing Yin
Amazon Search

alexbyin@amazon.com

Abstract

Nowadays, with many e-commerce platforms
conducting global business, e-commerce
search systems are required to handle product
retrieval under multilingual scenarios. More-
over, comparing with maintaining per-country
specific e-commerce search systems, having a
universal system across countries can further
reduce the operational and computational
costs, and facilitate business expansion to
new countries. In this paper, we introduce
a universal end-to-end multilingual retrieval
system, and discuss our learnings and tech-
nical details when training and deploying
the system to serve billion-scale product
retrieval for e-commerce search. In particular,
we propose a multilingual graph attention
based retrieval network by leveraging recent
advances in transformer-based multilingual
language models and graph neural network
architectures to capture the interactions be-
tween search queries and items in e-commerce
search. Offline experiments on five countries
data show that our algorithm outperforms
the state-of-the-art baselines by 35% recall
and 25% mAP on average. Moreover, the
proposed model shows significant increase of
conversion/revenue in online A/B experiments
and has been deployed in production for
multiple countries.

1 Introduction

Modern e-commerce search engines (Huang et al.,
2020; Nigam et al., 2019) typically consist of a
retrieval stage and a ranking stage. The retrieval
stage is responsible for collecting a set of relevant
products with minimum computational resources.
The ranking stage then applies sophisticated ma-
chine learning (ML) algorithms to determine their
impression positions. Traditional retrieval models
rely on keyword matching (Manning et al., 2008),
which may lead to poor results when the exact
term match is unavailable. Recently, semantic
matching models (Huang et al., 2013; Pang et al.,

2016) have been adopted to improve retrieval per-
formance (Mitra et al., 2018). These models are
trained using click/purchase logs and typically sep-
arated by countries (Ahuja et al., 2020). However,
such per-country specific training schema exposes
three major drawbacks. First, maintaining country-
specific models increase both operational burden
and model iteration risks among countries. Sec-
ond, the small amount of training data in low traffic
countries may limit the ML model performance
and this can also block the business expansion to
new countries. Third, such models can not han-
dle second language searches well. For example,
the training data in US are dominated by English,
which produces a model that cannot handle Spanish
searches well. To solve above issues, ideally, a mul-
tilingual semantic retrieval model should be consid-
ered over monolingual retrieval models. However,
how to design an effective and scalable multilin-
gual semantic retrieval model for industry grade
e-commerce search engine remains unsolved.

Built upon the success of pre-trained
transformer-based models (Devlin et al., 2018;
Yang et al., 2019b; Liu et al., 2019) such as
Bidirectional Encoder Representations from
Transformers (BERT) for natural language
processing, multilingual BERT (M-BERT) has also
demonstrated success for multilingual tasks (Pires
et al., 2019). Though the techniques are promising,
it is not straightforward to directly apply them
to our problem due to the vocabulary gap issue
(Mandal et al., 2019), i.e., customer searched
queries are often short and from spoken input
(e.g. ‘fancy clothes’) but product descriptions
are usually in formal written style (e.g. ‘formal
attire’). There lacks a well established practice for
fine-tuning multilingual BERT models on product
search retrieval tasks.

In this work, we address the vocabulary gap
by sharing information between queries and prod-
ucts in the model via graph convolution networks

146

(GCN). The query-to-product purchase/click logs
naturally form a bipartite graph where each clicked
product links with searched queries as neighbors.
We expect to improve the product representation for
retrieval tasks by incorporating information from
its neighbor queries. For example, it is difficult for
neural networks to directly match the query ‘great
gifts for child’ to the product ‘Disney puzzles for
kids’ given the vocabulary gap. But using the in-
formation that the product is connected with query
‘children gifts’, we can incorporate this informa-
tion in its final representation, and the product will
have a higher chance to be matched with the given
query.

This paper presents an end-to-end multilingual
retrieval system for e-commerce search engine.
Our contributions are three-fold. 1. Model: We
present a general framework that is compatible with
any transformer-based models and any GCN archi-
tectures to capture interactions between products
and search queries; 2. Practice: We provide a
principled and practical guide of how to train the
proposed model for large-scale product retrieval
problem, e.g., how to define effective loss func-
tions, how to feed online model-based hard nega-
tive samples to train the model and how to train
the multilingual model with a novel one-language-
at-a-batch (Sec 2.2) approach; 3. System: We
discuss how to deploy the model to support prod-
uct retrievals in multiple countries for e-commerce
search.

To validate the effectiveness of our proposed
method, we take offline experiments on billion-
scale data across five languages and conduct online
A/B testing experiments to measure the real traffic
impacts. Through experimental results, our model
outperforms state-of-the-art baselines by more than
25% and increases revenue and conversion over the
current production system.

2 Methodology

We formulate the search retrieval task as fol-
lows. Supposed that we have a set of products
P = {p1, ..., pn}. Each product pi has a num-
ber of neighbor queries Qi = {qi,1, ..., qi,t} where
(qi,j , pi) appears in the search logs (customers
search for qi,j and purchase pi). For an arbi-
trary query q, we want to find the top-K rel-
evant products from P . Note that q is not in
Q = {Q1, ..., Qn} when our retrieval system han-
dles unseen queries.

2.1 Model Architecture

The model has two main components: (1) a query
encoder that encodes search queries; (2) a product
encoder that encodes both the product description
and its neighbor queries. The product encoder has
a GCN component that encapsulates the neighbor
queries and product information.

Query Encoder: The query encoder could be
any transformer-based encoder, such as BERT (De-
vlin et al., 2018), XLNet (Yang et al., 2019b), Dis-
tilBERT (Sanh et al., 2019), and RoBERTa (Liu
et al., 2019). Choosing these transformer-based en-
coders over other encoders (e.g. LSTM (Hochreiter
and Schmidhuber, 1997)) has several benefits. First,
these models employ the word-piece tokenization
which is robust to spelling errors and allows us to
share vocabulary between different languages. In
addition, transformer-based models can be easily
parallelized and deployed online. We use the last
hidden states of the encoders’ [CLS] token as the
embeddings for the query. For the other compu-
tationally more costly option of using the average
pooling of the last hidden states of all tokens, we
did not observe significant performance difference.

Product Encoder: The product encoder con-
sists of 1) a transformer based encoder layer to
extract the features of a product and its neighbor
queries, and 2) a graph convolution layer that ag-
gregates the extracted features to compute the final
embeddings for a given product. The transformer-
based encoder layer shares its parameters with the
query encoder, and we also use the last hidden
states of the encoder’s [CLS] token as the features.
The operations in the graph convolution layer are
described in Algorithm 1.

Algorithm 1: Graph Convolution Layer
Input: extracted feature hpi of a product pi, extracted
features {hqi,1 , ...,hqi,t} of pi’s neighbor queries
{qi,1, ..., qi,t}
Output: the final product embedding xpi
Step 1: hqi =

1
t

∑
j

ReLU(Wq · hqi,j + bq)
Step 2: xpi = ReLU(Wp ·CONCAT(hpi ,hqi)+bp)

The intuition of adding the graph convolution
layer to the product encoder is that it can fill the vo-
cabulary gap between queries and product descrip-
tions. With the vocabulary gap and length distribu-
tion discrepancy between queries and product de-
scriptions, directly using the transformer-extracted
embeddings of queries and products for matching
is sub-optimal. By incorporating neighbor query

147

Figure 1: The base architecture of multilingual GCN. Each circle indicates a query and each rectangle represents a
product. Query A and product B is a positive pair in the training data, while C and D are the neighbor queries of
B. The query encoder takes query A as the input and outputs A’s embedding, hA. The product encoder takes B,
C, D as the input and output B’s embedding, xB .

information into the product representation, the
matching model not only learns information from
query-to-product similarity, but also learns from
query-to-query similarity. This is especially help-
ful to tail queries that have limited behavior signals.

Note that our framework is compatible with any
GCN architectures in theory, such as GCN (Kipf
and Welling, 2017) and GAT (Veličković et al.,
2018), and we will leave those explorations for
future work.

Loss Function: In the training stage, we use a
pairwise ranking loss to train the model. Specifi-
cally, for each query qi in the training set, we sam-
ple a positive product pi+ and a negative product
pi−. The triplet loss is defined as

L =
∑

i

Log(1 + exp(xqi · xpi− − xqi · xpi+)) (1)

The intuition of is that we want the inner product of
the positive pairs <xqi , xpi+> to be larger than the
inner product of the negative pairs <xqi , xpi−>and
the margin to be as large as possible.

2.2 Training Details
There are two key factors in successfully training
the aforementioned framework: 1) how to select
proper negative samples for training the model; 2)
how to properly feed training data from different
languages to the model.

Negative Sampling: Defining negative samples
for semantic retrieval tasks is a tricky problem. A
widely-adopted method is random sampling, where
one can randomly sample a product from the prod-
uct catalog as the negative samples for a given
query. However, this simple setting would gen-
erate sub-optimal results, since the randomly se-

lected negative samples can be too easily distin-
guished from the positive samples. Thus, it rarely
brings knowledge for model learning and produces
a model with low discriminative power for the re-
trieval task.

Recent research work has indicated that using
hard negatives could improve the model perfor-
mance for retrieval tasks (Ying et al., 2018; Nigam
et al., 2019; Huang et al., 2020). The hard nega-
tive sample should be the product that is somewhat
related to the query but not a exact match. In the
search retrieval scenario, we can define the follow-
ing three kinds of hard negatives.
Behavior-based hard negative: the negative sam-
ples are defined by users’ behavior and are ex-
tracted from the search logs. For a given query,
we take those products that were shown to the cus-
tomer but not clicked as the hard negatives.
Offline model-based hard negative: the negative
samples are calculated by the current model in an
offline fashion. Specifically, we first use the current
model to generate the embeddings for all queries
and products in the training set, and then calculate
the inner product between all queries and all prod-
ucts. For each query, we sample negatives from its
top-200 to top-1000 relevant products.
Online model-based hard negative: the negative
samples are generated on-the-fly with model learn-
ing. Specifically, we first randomly sample a batch
of products. Then we use the current model to cal-
culate the inner product between embeddings of
these products and a batch of queries. For each
query in the batch, we select the product with high-
est inner product value as the hard negative sample.

We argue that the online model-based hard neg-
148

ative is the most suitable sampling method to our
application. The behavior-based hard negative sam-
ples requires additional data collection processes
and often yields worse results in the search retrieval
task (Huang et al., 2020). In fact, it is more suit-
able to the ranking task where the candidate pool
is more refined. Besides, the offline model-based
hard negative is too time-consuming, as we have to
compute K-NN for each query in training set when
we select/update the hard negatives.

Multilingual Data Fusion: How to properly
feed the multilingual data to the model is another
crucial factor to the training process. The amount
of training data from different languages/countries
varies greatly, and therefore low-resource lan-
guages would be underrepresented in the neural net-
work model. Inspired by (Devlin et al., 2018), we
perform exponentially smoothed weighting of the
data. We would take the exponent of the percentage
of a language by factor S and then re-normalize.
Suppose there are two languages, English and Span-
ish, which accounts for 90% and 10% of training
data respectively. The re-normalized distribution is

0.90.7

0.90.7+0.10.7
= 0.82 for English. Therefore, high-

resource languages will be under-sampled, and low-
resource languages will be over-sampled.

We also find that mixing training samples from
multiple languages in one training batch makes
it harder to train the model. Firstly, the negative
sampling space is more complicated: we could
sample a Spanish product as the negative sample
of a English query. These easy negatives provide
little knowledge to the model. In addition, differ-
ent languages of training data appear in the same
batch, which makes the batch gradient less stable.
We propose to train the model with one-language-
at-a-batch, and make the negative sampling pro-
cess language-dependent. In the experiment, we
observe that doing so dramatically increases the
performance on all languages by 5-6% recall.

3 Deployment

The deployment of the proposed model has two
parts: a query encoder and pre-computed product
embeddings. As the query encoder is a standard
transformer-based model and many papers have
talked about the serving of it, this part can be eas-
ily deployed online. For the pre-computed prod-
uct embeddings, we first compute the embeddings
for products in our catalog, and incrementally up-
date the product embedding periodically. To avoid

repeated computations during the inference time
(multiple products might have the same neighbor
query), we first use the transformer-based encoder
to compute the embeddings for all queries and
products in the graph, and then join the products’
embeddings with their neighbor queries’ embed-
dings. Lastly, we pass these intermediate embed-
dings through the GCN layer to generate the final
product embeddings. During the search retrieval
step, we simply use the query encoder to extract the
embedding for an input query. Then, we find the K-
nearest neighbors (K-NN) products by calculating
the cosine-distance between the query embedding
and the pre-computed product embeddings. The
K-NN products are used to augment the matchset
of the given query.

4 Experiments

We collect the data from a large e-commerce plat-
form that has business in multiple countries. To
provide a comprehensive understanding on the role
of multilingual queries in a real-world product
search system, we select five countries: United
States (US), Spain (ES), France (FR), Italy (IT)
and Germany (DE). We subsample our data from
one year of search log in each country. We orga-
nize the collected search log into query-product
pairs with different customer behavior signals, e.g.
click/purchase. For model offline testing, we first
randomly sample 20K queries from each coun-
try. We then use our algorithm to rank a sub-
corpus of 100K products (in each country) for
those queries. The 100K product corpus consists
of purchased products for those 20K queries and
additional random negatives. Since our work fo-
cuses on the retrieval part of a product search en-
gine, we adopt two matching metrics to summa-
rize our results: Recall@10 (recall) and mean Av-
erage Precision (mAP). We employ the multilin-
gual DistilBERT (Sanh et al., 2019) with 6 layers
and 768 hidden units as our encoder. We set the
batch size to 640 and use Adam optimizer (Kingma
and Ba, 2014) with α = 0.0001, β1 = 0.9, and
β2 = 0.999. We run all the experiments on an
AWS p3dn.24xlarge instance with 768GB memory
and 8 NVIDIA V100 GPUs. We train the model
on 8 GPUs in a distributed fashion. The model is
trained for 140K batches, where the 28K ‘warm
up’ batches are trained with random negatives and
remaining batches are trained with online model-
based hard negatives.

149

Table 1: Matching performance for our model and baselines.
US ES FR IT DE

method recall mAP recall mAP recall mAP recall mAP recall mAP
DSSM 49.53% 34.09% 38.82% 22.26% 38.16% 21.98% 42.51% 24.68% 46.87% 30.16%

Multilingual BERT 38.82% 25.14% 23.06% 12.07% 25.41% 13.67% 24.36% 13.06% 25.31% 15.18%
Our model w/o BERT 79.79% 60.06% 66.53% 39.01% 68.01% 41.43% 70.32% 42.66% 74.69% 51.79%
Our model w/o GCN 80.83% 60.68% 68.98% 41.73% 70.03% 42.28% 72.88% 44.98% 76.69% 53.75%

Our model 85.86% 66.69% 73.60% 44.40% 74.97% 47.07% 77.16% 48.03% 81.44% 58.33%

4.1 Comparison Results

We compare against the following baselines:
DSSM (Huang et al., 2013) is an earlier work
to extract the semantic representations of queries
and documents from large-scale click-through data
by leveraging deep neural networks. We train 5
language-specific DSSM models with monolingual
training data.
Multilingual BERT (Devlin et al., 2018) is the
vanilla BERT without any fine-tuning. We use the
bert-base-multilingual-cased model from hugging-
face implementation. We directly use the Multi-
lingual BERT to encode the queries/products, and
take the output [CLS] embeddings as the represen-
tations of queries/products.
Our model w/o BERT is a variant of our model,
where we replace the DistilBERT encoder with a
one-layer feed forward neural network and use the
same word embedding matrix as the DistilBert. We
train this model with exactly the same settings as
we train the main model.
Our model w/o GCN is a variant of our model,
where we remove the GCN module. It means that
we only use product descriptions to get the prod-
uct embeddings, and there is no graph convolution
layer in the product encoder.

Table 1 shows (1) Multilingual BERT with-
out any fine-tuning does not work for multilin-
gual search retrieval tasks. It has the lowest re-
call and mAP, which proves the necessity of de-
signing proper fine-tuning tasks for BERT-based
model; (2) replacing the feed forward neural net-
works with DistilBERT leads to 6% - 7% recall and
5.5% - 6% mAP improvement on all languages; (3)
adding GCN module to the product encoder further
achieves significant boosts (5-6% recall improve-
ment and 4.5%-6% mAP improvement), suggesting
that GCN help the vocabulary gap issue.

4.2 Ablation Study

Negative Sampling: We try three kinds of hard
negatives as illustrated in Section 2.2. Table 2
shows the results of training our model with dif-
ferent hard negatives. We observe that the perfor-

mance of offline model-based hard negatives is sim-
ilar to that of online model-based hard negatives (<
0.4% recall difference). However, computing the
offline model-based hard negatives takes a total of
4x training time. Besides, training with behavior-
based hard negatives has worst results (-10% recall,
-7% mAP), because behavior-based negatives are
not appropriate for retrieval tasks (Huang et al.,
2020), since most impressed products are often rel-
evant to the query. Including them as negatives con-
fuses the model from focusing on retrieval tasks.

Multilingual Training Data Fusion: We test
three data fusion strategies: 1) sample by un-
weighted data size + train with one language at
a batch (unweight+separate); 2) sample by expo-
nentially weighted data size + train with mixed lan-
guages in a batch (weight+mix); 3) sample by ex-
ponentially weighted data size + train with one lan-
guage at a batch (weight+separate). Table 3 shows
the results from different multilingual data fusion
strategies. By exponentially weighting the training
data, we can improve the matching performance in
low-resource languages (ES, FR, IT) without hurt-
ing the performance in high resource languages
(DE and US). Besides, weighted+separated beats
weighted+mixed by 2-3% recall and 1-2% mAP
margin on all languages, suggesting that training
with one-language-at-a-batch is superior to mixed
training.

4.3 Online Experiments

We report our findings from online A/B experi-
ments on a large-scale e-commerce website with
our multilingual GCN model. We run online match
set augmentation experiments in three countries
and two languages. The proposed algorithm signif-
icantly improves business metrics in all countries,
leading to +1.8% increase in average clicks, +0.3%
in revenue, and +0.4% in conversion. We also
observe reformulated searches decreased by 1%.
This reduction results in customers finding their de-
sired products with less effort, likely from that our
model bridges the vocabulary gap between queries
and products. All results provide evidence that our

150

Table 2: Matching performance with different kinds of hard negatives.
US ES FR IT DE

hard negative recall mAP recall mAP recall mAP recall mAP recall mAP
behavior 76.62% 59.36% 63.28% 38.80% 63.90% 40.31% 66.17% 42.18% 68.44% 49.67%

offline model 85.44% 66.43% 73.95% 44.33% 74.86% 46.76% 77.43% 48.20% 81.52% 58.68%
online model 85.86% 66.69% 73.60% 44.40% 74.97% 47.07% 77.16% 48.03% 81.44% 58.33%

Table 3: Matching performance with different multilingual data fusion strategies.
US ES FR IT DE

fusion strategy recall mAP recall mAP recall mAP recall mAP recall mAP
weight+mix 84.61% 65.24% 70.45% 42.01% 71.41% 44.34% 73.39% 45.46% 78.85% 55.91%

unweight+separate 85.82% 66.60% 71.69% 42.93% 73.29% 45.63% 74.53% 46.66% 80.61% 57.73%
weight+separate 85.86% 66.69% 73.60% 44.40% 74.97% 47.07% 77.16% 48.03% 81.44% 58.33%

algorithm leads to better retrieval performance and
can help customers fulfill their shopping missions.

5 Related Works

Search engine retrieval has been based on lexical
match to identify relevant documents for queries.
Recently, major industry search engines (Nigam
et al., 2019; Huang et al., 2020; Fan et al., 2019)
have incorporated semantic matching for improve-
ments. Such algorithms can be classified into
embedding-based models and interaction models.
Embedding based models such as DSSM (Huang
et al., 2013) and its subsequent works (Shen et al.,
2014; Palangi et al., 2016; Hu et al., 2014) con-
vert queries and documents into embeddings for
retrieval. Interaction models, like MatchPyramid
(Pang et al., 2016) and DRMM (Guo et al., 2016)
leverage interaction matrices to capture local term
matching. However, they are computationally
costly for industry data.

With BERT (Devlin et al., 2018) becoming the
state-of-the-art embedding method, it is adopted
for various applications (Yang et al., 2019a; Yu
et al., 2020; Khattab and Zaharia, 2020; Humeau
et al., 2020; Chang et al., 2020). However, how
to properly fine-tune BERT for retrieval tasks in
product search remains unstudied. Our work fills
this gap and provides a practical guide to fine-tune
BERT-based models using production-scale search
data. Furthermore, M-BERT provides representa-
tions for 104 languages and has proven ability to
handle multilingual tasks (Pires et al., 2019). Other
multilingual embedding models have also been pro-
posed and validated (Schwenk and Douze, 2017;
Conneau and Lample, 2019; Conneau et al., 2020).
Our method is flexible and so that all these models
can serve as a component.

Notably, our multilingual problem is different
from the cross-lingual information retrieval (CLIR)

problem (Nie, 2010; Jiang et al., 2020) , which
refers to the scenario where the query is in one
language but document is in other languages. In our
problem, product descriptions and search queries
are always in the same primary language and except
a small fraction in different languages

Graph neural network is gaining prominence in
ML applications (Ying et al., 2018; Zhang et al.,
2019). The notion of "graph convolutions" is first
proposed in (Bruna et al., 2014) with spectral graph
theory. Later, GraphSAGE (Hamilton et al., 2017)
redefines it to avoid operating on the entire graph.
Recent efforts (Wang et al., 2019; Berg et al., 2018)
adopt GCN to the user-item interaction graph and
leverage the neighbors for recommendation. Light-
GCN (He et al., 2020) reported that neighborhood
aggregation is the only important component of
GCN, and weighted-sum of neighbor embeddings
yield the best results. Our method leverages GCN
to incorporate neighbor queries’ information into
product embedding, which bridges the vocabulary
gap between query and product. Moreover, our
framework is compatible with any GCN architec-
tures, so can leverage the advances there.

6 Conclusion

Our paper present a multilingual graph convolution
networks model for language-agonistic semantic
retrieval in product search engine. Our method not
only can handle multilingual text data, but also ad-
dresses the vocabulary gap issues between queries
and product descriptions. We also provide a prac-
tical guide of fine-tuning the proposed model on
retrieval tasks. We conduct various experiments
including offline evaluation on 5 languages and
online A/B test in three countries. In all experi-
ments, our model consistently beats the baselines
and demonstrates improved product discoverabil-
ity.

151

References
Aman Ahuja, Nikhil Rao, Sumeet Katariya, Karthik

Subbian, and Chandan K. Reddy. 2020. Language-
agnostic representation learning for product search
on e-commerce platforms. In Proceedings of the
13th ACM International Conference on Web Search
and Data Mining, pages 7–15.

Rianne van den Berg, Thomas N Kipf, and Max
Welling. 2018. Graph convolutional matrix comple-
tion. In Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery &
Data Mining.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and
Yann LeCun. 2014. Spectral networks and locally
connected networks on graphs. In 2nd International
Conference on Learning Representations.

Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yim-
ing Yang, and Sanjiv Kumar. 2020. Pre-training
tasks for embedding-based large-scale retrieval. In
8th International Conference on Learning Represen-
tations.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems, pages
7057–7067.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Miao Fan, Jiacheng Guo, Shuai Zhu, Shuo Miao, Ming-
ming Sun, and Ping Li. 2019. MOBIUS: towards
the next generation of query-ad matching in baidu’s
sponsored search. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2509–2517. ACM.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce
Croft. 2016. A deep relevance matching model
for ad-hoc retrieval. In Proceedings of the 25th
ACM International on Conference on Information
and Knowledge Management, pages 55–64.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems
30, pages 1024–1034.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-
Dong Zhang, and Meng Wang. 2020. Lightgcn:

Simplifying and powering graph convolution net-
work for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on re-
search and development in Information Retrieval,
pages 639–648.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, pages
1735–1780.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network architec-
tures for matching natural language sentences. In
Advances in neural information processing systems,
pages 2042–2050.

Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia,
David Zhang, Philip Pronin, Janani Padmanab-
han, Giuseppe Ottaviano, and Linjun Yang. 2020.
Embedding-based retrieval in facebook search. In
Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 2553–2561.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry P. Heck. 2013. Learning
deep structured semantic models for web search us-
ing clickthrough data. In Proceedings of the 22nd
ACM International Conference on Information and
Knowledge Management, pages 2333–2338.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2020. Poly-encoders: Architec-
tures and pre-training strategies for fast and accurate
multi-sentence scoring. In 8th International Confer-
ence on Learning Representations.

Zhuolin Jiang, Amro El-Jaroudi, William Hart-
mann, Damianos G. Karakos, and Lingjun Zhao.
2020. Cross-lingual information retrieval with
BERT. In Proceedings of the workshop on Cross-
Language Search and Summarization of Text and
Speech@LREC, pages 26–31.

Omar Khattab and Matei Zaharia. 2020. Colbert: Ef-
ficient and effective passage search via contextual-
ized late interaction over BERT. In Proceedings of
the 43rd International ACM SIGIR conference on
research and development in Information Retrieval,
pages 39–48.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations. OpenReview.net.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

152

Aritra Mandal, Ishita K Khan, and Prathyusha Senthil
Kumar. 2019. Query rewriting using automatic syn-
onym extraction for e-commerce search. In Proceed-
ings of eCOM Workshop@the 42nd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval.

Christopher D Manning, Hinrich Schütze, and Prab-
hakar Raghavan. 2008. Introduction to information
retrieval. Cambridge university press.

Bhaskar Mitra, Nick Craswell, et al. 2018. An intro-
duction to neural information retrieval. Now Foun-
dations and Trends.

Jian-Yun Nie. 2010. Cross-Language Information Re-
trieval. Synthesis Lectures on Human Language
Technologies. Morgan & Claypool Publishers.

Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan
Lakshman, Weitian Allen Ding, Ankit Shingavi,
Choon Hui Teo, Hao Gu, and Bing Yin. 2019. Se-
mantic product search. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 2876–2885.

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao,
Xiaodong He, Jianshu Chen, Xinying Song, and
Rabab Ward. 2016. Deep sentence embedding using
long short-term memory networks: Analysis and ap-
plication to information retrieval. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
pages 694–707.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengx-
ian Wan, and Xueqi Cheng. 2016. Text matching as
image recognition. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual bert? In Proceed-
ings of the 57th Conference of the Association for
Computational Linguistics, pages 4996–5001.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Holger Schwenk and Matthijs Douze. 2017. Learn-
ing joint multilingual sentence representations with
neural machine translation. In Proceedings of
Rep4NLP@the 55th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 157–167.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng,
and Grégoire Mesnil. 2014. A latent semantic model
with convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM interna-
tional conference on conference on information and
knowledge management, pages 101–110.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018. Graph attention networks. In 6th Interna-
tional Conference on Learning Representations.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng,
and Tat-Seng Chua. 2019. Neural graph collabora-
tive filtering. In Proceedings of the 42nd interna-
tional ACM SIGIR conference on Research and de-
velopment in Information Retrieval, pages 165–174.

An Yang, Quan Wang, Jing Liu, Kai Liu, Yajuan Lyu,
Hua Wu, Qiaoqiao She, and Sujian" Li. 2019a. En-
hancing pre-trained language representations with
rich knowledge for machine reading comprehension.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2346–2357.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G.
Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
2019b. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombat-
chai, William L Hamilton, and Jure Leskovec. 2018.
Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 974–983.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Named entity recognition as dependency parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6470–
6476, Online.

Yuan Zhang, Dong Wang, and Yan Zhang. 2019. Neu-
ral ir meets graph embedding: A ranking model for
product search. In Proceedings of The Web Confer-
ence (WWW), pages 2390–2400.

153

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 154–162
June 6–11, 2021. ©2021 Association for Computational Linguistics

Query2Prod2Vec
Grounded Word Embeddings for eCommerce

Federico Bianchi
Bocconi University

Milano, Italy
f.bianchi@unibocconi.it

Jacopo Tagliabue∗
Coveo Labs

New York, USA
jtagliabue@coveo.com

Bingqing Yu
Coveo

Montreal, Canada
cyu2@coveo.com

Abstract

We present Query2Prod2Vec, a model that
grounds lexical representations for product
search in product embeddings: in our
model, meaning is a mapping between words
and a latent space of products in a digital shop.
We leverage shopping sessions to learn the un-
derlying space and use merchandising anno-
tations to build lexical analogies for evalua-
tion: our experiments show that our model
is more accurate than known techniques from
the NLP and IR literature. Finally, we stress
the importance of data efficiency for product
search outside of retail giants, and highlight
how Query2Prod2Vec fits with practical con-
straints faced by most practitioners.

1 Introduction

The eCommerce market reached in recent years
an unprecedented scale: in 2020, 3.9 trillion dol-
lars were spent globally in online retail (Cramer-
Flood, 2020). While shoppers make significant
use of search functionalities, improving their ex-
perience is a never-ending quest (Econsultancy,
2020), as outside of few retail giants users complain
about sub-optimal performances (Baymard Insti-
tute, 2020). As the technology behind the indus-
try increases in sophistication, neural architectures
are gradually becoming more common (Tsagkias
et al., 2020) and, with them, the need for accu-
rate word embeddings for Information Retrieval
(IR) and downstream Natural Language Processing
(NLP) tasks (Yu and Tagliabue, 2020; Tagliabue
et al., 2020a).

Unfortunately, the success of standard and
contextual embeddings from the NLP litera-
ture (Mikolov et al., 2013a; Devlin et al., 2019)
could not be immediately translated to the prod-
uct search scenario, due to some peculiar chal-
lenges (Bianchi et al., 2020b), such as short text,

∗Corresponding author. All authors contributed equally
and are listed alphabetically.

industry-specific jargon (Bai et al., 2018), low-
resource languages; moreover, specific embedding
strategies have often been developed in the con-
text of high-traffic websites (Grbovic et al., 2016),
which limit their applicability in many practical sce-
narios. In this work, we propose a sample efficient
word embedding method for IR in eCommerce, and
benchmark it against SOTA models over industry
data provided by partnering shops. We summarize
our contributions as follows:

1. we propose a method to learn dense represen-
tations of words for eCommerce: we name
our method Query2Prod2Vec, as the map-
ping between words and the latent space is
mediated by the product domain;

2. we evaluate the lexical representations learned
by Query2Prod2Vec on an analogy task
against SOTA models in NLP and IR; bench-
marks are run on two independent shops, dif-
fering in traffic, industry and catalog size;

3. we detail a procedure to generate synthetic em-
beddings, which allow us to tackle the “cold
start” challenge;

4. we release our implementations, to help the
community with the replication of our find-
ings on other shops1.

While perhaps not fundamental to its industry
significance, it is important to remark that grounded
lexical learning is well aligned with theoretical con-
siderations on meaning in recent (and less recent)
literature (Bender and Koller, 2020; Bisk et al.,
2020; Montague, 1974).

1Public repository available at: https://github.
com/coveooss/ecommerce-query-embeddings.

154

2 Embeddings for Product Search: an
Industry Perspective

In product search, when the shopper issues a query
(e.g. “sneakers”) on a shop, the shop search engine
returns a list of K products matching the query
intent and possibly some contextual factor – the
shopper at that point may either leave the website,
or click on n products to further explore the offer-
ing and eventually make a purchase.

Unlike web search, which is exclusively per-
formed at massive scale, product search is a prob-
lem that both big and small retailers have to solve:
while word embeddings have revolutionized many
areas of NLP (Mikolov et al., 2013a), word embed-
dings for product queries are especially challenging
to obtain at scale, when considering the huge vari-
ety of use cases in the overall eCommerce industry.
In particular, based on industry data and first-hand
experience with dozens of shops in our network,
we identify four constraints for effective word em-
beddings in eCommerce:

1. Short text. Most product queries are very
short – 60% of all queries in our dataset are
one-word queries, > 80% are two words or
less; the advantage of contextualized embed-
dings may therefore be limited, while lexical
vectors are fundamental for downstream NLP
tasks (Yu and Tagliabue, 2020; Bianchi et al.,
2020a). For this reason, the current work
specifically addresses the quality of word em-
beddings2.

2. Low-resource languages. Even shops that
have the majority of their traffic on English
domain typically have smaller shops in low-
resource languages.

3. Data sparsity. In Shop X below, only 9% of
all shopping sessions have a search interac-
tion3. Search sparsity, coupled with vertical-
specific jargon and the usual long tail of search
queries, makes data-hungry models unlikely
to succeed for most shops.

2Irrespectively of how the lexical vectors are computed,
query embeddings can be easily recovered with the usual
techniques (e.g. sum or average word embeddings (Yu et al.,
2020)): as we mention in the concluding remarks, investi-
gating compositionality is an important part of our overall
research agenda.

3This is a common trait verified across industries and sizes:
among dozens of shops in our network, 30% is the highest
search vs no-search session ratio; Shop Y below is around
29%.

4. Computational capacity. The majority of
the market has the necessity to strike a good
trade-off between quality of lexical represen-
tations and the cost of training and deploying
models, both as hardware expenses and as ad-
ditional maintenance/training costs.

The embedding strategy we propose –
Query2Prod2Vec – has been designed to
allow efficient learning of word embeddings for
product queries. Our findings are useful to a wide
range of practitioners: large shops launching in
new languages/countries, mid-and-small shops
transitioning to dense IR architectures and the
raising wave of multi-tenant players4: as A.I.
providers grow by deploying their solutions
on multiple shops, “cold start” scenarios are
an important challenge to the viability of their
business model.

3 Related Work

The literature on learning representations for lex-
ical items in NLP is vast and growing fast; as
an overview of classical methods, Baroni et al.
(2014) benchmarks several count-based and neural
techniques (Landauer and Dumais, 1997; Mikolov
et al., 2013b); recently, context-aware embed-
dings (Peters et al., 2018; Devlin et al., 2019)
have demonstrated state-of-the-art performances
in several semantic tasks (Rogers et al., 2020;
Nozza et al., 2020), including document-based
search (Nogueira et al., 2020), in which target
entities are long documents, instead of prod-
uct (Craswell et al., 2020). To address IR-specific
challenges, other embedding strategies have been
proposed: Search2Vec (Grbovic et al., 2016) uses
interactions with ads and pages as context in the
typical context-target setting of skip-gram mod-
els (Mikolov et al., 2013b); QueryNGram2Vec (Bai
et al., 2018) additionally learns embeddings for n-
grams of word appearing in queries to better cover
the long tail. The idea of using vectors (from im-
ages) as an aid to query representation has also
been suggested as a heuristic device by Yu et al.
(2020), in the context of personalized language
models; this work is the first to our knowledge to
benchmark embeddings on lexical semantics (not

4As an indication of the market opportunity, only in 2019
and only in the space of AI-powered search and recommenda-
tions, we witnessed Coveo (Techcrunch), Algolia (Techcrunch,
2019a) and Lucidworks (Techcrunch, 2019b) raising more
than 100M USD each from venture funds.

155

tuned for domain-specific tasks), and investigate
sample efficiency for small-data contexts.

4 Query2Prod2Vec

In Query2Prod2Vec, the representation for a
query q is built through the representation of the
objects that q refers to. Consider a typical shopper-
engine interaction in the context of product search:
the shopper issues a query, e.g. “shoes”, the en-
gine replies with a noisy set of potential refer-
ents, e.g. pairs of shoes from the shop inventory,
among which the shopper may select relevant items.
Hence, this dynamics is reminiscent of a coopera-
tive language game (Lewis, 1969), in which shop-
pers give noisy feedback to the search engine on
the meaning of the queries. A full specification
of Query2Prod2Vec therefore involves a represen-
tation of the target domain of reference (i.e. prod-
ucts in a digital shop) and a denotation function.

4.1 Building a Target Domain

We represent products in a target shop through
a prod2vec model built with anonymized shopping
sessions containing user-product interactions. Em-
beddings are trained by solving the same optimiza-
tion problem as in classical word2vec (Mikolov
et al., 2013a): word2vec becomes prod2vec by sub-
stituting words in a sentence with products viewed
in a shopping session (Mu et al., 2018). The util-
ity of prod2vec is independently justified (Grbovic
et al., 2015; Tagliabue and Yu, 2020) and, more
importantly, the referential approach leverages the
abundance of browsing-based interactions, as com-
pared to search-based interactions: by learning
product embeddings from abundant behavioral data
first, we sidestep a major obstacle to reliable word
representation in eCommerce. Hyperparameter op-
timization follows the guidelines in Bianchi et al.
(2020a), with a total of 26,057 (Shop X) and 84,575
(Shop Y) product embeddings available for down-
stream processing5.

4.2 Learning Embeddings

The fundamental intuition of Query2Prod2Vec is
treating clicks after q as a noisy feedback map-
ping q to a portion of the latent product space. In
particular, we compute the embedding for q by
averaging the product embeddings of all products

5Final parameters for prod2vec are: dimension = 50,
win_size = 10, iterations = 30, ns_exponent = 0.75.

clicked after it, using frequency as a weighting fac-
tor (i.e. products clicked often contribute more).
The model has one free parameter, rank, which
controls how many embeddings are used to build
the representation for q: if rank=k, only the k most
clicked products after q are used. The results in
Table 1 are obtained with rank=5, as we leave to
future work to investigate the role of this parameter.

The lack of large-scale search logs in the
case of new deployments is a severe issue
for successful training. The referential nature
of Query2Prod2Vec provides a fundamental com-
petitive advantage over models building embed-
dings from past linguistic behavior only, as syn-
thetic embeddings can be generated as long as
cheap session data is available to obtain an ini-
tial prod2vec model. As detailed in the ensuing
section, the process happens in two stages, event
generation and embeddings creation.

4.3 Creating Synthetic Embeddings

The procedure to create synthetic embeddings is
detailed in Algorithm 1: it takes as input a list
of words, a pre-defined number of sampling it-
erations, a popularity distribution over products6,
and it returns a list of synthetic search events, that
is, a mapping between words and lists of prod-
ucts “clicked”. Simulating the search event can
be achieved through the existing search engine, as,
from a practical standpoint, some IR system must
already be in place given the use case under con-
sideration. To avoid over-relying on the quality
of IR and prove the robustness of the method, all
the simulations below are not performed with the
actual production API, but with a custom-built in-
verted index over product meta-data, with a simple
TF-IDF weighting and Boolean search.

For the second stage, we can treat the synthetic
click events produced by Algorithm 1 as a drop-
in replacement for user-generated events – that
is, for any query q, we calculate an embedding
by averaging the product embeddings of the rel-
evant products, weighted by frequency7. Putting
the two stages together, Query2Prod2Vec can not
only produce reliable query embeddings based on
historical data, but also learn approximate embed-
dings for a large vocabulary before being exposed

6Please note that data on product popularity can be easily
obtained through marketing tools, such as Google Analytics.

7Please note that while this work focuses on lexical quality,
the same strategy can be applied to complex queries in a “cold
start” scenario.

156

Algorithm 1: Generation of synthetic click
events.
Data: a list of words W , a pre-defined

number N of simulations per word, a
distribution D over products.

Result: A dataset of synthetic clicked
events: E

E ← empty mapping;
foreach word w in W do

product_list← Search(w);
for i = 1 to N do

p← Sample (product_list, D);
append the entry (w, p) to E;

end
end
return E

to any search interaction: in Section 7 we report
the performance of Query2Prod2Vec when using
only synthetic embeddings8.

5 Dataset and Baselines

5.1 Dataset

Following best practices in the multi-tenant liter-
ature (Tagliabue et al., 2020b), we benchmark all
models on different shops to test their robustness.
In particular, we obtained catalog data, search logs
and anonymized shopping sessions from two part-
nering shops, Shop X and Shop Y: Shop X is a
sport apparel shop with Alexa ranking of approx-
imately 200k, representing a prototypical shop in
the middle of the long tail; Shop Y is a home im-
provement shop with Alexa ranking of approxi-
mately 10k, representing an intermediate size be-
tween Shop X and public companies in the space.
Linguistic data is in Italian for both shops, and
training is done on random sessions from the pe-
riod June-October 2019: after sampling, removal
of bot-like sessions and pre-processing, we are left
with 722,479 sessions for Shop X, and 1,986,452
sessions for Shop Y.

5.2 Baselines

We leverage the unique opportunity to join cata-
log data, search logs and shopping sessions to ex-
tensively benchmark Query2Prod2Vec against a
variety of methods from NLP and IR.

8All the experiments are performed with N = 500 simu-
lated search events per query.

• Word2Vec and FastText. We train a
CBOW (Mikolov et al., 2013a) and a FastText
model (Bojanowski et al., 2017) over product
descriptions in the catalog;

• UmBERTo. We use RoBERTa trained on Ital-
ian data – UmBERTo9. The 〈s〉 embedding of
the last layer of the architecture is the query
embedding;

• Search2Vec. We implement the skip-gram
model from Grbovic et al. (2016), by feeding
the model with sessions composed of search
queries and user clicks. Following the origi-
nal model, we also train a time-sensitive vari-
ant, in which time between actions is used to
weight query-click pairs differently;

• Query2Vec. We implement a different
context-target model, inspired by Egg (2019):
embeddings are learned by the model when it
tries to predict a (purchased or clicked) item
starting from a query;

• QueryNGram2Vec. We implement the
model from Bai et al. (2018). Besides
learning representations through a skip-gram
model as in Grbovic et al. (2016), the model
learns the embeddings of unigrams to help
cover the long tail for which no direct
embedding is available.

To guarantee a fair comparison, all models are
trained on the same sessions. For all baselines,
we follow the same hyperparameters found in the
cited works: the dimension of query embedding
vectors is set to 50, except that 768-dimensional
vectors are used for UmBERTo, as provided by the
pre-trained model.

As discussed in Section 1, a distinguishing fea-
ture of Query2Prod2Vec is grounding, that is, the
relation between words and an external domain –
in this case, products. It is therefore interesting
not only to assess a possible quantitative gap in
the quality of the representations produced by the
baseline models, but also to remark the qualita-
tive difference at the core of the proposed method:
if words are about something, pure co-occurrence
patterns may be capturing only fragments of lexical
meaning (Bianchi et al., 2021).

9https://huggingface.co/Musixmatch/
umberto-commoncrawl-cased-v1

157

6 Solving Analogies in eCommerce

As discussed in Section 2, we consider evalua-
tion tasks focused on word meaning, without us-
ing product-based similarity (as that would im-
plicitly and unfairly favor referential embeddings).
Analogy-based tasks (Mikolov et al., 2013a) are
a popular choice to measure semantic accuracy
of embeddings, where a model is asked to fill
templates like man : king = woman : ?; how-
ever, preparing analogies for digital shops presents
non trivial challenges for human annotators: these
would in fact need to know both the language and
the underlying space (“air max” is closer to “nike”
than to “adidas”), with the additional complication
that many candidates may not have “determinate”
answers (e.g. if Adidas is to Gazelle, then Nike is to
what exactly?). In building our testing framework,
we keep the intuition that analogies are an effective
way to test for lexical meaning and the assumption
that human-level concepts should be our ground
truth: in particular, we programmatically produce
analogies by leveraging existing human labelling,
as indirectly provided by the merchandisers who
built product catalogs10.

6.1 Test Set Preparation

We extract words from the merchandising taxon-
omy of the target shops, focusing on three most
frequent fields in query logs: product type, brand
and sport activity for Shop X; product type, brand
and part of the house for Shop Y. Our goal is to
go from taxonomy to analogies, that is, showing
how for each pair of taxonomy types (e.g. brand
: sport), we can produce two pairs of tokens (Wil-
son : tennis, Cressi : scubadiving), and create two
analogies: b1 : s1 = b2 : ? (target: s2) and b2:
s2 = b1 : ? (target: s1) for testing purposes. For
each type in a pair (e.g. brand : sport), we repeat
the following for all possible values of brand (e.g.
“Wilson”, “Nike”) – given a brand B:

1. we loop over the catalog and record all values
of sport, along with their frequency, for the
products made by B. For example, for B =
Nike, the distribution may be: {“soccer”: 10,
“basketball”: 8, “scubadiving”: 0 }; for B =
Wilson, it may be: {“tennis”: 8};

10It is important to note that this categorization is done by
product experts for navigation and inventory purposes: all
product labels are produced independently from any NLP
consideration.

2. we calculate the Gini coefficient (Catalano
et al., 2009) over the distribution on the val-
ues of sport and choose a conservative Gini
threshold, i.e. 75th percentile: the goal of this
threshold is to avoid “undetermined” analo-
gies, such as Adidas : Gazelle = Nike : ?.
The intuition behind the use of a dispersion
measure is that product analogies are harder
if the relevant label is found across a variety
of products11.

With all the Gini coefficients and a chosen thresh-
old, we are now ready to generate the analogies,
by repeating the following for all values of brand –
given a brand B we can repeat the following sam-
pling process K times (K = 10 for our experi-
ments):

1. ifB’s Gini value for its distribution of sport la-
bels is below our chosen threshold, we skipB;
if B’s value is above, we associate to B its
most frequent sport value, e.g. Wilson : ten-
nis. This is the source pair of the analogy; to
generate a target pair, we sample randomly a
brand C with high Gini together with its most
frequent value, e.g. Atomic : skiing;

2. we add to the final test set two analogies: Wil-
son : tennis = Atomic : ?, and Atomic : skiing
= Wilson : ?.

The procedure is designed to generate test exam-
ples conservatively, but of fairly high quality, as for
example Garmin : watches = Arena : bathing cap
(the analogy relates two brands which sell only one
type of items), or racket : tennis = bathing cap : in-
door swimming (the analogy relates “tools” that are
needed in two activities). A total of 1208 and 606
test analogies are used for the analogy task (AT)
for, respectively, Shop X and Shop Y: we bench-
mark all models by reporting Hit Rate at different
cutoffs (Vasile et al., 2016), and we also report how
many analogies are covered by the lexicon learned
by the models (coverage is the ratio of analogies for
which all embeddings are available in the relevant
space).

7 Results

Table 1 reports model performance for the cho-
sen cutoffs. Query2Prod2Vec (as trained on real

11In other words, Wilson : tennis = Atomic : ? (skiing) is a
better analogy than Adidas : Gazelle = Nike : ?.

158

Model HR@5,10 for X HR@5,10 for Y CV (X/Y) Acc on ST

Query2Prod2Vec (real data) 0.332 / 0.468 0.277 / 0.376 0.965/0.924 0.88

Word2Vec 0.206 / 0.242 0.005 / 0.009 0.47 / 0.03 0.68
Query2Vec 0.077 / 0.113 0.065 / 0.120 0.97 / 0.93 0.54
QueryNGram2Vec 0.071 / 0.122 0.148 / 0.216 0.99 / 0.92 0.82
FastText 0.068 / 0.116 0.010 / 0.012 0.52 / 0.03 0.57
UmBERTo 0.019 / 0.042 0.030 / 0.103 0.99 / 1.00 0.57
Search2Vec (time) 0.018 / 0.025 0.232 / 0.329 0.23 / 0.90 0.17
Search2Vec 0.016 / 0.024 0.095 / 0.150 0.23 / 0.90 0.17

Table 1: Hit Rate (HR) and coverage (CV) for all models and two shops on AT; on the rightmost column, Accuracy
(Acc) for all models on ST.

data) has the best performance12, while maintain-
ing a very competitive coverage. More impor-
tantly, following our considerations in Section 2,
results confirm that producing competitive embed-
dings on shops with different constraints is a chal-
lenging task for existing techniques, as models
tend to either rely on specific query distribution
(e.g. Search2Vec (time)), or the availability of lin-
guistic and catalog resources with good coverage
(e.g. Word2Vec). Query2Prod2Vec is the only
model performing with comparable quality in the
two scenarios, further strengthening the method-
ological importance of running benchmarks on
more than one shop if findings are to be trusted
by a large group of practitioners.

7.1 Sample Efficiency and User Studies

To investigate sample efficiency, we run two
further experiments on Shop X: first, we
run AT giving only 1/3 of the original data
to Query2Prod2Vec (both for the prod2vec space,
and for the denotation). The small-dataset version
of Query2Prod2Vec still outperforms all other
full-dataset models in Table 1 (HR@5,10 = 0.276
/ 0.380). Second, we train a Query2Prod2Vec
model only with simulated data produced as
explained in Section 4 – that is, with zero
data from real search logs. The entirely simu-
lated Query2Prod2Vec shows performance com-
petitive with the small-dataset version (HR@5,10
= 0.259 / 0.363)13, outperforming all baselines.

As a further independent check, we supple-
ment AT with a small semantic similarity task (ST)

12HR@20 was also computed, but omitted for brevity as it
confirmed the general trend.

13A similar result was obtained on Shop Y, and it is omitted
for brevity.

on Shop X14: two native speakers are asked to
solve a small set (46) of manually curated ques-
tions in the form: “Given the word Nike, which
is the most similar, Adidas or Wilson?”. ST is
meant to (partially) capture how much the em-
bedding spaces align with lexical intuitions of
generic speakers, independently of the product
search dynamics. Table 1 reports results treat-
ing human ratings as ground truth and using co-
sine similarity on the learned embeddings for all
models15. Query2Prod2Vec outperforms all other
methods, further suggesting that the representa-
tions learned through referential information cap-
ture some aspects of lexical knowledge.

7.2 Computational Requirements

As stressed in Section 2, accuracy and re-
sources form a natural trade-off for industry prac-
titioners. Therefore, it is important to high-
light that, our model is not just more accu-
rate, but significantly more efficient to train:
the best performing Query2Prod2Vec takes 30
minutes (CPU only) to be completed for the
larger Shop Y, while other competitive models such
as Search2Vec(time) and QueryNGram2Vec re-
quire 2 to 4 hours16. Being able to quickly generate
many models allows for cost-effective analysis and
optimization; moreover, infrastructure cost is heav-
ily related to ethical and social issues on energy
consumption in NLP (Strubell et al., 2019).

14Shop X is chosen since it is easier to find speakers familiar
with sport apparel than DIY items.

15Inter-rater agreement was substantial, with Cohen Kappa
Score=0.67 (McHugh, 2012).

16Training is performed on a Tesla V100 16GB GPU. As a
back of the envelope calculation, training QueryNGram2Vec
on a AWS p3 large instance costs around 12 USD, while a
standard CPU container for Query2Prod2Vec costs less than
1 USD.

159

8 Conclusion and Future Work

In this work, we learned reference-based word
embeddings for product search: Query2Prod2Vec
significantly outperforms other embedding strate-
gies on lexical tasks, and consistently provides
good performance in small-data and zero-data sce-
narios, with the help of synthetic embeddings. In
future work, we will extend our analysis to i) spe-
cific IR tasks, within the recent paradigm of the
dual encoder model (Karpukhin et al., 2020), and ii)
compositional tasks, trying a systematic replication
of the practical success obtained by Yu et al. (2020)
through image-based heuristics.

When looking at models like Query2Prod2Vec
in the larger industry landscape, we hope our
methodology can help the field broaden its hori-
zons: while retail giants indubitably played a major
role in moving eCommerce use cases to the center
of NLP research, finding solutions that address a
larger portion of the market is not just practically
important, but also an exciting agenda of its own17.

9 Ethical Considerations

Coveo collects anonymized user data when provid-
ing its business services in full compliance with ex-
isting legislation (e.g. GDPR). The training dataset
used for all models employs anonymous UUIDs
to label events and sessions and, as such, it does
not contain any information that can be linked to
shoppers or physical entities; in particular, data is
ingested through a standardized client-side integra-
tion, as specified in our public protocol.

Acknowledgements

We wish to thank Nadia Labai, Patrick John Chia,
Andrea Polonioli, Ciro Greco and three anony-
mous reviewers for helpful comments on previ-
ous versions of this article. The authors wish to
thank Coveo for the support and the computational
resources used for the project. Federico Bianchi is
a member of the Bocconi Institute for Data Science
and Analytics (BIDSA) and the Data and Market-
ing Insights (DMI) unit.

17Please note that a previous draft of this article appeared
on arxiv – https://arxiv.org/abs/2104.02061 –
after the review process, but before the camera-ready submis-
sion.

References
Xiao Bai, Erik Ordentlich, Yuanyuan Zhang, Andy

Feng, Adwait Ratnaparkhi, Reena Somvanshi, and
Aldi Tjahjadi. 2018. Scalable query n-gram em-
bedding for improving matching and relevance in
sponsored search. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’18, pages 52–61,
New York, NY, USA. ACM.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 238–247, Baltimore, Maryland.
Association for Computational Linguistics.

Baymard Institute. 2020. Site Search for Ecommerce.

Emily M. Bender and Alexander Koller. 2020. Climb-
ing towards NLU: On meaning, form, and under-
standing in the age of data. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5185–5198, Online. As-
sociation for Computational Linguistics.

Federico Bianchi, Ciro Greco, and Jacopo Tagliabue.
2021. Language in a (Search) Box: Grounding Lan-
guage Learning in Real-World Human-Machine In-
teraction. In NAACL-HLT. Association for Compu-
tational Linguistics.

Federico Bianchi, Jacopo Tagliabue, Bingqing Yu,
Luca Bigon, and Ciro Greco. 2020a. Fantastic em-
beddings and how to align them: Zero-shot infer-
ence in a multi-shop scenario. In Proceedings of the
SIGIR 2020 eCom workshop.

Federico Bianchi, Bingqing Yu, and Jacopo Tagliabue.
2020b. Bert goes shopping: Comparing distribu-
tional models for product representations. arXiv
preprint arXiv:2012.09807.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob
Andreas, Yoshua Bengio, Joyce Chai, Mirella Lap-
ata, Angeliki Lazaridou, Jonathan May, Aleksandr
Nisnevich, Nicolas Pinto, and Joseph Turian. 2020.
Experience grounds language. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8718–8735,
Online. Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Michael Catalano, Tanya Leise, and Thomas Pfaff.
2009. Measuring resource inequality: The gini co-
efficient. Numeracy, 2.

Ethan Cramer-Flood. 2020. Global Ecommerce 2020.
Ecommerce Decelerates amid Global Retail Con-
traction but Remains a Bright Spot.

160

Nick Craswell, Bhaskar Mitra, E. Yilmaz, Daniel Fer-
nando Campos, and E. Voorhees. 2020. Overview
of the trec 2019 deep learning track. ArXiv,
abs/2003.07820.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Econsultancy. 2020. Site search: retailers still have a
lot to learn.

Alex Egg. 2019. Query2vec: Search query expansion
with query embeddings.

Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavl-
jevic, Fabrizio Silvestri, Ricardo Baeza-Yates, An-
drew Feng, Erik Ordentlich, Lee Yang, and Gavin
Owens. 2016. Scalable semantic matching of
queries to ads in sponsored search advertising. In
Proceedings of the 39th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’16, page 375–384, New
York, NY, USA. Association for Computing Machin-
ery.

Mihajlo Grbovic, Vladan Radosavljevic, Nemanja
Djuric, Narayan Bhamidipati, Jaikit Savla, Varun
Bhagwan, and Doug Sharp. 2015. E-commerce in
your inbox: Product recommendations at scale. In
Proceedings of KDD ’15.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6769–
6781, Online. Association for Computational Lin-
guistics.

Thomas K. Landauer and Susan T. Dumais. 1997. A so-
lution to plato’s problem: The latent semantic anal-
ysis theory of acquisition, induction, and representa-
tion of knowledge.

David Lewis. 1969. Convention. Mass.: Harvard UP.

Mary McHugh. 2012. Interrater reliability: The kappa
statistic. Biochemia medica : časopis Hrvatskoga
društva medicinskih biokemičara / HDMB, 22:276–
82.

Tomas Mikolov, Kai Chen, Gregory S. Corrado,
and Jeffrey Dean. 2013a. Efficient estimation
of word representations in vector space. CoRR,
abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems
- Volume 2, NIPS’13, page 3111–3119, Red Hook,
NY, USA. Curran Associates Inc.

Richard Montague. 1974. English as a formal lan-
guage. In Richmond H. Thomason, editor, Formal
Philosophy: Selected Papers of Richard Montague,
pages 188–222. Yale University Press, New Haven,
London.

Cun Mu, Guang Yang, and Zheng Yan. 2018. Revis-
iting skip-gram negative sampling model with regu-
larization. CoRR, abs/1804.00306.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin.
2020. Document ranking with a pretrained
sequence-to-sequence model. In EMNLP.

Debora Nozza, Federico Bianchi, and Dirk Hovy.
2020. What the [MASK]? making sense of
language-specific BERT models. arXiv preprint
arXiv:2003.02912.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know
about how BERT works. Transactions of the Associ-
ation for Computational Linguistics, 8:842–866.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in nlp. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3645–3650.

Jacopo Tagliabue and Bingqing Yu. 2020. Shopping
in the multiverse: A counterfactual approach to in-
session attribution. In Proceedings of the SIGIR
2020 Workshop on eCommerce (ECOM 20).

Jacopo Tagliabue, Bingqing Yu, and Marie Beaulieu.
2020a. How to grow a (product) tree: Personalized
category suggestions for eCommerce type-ahead. In
Proceedings of The 3rd Workshop on e-Commerce
and NLP, pages 7–18, Seattle, WA, USA. Associa-
tion for Computational Linguistics.

Jacopo Tagliabue, Bingqing Yu, and Federico Bianchi.
2020b. The embeddings that came in from the
cold: Improving vectors for new and rare products
with content-based inference. In Fourteenth ACM
Conference on Recommender Systems, RecSys ’20,
page 577–578, New York, NY, USA. Association for
Computing Machinery.

161

Techcrunch. coveo-raises-227m-at-1b-valuation.

Techcrunch. 2019a. Algolia finds $110m from accel
and salesforce.

Techcrunch. 2019b. Lucidworks raises $100m to ex-
pand in ai finds.

Manos Tsagkias, Tracy Holloway King, Surya
Kallumadi, Vanessa Murdock, and Maarten de Ri-
jke. 2020. Challenges and research opportunities in
ecommerce search and recommendations. In SIGIR
Forum, volume 54.

Flavian Vasile, Elena Smirnova, and Alexis Conneau.
2016. Meta-prod2vec: Product embeddings using
side-information for recommendation. Proceedings
of the 10th ACM Conference on Recommender Sys-
tems.

Bingqing Yu and Jacopo Tagliabue. 2020. Blend-
ing search and discovery: Tag-based query refine-
ment with contextual reinforcement learning. In
EComNLP.

Bingqing Yu, Jacopo Tagliabue, Ciro Greco, and Fed-
erico Bianchi. 2020. An image is worth a thou-
sand features: Scalable product representations for
in-session type-ahead personalization. Companion
Proceedings of the Web Conference 2020.

162

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 163–169
June 6–11, 2021. ©2021 Association for Computational Linguistics

An Architecture for Accelerated Large-Scale Inference of
Transformer-Based Language Models

Amir Ganiev∗ and Colt Chapin and Anderson de Andrade and Chen Liu∗

Wattpad
Toronto, ON, Canada

amir.ganiev@mail.utoronto.ca, {colt, anderson}@wattpad.com,
ceciliachen.liu@mail.utoronto.ca

Abstract

This work demonstrates the development pro-
cess of a machine learning architecture for in-
ference that can scale to a large volume of re-
quests. In our experiments, we used a BERT
model that was fine-tuned for emotion analysis,
returning a probability distribution of emotions
given a paragraph. The model was deployed as
a gRPC service on Kubernetes. Apache Spark
was used to perform inference in batches by
calling the service. We encountered some per-
formance and concurrency challenges and cre-
ated solutions to achieve faster running time.
Starting with 3.3 successful inference requests
per second, we were able to achieve as high
as 300 successful requests per second with the
same batch job resource allocation. As a result,
we successfully stored emotion probabilities
for 95 million paragraphs within 96 hours.

1 Introduction

As data in organizations becomes more available
for analysis, it is crucial to develop efficient ma-
chine learning pipelines. Previous work (Al-Jarrah
et al., 2015) has highlighted the growing number
of data centers and their energy and pollution reper-
cussions. Machine learning models that require less
computational resources to generate accurate re-
sults reduce these externalities. On the other hand,
many machine learning applications also require
results in nearly real-time in order to be viable and
may also require results from as many data samples
as possible in order to produce accurate insights.
Hence, there are also opportunity costs associated
with missed service-level objectives.

Attention-based language models such as BERT
(Devlin et al., 2019) are often chosen for their
relative efficiency, and empirical power. Com-
pared to recurrent neural networks (Hochreiter and
Schmidhuber, 1997), each step in a transformer
layer (Vaswani et al., 2017) has direct access to all

∗Work done while the author was working at Wattpad.

other steps and can be computed in parallel, which
can make both training and inference faster. BERT
also easily accommodates different applications by
allowing the fine-tuning of its parameters on dif-
ferent tasks. Despite these benefits, exposing these
models and communicating with them efficiently
possesses some challenges.

Machine learning frameworks are often used to
train, evaluate, and perform inference on predic-
tive models. TensorFlow (Abadi et al., 2016) has
been shown to be a reliable system that can operate
at a large scale. A sub-component called Tensor-
Flow Serving allows loading models as services
that handle inference requests concurrently.

System architectures for inference have changed
over time. Initial approaches favored offline set-
tings where batch jobs make use of distributed plat-
forms to load models and data within the same
process and perform inference. For example, Ijari,
2017 suggested an architecture that uses Apache
Hadoop (Hadoop, 2006) and Apache Pig for large-
scale data processing, where results are written
to a Hadoop Distributed File System (HDFS) for
later consumption. Newer distributed platforms
such as Apache Spark (Zaharia et al., 2016) have
gained prominence because of their memory opti-
mizations and more versatile APIs, compared to
Apache Hadoop (Zaharia et al., 2012).

As part of this architecture, inference services
would often be reserved for applications that
require faster responses. The batch-based and
service-based platforms have different use cases
and often run in isolation. Collocating data and
models in a batch job has some disadvantages.
Loading models in the same process as the data
forces them both to scale the same way. Moreover,
models are forced to be implemented using the pro-
gramming languages supported by the distributed
data platform. Their APIs often place some limita-
tions on what can be done.

With the evolution of machine learning frame-
163

works and container-orchestration systems such as
Kubernetes,1 it is now simpler to efficiently build,
deploy, and scale models as services. A scalable
architecture was presented in (Gómez et al., 2014)
that proposes the use of RESTful API calls exe-
cuted by batch jobs in Hadoop to reach online ser-
vices that provide real-time inference. Approaches
like this simplify the architecture and address the
issues discussed previously.

In this work, we present an architecture for batch
inference where a data processing task relies on ex-
ternal services to perform the computation. The
components of the architecture will be discussed in
detail along with the technical challenges and solu-
tions we developed to accelerate this process. Our
application is a model for emotion analysis that
produces a probability distribution over a closed
set of emotions given a paragraph of text (Liu et al.,
2019). We present benchmarks to justify our ar-
chitecture decisions and settings. The proposed
architecture is able to generate results for 95 mil-
lion paragraphs within 96 hours.

2 Architecture design

We deployed our model as a TensorFlow service
in a Kubernetes cluster. A sidecar service prepro-
cessed and vectorized paragraphs and forwarded
requests to this service. We used gRPC to commu-
nicate with the services,2 which is an efficient com-
munication protocol on HTTP/2. Both nearly real-
time and offline use cases made calls to these ser-
vices. We used Apache Spark for batch processing,
which we ran on Amazon’s AWS EMR service.3

Our batch job was developed using Apache Spark’s
Python API (PySpark). The batch job fetched a
dataset of relevant paragraphs, called the inference
service, and stored the results. The job had two
modes: a backfill mode and a daily mode, which
ran on a subset of mutated and new paragraphs.
This batch job was part of a data pipeline, sched-
uled using Apache AirFlow4 and Luigi.5 Figure 1
shows the main components of this architecture.

2.1 Kubernetes vs. Apache Spark
One of the key issues we faced in scaling up our
inference services was the growing size of the mem-
ory footprint of an instance. A standard practice

1https://kubernetes.io
2https://grpc.github.io
3https://aws.amazon.com/emr
4https://airflow.apache.org
5https://github.com/spotify/luigi

when conducting model inference at scale in a
MapReduce program such as Apache Spark is to
broadcast an instance of the model to each dis-
tributed worker process to allow for parallel pro-
cessing. However, when the footprint of these in-
stances becomes too large, they begin to compete
with the dataset being processed for the limited
memory resources of the underlying cluster and, in
many cases, exceeding the capacity of the underly-
ing hardware.

While this issue does not preclude the use of
Apache Spark for running inferences on large mod-
els at scale, it does complicate the process of im-
plementing the job in a cost-efficient manner. It
is possible to allocate more resources, but because
the clusters are static in size, a lot of work has to
go into properly calculating resource allocation to
avoid over or under-provisioning. This is where the
idea of offloading the model to Kubernetes comes
into play.

While our MapReduce clusters struggled to scale
and accommodate the larger models being broad-
casted, by leveraging Kubernetes we were able to
monitor and optimize resource usage as well as
define autoscaling behaviors independently of this
cluster. That said, while there are clear benefits to
isolating your model from your MapReduce job
we must now consider the added overhead of the
network calls and the effort to build and maintain
containerized services.

2.2 Kubernetes node pool
To ensure optimal resource usage, we provisioned
a segregated node pool dedicated to hosting in-
stances of our models. A node pool is a collec-
tion of similar resources with predefined autoscal-
ing behaviors. We leveraged Kubernetes’ built-
in taint/toleration functionality to establish the re-
quired behavior. In Kubernetes, Taints designate
resources as non-viable for allocation, unless de-
ployments are specifically annotated as having a
Toleration for said Taint. For this node pool, we
selected instance types that offer faster CPUs, but
provide an adequate amount of memory to load our
models.

2.3 REST vs. gRPC
Once we made the decision to deploy our model
as a service, we had to determine which network
protocol to use. While representational state trans-
fer (REST) (Pautasso et al., 2013) is a well-known
standard, there were two aspects of our use case

164

Figure 1: Architecture overview.

that made us consider alternatives. The first is that
architecturally, our use case was far more func-
tional in nature than REST. Second, the nature of
our data means that request messages can be large.
It was for this reason that we found the efficiency
offered by the Protobuf protocol a natural fit for
our use case.6

Having decided to use gRPC and Protobuf, we
encountered two issues. First, gRPC uses the
HTTP/2 protocol which multiplexes requests over
a single persistent TCP connection. Because of this
persistent connection, Layer-4 load balancers that
can only route connections are not able to recog-
nize requests within them that could be balanced
across multiple replicas of a service. To enable
this, we rely on a Layer-7 load balancer which is
able to maintain persistent connections with all de-
vices, and identify and route requests within these
channels accordingly.

The second issue was organizational in nature.
REST is a widely accepted standard, but more im-
portantly, it is a protocol that developers are famil-
iar with. The introduction of a different API design
has led to significant friction of adoption.

2.4 AWS EMR cluster configuration

The AWS EMR cluster needed to be configured
to run a Apache Spark job that makes 95 million
inference calls to our micro-service. Due to the
unbounded nature of these paragraphs, which can
become quite large in our use case, these 95 million
records require a significant amount of disk space
(in the order of terabytes).

Taking into account the cost constraints of this
project, we chose an AWS r5.xlarge instance with
200 GiB of disk space as a master node, and 5 AWS
r5.4xlarge instances with 1,000 GiB of disk space
each, as worker nodes. This configuration ensures

6https://developers.google.com/
protocol-buffers

that there is enough disk capacity to process the
data and the number of cores is as high as possible
without exceeding the cost constraints. Addition-
aly, we selected these to be memory-optimized to
ensure we provide the job with enough RAM to
efficiently process our joins.

The EMR cluster configuration is kept constant
as a controlled variable throughout the project and
in all of our experiments. This ensures that only
the implementation changes affect the performance
of the inference job.

2.5 Monitoring

There were two different solutions that monitor dif-
ferent aspects of the proposed architecture: Apache
Spark console and DataDog. AWS EMR provided
access to the Apache Spark console for its running
tasks and a history server for completed tasks. The
console displays the execution plan, the running
stage, the number of partitions completed in that
stage, the number of stages left to execute, as well
as statistics and message logs of our inference job.
Success or failure of this job and its pipeline was re-
ported using DataDog.7 DataDog is a cloud based
monitoring service that provides helpful visualiza-
tion tools to monitor applications.

Additionally, our services were instrumented to
report the number, latency, and status code of all
calls received. We made use of DataDog to aggre-
gate and monitor these metrics. In our implementa-
tion, the instrumentation was handled by functional
wrappers around our endpoint handlers, as well as
a synchronous gRPC Interceptor for the client on
our sidecar service. Figure 2 shows an example of
our request count on our daily job.

7https://www.datadoghq.com

165

Figure 2: DataDog visualization of a daily job, con-
sisting of 600,000 paragraphs calls to the service. The
X-axis is the local time starting at 1 a.m. The Y-axis is
the total number of calls executed within 1 minute. The
highlighted vertical bar shows that 18,000 calls were
executed within 1 minute (300 per second) at 1:54 a.m.
The calls started at around 1 a.m. and reached a peak
speed at around 1:40 a.m.

3 Architecture optimization

Our initial approach, which used the configuration
in the previous section, was resilient to failures but
performed slowly at around 4 requests per second
during the inference step. With a backfill target
of 95 million paragraphs, running this job was in-
tractable. Our investigations concluded that the
issues were rooted in a low request pressure on
the backend services. Thus, the sections below de-
scribe the steps taken to address these issues and
speed up the inference process.

3.1 Scaling model service
Our autoscaling group consisted of instances with
Intel’s Xeon Platinum 8175M CPUs and 64 GB
of RAM. The use of GPUs is not cost-effective
without a proper batching mechanism, which is
considered to be outside of the scope of this work.
Each instance had 8 physical cores and 16 logical
cores. To reduce the memory footprint but also al-
low a fine-grained resource allocation, Kubernetes
pods had a limit of 2 physical cores. In our ex-
periments, pods did not consume more than 4 GB
of memory under heavy load. Network utilization
remained well under 10 Gb/s. We set up an au-
toscaling policy with a target CPU utilization of
70%.

With a maximum number of 100 pods (25 in-
stances), we achieved a maximum of 300 requests
per second, each request being a paragraph with at
least 15 characters. Our daily job usually finished
within 60 minutes.

3.2 Tuning TensorFlow Serving parameters
We evaluated the performance of TensorFlow Serv-
ing with multiple parameter configurations. The

MKL OpenMP Intra-Op Req/Sec
Yes 2 2 5.207
Yes 2 4 5.931
Yes 4 2 4.786
Yes 4 4 5.714
No - 2 5.464
No - 4 6.452

Table 1: Average requests per second of the service un-
der different TensorFlow Serving settings: MKL, num-
ber of OpenMP threads, and number of intra-operation
threads. OpenMP is only used by MKL. Other configu-
rations do not match the number of physical or logical
cores available.

only settings that tangibly impacted performance
included: enabling Intel’s Math Kernel Library
(MKL), the OpenMP number of threads for MKL,
and the thread pool size for TensorFlow intra-
operations. We used TensorFlow Serving version
2.3.0, which uses MKL-DNN version 0.21. Table
1 illustrates performance under different configu-
rations for pods with 2 CPU physical cores and 4
logical cores. In particular, we note that disabling
MKL and allocating a thread pool the size of the
number of logical cores gave us the best perfor-
mance for this model.

3.3 Spark job tuning
Configuring parameters of TensorFlow serving and
successfully scaling up BERT micro-service al-
lowed for a faster inference speed. However, adjust-
ing the service alone did not yield better results as
the speed remained relatively similar (3.3 complete
calls per second). Therefore, a PySpark job reached
its limits in the proposed configuration. The micro-
service was not receiving enough requests to trigger
its autoscaling condition and capped out at 7 pods
(far short of our max off 100). To address this, we
sought to introduce more load by increasing the
rate at which the client makes calls to the micro-
service.

Using synchronous calls, the number of requests
the batch job can make is bounded by the number
of cores assigned to it. Since the computation is
done by the service, these cores will be mostly
waiting for the service responses.

To address Python’s synchronous nature limit-
ing the rate at which a single core can make calls
to the service, we leveraged the AsyncIO library8

within a PySpark User Defined Function (UDF),
8https://www.python.org

166

which allowed a single core to implement quasi-
concurrent calls and leverage the idle thread await-
ing a response. Since AsyncIO was utilized, the
gRPC AsyncIO API9 was imported instead of de-
fault gRPC. The async gRPC is compatible with
AsyncIO and can create asynchronous channels.
Exceptions or errors returned by the call were ac-
cessed with grpc.aio.AioRpcError method.

Even with everything above implemented within
the PySpark UDF, it was not possible to take advan-
tage of AsyncIO yet. By default, a vanilla PySpark
UDF receives only one tabular row at a time con-
taining one paragraph. That means that the Asyn-
cIO loop within the UDF was not be able to execute
concurrent calls if only one paragraph was avail-
able. Apache Spark’s Vectorized UDFs (Pandas
UDFs) allows us to process partitions in batches
and achieve the desired level of concurrency. Each
batch is represented in memory using the Apache
Arrow format and accessible with the Pandas API.

Apache Arrow is an in-memory columnar data
format that facilitates the transference of data be-
tween the JVM (Java virtual machine), which runs
the Apache Spark job, and Python processes (i.e.
Pandas UDFs). It offers zero-copy reads between
processes for data access without serialization over-
head. In our work, a scalar Pandas UDF was de-
fined to receive paragraphs as a Pandas Series and
return a probability distribution of the emotion
classes for each paragraph, as a new Pandas Se-
ries.10

With Python AsyncIO, gRPC Async, and Pan-
das UDFs using Apache Arrow, the load created
by the client (PySpark job) substantially increased.
AsyncIO ensured that extra paragraphs were sent
to the server while waiting to receive emotion prob-
abilities for outstanding calls. However, as soon as
the first one thousand calls were sent to the server
(in a matter of seconds), the PySpark job failed.
The errors received by the client were canceled,
unavailable or the deadline was exceeded (more
about gRPC errors in section 3.4). That indicated
that the client actually created too much load on
the server causing it to respond with errors. The
Kubernetes Deployment was overwhelmed and did
not have enough time to scale up the micro-service.
This led to unavailable and deadline errors.

To limit the maximum number of concur-
9https://grpc.github.io/grpc/python/

grpc_asyncio.html
10https://spark.apache.org/docs/latest/

api/python/user_guide/arrow_pandas.html

Semaphore Value Responses Per Second
10 170
25 256.7
50 298.3
75 Service upscaling fails

Table 2: Achieved number of successful gRPC calls per
second vs Semaphore value. EMR configuration, table
partitions, and paragraphs are kept constant.

rent calls to the service we utilized Semaphore.
Semaphore is a class in the AsyncIO library11 that
implements an internal counter (set by user) to limit
the number of concurrent requests as described by
Dijkstra, 1968. Number of concurrent requests run-
ning in each core can never exceed the maximum
Semaphore counter value.

To identify the maximum Semaphore value that
successfully scales up the number of Kubernetes
pods without errors, we conducted tests. Results of
the experiments are shown in Table 2.

With the Semaphore value set to 50, PySpark ran
successfully and significantly increased the load set
by the client to the server. Table 3 summarizes all
libraries and tools used to increase the number of
calls per second.

3.4 Errors during gRPC calls

As gRPC async calls were made to the service,
errors were returned. The most common gRPC re-
sponse status code exceptions12 encountered were:
cancelled, unavailable, and deadline exceeded. We
expected to receive errors when the service was
scaling to process the received requests. When an
error was received by a running PySpark client, the
running job would terminate. Thus, we were un-
able to produce inference results without a solution
that handles errors and keeps running the Spark
job.

A Circuit Breaker (Nygard, 2018) was imple-
mented to prevent clients from overwhelming ser-
vices and a gRPC Interceptor was implemented to
wait for services to be available and retry failing
calls. Table 4 shows the total number of requests
made and the number of errors that were handled
by the circuit breaker.

11https://docs.python.org/3/library
12https://grpc.github.io/grpc/core/md_

doc_statuscodes.html

167

Tool Definition Description
Async IO Python Library Write concurrent requests with coroutines
gRPC AsyncIO Python Library GRPC client that works asynchronously
PyArrow with Pandas Data Format and Python

Library
PySpark’s tabular data format to pass to
UDF as a Pandas table

Semaphore Class in Async IO Limits number of running requests
Async Circuit Breaker Asynchronous Design Pat-

tern
Resends client calls on failure

Table 3: All libraries, design patterns, and data formats imported to PySpark job to accelerate inference speed.

Code Status Notes Amount
0 OK Returned on success 97.84M
1 CANCELLED The operation was cancelled, typically by the caller 666
4 DEADLINE_EXCEEDED The time expired before the operation was complete 469.58K
14 UNAVAILABLE The service is currently unavailable 27.90K

Table 4: Number of status codes returned in gRPC responses for the entire batch job.

3.5 Asynchronous circuit breaker

A circuit breaker is a software design pattern that
was implemented to detect and act upon response
failures received by the PySpark client. As dis-
cussed in Nygard, 2018, in a closed state the circuit
passes through and all gRPC calls are being made.
If a number of consecutive failures are received,
the circuit opens and subsequent request attempts
return a failure immediately. After a time period,
the circuit switches to a half-open state to test if
the underlying problem still exists. If a call fails
in this half-open state, the breaker is once again
tripped. When a call finally succeeds, the circuit
breaker resets back to the default closed state.

The circuit breaker implementation was taken
from an open-source library.13 Modifications were
made to support AsyncIO, so calls running through
it are sent concurrently. The state of the circuit
breaker is shared across requests that use the the
same gRPC client. To open or close the circuit,
the circuit breaker only considers the deadline ex-
ceeded, unavailable, and cancelled gRPC status
codes. Other errors are directly returned to the
client.

Finally, a gRPC Interceptor uses this circuit
breaker to block requests until the circuit breaker
is closed again and retry each request up to 4 times,
after which the data point is skipped and the batch
job continues. The interceptor gets attached to
the gRPC channel on creation. This design pat-

13https://github.com/fabfuel/
circuitbreaker

tern allows clients to not overwhelm services with
requests and halts our batch job as the service de-
ployment scales up.

4 Results

All steps in Section 3 improve the batch job speed
and results in satisfactory performance. The data
pipeline is able to produce inference results for
more than 95 million paragraphs in around 96 hours
with an inference speed of around 300 requests per
second. The semaphore value is set to 50.

4.1 Daily runs of the batch job
Once the backfill data is stored, the data pipeline
runs daily to find new and updated paragraphs from
our S3 datasets. Everyday, around 600,000 (varies
daily) paragraphs need to have their inference val-
ues stored. The graph in Figure 2 illustrates the typ-
ical daily run for the pipeline. It shows that it takes
about 40 minutes for the Kubernetes micro-service
pods to fully scale up. We limited the maximum
number of pods for daily jobs to 100.

4.2 Analytics platform
Inference results were stored in an AWS S3 bucket.
This dataset was registered in a AWS Glue Data
Catalog.14 Amazon Athena15 is a query service that
made it possible to run SQL queries on this dataset.
Redash16 is a cloud-based analytics dashboard that
we used to visualize insights from the inference

14https://aws.amazon.com/glue
15https://aws.amazon.com/athena
16https://redash.io

168

results. In includes a SQL client that makes calls
to Amazon Athena and displays the query results.
Redash was connected to Amazon Athena as a data
source, which enabled us to perform queries to all
tables registered in AWS Glue.

5 Conclusion

This paper discussed a successful machine learning
architecture for both online and offline inference
that centralizes models as services. We present
solutions that use concurrency to increase the infer-
ence speed of offline batch jobs in Apache Spark.
Because of this, the majority of resources are still
assigned to these services, and the batch job re-
sources grow at a much smaller rate in comparison.

We used a resource-intensive language model
for emotion classification, where we demonstrated
how proper tuning of TensorFlow Serving and Ku-
bernetes can improve the service’s performance.
We also showed that by parallelizing the calls made
to the service in PySpark, we can significantly im-
prove inference speed.

Finally, results were presented that provide use-
ful insights into the inference performance. To-
gether, all these components resulted in a satisfac-
tory architecture, which resulted in the emotion
probabilities of 95 million paragraphs to be stored
within 96 hours. We hope the architecture can be
applied to other language tasks or machine learning
models.

References

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. Ten-
sorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 265–
283, Savannah, GA. USENIX Association.

Omar Y. Al-Jarrah, Paul D. Yoo, Sami Muhaidat,
George K. Karagiannidis, and Kamal Taha. 2015.
Efficient machine learning for big data: A review.
Big Data Research, 2(3):87–93.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL-HLT.

Edsger W Dijkstra. 1968. Cooperating sequential pro-
cesses. In The origin of concurrent programming,
pages 65–138. Springer.

A. Gómez, Esperanza Albacete, Y. Sáez, and P. I.
Viñuela. 2014. A scalable machine learning on-
line service for big data real-time analysis. 2014
IEEE Symposium on Computational Intelligence in
Big Data (CIBD), pages 1–8.

Apache Hadoop. 2006. Apache hadoop.
http://hadoop.apache.org.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Abhish Ijari. 2017. The study of the large scale twitter
on machine learning. International Research Journal
of Engineering and Technology (IRJET), 4:247–251.

Chen Liu, Muhammad Osama, and Anderson De An-
drade. 2019. Dens: a dataset for multi-class emotion
analysis. Proceedings of the EMNLP Conference.

Michael T Nygard. 2018. Release it!: design and deploy
production-ready software. Pragmatic Bookshelf.

Cesare Pautasso, Erik Wilde, and Rosa Alarcon. 2013.
REST: advanced research topics and practical appli-
cations. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Matei Zaharia, Mosharaf Chowdhury, Tathagata
Das, Ankur Dave, Justin Ma, Murphy Mccauley,
M Franklin, Scott Shenker, and Ion Stoica. 2012.
Fast and interactive analytics over hadoop data with
spark. Usenix Login, 37(4):45–51.

Matei Zaharia, Reynold S Xin, Patrick Wendell, Tatha-
gata Das, Michael Armbrust, Ankur Dave, Xian-
grui Meng, Josh Rosen, Shivaram Venkataraman,
Michael J Franklin, et al. 2016. Apache spark: a
unified engine for big data processing. Communica-
tions of the ACM, 59(11):56–65.

169

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 170–177
June 6–11, 2021. ©2021 Association for Computational Linguistics

When and Why does a Model Fail? A Human-in-the-loop Error Detection
Framework for Sentiment Analysis

Zhe Liu
IBM Research - Almaden

San Jose, CA, USA
liuzh@us.ibm.com

Yufan Guo ∗

Amazon Alexa AI
Seattle, WA, USA

gyufan@amazon.com

Jalal Mahmud
IBM Research - Almaden

San Jose, CA, USA
jumahmud@us.ibm.com

Abstract

Although deep neural networks have been
widely employed and proven effective in sen-
timent analysis tasks, it remains challenging
for model developers to assess their models
for erroneous predictions that might exist prior
to deployment. Once deployed, emergent er-
rors can be hard to identify in prediction run-
time and impossible to trace back to their
sources. To address such gaps, in this paper
we propose an error detection framework for
sentiment analysis based on explainable fea-
tures. We perform global-level feature valida-
tion with human-in-the-loop assessment, fol-
lowed by an integration of global and local-
level feature contribution analysis. Experimen-
tal results show that, given limited human-in-
the-loop intervention, our method is able to
identify erroneous model predictions on un-
seen data with high precision.

1 Introduction

Deep learning approaches, especially neural
network-based ones, have been widely employed
and proven effective in sentiment analysis tasks
(Rosenthal et al., 2017; Nakov et al., 2016). These
performance improvements, however, have come at
the cost of model transparency and accountability
(Inkpen et al., 2019). Many times, deep models
are being used as black-box tools by users, even
without knowing the model’s peculiarities as well
as limitations (Mojsilovic, 2018). In that sense,
users can be easily exposed to impropriety or error
predictions made in run time, and thus lose trust
towards the sentiment classification system.

Traditional evaluation metrics, such as accuracy
and F1-score, can explain the predictive perfor-
mance of a sentiment model. However, their ex-
planations are from an overall and reactive per-
spective, as they fail to provide insights into the

∗YG was affiliated with IBM Research - Almaden at the
time of the work reported in this paper.

details on when and why the sentiment models
fail in run-time (Nushi et al., 2018). Manual er-
ror analysis or heuristics-based error analysis are
also common methods for error identification, how-
ever, both of them requires either human interven-
tion or domain knowledge, either in the form of
labeled data (Stymne, 2011) or declarative informa-
tion (e.g., heuristics or knowledge bases) (Bassil
and Alwani, 2012). However, labeling instances
can be time and effort consuming, and pre-defined
knowledge applicable to a specific model is diffi-
cult to get. To address this concern, researchers and
practitioners have recently raised the need for devel-
oping more proactive error detection mechanisms
to increase the accountability of the sentiment clas-
sification systems while in use. Such accountability
mechanisms should be able to identify and measure
prediction errors as well as to provide prompt no-
tifications and rectification to the users (Crawford
et al., 2016).

With this challenge in mind, we introduce in
this study an explainable error detection frame-
work with human-in-the-loop for sentiment analy-
sis task. Specifically, as shown in Figure 1, given a
pre-trained black-box sentiment model, the error-
detection framework first analyzes local feature
contributions through a data perturbation process.
Next, the local feature contributions are aggregated
for global-level feature contributions. Later, hu-
mans are brought into the loop to assess the rele-
vance of the top ranked global features to the target
sentiment classes, and report errors if any. An er-
roneous score is calculated based on both global
and local features. Instances exhibiting erroneous
scores above a specific threshold are flagged as
problematic predictions. We demonstrate the error
detection framework on two sentiment test datasets.
From experimental results, we notice high error
detection precision of the proposed framework.

Our contributions are fourfold: First, we present
a high precision error detection framework for sen-

170

Figure 1: Overview of the explainable error detection
framework.

timent analysis task, which can proactively notify
users with prediction errors in run-time. Second,
the proposed framework calculates the likelihood
of concerns on model correctness in even unseen
cases. Third, erroneous predictions are identified
based on explainable features which allow the users
to easily understand why a prediction fails. Fourth,
the proposed error detection framework requires
little human effort in error detection by labeling on
the global feature level, rather than local instance
level.

2 Related Work

Error analysis and detection is important to build-
ing accountable AI models, as they allow individ-
uals to understand when and how predictions fail
(Nushi et al., 2018). The most intuitive error analy-
sis method is to evaluate the algorithms on a broad
set of performance metrics, such as, sensitivity and
specifity analysis (Harper et al., 2009). But their
explanations are from an overall and reactive per-
spective, as they fail to provide insights on each
specific instance level on unseen data. Manual error
analysis is another common approach, whereas it
requires significant human efforts and time, and is
not easy to scale. By taking prior knowledge, such
as semantic context, into consideration, heuristic-
based method brings context-based errors into prac-
tice (Bassil and Alwani, 2012). Comparing to
the manual error analysis, heuristic-based method
requires no human intervention. However, pre-
defined heuristics applicable to a specific model
is difficult to get. Uncertainty sampling (Settles,
2012) based on a model’s confidence scores to iden-
tify and label potential prediction errors. Although
no human effort is needed in this approach, its
performance is not always reliable. In addition, a
series of methods have recently been introduced to
identify model errors in a human-machine interac-

tive manner (Fiebrink et al., 2011; Chen et al., 2018;
Nushi et al., 2018). By adding humans into the
model evaluation step (Fails and Olsen Jr, 2003),
the proposed methods allowed the users to improve
the model performance iteratively, by identifying
model errors, providing new training data reward-
ingly, and retraining the model. Common limita-
tions of these human-in-the-loop based methods are
that, they require human labeling on the instance
level, which can be labor-intensive, and can not be
easily generalized to unseen data.

3 Methods

In this section, we present our framework to detect
errors in sentiment predictions with human-in-the-
loop in detail. Given a blackbox sentiment model
and a set of unseen test data, the proposed method
runs over the following four steps: 1) “local-level
feature contributions” module quantifies the feature
contributions to the prediction of each individual
target instance. 2) “global-level feature contribu-
tions” module characterizes the general effect of a
feature to the overall prediction across all instances.
3) “human assessment” module brings human into
the loop of error detection by allowing them to man-
ually label on an interpretable feature-level, instead
of instance-level, to save the labeling efforts. 4)
“global-local integration” module quantifies the er-
roneous probabilities of instance-level predictions
made by the model. With the erroneous probabil-
ities, the framework can send users with failure
alerts in prediction run-time on unseen sentiment
data.

3.1 Local-Level Explainable Feature
Contributions

Local-level feature explanations refers to the inter-
pretations used to justify why the model made a spe-
cific decision for a single instance. Many existing
approaches (Lundberg and Lee, 2017; Lakkaraju
et al., 2017) can be adopted for local interpretations.
Among the many existing explanation-generating
methods, we adopted LIME (Ribeiro et al., 2016)
as an example way for achieving local-level fea-
ture importance in the proposed framework. LIME
relies on random perturbation to artificially gener-
ate datasets around an instance and then using the
generated dataset to train local linear interpretable
models for single instance level explanations.

In the case of sentiment analysis, we chose uni-
grams as the explainable feature for LIME, as it is

171

the smallest unit of a text snippet carrying sufficient
information that can be reasonably interpreted by
human. We implemented linear regression as the
base model in LIME and applied it on our dataset,
and ranked the explainable features based on their
derived coefficients. An example of the local-level
feature contributions produced by LIME in our
case is presented in Figure 2, where the pre-trained
model’s prediction for sentence “Panera gives me
diarrhea.” in 2(a) is “positive”. The unigram fea-
ture “panera” contributes positively to the positive
prediction with a magnitude of 0.576, whereas “di-
arrhea” contributes negatively to the positive pre-
diction with a magnitude of 0.159. By observing
the local-level feature contributions, we can tell
that the model makes a prediction error by consid-
ering the word “panera” as a significant indicator
of the positive polarity, and thus led the model to
assign a positive label to the negative sentence.

Figure 2: Example of LIME generated local-level fea-
ture contributions.

3.2 Global-Level Explainable Feature
Contributions

Global-level explainable feature contribution
demonstrates how each explainable feature affects
the model’s prediction with regard to the whole
training samples, instead of individual instance
level predictions (Molnar, 2019). Achieving global-
level feature contributions (Molnar, 2019; Letham
et al., 2015; Arguello et al., 2009) can help ex-
tract more distilled knowledge for less human ef-
forts and can thus facilitates user’s understanding
of the whole prediction logic behind the model. In
the proposed framework, we ran the perturbation-
based analysis first on the local-level for all train-
ing samples (although it could be on testing as
well (Molnar, 2019)) by masking individual fea-
ture j, one at a time, from each data instance di,
i ∈ {0, 1, . . . , N}, which contains feature j. We
then calculated the absolute changes in the model’s
prediction probabilities associated with each class
label k ∈ {0, 1, . . . ,K} as:

P−j
i,k = |P (y = k|d−ji)− P (y = k|di)|

where P (y = k|di) is the pre-trained model’s
prediction probability with feature j, and P (y =
k|d−ji) is the probability without j. We denoted the
P−j
i,k as feature j’s local importance associated with

class k to data instance di. With all N instances
containing feature j, we finally aggregated the lo-
cal level importance of j to all di to a global level
as:

k∗ = argmax
k

1

N

N∑

i=1

P−j
i,k

and denoted class label k∗ with the maximum
average probability change as the direction of fea-
ture j’s contribution, and the associated P−j

k as its
contribution magnitude, where:

P−j
k =

1

N

N∑

i=1

P−j
k∗

The global importance measurement can be viewed
as an aggregation of the local contributions. The
underlying assumption behind this method is that
a feature is important, if removing it can change
the prediction probability significantly. Using the
unigram feature “underwhelming” as an example,
Figure 3 shows how the corresponding feature
magnitude and direction are achieved by using the
proposed method. Features were ranked in descend-
ing order according to their derived global contri-
bution magnitudes. This would allow us next to
show the more important features earlier to the hu-
man assessors, so as to help them identify the most
significant errors in the shortest time.

Figure 3: Perturbation-based method for achieving
global feature contributions.

172

3.3 Human-in-the-loop Assessment on
Global Errors

The human-in-the-loop assessment module re-
quires human assessors to screen the top N glob-
ally contributing features learnt from the previous
step with regard to their predicted sentiment labels.
Compared with labeling on an instance basis, fea-
ture level annotation could be a lot more efficient.
Although the top contributing features are not nec-
essarily error-prone, they are more likely to affect
the model’s overall performance and allow us to
zoom into erroneous model predictions in a more
efficient manner.

In the proposed algorithm, we asked the human
assessors to label on an unigram basis, given the fol-
lowing considerations: First, labeling on unigrams
may lead to more generalized outputs as compared
to labeling on bigrams/trigrams. Assuming that the
same number of erroneous features were identified
by the human assessors on both the unigram and
the bigram/trigram levels, more potentially erro-
neous instances containing the identified unigrams
could be found as compared to instances containing
the identified bigrams/trigrams, as they are often
too sparse or too content specific. Second, labeling
on unigrams may be less time and effort intensive,
as unigrams tend to be more interpretable to hu-
man assessors. If we choose any adjacent words as
our bigrams/trigrams, under many circumstances
we would not get meaningful phrases, on which
labeling could be difficult. Third, existing work
on constructing polarity lexicons with manual an-
notation decisions (Mohammad and Turney, 2013;
Rouces et al., 2018) were successfully performed
on the unigram basis.

To be more specific, in this step, human assessors
were asked to rate the correctness of the globally
learnt contribution directions (positive, negative or
neutral) of the top N unigrams. Given that the top
contributing unigrams were not context-specific or
sense-disambiguated, we followed the same heuris-
tic as in Rouces et al. (2018) by showing only the
definition of the first sense in WordNet (Miller,
1995) to the assessors for annotation purpose, as
the first sense is by design the most common mean-
ing of a word. For unigrams that can not be found
in WordNet, we showed the top definition from
Urban Dictionary 1 instead. An example annota-
tion task would be: for unigram feature “panera”,
we first displayed the word itself to the assessor,

1https://www.urbandictionary.com

followed by its first definition in Urban Dictionary,
and its contribution direction of being “positive” as
learnt from the global feature contribution step. We
then asked the assessors to rate their agreement on
“panera” with the definition “A clean, upscale chain
of restaurants primarily located on the eastern coast
of America” as of “positive” polarity on a 5-points
Likert scale (1: Strongly Disagree, 2: Agree, 3:
Neutral, 4: Disagree, 5: Strongly Disagree). As
acquiring assessment from experts would be expen-
sive, assessment can be done in a crowd-sourced
manner.

3.4 Global-Local Integration

The erroneous features recognized on the global
level could indeed help identify problematic predic-
tions on the unlabeled instances. However, flagging
error occurrence on individual instance level only
based on these problematic features may also be
unreliable. As shown in Figure 2, noticing “pan-
era” being incorrectly learned as “positive” could
help us accurately identify the wrong prediction of
sentence 2(a). However, its erroneous impact on
sentence 2(b) is disguised by the existence of the
other positive feature “good”, which were actually
learned correctly on the global level.

To more accurately identify the problematic pre-
dictions on unlabeled instances, in this step we
proposed a measurement metric called the local er-
roneous score e, to determine the relative impact of
the global erroneous features on the local level. e
was calculated as a normalized version of the accu-
mulated error contributions induced by the globally
identified problematic features:

e =

∑m
i=1 c

∗
j∑n

i=1 c
+
i

where c∗j ∈ [−1, 1] represents the local contri-
bution of the erroneous feature j on the specific
instance, and m indicates the total number of erro-
neous features identified from the global perspec-
tive. c+i ∈ (0, 1] represents the local contribution
of the feature i, whose contribution direction is the
same as the final prediction. n specifies the total
number of positively contributed features. The lo-
cal erroneous score e has the value between −∞
to 1. By applying the proposed equation on the
two examples as shown in Figure 2, we can see
that sentence 2(a) derived a much higher local erro-
neous score of 0.926, than sentence 2(b) of score
0.502. This demonstrated the effectiveness of the

173

proposed measurement in terms of error detection.
A pre-defined threshold τ is set by the user, and
only instances with e > τ would be retrieved as
problematic predictions.

4 Experiment Settings

To test our error detection framework, we first cre-
ate a three-class sentiment classifier, and later treat
it as a black-box “pre-trained” model for error
detection. We implemented the classifier using
a replication of the multichannel CNN model in-
troduced by Kim (2014), although any algorithm
can be applied here as the black-box pre-trained
model. The training data contains 2,265,413 pos-
itive, 2,704,587 negative, and 2,297,426 neutral
cases. They were collected from various sources,
ranging from high-quality human-labeled instances
to pseudo-labeled instances annotated using emoji
or hashtag based indicators (Novak et al., 2015).
We evaluated the model on the test dataset of Se-
mEval2016 Task 4 Subtask A (Nakov et al., 2016).
Our model achieved a FPN1 of 0.345, and a three-
class prediction accuracy of 0.463, which is com-
parable to many of the SemEval2016 participation
systems.

We calculated the local and global feature con-
tributions using the training dataset and performed
the human-in-the-loop assessment on Figure Eight
2. We extracted the top 2,000 non-neutral features
with the highest global contribution magnitudes to
human assessors to determine their global correct-
ness. We chose only non-neutral features for error
assessment as polarity errors, such as predicting
positive as negative or vice versa, can greatly im-
pact user’s trust towards the model, and we want to
focus more on such extreme cases for error detec-
tion. 5 unigrams were shown in 1 annotation page
and gold questions (easy questions with known an-
swers, e.g. “happy” with the definition “enjoying
or showing or marked by joy or pleasure” as “pos-
itive” polarity) were embedded on each page for
quality check. For each unigram feature, we re-
cruited in total 5 assessors who had to be native
English speakers, with the highest level of experi-
ence. For all 2,000 unigram features, we collected
in total 10,155 judgements within 1 hour. Among
them only 155 (1.5%) were from untrusted asses-
sors, who have been excluded during the annota-
tion process. This indicated the relative easiness
of feature labeling for sentiment task for even non-

2https://www.figure-eight.com/

expert assessors. We obtained the annotations for
1,725 out of the 2,000 assessed unigrams and con-
verted them into binary cases (agree or disagree,
86.25% inter-rater agreement), where at least 3 as-
sessors agree on the same answer. Among them
161 were found to be wrongly learned by the pre-
trained black-box model. Global-level features in-
clude “kashmir”, “midterm”, “dems”, “netflix” was
being wrongly predicted by the model as “nega-
tive”, whereas “wingstop”, “panera”, “minister”,
“popeyes” as “positive”. All 161 global-level prob-
lematic features would then be passed to the next
step to guide the instance-level error identification.

To assess the method’s effectiveness, we applied
the proposed error detection framework first on the
test dataset of SemEval2016 Task 4 Subtask A. We
found 932 instances containing at least one of the
globally identified problematic features. Thus, we
only calculated the local erroneous score e for the
932 cases. Given that the SemEval dataset only
covers a subset (60/161) of the erroneous unigrams,
we prepared another dataset customized just for
better understanding of the precision of the pro-
posed framework. Specifically, we adopted the
161 problematic unigrams as search keywords to
collect tweets using Twitter Search API. For each
keyword we collected up to 50 most recent tweets.
We cleaned the collected dataset by removing du-
plicate tweets and tweets with URL, assuming that
they have a higher probability of being spam. In to-
tal, we collected 3,111 instances in this customized
Twitter testing dataset.

For both datasets, we extracted all instances with
e > τ . For the self-collected Twitter data, we ac-
quired the ground truth labels from the crowd on
Figure Eight. We reported the precision of the pro-
posed method at different settings of the threshold
τ , to understand its impacts on the framework’s
performance.

We adopted uncertainty sampling as the base-
line to evaluate the performance of the proposed
error detection framework. We adopted the least
confidence as the measurement in this experiment,
which is based on the difference between the most
confident prediction and 100% confidence. In
other words, for a three-class classification task,
the model is most unconfident when having the
maximum prediction probability around 0.33. We
applied uncertainty sampling just on the complete
SemEval test data, assuming no filtering at all was
applied on the original dataset. We extracted in-

174

stances with the lowest prediction confidence as
under-trained cases and compared the precision@K
for both the baseline method and the proposed
method.

5 Results

In Figure 4, we plotted the error detection precision
for the proposed method on both datasets, along
with varied thresholds of τ ranging from 0 to 0.4.
We set the upper bound τ to 0.4 instead of 1, since
only very limited number of instances (sizes with
no or little statistical meaning) were detected for
the SemEval dataset when τ ≥ 0.5.

Figure 4: Precision for the error detection framework
with varied threshold settings.

As can be seen from Figure 5, even when the
threshold τ was set to a low score of 0, the pro-
posed error detection framework can still achieve
relatively high precision scores for both datasets.
Specifically, for the SemEval dataset, with τ = 0,
the proposed framework indicated 48.9% of all pre-
diction instances as erroneous predictions. Among
these flagged instances, 67.7% were proved to be
truly problematic according to the ground truth la-
bels. The same pattern was also noticed for the
self-collected Twitter dataset, when τ = 0, the
proposed method detected in total 57.9% suspi-
cious predictions, and 70.5% of them were proved
to be truly problematic. Looking further, we ob-
served that the error detection framework became
even more precise, as we incrementally increased
the value of τ . It reached the highest precision of
85.9% for the SemEval and 90.8% for the Twit-
ter dataset when τ = 0.4. But obviously these
increases in precision were achieved with a trade-
off of the degradation in the number of detected
problematic predictions.

Considering our ultimate goal of altering users
of potential prediction errors, we next compared
the proposed error detection framework with un-

K Uncertainty Human-in-the-loop
100 0.710 0.820
200 0.685 0.805
300 0.686 0.750
400 0.692 0.698

Table 1: Precision@K for uncertainty sampling and
the proposed error detection method with human-in-
the-loop.

certainty sampling based on precision@K. Preci-
sion@K is a widely adopted evaluation metric in
information retrieval tasks. It is being defined here
as the proportion of identified erroneous cases that
are real errors in the top K retrieved results. We
chose K ranging from 100 to 400, as only 455 pre-
dictions are being identified as problematic with
τ ≥ 0. Table 1 shows the precision@K for both
uncertainty sampling and the proposed approach.

As can be noticed in Table 1, when alerting the
users with the top 100 identified error predictions,
the proposed error detection method with human-
in-the-loop showed significant performance advan-
tage over uncertainty sampling with a 0.110 preci-
sion gap. Such advantages gradually decreased
as K became larger (more relaxed τ). When
K = 400, the prediction probability threshold for
uncertainty sampling equaled to 0.393, and the pre-
cision gap between the two methods decreased to
0.006.

In addition to precision, we were also interested
in knowing if the proposed method was able to
catch errors that can not be detected by the uncer-
tainty sampling baseline. To achieve this goal, we
plotted in Figure 5 the distribution of the prediction
probabilities of the erroneous cases identified by
the proposed framework when τ = 0.4. From Fig-
ure 5, we found that about 40% of the erroneous
instances detected by the proposed method were
associated with prediction probabilities of larger
than 0.7. In other words, this means that the model
is quite confident about those predictions and un-
certainty sampling would hardly treat them as po-
tential errors. In that sense, we conclude that the
proposed framework is able to detect errors even
when the prediction confidence is high.

6 Discussion and Conclusion

Our work was motivated by the practical concerns
of not knowing the limitations or potential errors
of a sentiment model prior to deployment, and not
being able to notify or even rectify when erroneous
predictions were made once deployed. Driven by

175

Figure 5: Uncertainty probability distribution for erro-
neous cases when τ = 0.4.

this demand, in this paper, we presented a frame-
work for identifying prediction errors in an inter-
pretable manner for sentiment analysis tasks. We
validated the proposed error detection framework
on two different datasets. Results showed that the
proposed method can identify problematic model
predictions with high precision, which is critical
to continuous model refinement. While compar-
ing the proposed approach with the baseline, we
noticed that our method can also be adopted as a
selective sampling approach, in addition to uncer-
tainty sampling. Besides, given that the proposed
error detection framework can be applied on unseen
data without ground truth, it can proactively notify
users about possible erroneous decisions made by
the model in prediction run-time.

In addition to its effectiveness, the proposed
error detection framework can also be easily ex-
plained to the users. Globally, the proposed frame-
work allows the users to understand the overall
contribution of a word to the final predictions made
by the black-box sentiment model. Besides, as
demonstrated in our results, global-level contribu-
tions can also be useful for identifying potential
bias existed in the model. For instance, we noticed
that “netflix”, “dems”, and “palestine” were being
learned as “negative” in our pre-trained sentiment
model. While integrating global-level problematic
features with local-level predictions, the proposed
erroneous score enables users to know why that spe-
cific prediction could be wrong or biased and how
much the problematic global feature contributed to
the erroneous or biased prediction. Certainly, more
work is needed on how the proposed framework
can be generalized to the task of bias detection.

Furthermore, the proposed framework efficiently
integrated human into the loop of model valida-
tion and refinement. Comparing with the previous
methods, our approach allows the human annota-

tors to label on the explainable feature level, rather
than on the instance level, which can significantly
save their time and effort. Regarding the annota-
tion quality of the feature level labeling, our results
showed that even non-expert crowd workers can
accurately finish the assessment tasks with high
inter-rater agreement in a very short period of time.

Finally, our work comes with certain limitations.
One of them is the relatively small number of
global features (2,000) that were labeled by the
human assessors in this work. To some extent, this
limited us from evaluating the presented error de-
tection framework from more angels other than
precision, although precision is the most important
measurement for error detection. Annotations on
larger scales will be conducted in later studies and
the effectiveness of the proposed framework will be
evaluated from more angels. Besides, future works
will also be conducted on investigating how these
identified erroneous instances or features could be
used for further fixing or debugging the pre-trained
models.

References
Jaime Arguello, Jamie Callan, and Fernando Diaz.

2009. Classification-based resource selection. In
Proceedings of the 18th ACM conference on Infor-
mation and knowledge management, pages 1277–
1286. ACM.

Youssef Bassil and Mohammad Alwani. 2012. Ocr
post-processing error correction algorithm using
google online spelling suggestion. arXiv preprint
arXiv:1204.0191.

Nan-Chen Chen, Jina Suh, Johan Verwey, Gonzalo
Ramos, Steven Drucker, and Patrice Simard. 2018.
Anchorviz: Facilitating classifier error discovery
through interactive semantic data exploration. In
23rd International Conference on Intelligent User
Interfaces, pages 269–280. ACM.

Kate Crawford, Meredith Whittaker, Madeleine Clare
Elish, Solon Barocas, Aaron Plasek, and Kadija Fer-
ryman. 2016. The ai now report: The social and
economic implications of artificial intelligence tech-
nologies in the near-term. In AI Now public sym-
posium, hosted by the White House and New York
University’s Information Law Institute, July 7th.

Jerry Alan Fails and Dan R Olsen Jr. 2003. Interac-
tive machine learning. In Proceedings of the 8th in-
ternational conference on Intelligent user interfaces,
pages 39–45. ACM.

Rebecca Fiebrink, Perry R Cook, and Dan Trueman.
2011. Human model evaluation in interactive super-
vised learning. In Proceedings of the SIGCHI Con-

176

ference on Human Factors in Computing Systems,
pages 147–156. ACM.

F Maxwell Harper, Daniel Moy, and Joseph A Kon-
stan. 2009. Facts or friends?: distinguishing infor-
mational and conversational questions in social q&a
sites. In Proceedings of the sigchi conference on hu-
man factors in computing systems, pages 759–768.
ACM.

Kori Inkpen, Stevie Chancellor, Munmun De Choud-
hury, Michael Veale, and Eric PS Baumer. 2019.
Where is the human?: Bridging the gap between ai
and hci. In Extended Abstracts of the 2019 CHI Con-
ference on Human Factors in Computing Systems,
page W09. ACM.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and
Jure Leskovec. 2017. Interpretable & explorable ap-
proximations of black box models. arXiv preprint
arXiv:1707.01154.

Benjamin Letham, Cynthia Rudin, Tyler H Mc-
Cormick, David Madigan, et al. 2015. Interpretable
classifiers using rules and bayesian analysis: Build-
ing a better stroke prediction model. The Annals of
Applied Statistics, 9(3):1350–1371.

Scott M Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in Neural Information Processing Systems,
pages 4765–4774.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Aleksandra Mojsilovic. 2018. Factsheets for
ai services. Retrieved August 22, 2019
from https://www.ibm.com/blogs/
research/2018/08/factsheets-ai/.

Christoph Molnar. 2019. Interpretable Machine
Learning. https://christophm.github.
io/interpretable-ml-book/.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. Semeval-
2016 task 4: Sentiment analysis in twitter. In Pro-
ceedings of the 10th international workshop on se-
mantic evaluation (semeval-2016), pages 1–18.

Petra Kralj Novak, Jasmina Smailović, Borut Sluban,
and Igor Mozetič. 2015. Sentiment of emojis. PloS
one, 10(12):e0144296.

Besmira Nushi, Ece Kamar, and Eric Horvitz. 2018.
Towards accountable ai: Hybrid human-machine
analyses for characterizing system failure. In
Sixth AAAI Conference on Human Computation and
Crowdsourcing.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should i trust you?: Explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135–1144. ACM.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
Semeval-2017 task 4: Sentiment analysis in twitter.
In Proceedings of the 11th international workshop
on semantic evaluation (SemEval-2017), pages 502–
518.

Jacobo Rouces, Nina Tahmasebi, Lars Borin, and
Stian Rødven Eide. 2018. Generating a gold stan-
dard for a swedish sentiment lexicon. In Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018).

Burr Settles. 2012. Active learning. Synthesis Lec-
tures on Artificial Intelligence and Machine Learn-
ing, 6(1):1–114.

Sara Stymne. 2011. Blast: A tool for error analysis
of machine translation output. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies: Systems Demonstrations, pages 56–61. Associ-
ation for Computational Linguistics.

177

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 178–186
June 6–11, 2021. ©2021 Association for Computational Linguistics

Technical Question Answering across Tasks and Domains

Wenhao Yu†, Lingfei Wu‡, Yu Deng‡, Qingkai Zeng†,
Ruchi Mahindru‡, Sinem Guven‡, Meng Jiang†
†University of Notre Dame, Notre Dame, IN, USA

‡IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA
†{wyu1, qzeng, mjiang2}@nd.edu

‡{wuli, dengy, rmahindr, sguven}@us.ibm.com

Abstract

Building automatic technical support system is
an important yet challenge task. Conceptually,
to answer a user question on a technical forum,
a human expert has to first retrieve relevant
documents, and then read them carefully to
identify the answer snippet. Despite huge suc-
cess the researchers have achieved in coping
with general domain question answering (QA),
much less attentions have been paid for in-
vestigating technical QA. Specifically, existing
methods suffer from several unique challenges
(i) the question and answer rarely overlaps sub-
stantially and (ii) very limited data size. In this
paper, we propose a novel framework of deep
transfer learning to effectively address tech-
nical QA across tasks and domains. To this
end, we present an adjustable joint learning
approach for document retrieval and reading
comprehension tasks. Our experiments on the
TechQA demonstrates superior performance
compared with state-of-the-art methods.

1 Introduction

Recent years have seen a surge of interests in build-
ing automatic technical support system, partially
due to high cost of training and maintaining hu-
man experts and significant difficulty in providing
timely responses during the peak season. Huge
successes have been achieved in coping with open-
domain QA tasks (Chen and Yih, 2020), especially
with advancement of large pre-training language
models (Devlin et al., 2019). Among them, two-
stage retrieve-then-read framework is the main-
stream way to solve open-domain QA tasks, pi-
oneered by (Chen et al., 2017): a retriever com-
ponent finding a document that might contain an
answer from a large collection of documents, fol-
lowed by a reader component finding the answer
snippet in a given paragraph or a document. Re-
cently, various pre-training language models (e.g.,
BERT) have dominated the encoder design for solv-
ing different open-domain QA tasks (Karpukhin

How many provinces did the Ottoman empire contain in 17th century?
... … At the beginning of the 17th century the Ottoman empire contained 32

provinces. Some of these were later absorbed into the Ottoman Empire, while others … …

How can uninstall Data Studio 3.1.1 where Control Panel uninstall process gets an error?

Question
We are able to install Data Studio (DS) 4.1.2 successfully but unable to uninstall the
existing Data Studio 3.1.1. When uninstall Data Studio 3.1.1 from Control Panel, it raises
an error message pop-up window and can not uninstall it. Here is the message: |Java
Virtual Machine Launcher| X Could not find the main class: com.zerog.lax.LAX. Program
will exit. How can uninstall Data Studio 3.1.1 where Control Panel process gets an error?

Cause
It is an known behavior/limitation.

Answer
It may be happened where two versions Data Studio 3.1.1 and 4.1.2 installed machine.
Here is an workaround. Please try to uninstall all products including Install Manager
(IM) then reinstall IM and Data Studio 4.1.2. Below are detailed steps:

1. Use IM to uninstall as many packages as possible.

2. Identify the packages that are still installed, and manually clean
them up.
Example on Windows:
- C:\Program Files\IBM\{IBMIMShared | SDPShared}

3. Delete IBM Installation Manager.
Example on Windows:
- Delete the IM install directory:
C:\Program Files\IBM\Installation Manager\
- Delete the AppData directory (IM Agent Data):
Windows 7: C:\ProgramData\IBM\Installation Manager
- Delete the Windows registry (regedit) entry :
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\Installation Manager
- re-install IM

4. Reinstall DS 4.1.2 and other products.

[User Question] We use Data Studio 3.1.1.0
with DB2 WSE V9.7 FP11 on Windows

2008. While trying to new version of Data Studio
4.1.2, we are able to install it successfully. But
unable to remove the existing 3.1.1.0, getting the
JVM error "Could not find the main class". Is it a
bug or something? How we can delete it?

[Answer] Please try to uninstall all products
including Install Manager (IM) then reinstall
IM and Data Studio 4.1.2.

[TechNote]

Please try to uninstall all products including Install
Manager (IM) then reinstall IM and Data Studio 4.1.2.

[A Wiki Article]
[A Factoid Question]

(a) A factoid QA example in the SQuAD dataset.

(b) A non-factoid QA example in the TechQA dataset.

Figure 1: Factoid QA is semantic aligned but non-
factoid QA has few overlapping words. Semantic simi-
larities between such non-factoid QA is not indicative.

et al., 2020; Xiong et al., 2020).

Despite the tremendous successes achieved in
general QA domain, technical QA have not yet
been well investigated due to several unique chal-
lenges. First, technical QAs are non-factoid. The
question and answer can hardly overlap substan-
tially, because the answer typically fills in missing
information and actionable solutions to the ques-
tion such as steps for installing a software package
and configuring an application. Different from fac-
toid questions that are typically aligned with a span
of text in document (Rajpurkar et al., 2016, 2018),
semantic similarities between such non-factoid QA
pairs could have a large gap as shown in Fig.1.
Therefore, the retrieval module in retrieve-then-
read framework might find documents that do not
contain correct answers due to the semantic gap
in non-factoid QAs (Karpukhin et al., 2020; Lee
et al., 2019; Yu et al., 2020b). Second, compared to
SQuAD (with more than 100,000 QA pairs), techni-
cal domain datasets typically have a much smaller
number of labelled QA pairs (e.g., about 1,400 in
TechQA), partially due to the prohibitive cost of
creating labelled data. In addition, there are lim-
ited real user questions and technical support docu-
ments, especially for some new tech products and

178

communities. Since the pre-trained language mod-
els are mainly trained on general domain corpora,
directly fine-tuning pre-trained language models
may lead to unsatisfying performance due to the
large discrepancy between source tasks (general do-
mains) and target tasks (technical domains) (Chang
et al., 2020; Gururangan et al., 2020).

To address the aforementioned challenges, we
propose a novel deep transfer learning framework
that explores knowledge transfer across tasks and
domains (TransTD). TransTD consists of two com-
ponents: TransT (knowledge transfer across tasks)
and TransD (knowledge transfer across domains).
TransTD jointly learns snippet prediction (reading
comprehension) task and matching prediction (doc-
ument retrieval) task simultaneously, applying it on
both general domain QA and target domain QA.

To address the first challenge of non-factoid QAs,
TransT leverages a joint learning model that di-
rectly ranks all predicted snippets by reading each
pair of query and candidate document. It optimizes
matching prediction and snippet prediction in par-
allel. Compared to two-stage retrieve-then-read
methods that only read most semantically related
documents, TransT considers potential snippets in
every candidate document. When jointly training
these two tasks, snippet prediction pays attention
to local correspondence and matching prediction
helps understand the semantic relationship from a
global perspective, allowing the multi-head atten-
tions in BERT-based encoders to jointly attend to in-
formation from different representation subspaces
at different positions. Besides, the weights of two
training objectives can be dynamically learned to
pay more attention on the more difficult task when
training different data samples.

To address the second challenge of learning with
limited data, TransD leverages a deep transfer learn-
ing model to transfer knowledge from general do-
main QAs to technical domain QAs. General do-
main QA dataset like SQuAD has a much larger
data size and a similar task setting (i.e., snippet
prediction). Though knowledge is different be-
tween two domains, by learning the ability to an-
swer questions in general domains, the model can
quickly adapt and learn efficiently when chang-
ing into a new domain, reflected in faster conver-
gence and better performance. Transfer learning
helps avoid overfitting on technical QAs with lim-
ited size of data. Specifically, our model first ap-
plies the multi-task joint learning in general domain

QAs (SQuAD), then transfers model parameters
to initialize the training in the target domain QAs
(TechQA), making knowledge transfer across do-
mains to address data limitation.

We conducted extensive experiments on the
TechQA dataset and utilized BERT as basic models.
Experiments show that TransTD can provide supe-
rior performance than models with no knowledge
transfer and other state-of-the-art methods.

2 Related Work

Open-Domain QA Open-domain textual ques-
tion answering is a task that requires a system to
answer factoid questions using a large collection of
documents as the information source, without the
need of pre-specifying topics or domains (Chen and
Yih, 2020). Two-stage retriever-reader framework
is the mainstream way to solve open-domain QA,
pioneered by (Chen et al., 2017). Recent work has
improved this two-stage open-domain QA from dif-
ferent perspectives such as novel pre-training meth-
ods (Lee et al., 2019; Guu et al., 2020), semantic
alignment between question and passage (Lee et al.,
2019; Karpukhin et al., 2020; Wu et al., 2018),
cross-attention based BERT retriever (Yang et al.,
2019; Gardner et al., 2019), global normalization
between multiple passages (Wang et al., 2019).

Transfer Learning Transfer learning studies
how to transfer knowledge from auxiliary domains
to a target domain (Pan and Yang, 2009; Jiang
et al., 2015; Yao et al., 2019). Recent advances
of deep learning technologies with transfer learn-
ing has achieved great success in a variety of NLP
tasks (Ruder et al., 2019). Several research work in
this domain greatly enrich the application and tech-
nology of transfer learning on question answering
from different perspectives (Min et al., 2017; Deng
et al., 2018; Castelli et al., 2020; Yu et al., 2020a).
Although transfer learning has been successfully
applied to various QA applications, its applicability
to technical QA has yet to be investigated. In this
work, we focus on leveraging transfer learning to
enhance QA in tech domain.

3 Research Problem

In the technical support domain, suppose we have
a set of questions Q and a large collection of doc-
uments D. For each question Q ∈ Q, we aim at
finding a relevant document D ∈ D and extract-
ing the snippet answer S = (Dstart, Dend) in the

179

document D. Note that the answer may not exist,
and so, the relevant document may not exist, either.
All predicted snippets are ranked by a specific span
score calculation method, and (usually) the top-11

answer span is chosen to answer the given question.

4 Proposed Framework

In this section, we present our proposed frame-
work for technical QA. Given a query, we first
obtain 50 Technotes by issuing the query to the
search engine Elasticsearch2. Instead of using a
document retriever based on semantic similarity be-
tween the query and each document, our proposed
TransTD jointly optimizes snippet prediction and
matching prediction in a parallel style. Figure 2
illustrates the design of the framework. It has a
multi-task learning method to transfer knowledge
across the snippet prediction (reading comprehen-
sion) and matching prediction (document retrieval)
tasks. This method is further applied to pre-train
the model on auxiliary domain QAs3. Furthermore,
the weights of two training objectives are dynami-
cally adjusted by calculating the difference between
real answer snippet and predicted snippet. So, the
model can focus on optimizing the more difficult
task when training different data samples. Lastly,
Our model has a novel snippet ranking function
that uses snippet prediction to obtain an alignment
score and linearly combines it with the matching
prediction score.

4.1 Knowledge Transfer across Tasks

We build our model upon BERT (Devlin et al.,
2019) to jointly optimize on the RC and DR tasks.
Suppose Θ has the BERT encoder parameters.
When we apply domain knowledge transfer, which
will be introduced in the following section, we ini-
tialize it with the parameters Θ(aux) trained on the
auxiliary domain; when we do not apply the trans-
fer, we initialize it with the original pre-trained
BERT parameters. We have two multi-layer per-
ceptron (MLP) classifiers for the two tasks, whose
parameters are denoted by θRC and θDR, respec-
tively. Both classifiers are randomly initialized.
More specifically, the RC classifier is to predict
answer snippets, and the DR classifier is to predict

1Since technical domain RC is extremely difficult, we also
evaluate performance on top-5 predictions in our experiments.

2Elasticsearch – https://www.elastic.co/elasticsearch/
3In our work, auxiliary domain QAs are from general

domain QAs, so we use these two words interchangeably.

document matching. The joint loss is as follows:

L(aux) = LRC(Θ(aux), θ
(aux)
RC)

+λ(aux) · LDR(Θ(aux), θ
(aux)
DR),(1)

where λ is a hyper-parameter for the weight of the
DR task over RC task.

Calculate adjustment factor As shown in
Eq.(1), the weights between two training objec-
tives are only adjusted by a pre-determined hyper-
parameter λ. However, for different samples in the
dataset, the difficulty of learning snippet prediction
and matching prediction is different. The weight
of two training objectives should be dynamically
adjusted so that the model can focus on optimiz-
ing the more difficult task when training different
data samples. Since non-factoid questions are open-
ended questions that often require complex answers
that are mostly sentence-level texts, positional re-
lationships between start token and end token in
answer snippets have more fluctuations than fac-
toid answers. Therefore, we take the difference
between real answer snippet and predicted snippet
to measure the difficulty of snippet prediction. In-
tuitively, when the predicted answer snippet is sig-
nificantly different from the actual answer snippet
(much larger or much smaller), it indicates snippet
prediction is difficult for the current data sample.
So, the model should focus on optimizing the read-
ing comprehension part. On the contrary, the model
should focus on optimizing the document retrieval
part. Formally, the weight-adjustable joint learning
loss function is defined as:

L(aux) = w · LRC(Θ(aux), θ
(aux)
RC)

+λ(aux) · LDR(Θ(aux), θ
(aux)
DR),(2)

w = exp(|(Dend−Dstart)−(D̂end−D̂start)|
Dend−Dstart). (3)

4.2 Knowledge Transfer across Domains
Besides transferring across tasks, in our framework,
we employ knowledge transfer across domains. We
identify a dataset from an auxiliary domain (not a
technical support domain) for technical question
answering like SQuAD. We apply the multi-task
learning to the auxiliary domain. The goal is to
learn BERT encoder parameters Θ(aux) and two
MLP classifiers θ(aux)

RC and θ(aux)
DR :

L(aux) = LRC(Θ(aux), θ
(aux)
RC)

+λ(aux) · LDR(Θ(aux), θ
(aux)
DR),(4)

180

TCLS TQB TSEP

ECLS EQB ESEP

CLS QBody SEP

TQT

EQT

QTitle

TD TSEP

ED ESEP

Docu. SEP

BERT

knowledge
transfer
across
domains

Matching Prediction
(Document Retrieval)

TCLS TQB TSEP

ECLS EQB ESEP

CLS QBody SEP

TQT

EQT

QTitle

TD TSEP

ED ESEP

Docu. SEP

BERT

TECHQASQuAD

Answer Snippet Prediction
(Reading Comprehension)

knowledge transfer
across tasks

Matching Prediction
(Document Retrieval)

Answer Snippet Prediction
(Reading Comprehension)

knowledge transfer
across tasks

Figure 2: Our framework performs knowledge transfer across tasks and domains. It explores the mutual en-
hancement between the snippet prediction (reading comprehension) and matching prediction (document retrieval),
applying multi-task learning to the BERT models on both auxiliary domain (SQuAD) and target domain (TechQA).

Here the encoder is initialized by the original pre-
trained BERT parameters. We will initialize the
BERT encoder in the target domain Θ with Θ(aux)

(used in TransTD-Mean and TransTD-CLS). When
λ(aux) = 0, we apply the single RC task on the
auxiliary domain (used in TransTD-single).

4.3 Framework Components
Question and Document Encoder Given a pair
of question Q and document D, we first build
a concatenation by [[CLS], Q, [SEP], D, [SEP]],
where [CLS] stands for a classification token and
[SEP] separates components in the sequence. The
BERTΘ encoder generates contextualized repre-
sentations of every token X in the input sequence
q, which is denoted by BERTΘ(q)[X] ∈ Rd,
where d = 1024. So we have a matrix of to-
ken representations H ∈ Rm×d, where H(k) =
BERTΘ(q)[q[k]] (k is the index of the token).

Reader MLP This classifier reads the represen-
tation matrix H and computes the score of each
token being the start token in the answer snippet
pstart ∈ Rm and the score of each token being the
end token pend ∈ Rm.

pstart = wstart ·HT, pend = wend ·HT, (5)

where wstart,wend ∈ Rd are trainable parameters.
We have the snippet SRC = (D̂start, D̂end) as

D̂start = argmaxk∈{1,...,m}pstart[k], (6)

D̂end = argmaxk∈{1,...,m}pend[k]. (7)

Matching MLP Suppose we have the represen-
tation of the sequence q. It can be denoted by

h ∈ Rd. The classifier is to predict whether the
question Q and document D are aligned, which is
a binary variable projected from h:

pDR = σ(wDR · h), (8)

where σ is the sigmoid function and wDR ∈ Rd
are trainable parameters. We have two options to
produce h from the input sequence q. The first op-
tion is to apply mean pooling to the representations
of all tokens (used in TransTD-Mean):

h = MEAN({BERTΘ(q)[X]|X ∈ q}). (9)

The second option is to use the classification token
[CLS] (used in TransTD-CLS):

h = BERTΘ(q)[CLS]. (10)

Joint Inference The reading MLP takes question
and document pairs and predicts a reading score,

Sreader = (pstart[Ds] + pend[De])

−(pstart[0] + pend[0]). (11)

where p(·)[0] denotes the probability of taking first
token of the sequence as the start position or end
position of the snippet. The joint ranking score of
a (Q, D) pair is a linear combination of reading
score and matching score,

S = α · pDR + (1− α) · Sreader. (12)

It should be noted that different
from previous work that only lever-
ages the first term in reading score, i.e.,

181

Table 1: Statistics of TechQA. The test set is not publicly available, only allowing people to submit models for
evaluation. The length of TechNotes is much bigger than that of question and answer texts.

#Ques. (answerable/non-ans.) #TechNotes Len-Ques. Len-Ans. Len-Notes

Train 600 (450 / 150) 30,000 52.1±31.6 48.1±38.7 433.9±320.6
Dev. 310 (160 / 150) 15,500 53.1±30.4 41.2±27.7 449.1±351.2
Test 490 24,500 - - -

Table 2: Ablation study on knowledge transfer across tasks and across domains on TechQA. TransTD transfers
knowledge across both tasks and domains, and TransTD+ is further improved by the adjustable weight.

Methods Adjustable Source task(s) Target task(s)
Reading Comprehension Document Retrieval

Ma-F1 HA-F1@1 HA-F1@5 MRR R@1 R@5

BERTDR - 8 - DR - - - 55.80 45.58 58.23
BERTRC - 8 - RC 52.49 24.92 37.26 51.20 48.13 56.25

TransD
- 8 RC DR - - - 60.63 58.13 64.38
- 8 RC RC 55.31 34.69 50.52 64.60 60.63 68.23

TransT
CLS 8 - RC+DR 53.43 26.83 38.50 51.19 46.88 56.88
Mean 8 - RC+DR 52.30 26.28 41.50 52.68 47.50 59.35

TransTD
CLS 8 RC+DR RC+DR 56.43 39.12 52.30 66.79 64.38 70.63
Mean 8 RC+DR RC+DR 56.88 37.96 49.83 67.55 67.50 69.38

TransTD+ CLS 4 RC+DR RC+DR 56.66 38.33 50.95 67.80 65.00 72.50
Mean 4 RC+DR RC+DR 58.58 40.28 52.57 67.98 66.88 73.13

Table 3: TransTD outperforms two-stage retrieve-then-
read methods that retrieve document based on semantic
alignment. k is the number of retrieved documents.

Method Setting Ma-F1 HA-F1@1 R@1

BERTserini (Yang et al., 2019) k=1 51.34 15.23 30.00
(with BM25 as retriever) k=5 56.60 28.31 48.75

DPR (Karpukhin et al., 2020) k=1 53.22 15.57 26.25
(w/o pre-trained retriever) k=5 56.47 30.40 47.50

DPR (Karpukhin et al., 2020) k=1 54.82 19.46 30.63
(with pre-trained retriever) k=5 58.56 33.03 53.13

TransTD-Mean+ (Ours, Swith) - 58.58 40.28 66.88

Sreader = (pstart[Ds] + pend[De]) (Xiong
et al., 2020; Qu et al., 2020), our added second
term improved inference performance. This is
because during the training time, the span label
of a document that does not contain an answer is
set to (0, 0), and such negative documents are the
majority. Therefore, (pstart[0] + pend[0]) reflects
the probability that Q and D is not aligned. See
Table 4 for experimental comparisons.

5 Experiments

5.1 TechQA Dataset

The TechQA dataset (Castelli et al., 2020) con-
tains actual questions posed by users on the IBM
DeveloperWorks forums. TechQA is designed for

Table 4: Our proposed snippet ranking function can
bring additional improvements. Using (ps[0] + pe[0])
reflects the degree of misalignment between Q and D.

Snippet ranking method Ma-F1 HA-F1@1 R@1

MP-BERT (Wang et al., 2019)
49.45 24.65 43.75

(SMP-BERT = pDR · ps · pe)

WKLM (Xiong et al., 2020)
57.82 39.71 66.25

(SBERT = α · pDR + ps + pe)

Ours (w/o document score) 58.58 40.28 65.00
(Sw/o = ps + pe − ps[0]− pe[0])

Ours (with document score) 58.58 40.28 66.88
(Swith = α · pDR + Sw/o)

machine reading comprehension tasks, Each ques-
tion is associated with a candidate list of 50 Tech-
notes obtained by issuing a query on the search
engine Elasticsearch4. A question is answerable if
an answer snippet exists in the 50 Technotes, or is
unanswerable otherwise. Data statistics are given
in Table 1. In TechQA, the training set has 600
questions in which 450 questions are answerable;
the validation set has 310 questions in which 160
questions are answerable; the test set has 490 ques-
tions. The Technotes are usually of greater length
than question and answer texts.

4https://www.elastic.co/elasticsearch/

182

30

32

34

36

38

40

2 3 4 5 6

Pe
rfo

rm
an

ce
 (%

)

λ

HA_F1@1
45

47

49

51

53

55

2 3 4 5 6

Pe
rfo

rm
an

ce
 (%

)

λ

HA_F1@5
58

60

62

64

66

68

2 3 4 5 6

Pe
rfo

rm
an

ce
 (%

)

λ

DR_R@1
63

65

67

69

71

73

2 3 4 5 6

Pe
rfo

rm
an

ce
 (%

)

λ

DR_R@5

Figure 3: λ is the weight of the DR task loss over the RC task loss. When λ = 4.0, TransTD achieves the best
performance for both RC (left two) and DR (right two) tasks.

25

28

31

34

37

40

4 6 8 10 12 14 16 18 20 22 24

Pe
rfo

rm
an

ce
 (%

)

#Layers

HA_F1@1
35

39

43

47

51

55

4 6 8 10 12 14 16 18 20 22 24

Pe
rfo

rm
an

ce
 (%

)

#Layers

HA_F1@5
50

54

58

62

66

70

4 6 8 10 12 14 16 18 20 22 24

Pe
rfo

rm
an

ce
 (%

)

Layers

DR_R@1
55

59

63

67

71

75

4 6 8 10 12 14 16 18 20 22 24

Pe
rfo

rm
an

ce
 (%

)

Layers

DR_R@5

Figure 4: The more layers being fine-tuned in the target domain, the better performance we can have. However, it
shows the pattern but not always true in the middle of the range.

5.2 Evaluation methods

The accuracy of the extracted snippets is evaluated
by Ma-F15 and HA_F1@K. Ma-F1 is the macro
average of the F1 scores computed on the first of
the K answers provided by the system for each
given question:

Ma-F1 =

∑K
i=1 F1@K

K
, (13)

where F1@K computes F1 scores for top-K an-
swer snippets, selects the maximum F1 score, and
computes the macro F1 score average over all ques-
tions. HA_F1@K calculates macro F1 score aver-
age over all answerable questions. Besides, mod-
els are evaluated on retrieving and ranking docu-
ment by mean reciprocal rank (MRR) and recall
at K (R@K). R@K is the percentage of correct
answers in top K out of all the relevant answers.
MRR represents the average of the reciprocal ranks
of results for a set of queries.

5.3 Ablation Study

TranT transfers knowledge across tasks on the tar-
get domain, with multi-tasks of RC and DR.
TranD transfers knowledge from source domain
RC to target domain RC w/o multi-task learning.
TransTD transfers knowledge across both tasks
and domains. TransTD+ is further improved by the
adjustable weight.

5To avoid confusion between F1 (used on the TechQA
leaderboard) and F1@K, we use Ma-F1 instead of F1.

5.4 Experimental Analysis
5.4.1 Knowledge transfer across domains
In Table 2, the model first fine tuning on the source
domain QA (SQuAD) then further fine tuning on
the target domain QA (TechQA) makes superior
performance than only fine tuning on the target do-
main QA. This indicates knowledge transfer from
general domain QA is crucial for technical QA.

5.4.2 Knowledge transfer across tasks
In Table 2, transferring knowledge across tasks bet-
ter capture local correspondence and global seman-
tic relationship between the question and document.
Compared with BERTRC, TransT improves Ma-F1
by +0.94% and HA_F1@1 by +1.91%.

5.4.3 Across both tasks and domains
In Table 2, transferring knowledge across both
tasks and domains further improve model perfor-
mance. TransTD fine tunes on SQuAD, then further
fine tunes on the TechQA with both RC and AR
tasks. It performs better than TransD and TransT.
TransTD+ makes adjustable joint learning, which
further brings +1.7% and +2.32% improvements
on Ma-F1 and HA_F1@1 compared to TransTD.

5.4.4 Comparison with retrieve-then-read
(two-stage) methods

Using semantic similarity to predict alignment be-
tween query and document in open-domain QA
is an efficient and accurate method. It can be
statistical-based (e.g., BM25) (Yang et al., 2019)
or neural-based that can be jointly optimized with
snippet prediction (Karpukhin et al., 2020; Lee
et al., 2019). However, as shown in Table 3, in

183

Figure 5: Error analysis. The left figure represents the proportions between correct and wrong prediction on
DR. The right figure represents the proportion of RC results when the retrieval phase already predicts the correct
document. (Here, “too small” means that if the prediction is SRC = (D

(pred)
start , D

(pred)
end) and the truth is S =

(Dstart, Dend), we have D(pred)
start > Dstart and D(pred)

end < Dend; on the contrary, “too large” means we have
D

(pred)
start < Dstart and D(pred)

end > Dend.)

the case of the same encoder (i.e., BERT), our pro-
posed TransTD with novel snippet ranking function
can identify answers more accurately than above
methods. This means that our method is more ef-
fective in the context of non-factoid QAs whose
semantics of query and document are not aligned.

5.5 Parameter Analysis

Loss ratio In Figure 3, we compare performance
with loss ratio between the RC and DR tasks, λ in
Eq.(1). We observe that when λ = 4.0, TransTD
achieves the best performance for both RC and
DR tasks. If the loss ratio becomes more than 4.0,
the performance decreases significantly. This is
because RC helps DR more than DR helps RC,
which is consistent with results in Table 2.

Number of fine tuning layers As shown in Fig-
ure 4, we compare performance on different num-
bers of fine tuning layers. Fine tuning all layers (24
layers) makes the best performance. However, the
model performance and the number of fine tuning
layers are not an absolute linear relationship. For
example, only fine tuning 12 to 14 layers achieves
better performance than having 16 or 18 layers,
making a good reference for training with limited
GPU memories.

5.6 Error Analysis

As shown in Figure 5, we manually categorize the
predictive results of 160 answerable question in-
stances in the development set. First of all, there
are 107 (64.4%) questions that can be correctly
matched with corresponding documents through
the joint inference by Eq.(12), however, 53 (35.6%)
questions are mismatched with the documents that
do not contain desirable answers. Additionally,

among 107 correct predictions, only 39 (36.4%)
of them are given with the correct answer snippet
in the best matching document. Among 68 wrong
predictions, 32 (47.1%) of them are mismatched
with the answer span. Besides, 16 (23.5%) of them
are provided with a smaller span of answer snippet
than the actual span, in which the average length
of answer snippet is 44 words. On the contrary, 20
(29.4%) of them are provided with a larger span of
answer snippet than the actual span, in which their
average length is 16 words. We observe that the
TechQA dataset offers a challenging yet interest-
ing problem, where the answers have a wide range
of the number of words. Some long answers are
across multiple sentences.

6 Conclusion

In this paper, we studied QA in the technical do-
main, which was not well investigated. Techni-
cal QA faces two unique challenges: (i) the ques-
tion and answer rarely overlaps substantially (on-
factoid questions) and (ii) very limited data size. To
address the challenges, we propose a novel frame-
work of deep transfer learning to effectively address
TechQA across tasks and domains. To this end,
we present an adjustable joint learning approach
for document retrieval and reading comprehension
tasks. Our experiments on the TechQA dataset
demonstrates superior performance compared with
non-transfer learning state-of-the-art methods.

Acknowledgements

The authors would like to thank the anonymous ref-
erees for their valuable comments and suggestions.
This work is supported by National Science Foun-
dation grants, IIS-1849816 and CCF-1901059.

184

References
Vittorio Castelli, Rishav Chakravarti, Saswati Dana,

Anthony Ferritto, Radu Florian, Martin Franz, Di-
nesh Garg, Dinesh Khandelwal, Scott McCarley,
Mike McCawley, et al. 2020. The techqa dataset.
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL).

Wei-Cheng Chang, Felix X Yu, Yin-Wen Chang, Yim-
ing Yang, and Sanjiv Kumar. 2020. Pre-training
tasks for embedding-based large-scale retrieval. In
Proceedings of 8th International Conference for
Learning Representation (ICLR).

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Danqi Chen and Wen-tau Yih. 2020. Open-domain
question answering. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: Tutorial Abstracts, pages 34–37.

Yang Deng, Ying Shen, Min Yang, Yaliang Li, Nan Du,
Wei Fan, and Kai Lei. 2018. Knowledge as a bridge:
Improving cross-domain answer selection with ex-
ternal knowledge. In Proceedings of the 27th in-
ternational conference on computational linguistics,
pages 3295–3305.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers).

Matt Gardner, Jonathan Berant, Hannaneh Hajishirzi,
Alon Talmor, and Sewon Min. 2019. On making
reading comprehension more comprehensive. In
Proceedings of the 2nd Workshop on Machine Read-
ing for Question Answering, pages 105–112.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

Meng Jiang, Peng Cui, Xumin Chen, Fei Wang,
Wenwu Zhu, and Shiqiang Yang. 2015. Social rec-
ommendation with cross-domain transferable knowl-
edge. IEEE transactions on knowledge and data en-
gineering, 27(11):3084–3097.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Ledell
Wu, Sergey Edunov, Danqi Chen, and Wen-
tau Yih. 2020. Dense passage retrieval for

open-domain question answering. arXiv preprint
arXiv:2004.04906.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics.

Sewon Min, Minjoon Seo, and Hannaneh Hajishirzi.
2017. Question answering through transfer learn-
ing from large fine-grained supervision data. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 510–517.

Sinno Jialin Pan and Qiang Yang. 2009. A survey on
transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359.

Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W Bruce
Croft, and Mohit Iyyer. 2020. Open-retrieval conver-
sational question answering. SIGIR Conference on
Research and Development in Information Retrieval.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Sebastian Ruder, Matthew E Peters, Swabha
Swayamdipta, and Thomas Wolf. 2019. Trans-
fer learning in natural language processing. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Tutorials, pages 15–18.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nal-
lapati, and Bing Xiang. 2019. Multi-passage
bert: A globally normalized bert model for open-
domain question answering. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5881–5885.

Lingfei Wu, Ian EH Yen, Kun Xu, Fangli Xu, Avinash
Balakrishnan, Pin-Yu Chen, Pradeep Ravikumar,
and Michael J Witbrock. 2018. Word mover’s em-
bedding: From word2vec to document embedding.
arXiv preprint arXiv:1811.01713.

Wenhan Xiong, Jingfei Du, William Yang Wang, and
Veselin Stoyanov. 2020. Pretrained encyclopedia:
Weakly supervised knowledge-pretrained language
model. International Conference for Learning Rep-
resentation (ICLR).

185

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics (Demonstrations).

Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang,
Suhang Wang, Junzhou Huang, Nitesh V Chawla,
and Zhenhui Li. 2019. Graph few-shot learn-
ing via knowledge transfer. arXiv preprint
arXiv:1910.03053.

Wenhao Yu, Lingfei Wu, Yu Deng, Ruchi Mahin-
dru, Qingkai Zeng, Sinem Guven, and Meng Jiang.
2020a. A technical question answering system with
transfer learning. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Wenhao Yu, Lingfei Wu, Qingkai Zeng, Yu Deng, Shu
Tao, and Meng Jiang. 2020b. Crossing variational
autoencoders for answer retrieval. Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics (ACL).

186

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 187–195
June 6–11, 2021. ©2021 Association for Computational Linguistics

Cost-effective Deployment of BERT Models in a Serverless Environment

Katarína Benešová ∗

Slido
kbenesova@slido.com

Andrej Švec ∗

Slido
asvec@slido.com

Marek Šuppa ∗

Slido
msuppa@slido.com

Abstract

In this study we demonstrate the viability of
deploying BERT-style models to serverless en-
vironments in a production setting. Since
the freely available pre-trained models are too
large to be deployed in this way, we utilize
knowledge distillation and fine-tune the mod-
els on proprietary datasets for two real-world
tasks: sentiment analysis and semantic textual
similarity. As a result, we obtain models that
are tuned for a specific domain and deployable
in serverless environments. The subsequent
performance analysis shows that this solution
results in latency levels acceptable for produc-
tion use and that it is also a cost-effective ap-
proach for small-to-medium size deployments
of BERT models, all without any infrastructure
overhead.

1 Introduction

Machine learning models are notoriously hard to
bring to production environments. One of the rea-
sons behind is the large upfront infrastructure in-
vestment it usually requires. This is particularly
the case with large pre-trained language models,
such as BERT (Devlin et al., 2018) or GPT (Rad-
ford et al., 2019) whose size requirements make
them difficult to deploy even when infrastructure
investment is not of concern.

At the same time, the serverless architecture with
minimal maintenance requirements, automatic scal-
ing and attractive cost, is becoming more and more
popular in the industry. It is very well suited for
stateless applications such as model predictions,
especially in cases when the prediction load is un-
evenly distributed. Since the serverless platforms
have strict limits, especially on the size of the de-
ployment package, it is not immediately obvious it
may be a viable platform for deployment of models
based on large pre-trained language models.

∗Equal contribution

In this paper we describe our experience with
deploying BERT-based models to serverless envi-
ronments in a production setting. We consider two
tasks: sentiment analysis and semantic textual sim-
ilarity. While the standard approach would be to
fine-tune the pre-trained models, this would not
be possible in our case, as the resulting models
would be too large to fit within the limits imposed
by serverless environments. Instead, we adopt a
knowledge distillation approach in combination
with smaller BERT-based models. We show that
for some of the tasks we are able to train models
that are an order of magnitude smaller while re-
porting performance similar to that of the larger
ones.

Finally, we also evaluate the performance of the
deployed models. Our experiments show that their
latency is acceptable for production environments.
Furthermore, the reported costs suggest it is a very
cost-effective option, especially when the expected
traffic is small-to-medium in size (a few requests
per second) and potentially unevenly distributed.

2 Related work

Despite a number of significant advances in var-
ious NLP approaches over the recent years, one
of the limiting factors hampering their adoption is
the large number of parameters that these models
have, which leads to large model size and increased
inference time. This may limit their use in resource-
constrained mobile devices or any other environ-
ment in which model size and inference time is the
limiting factor, while negatively affecting the envi-
ronmental costs of their use (Strubell et al., 2019)
.

This has led to a significant body of work fo-
cusing on lowering both the model size and infer-
ence time, while incurring minimal performance
penalty. One of the most prominent approaches in-
clude Knowledge Distillation (Buciluǎ et al., 2006;
Hinton et al., 2015), in which a smaller model (the

187

”student”) is trained to reproduce the behavior of a
larger model (the ”teacher”). It was used to produce
smaller BERT alternatives, such as:

• TinyBERT (Jiao et al., 2019), which appro-
priates the knowledge transfer method to the
Transformer architecture and applies it in both
the pretraining and downstream fine-tuning
stage. The resulting model is more than 7x
smaller and 9x faster in terms of inference.

• MobileBERT (Sun et al., 2020), which only
uses knowledge distilation in the pre-training
stage and reduces the model’s width (layer
size) as opposed to decreasing the number of
layers it consists of. The final task-agnostic
model is more than 3x smaller and 5x faster
than the original BERTBASE.

When decreasing the model size leads to de-
creased latency, it can also have direct business im-
pact. This has been demonstrated by Google, which
found out that increasing web search latency from
100 ms to 400 ms reduced the number of searches
per user by 0.2 % to 0.6 % (Brutlag, 2009). A sim-
ilar experiment done by Booking.com has shown
that an increase in latency of about 30 % results in
about 0.5 percentage points decrease in conversion
rates, which the authors report as a ”relevant cost
for our business” (Bernardi et al., 2019).

Each serverless platform has its specifics, which
can have different impact on different use cases.
Various works, such as (Back and Andrikopoulos,
2018; Wang et al., 2018; Lee et al., 2018), provide
a comparison of performance differences between
the available platforms. In order to evaluate spe-
cific use cases, various benchmark suites have been
introduced such as FunctionBench (Kim and Lee,
2019), which includes language generation as well
as sentiment analysis test case.

Possibly the closest published work compara-
ble to ours is (Tu et al., 2018), in which the au-
thors demonstrate the deployment of neural net-
work models, trained for short text classification
and similarity tasks in a serverless context. Since
at the time of its publication the PyTorch deploy-
ment ecosystem has been in its nascent stages, the
authors had to build it from source, which compli-
cates practical deployment.

To the best of our knowledge, our work is the
first to show the viability of deploying large pre-
trained language models (such as BERT and its
derivatives) in the serverless environment.

AWS Azure GCP
Function size 250MB1 - 500MB
Execution time 15min - 9min
Memory 10GB 14GB 8GB
Request size 6MB 100MB 10MB

Table 1: Limitations of the three main serverless
providers: Amazon Web Services (AWS), Microsoft
Azure (Azure) and Google Cloud Platform (GCP).

3 Serverless environments

Serverless environments offer a convenient and af-
fordable way of deploying a small piece of code.
A survey by O’Reilly Media (O’Reilly Media, Inc,
2019) shows that the adoption of serverless was
successful for the majority of the respondents’ com-
panies. They recognize reduced operational costs,
automatic scaling with demand and elimination of
concerns for server maintenance as the main bene-
fits.

Since the functions deployed in a serverless en-
vironment share underlying hardware, OS and run-
time (Lynn et al., 2017), there are naturally numer-
ous limitations to what can be run in such environ-
ment. The most pronounced ones include:

• Maximum function size, mostly limited to
a few hundreds of MBs (although some
providers do not have this limitation). In the
context of deployment of a machine learning
model, this can significantly limit the model
size as well as the selection of libraries to be
used to execute the model.

• Maximum memory of a few GBs slows
down or makes it impossible to run larger
models.

• No acceleration. Serverless environments do
not support GPU or TPU acceleration which
can significantly increase the inference time
for larger models.

A more detailed list of the main limitations of
the three most common serverless providers can
be found in Table 1. It suggests that any model
deployed in this environment will need to be small
in size and have minimal memory requirements.
These requirements significantly limit the choice
of models appropriate for this environment and war-
rants a specific training regimen, which we describe
in the next section.

1Recently, a new way of deployment was added, allowing

188

Figure 1: Schema of the distillation pipeline of BERTBASE for sentiment analysis. BERTBASE_CLS is fine-tuned on
the gold dataset and then used for labelling a large amount of data (silver dataset) that serves as a training set for
distillation to TinyBERT. The distilled model is exported to the ONNX format and deployed to AWS Lambda (see
Section 5). The same pipeline was executed for MobileBERT.

4 Model training

In the two case studies presented in this section, we
first consider BERT-provided classification token
([CLS] token) an aggregate representation of a
short text (up to 300 characters) for the sentiment
analysis task. Secondly, we utilize the embeddings
produced by Sentence-BERT (SBERT) (Reimers
and Gurevych, 2019) for estimating the semantic
similarity of a pair of short texts.

Since deploying even the smaller BERTBASE
with over 400MB in size is not possible in our
setup, in the following cases studies we explore
several alternative approaches, such as knowledge
distillation into smaller models or training a smaller
model directly. To do so, we use TinyBERT (Jiao
et al., 2019) and MobileBERT (Sun et al., 2020)
having about 56 MB and 98 MB in size, respec-
tively.

4.1 BERT for sentiment analysis

One of the direct applications of the special [CLS]
token of BERT is the analysis of sentiment (Li et al.,
2019). We formulate this problem as classification
into three categories: Positive, Negative and Neu-
tral.

The task is divided into two stages: first, we fine-
tune BERTBASE using a labelled domain-specific
dataset of 68K training examples and 9K exam-

to deploy a container of size up to 10 GB.

ples for validation. Then we proceed with knowl-
edge distillation into a smaller model with faster
inference: we label a large amount of data by the
fine-tuned BERTBASE and use the dataset to train a
smaller model with a BERT-like architecture. The
distillation pipeline is illustrated in Figure 1.

4.1.1 Fine-tuning BERTBASE

To utilize BERTBASE for a classification task, an
additional head must be added on top of the Trans-
former blocks, i.e. a linear layer on top of the
pooled output. The additional layer typically re-
ceives only the representation of the special [CLS]
token as its input. To obtain the final prediction,
the output of this layer is passed through a Softmax
layer producing the probability distribution over
the predicted classes.

We fine-tuned BERTBASE for sequence classifi-
cation (BERTBASE_CLS) with this adjusted architec-
ture for our task using a labelled dataset of size 68K
consisting of domain-specific data. We trained the
model for 8 epochs using AdamW optimizer with
small learning rate 3× 10−5, L2 weight decay of
0.01 and batch size 128.

To cope with the significant class imbalance2 and
to speed up the training, we sampled class-balanced
batches in an under-sampling fashion, while putting
the examples of similar length together (for the sake
of a more effective processing of similarly padded

2About 82% of the dataset were Neutral examples, 10%
Negative and 8% Positive.

189

data). Using this method, we were able to at least
partially avoid over-fitting on the largest class and
reduce the training time about 2.5 times.

We also tried an alternative fine-tuning approach
by freezing BERTBASE layers and attaching a small
trainable network on top of it. For the trainable part,
we experimented with 1-layer bidirectional GRU
of size 128 with dropout of 0.25 plus a linear layer
and Softmax output. BERTBASE_CLS outperformed
this approach significantly.

The accuracy evaluation of both fine-tuned
BERTBASE models on the validation dataset can
be found in Table 2. In order to meet the function
size requirements of the target serverless environ-
ments, we proceed to the knowledge distillation
stage.

4.1.2 Knowledge distillation to smaller BERT
models

Having access to virtually unlimited supply
of unlabelled domain-specific examples, we la-
belled almost 900K of them by the fine-tuned
BERTBASE_CLS "teacher" model and used them as
ground truth labels for training a smaller "student"
model. We experimented with MobileBERT and
even smaller TinyBERT as the student models since
these are, in comparison to BERTBASE, 3 and 7
times smaller in size, respectively.

During training, we sampled the batches in the
same way as in Section 4.1.1, except for a smaller
batch size of 64. We trained the model for a small
number of epochs using AdamW optimizer with
learning rate 2 × 10−5, weight decay 0.01 and
early stopping after 3 epochs in case of TinyBERT
and one epoch for MobileBERT (in the following
epochs the models no longer improved on the vali-
dation set).

For evaluation we used the same validation
dataset as for the fine-tuned BERTBASE_CLS de-
scribed in 4.1. The performance comparison is
summarized in Table 2. We managed to dis-
till the model knowledge into the significantly
smaller TinyBERT with only 0.02 points decrease
in F1 score (macro-averaged). In case of Mobile-
BERT we were able to match the performance of
BERTBASE_CLS. These results suggest that the large
language models might not be necessary for classi-
fication tasks in a real-life scenario.

Model Size (MB) F1
BERTBASE + GRU 426 0.75
BERTBASE_CLS 420 0.84
TinyBERT (distilled) 56 0.82
MobileBERT (distilled) 98 0.84

Table 2: Comparison of fine-tuned BERT models
and smaller distilled models on the validation dataset
(macro-averaged F1 score). The slight decrease in Tiny-
BERT’s performance is an acceptable trade-off for the
significant size reduction.

4.2 Sentence-BERT for semantic textual
similarity

The goal of our second case study was to train a
model that would generate dense vectors usable for
semantic textual similarity (STS) task in our spe-
cific domain and be small enough to be deployed
in a serverless environment. The generated vec-
tors would then be indexed and queried as part of
a duplicate text detection feature of a real-world
web application. To facilitate this use-case, we use
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019).

While the SBERT architecture currently reports
state-of-the-art performance on the sentence simi-
larity task, all publicly available pre-trained SBERT
models are too large for serverless deployment.
The smallest one available is SDistilBERTBASE
with on-disk size of 255 MB. We therefore had
to train our own SBERT model based on smaller
BERT alternatives. We created the smaller SBERT
models by employing the TinyBERT and Mobile-
BERT into the SBERT architecture, i.e. by adding
an embedding averaging layer on top of the BERT
model.

In order to make the smaller SBERT models
perform on the STS task, we fine-tune them in
two stages. Firstly, we fine-tune them on standard
datasets to obtain a smaller version of the generic
SBERT model and then we fine-tune them further
on the target domain data. The fine-tuning pipeline
is visualized in Figure 2.

4.2.1 Generic SBERT fine-tuning
To obtain a smaller version of SBERT, we fol-
lowed the the SBERT training method as outlined
in (Reimers and Gurevych, 2019). We first fine-
tuned a smaller SBERT alternative on a combi-
nation of SNLI (Bowman et al., 2015) (dataset of
sentence pairs labeled for entailment, contradiction,
and semantic independence) and Multi-Genre NLI

190

Figure 2: Schema of the fine-tuning pipeline of STinyBERT for STS task. In the first stage, STinyBERT is fine-
tuned on NLI and STSb datasets to obtain Generic STinyBERT. In the second phase, the model is trained further
on the target-domain dataset, exported to the ONNX format and deployed to AWS Lambda (see Section 5). The
same pipeline was executed for SMobileBERT. SBERTBASE was only fine-tuned on target domain dataset.

(Williams et al., 2018) (dataset of both written and
spoken speech in a wide range of styles, degrees of
formality, and topics) datasets.

We observed the best results when fine-tuning
the model for 4 epochs with early stopping based
on validation set performance, batch size 16, using
Adam optimizer with learning rate 2× 10−5 and a
linear learning rate warm-up over 10 % of the total
training batches.

Next, we continued fine-tuning the model on
the STSbenchark (STSb) dataset (Cer et al., 2017)
using the same approach, except for early stopping
based on STSb development set performance and a
batch size of 128.

4.2.2 Target domain fine-tuning
Once we obtained a small enough generic SBERT
model, we proceeded to fine-tune it on examples
from the target domain. We experimented with two
approaches: fine-tuning the model on a small gold
dataset and generating a larger silver dataset.

Dataset. We worked with a balanced training set
of 2856 pairs. Each pair was assigned to one of
three classes: duplicate (target cosine similarity 1),
related (0.5) or unrelated (0). The classes were
assigned semi-automatically. Duplicate pairs were
created by back-translation (Sennrich et al., 2016)

using the translation models released as part of
the OPUS-MT project (Tiedemann and Thottingal,
2020). Related pairs were pre-selected and expertly
annotated and unrelated pairs were formed by pair-
ing random texts together.

Validation and test sets were composed of 665
and 696 expertly annotated pairs, respectively.
These sets were not balanced due to the fact that
finding duplicate pairs manually is far more diffi-
cult than finding related or unrelated pairs, which
stems from the nature of the problem. That is why
duplicate class forms only approximately 13 % of
the dataset, whereas related and unrelated classes
each represent roughly 43 %.

Fine-tuning on plain dataset. We first experi-
mented with fine-tuning the generic SBERT model
on the train set of the target domain dataset. We
call the output model SBERT target. We fine-tuned
it for 8 epochs with early stopping based on vali-
dation set performance, batch size 64, Adam op-
timizer with learning rate 2 × 10−5 and a linear
learning rate warm-up over 10 % of the total train-
ing batches.

Extending the dataset. Since we had a lot of
data without annotations available, we also experi-
mented with extending the dataset and fine-tuning

191

Augmented SBERT (Thakur et al., 2020).
We pre-selected 379K duplicate candidates us-

ing BM25 (Amati, 2009) and annotated them
using a pre-trained cross-encoder based on
RoBERTaLARGE. In the annotated data, low simi-
larity values were majorly prevalent (median sim-
ilarity was 0.18). For this reason, we needed to
balance the dataset by undersampling the similar-
ity bins with higher number of samples to get to a
final balanced dataset of 32K pairs. We refer to the
original expert annotations as gold data and to the
cross-encoder annotations as silver data.

After creating the silver dataset, we first fine-
tuned the model on the silver data and then on
the gold data. We call the model fine-tuned on
augmented target dataset AugSBERT. Correct hy-
perparameter selection was crucial for a successful
fine-tuning. It was especially necessary to lower
the learning rate for the final fine-tuning on the
gold data and set the right batch sizes. For the
silver dataset we used a learning rate of 2× 10−5

and batch size of 64. For the final fine-tuning on
the gold dataset we used a lower learning rate of
2× 10−6 and a batch size of 16.

4.2.3 Results

As we can see in Table 3, smaller BERT alterna-
tives can compete with SBERTBASE. AugSMobile-
BERT manages to reach 93 % of the performance
of SBERTBASE on the target dataset while being
more than 3 times smaller in size.

We believe that the lower performance of smaller
models is not only caused by the them having less
parameters, but it also essentially depends on the
size of the model’s output dense vector. Tiny-
BERT’s output embedding size is 312 and Mo-
bileBert’s is 512, whereas BERTBASE outputs em-
beddings of size 768. This would in line with the
findings published in (Wieting and Kiela, 2019)
which state that even random projection to a higher
dimension leads to increased performance.

5 Deployment

As described in Section 3, numerous limitations
must be satisfied when deploying a model to a
serverless environment, among which the size of
the deployment package is usually the major one.
The deployment package consists of the function
code, runtime libraries and in our case a model.

Model STSb Target
STinyBERT NLI 72.86 46.29
SMobileBERT NLI 78.29 52.08
SBERTBASE NLI 77.03 52.44
STinyBERT STSb 76.76 53.89
SMobileBERT STSb 81.52 59.05
SBERTBASE STSb 85.35 65.87
STinyBERT target 75.49 53.29
SMobileBERT target 79.56 59.27
SBERTBASE target 82.52 64.20
AugSTinyBERT target 73.88 54.34
AugSMobileBERT target 80.47 61.75
AugSBERTBASE target 82.98 64.14

Table 3: Spearman rank correlation between the cosine
similarity of dense vectors and true labels measured for
individual models on the test set of the STSbenchmark
dataset (STSb column) and on the test set of the tar-
get domain dataset (Target column). The values are
multiplied by 100 for convenience. We also present
SBERTBASE performance as baseline. The model with
the best performance on the target domain dataset, that
is also deployable in serverless environment, is high-
lighted.

5.1 Model inference engine

In order to fit all of the above in a few hundreds
of MBs allowed in the serverless environments,
standard deep learning libraries cannot be used:
the standard PyTorch wheel has 400 MB (Paszke
et al., 2019) and TensorFlow is 850 MB in size
(Abadi et al., 2015).

ONNX Runtime. We therefore used a smaller
model interpreter library called ONNX Runtime
(Bai et al., 2019), which is mere 14 MB in size,
leaving a lot of space for the model. Prior to exe-
cuting the model by the ONNX Runtime library, it
needs to be converted to the ONNX format. This
can be done using off-the-shelf tools, for instance
the Hugging Face transformers library (Wolf
et al., 2020) is shipped with a simple out-of-the-box
script to convert BERT models to ONNX.

TensorFlow Lite. It is also possible to use the
TensorFlow Lite interpreter library (Abadi et al.,
2015), which is 6 MB in size. However, we only
used ONNX in our deployments as we had prob-
lems converting more complex BERT models to
TensorFlow Lite format.

192

(a) Sentiment analysis. (b) SBERT encoding.

Figure 3: Results of performance tests of trained models deployed in AWS Lambda. Execution time is denoted in
miliseconds (ms). TB stands for TinyBERT, MB for MobileBERT. q50, q95 and q99 denote the 0.5, 0.95 and 0.99
quantiles, respectively.

AWS GCP
q50 q95 q99 q50 q95 q99

Sentiment TinyBERT 6.63 19.20 24.77 10.47 100.71 110.31
Sentiment MobileBERT 64.67 89.00 105.84 27.58 125.04 176.46

STinyBERT 5.71 13.03 21.24 10.93 101.32 111.80
SMobileBERT 50.08 80.14 102.65 58.88 175.14 213.56

Table 4: Performance comparison between the Ama-
zon Web Services (AWS) and Google Cloud Platform
(GCP) serverless environments. Numbers denote exe-
cution time in miliseconds with 1GB of RAM allocated
for the deployed function. q50, q95 and q99 denote the
0.5, 0.95 and 0.99 quantiles, respectively.

5.2 Serverless deployment

After training the models and converting them into
the ONNX format, we deployed them to different
serverless environments.

6 Deployment evaluation

We measured the performance of deployed mod-
els in scenarios with various amounts of allocated
memory by making them predict on more than
5000 real-world examples. Before recording mea-
surements we let the deployed model evaluate a
small subsample of data in order to keep the infras-
tructure in a ”warm” state. This was done in order
to estimate the real-life inference time, i.e. to avoid
biasing the inference results by initialization time
of the service itself.

From the results described in Table 4 we can see
that using both the AWS and GCP platforms, we
can easily reach the 0.99 quantile of execution time
on the order of 100 ms for both tasks and models.
Figure 3 also lets us observe that the execution
time in AWS Lambda decreases with increasing

RAM. This is expected, as both AWS Lambda and
GCP Cloud Functions automatically allocate more
vCPU with more RAM.

The serverless deployments are also cost-
effective. The total costs of 1M predictions, taking
100 ms each and using 1 GB of RAM, are around
$2 on both AWS and GCP, whereas the cheapest
AWS EC2 virtual machine with 1 GB of RAM
costs $8 per month.

7 Conclusion

We present a novel approach of deploying domain-
specific BERT-style models in a serverless envi-
ronment. To fit the models within its limits, we
use knowledge distillation and fine-tune them on
domain-specific datasets. Our experiments show
that using this process we are able to produce much
smaller models at the expense of a minor decrease
in their performance. The evaluation of the de-
ployment of these models shows that it can reach
latency levels appropriate for production environ-
ments, while being cost-effective.

Although there certainly exist platforms and de-
ployments that can handle much higher load (of-
ten times with smaller operational cost (Zhang
et al., 2019)), the presented solution requires min-
imal infrastructure effort, making the team that
trained these models completely self-sufficient.
This makes it ideal for smaller-scale deployments,
which can be used to validate the model’s value.
The smaller, distilled models created in the process
can then be used in more scalable solutions, should
the cost or throughput prove inadequate during test
deployments.

193

References
Martín Abadi et al. 2015. TensorFlow: Large-scale ma-

chine learning on heterogeneous systems. Software
available from tensorflow.org.

Giambattista Amati. 2009. BM25, pages 257–260.
Springer US, Boston, MA.

Timon Back and Vasilios Andrikopoulos. 2018. Us-
ing a microbenchmark to compare function as a ser-
vice solutions. In European Conference on Service-
Oriented and Cloud Computing, pages 146–160.
Springer.

Junjie Bai et al. 2019. Onnx: Open neural network
exchange. https://github.com/onnx/on
nx.

Lucas Bernardi et al. 2019. 150 successful machine
learning models: 6 lessons learned at booking. com.
In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 1743–1751.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Jake Brutlag. 2009. Speed matters for google web
search.

Cristian Buciluǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, pages 535–541.

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-
2017 task 1: Semantic textual similarity - multilin-
gual and cross-lingual focused evaluation. CoRR,
abs/1708.00055.

Jacob Devlin et al. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Xiaoqi Jiao et al. 2019. Tinybert: Distilling bert
for natural language understanding. arXiv preprint
arXiv:1909.10351.

Jeongchul Kim and Kyungyong Lee. 2019. Function-
bench: A suite of workloads for serverless cloud
function service. In 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD), pages
502–504. IEEE.

Hyungro Lee et al. 2018. Evaluation of production
serverless computing environments. In 2018 IEEE
11th International Conference on Cloud Computing
(CLOUD), pages 442–450. IEEE.

Xin Li et al. 2019. Exploiting bert for end-to-end
aspect-based sentiment analysis. arXiv preprint
arXiv:1910.00883.

Theo Lynn et al. 2017. A preliminary review of en-
terprise serverless cloud computing (function-as-a-
service) platforms. In 2017 IEEE CloudCom, pages
162–169. IEEE.

O’Reilly Media, Inc. 2019. O’Reilly serverless survey
2019: Concerns, what works, and what to expect.
https://www.oreilly.com/radar/orei
lly-serverless-survey-2019-concern
s-what-works-and-what-to-expect/.
Accessed: 2021-01-12.

Adam Paszke et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Emma Strubell et al. 2019. Energy and policy con-
siderations for deep learning in nlp. arXiv preprint
arXiv:1906.02243.

Zhiqing Sun et al. 2020. Mobilebert: a compact task-
agnostic bert for resource-limited devices. arXiv
preprint arXiv:2004.02984.

Nandan Thakur, Nils Reimers, Johannes Daxenberger,
and Iryna Gurevych. 2020. Augmented sbert: Data
augmentation method for improving bi-encoders for
pairwise sentence scoring tasks. arXiv preprint
arXiv:2010.08240.

Jörg Tiedemann and Santhosh Thottingal. 2020.
OPUS-MT — Building open translation services for
the World. In Proceedings of the 22nd Annual Con-
ferenec of the European Association for Machine
Translation (EAMT), Lisbon, Portugal.

194

Zhucheng Tu, Mengping Li, and Jimmy Lin. 2018.
Pay-per-request deployment of neural network mod-
els using serverless architectures. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Demonstrations, pages 6–10.

Liang Wang et al. 2018. Peeking behind the curtains
of serverless platforms. In 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), pages
133–146.

John Wieting and Douwe Kiela. 2019. No training
required: Exploring random encoders for sentence
classification. arXiv preprint arXiv:1901.10444.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. 2019. Mark: Exploiting cloud services for cost-
effective, slo-aware machine learning inference serv-
ing. In 2019 {USENIX} Annual Technical Confer-
ence ({USENIX}{ATC} 19), pages 1049–1062.

195

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 196–204
June 6–11, 2021. ©2021 Association for Computational Linguistics

Noise Robust Named Entity Understanding for Voice Assistants

Deepak Muralidharan∗, Joel Ruben Antony Moniz∗, Sida Gao∗, Xiao Yang∗†,
Justine Kao, Stephen Pulman, Atish Kothari, Ray Shen, Yinying Pan,

Vivek Kaul, Mubarak Seyed Ibrahim, Gang Xiang, Nan Dun, Yidan Zhou,
Andy O, Yuan Zhang, Pooja Chitkara, Xuan Wang, Alkesh Patel,

Kushal Tayal, Roger Zheng, Peter Grasch, Jason D. Williams, Lin Li ‡
Apple

Abstract

Named Entity Recognition (NER) and Entity
Linking (EL) play an essential role in voice as-
sistant interaction, but are challenging due to
the special difficulties associated with spoken
user queries. In this paper, we propose a novel
architecture that jointly solves the NER and EL
tasks by combining them in a joint reranking
module. We show that our proposed frame-
work improves NER accuracy by up to 3.13%
and EL accuracy by up to 3.6% in F1 score.
The features used also lead to better accura-
cies in other natural language understanding
tasks, such as domain classification and seman-
tic parsing.

1 Introduction

Understanding named entities correctly when inter-
acting with virtual assistants (e.g. “Call Jon”, “Play
Adele hello”, “Score for Warrior Kings game”)
is crucial for a satisfying user experience. How-
ever, NER and EL methods that work well on
written text often perform poorly in such appli-
cations: utterances are relatively short (with just 5
tokens, on average), so there is not much context to
help disambiguate; speech recognizers make errors
(“Play Bohemian raspberry” for “Play Bohemian
Rhapsody"); users also make mistakes (“Cristiano
Nando” for “Cristiano Ronaldo”); non-canonical
forms of names are frequent (“Shaq” for “Shaquille
O’Neal”); and users often mention new entities un-
known to the system.

In order to address these issues we propose a
novel Named Entity Understanding (NEU) system
that combines and optimizes NER and EL for noisy
spoken natural language utterances. We pass multi-
ple NER hypotheses to EL for reranking, enabling
NER to benefit from EL by including information
from the knowledge base (KB).

∗Equal contributions.
†graceyx.scut@gmail.com
‡ lli9@apple.com

We also design a retrieval engine tuned for spo-
ken utterances for retrieving candidates from the
KB. The retrieval engine, along with other tech-
niques devised to address fuzzy entity mentions,
lets the EL model be more robust to partial men-
tions, variation in named entities, use of aliases, as
well as human and speech transcription errors.

Finally, we demonstrate that our framework can
also empower other natural language understanding
tasks, such as domain classification (a sentence
classification task) and semantic parsing.

2 Related Work

There have been a few attempts to explore NER
on the output of a speech pipeline (Ghannay et al.,
2018; Abujabal and Gaspers, 2018; Coucke et al.,
2018). Among these, our NER model is closest
to Abujabal and Gaspers (2018) and Coucke et al.
(2018); however, unlike the former, we use a richer
set of features rather than phonemes as input, and
unlike the latter, we are able to use a deep model
because of the large volume of data available.

EL has been well explored in the context of clean
(Martins et al., 2019; Kolitsas et al., 2018; Luo
et al., 2015) and noisy text inputs (Eshel et al.,
2017; Guo et al., 2013; Liu et al., 2013), but as with
NER, there have been only a few efforts to explore
EL in the context of transcribed speech (Benton and
Dredze, 2015; Gao et al., 2017), although crucially,
both these works assume gold standard NER and
focus purely on the EL component.

Traditionally, a pipelined architecture of NER
followed by EL has been used to address the en-
tity linking task (Lin et al., 2012; Derczynski et al.,
2015; Bontcheva et al., 2017; Bowden et al., 2018).
Since these approaches rely only on the best NER
hypothesis, errors from NER propagate to the EL
step. To alleviate this, joint models have been pro-
posed: Sil and Yates (2013) proposed an NER+EL
model which re-ranks candidate mentions and en-
tity links produced by their base model. Our work

196

differs in that we use a high precision NER system,
while they use a large number of heuristically ob-
tained Noun Phrase (NP) chunks and word n-grams
as input to the EL stage. Luo et al. (2015) jointly
train an NER and EL system using a probabilis-
tic graphical model. However, these systems are
trained and tested on clean text and do not address
the noise problems we are concerned with.

3 Architecture Design

For a given utterance, we first detect and label en-
tities using the NER model and generate the top-l
candidate hypotheses using beam search. The EL
model consists of two stages: (i) candidate retrieval
and (ii) joint linking and re-ranking. In the retrieval
stage, for each NER hypothesis, we construct a
structured search query and retrieve the top-c can-
didates from the retrieval engine. In the ranking
stage, we use a neural network to rank these candi-
date entity links within each NER hypothesis while
simultaneously using rich signals (entity popularity,
similarity between entity embeddings, the relation
across multiple entities in one utterance, etc.) from
these entity links as additional features to re-rank
the NER hypotheses from the previous step, thus
jointly addressing both the NER and EL tasks.

3.1 NER

For the NER task, following Lample et al. (2016)
we use a combination of character and word level
features. They are extracted by a bi-directional
LSTM (biLSTM) (Hochreiter and Schmidhuber,
1997), and then concatenated with pre-trained
GloVe word embeddings 1 (Pennington et al., 2014)
to pass through another biLSTM and fed into a CRF
model to produce the final label prediction based on
a score s(ỹi,x; θ) that jointly optimizes the prob-
ability of labels for the tokens and the transition
score for the entire sequence ỹi = (y1, . . . , yT)
given the input x:

s(ỹi,x; θ) =
T∑

t=0

(ψt,θ(yt) + φt,t+1(yt, yt+1)) ,

where ψt,θ is the biLSTM prediction score from the
label yt of the tth token, and φ(j, k) is the transition
score from label j to label k.

1We also tried more recent contextual embeddings such
as BERT (Devlin et al., 2019), and empirically observed very
little difference in performance when compared to GloVe. So
we adopt GloVE, which is substantially more efficient in terms
of inference time required.

During training, we maximize the probability of
the correct label sequence pseq, which is defined as

pseq(ỹi,x; θ) =
exp(s(ỹi,x; θ))∑

ỹj∈S exp (s(ỹj,x; θ))
,

where ỹi is the label sequence for hypothesis i, and
S is the set of all possible label sequences.

During inference, we generate up to 5 NER alter-
natives for each utterance using beam search. We
also calculate a mention level confidence pmen for
each entity mention mk. pmen is computed by ag-
gregating the sequence level confidence for all the
prediction sequences that share the same mention
sub-path mk:

pmen(mk,x; θ) =

∑
ỹi∈Smi

exp(s(ỹi,x; θ))∑
ỹj∈S exp(s(ỹj,x; θ))

,

where Smi is the set of prediction sequences that
all have mk as the prediction for the correspond-
ing tokens. Both pseq and pmen are computed by
dynamic programming, and serve as informative
features in the EL model.

3.2 Joint Linking and Re-ranking
The entity linking system follows the NER model
and consists of two steps: candidate retrieval, and
joint linking and re-ranking.

To build the candidate retrieval engine, we first
index the list of entities in our knowledge base,
which can be updated daily to capture new entities
and change of their popularity. To construct the
index, we iterate through the flattened list of enti-
ties and construct token-level unigram, bigram and
trigram terms from the surface form of each entity.
Apart from using the original entity names, we also
use common aliases, harvested from usage logs, for
popular entities (e.g. LOTR as an alias for “Lord
of the Rings”) to make the retrieval engine more
robust to commonly occurring variations. Next, we
create an inverted index which maps the unique
list of n-gram terms to the list of entities that these
n-grams are part of, also known as posting lists.
Further, to capture cross-entity relationships in the
knowledge base (such as relationships between an
artist and a song or two sports teams belonging to
the same league), we assign a pointer2 for each

2Each entity in our knowledge base consists of metadata
(for example, a song entry in our knowledge base would con-
tain metadata such as the music artist, album, year the song
was released in etc.) that we leverage to automatically con-
struct these relationship pointers.

197

entity in the knowledge base to its related entities
and this relational information is leveraged by the
EL model for entity disambiguation (described in
5.2). We then compute the tf-idf score for all the
n-gram terms present in the entities and store them
in the inverted index.

For each hypothesis predicted by the NER model
we query the retrieval engine with the correspond-
ing text. We first send the query through a high-
precision seq-to-seq correction model (Schmaltz
et al., 2017; Ge et al., 2019) trained using common
errors observed in usage. Next, we construct n-
gram features from the corrected query in a similar
way to the indexing phase and retrieve all entities
matching these n-gram features in our inverted in-
dex. Additionally, we use synonyms derived from
usage for each term in the query to expand our
search criteria: for example, our synonym list for
“Friend" contains “Friends", which matches the TV
show name which would have been missed if only
the original term was used.

For each entity retrieved, we get the tf-idf score
for the terms present in the query chunk from the in-
verted index. We then aggregate the tf-idf scores of
all the terms present in the query for this entity and
linearly combine this aggregate score with other
attributes such as popularity (i.e. prior usage prob-
ability) of the entity to generate a final score for all
retrieved entity candidates for this query. Finally,
we perform an efficient sort across all the entity
candidates based on this score and return a top-c
(in our case c = 25) list filtered by the entity type de-
tected by the NER model for that hypothesis. These
entity candidates coupled with the original NER
hypothesis are sent to the ranker model described
below for joint linking and re-ranking.

Following the candidate retrieval step, we intro-
duce a neural model to rerank the candidate entities,
aggregating features from both the NER model and
the candidate retrieval engine.

The EL model scores each entity linking hypoth-
esis separately. An entity linking hypothesis con-
sists of a prediction from the NER model (which
consists of named entity chunks in the input utter-
ance and their types), and the candidate retrieval
results for each chunk. Formally, we define an en-

tity linking hypothesis y with k entity predictions
as:

y = {futter, fNER, fCR, {j ∈ {1 . . . k} : (mj , ej)}}

where mj is the j-th mention in the utterance, and
ej is the entity name associated with this mention
from the knowledge base. futter, fNER, fCR are fea-
tures derived from the original utterance text, the
NER model and the candidate retrieval system re-
spectively. In our system, futter is a representa-
tion of the utterance from averaging the pre-trained
word embeddings for the tokens in the utterance.
Intuitively, having a dense representation of the full
utterance can help the EL model better leverage sig-
nals from the utterance context. fNER includes the
type of each mention, as well as the sequence and
mention confidence computed by the NER model.
fCR includes popularity, and whether a relation ex-
ists between the retrieved entities in y.

To be robust to noise, the EL model adopts a
pair of CNNs to compare each entity mention mj

and its corresponding knowledge base entity name
ej . The CNN learns a name embedding with one-
dimensional convolution on the character sequence,
and the kernel parameters are shared between the
CNN used for user mention and the one used for the
canonical name. A character-based text representa-
tion model is better at handling mis-transcriptions
or mis-pronounced entity names. While a noisy
entity name may be far from the canonical name in
the word embedding space when they are semanti-
cally different, they are usually close to each other
in the character embedding space due to similar
spellings. To model the similarity between CNN
name embeddings of mj and ej , we use the stan-
dard cosine similarity as a baseline, we experiment
with an MLP that takes the concatenated name em-
beddings as input. We are able to model more
expressive interactions between the two name em-
beddings with the MLP, and in turn better handle
errors. Finally, we concatenate the similarity fea-
tures with other features as input to another MLP
that computes the final score for y. Formally, the
scoring function is defined in Equation 1, where ⊕
means concatenation.

s(y) = MLP(futter ⊕ fNER ⊕ fCR

k⊕

j=1

[MLP(CNN(mj),CNN(ej))⊕ CNN(mj)⊕ CNN(ej)]) (1)

198

In our data, the number of entity mentions in
an utterance averages less than 3. We pad the en-
tity feature sequence to length 5, which provides a
good coverage. In the scoring model above, we use
a simple concatenation to aggregate the embedding
similarities of multiple entity mentions which em-
pirically performs as well as sequence models like
LSTM, while being much cheaper in computation.

To train the EL model, we use the standard max-
margin loss for ranking tasks. If for the i-th ex-
ample, we denote the ground truth as y∗i and an
incorrect prediction as ŷi, and the scoring function
s(·) is as defined in Equation 1, the loss function is

L =
1

N

N∑

i=1

[γ(ŷi,y
∗
i) + s(ŷi)− s(y∗i)]+. (2)

The max-margin loss encourages the ground truth
score to be at least a margin γ higher than the score
of an incorrect prediction. The margin is defined as
a function of the ground truth and the incorrect pre-
diction, thus adaptive to the quality of prediction.
A larger margin is needed when the incorrect pre-
diction is further away from the ground truth. For
our reranking task, we set a smaller margin when
only the resolved entities are incorrect but the NER
result is correct, and a larger margin when the NER
result is wrong. This adaptive margin helps rerank
NER hypotheses even when the model cannot rank
the linking results correctly. During training, we
uniformly sample the negative predictions from the
candidates retrieved by the retrieval engine.

3.3 Improvement on Other Language
Understanding Tasks

We also explore the impact of our NEU feature
encoding on two tasks: a domain classifier and a
domain-specific shallow semantic parser.

3.3.1 Domain Classification
Domain classification identifies which domain a
user’s request falls into: sports, weather, music,
etc., and is usually done by posing the task as
sequence classification: our baseline uses word
embeddings and gazetteer features as inputs to an
RNN, in a manner similar to Chen et al. (2019).

Consider a specific token t. Let a be the num-
ber of alternatives used from the NER model in
the domain classifier (which we treat as a hyperpa-
rameter), pi represent the (scalar) sequence level
confidence score pseq(ỹi,x; θ) of the ith NER alter-
native defined in Section 3.1, ci represent an integer

for the entity type that NER hypothesis i assigns
to the token t, and o(.) represent a function con-
verting an integer into its corresponding one-hot
vector. Then the additional NER feature vector fr
concatenated to the input vector fed into token t as
part of the domain classifier can be written as:

fr =

i=a⊕

i=1

pio(ci). (3)

Likewise, for the featurization that uses both
NER and EL, let a be the number of alternatives
used from the NER+EL system in the domain clas-
sifier (also a hyperparameter); these a alternatives
are now sorted by the scores from the EL hypothe-
ses, as opposed to the sequence level confidence
scores from NER. Let si be the ith re-ranked alter-
native’s cosine similarity score between the men-
tion and knowledge base entity name as output by
the EL model. pi and ci are consistent with our
earlier notation, except that they now correspond to
the ith NER alternative after re-ranking. Then the
additional NER+EL feature vector fu concatenated
to the input fed into token t as part of the domain
classifier can be written as:

fu =
i=a⊕

i=1

pio(ci)⊕ sio(ci). (4)

3.3.2 Semantic Parsing

Our virtual assistant also uses domain-specific shal-
low semantic parsers, running after domain classi-
fication, responsible both for identifying the cor-
rect intent that the user expects (such as the “play”
intent associated with a song) and for assigning
semantic labels to each of the tokens in a user’s
utterance (such as the word “score" and “game”
respectively being tagged as tokens related to a
sports statistic and sports event respectively in the
utterance “What’s the score of yesterday’s Warriors
game?”). Each semantic parser is structured as a
multi-task sequence classification (for the intent)
and sequence tagging (for the token-level semantic
labelling) task, with our production baseline using
word embeddings and gazetteer features as inputs
into an RNN similar to our domain classifier. Here,
fr and fu are featurized as described above. Note
that in contrast to the NEU system, the semantic
parser uses a domain-specific ontology, to enable
each domain to work independently and to not be
encumbered by the need to align ontologies.

199

4 Datasets and Training Methodology

To create our datasets, we randomly sampled
around 600k unique anonymous English transcripts
(machine transcribed utterances), and annotated
them with NER and EL labels. Utterances are sub-
ject to Apple’s baseline privacy practices with re-
spect to Siri requests, including that such requests
are not associated with a user’s Apple ID, email ad-
dress, or other data Apple may have from a user’s
use of other Apple services, and have been filtered
as described in Section 7. We then split the anno-
tated data into 80/10/10 for train, development and
test sets. For both the NER and EL tasks, we report
our results on test sets sampled from the “music”,
“sports” and “movie & TV” domains. These are
popular domains in the usage and have a high per-
centage of named entities: with an average of 0.6,
1.1 and 0.7 entities for each utterance in the 3 do-
mains respectively. To evaluate model performance
specifically on noisy user inputs, we select queries
from the test sets that are marked as containing
speech transcription or user errors by the annota-
tors and report results on this “noisy" subset, which
constitutes 13.5%, 12.7% data for movie&TV and
music domain respectively when an entity exists. 3

To evaluate the relation feature, we also look at the
“related" subset where a valid relation exists in the
utterance. This subset consists 13.4% and 5.3% of
data for the music and sports domain with at least
one entity. 4

We first train the NER model described in Sec-
tion 3.1. Next, for every example in our training
dataset, we run inference on the trained NER model
and generate the top-5 NER hypotheses using beam
search. Following this, we retrieve the top 25 candi-
dates for each of these hypotheses using our search
engine combined with the ground truth NER and
EL labels and fed to the EL model for training.

To measure the NER model performance, we use
the standard NER F1 metric used for the CoNLL-
2003 shared task (Tjong Kim Sang and De Meulder,
2003). To measure the quality of the top-5 NER
hypotheses, we compute the oracle top-5 F1 score
by comparing and choosing the best alternative hy-
pothesis among the 5 and calculate its F1 score, for
each test utterance. In this manner, we also know
the upper bound that EL can reach from reranking

3Sports domain does not have the annotation for noisy data
available when this experiment was conducted.

4Our KB does not have relation information for movie&TV
domain.

NER hypotheses. As described in section 3.2, the
EL model is optimized to perform two tasks simul-
taneously: entity linking and reranking of NER
hypotheses. Hence to evaluate the performance
of the EL model, we use two metrics: reranked
NER-F1 score and the EL-F1 score. The reranked
NER F1 score is measured on the NER predictions
according to the top EL hypothesis, and is defined
in the same way as the previous NER task. To
evaluate entity linking quality, we adopt a strict F1
metric similar to the one used for NER. Besides
entity boundary and entity type, the resolved entity
also needs to be correct for the entity prediction to
be counted as a true positive.

For NER model training, we use standard mini-
batch gradient descent using the Adam optimizer
with an initial learning rate of 0.001, a scheduled
learning rate decay of 0.99, LSTM with a hidden
layer of size 350 and a batch size of 256. We apply
a dropout of 0.5 to the embedding and biLSTM
layers, and include token level gazetteer features
(Ratinov and Roth, 2009) to boost performance in
recognizing common entities. We linearly project
these gazetteer features and concatenate the projec-
tion with the 200 dimensional word embeddings
and 100 dimensional character embeddings which
are then fed into the biLSTM followed by the CRF.

For EL, the character CNN model we use has
two layers, each with 100 convolution kernels of
size 3, 4, and 5. Character embedding are 25 di-
mensional and trained end to end with the entity
linking task. The MLP for embedding similarity
takes the concatenation of two name embeddings,
as well as their element-wise sum, difference, min-
imum, maximum, and multiplication. It has two
hidden layers of size 1024 and 256, with output
dimension 64. Similarity features of mentions in
the prediction are averaged, while the other fea-
tures like NER confidence and entity popularity
are concatenated to the representation. The final
MLP for scoring has two hidden layers, with size
256 and 64. We train the model on 4 GPUs with
synchronous SGD, and for each gradient step we
send a batch of 100 examples to each GPU.

5 System Evaluation

5.1 Results

We present F1 scores in different domains of the
NER and EL model in Table 1. Since the EL model
takes 5 NER hypotheses as input, it also acts as a re-
ranker of the NER model, and we show substantial

200

improvements on top-1 NER F1 score consistently
over all test sets.

NER F1
top-1/top-5

reranked
NER F1 EL F1

movie&TV 78.76 / 96.83 81.62 79.67
music 84.27 / 97.26 87.40 84.95
sports 92.97 / 99.15 93.48 91.13

Table 1: Results for the best model setting. NER F1 are
reported on the top-1 and top-5 NER prediction from
the NER model that provides features for EL. Reranked
NER F1 and EL F1 are reported on top-1 prediction
from the best EL model selected by development sets.

In Table 2, we show improvements achieved by
several specific model design choices and features
on entity linking performance. Table 2(a) shows
the MLP similarity substantially improves entity
linking accuracy with its capacity to model text
variations, especially on utterances with noisy en-
tity mentions. The relation feature is powerful for
disambiguating entities with similar names, and
we show a considerable improvement in EL F1 on
the subset of utterances that have related entities
in Table 2(b). Table 2(c) shows utterance embed-
dings brought improvements in the music, and me-
dia & TV domains. The improvement brought by
log-scale popularity feature is the largest for the
movie & TV domain as shown in Table 2(d), where
the popularity distribution has extremely long tails
compared to other domains.

5.2 Qualitative Analysis

We provide a few examples to showcase the effec-
tiveness of our NEU system. Firstly, the EL model
is able to link noisy entity mentions to the corre-
sponding entity canonical name in the knowledge
base. For instance, when the transcribed utterance
is “play Carla Cabello”, the EL model is able to
resolve the mention “Carla Carbello” to the correct
artist name “Camila Cabello”.

Secondly, the EL model is able to recover from
errors made by the NER system by leveraging the
knowledge base to disambiguate entity mentions.
The reranking is especially powerful when the ut-
terance contains little context of the entity for the
NER model to leverage. For example, for “Doc-
tor Strange”, the top NER hypothesis labels the
full utterance as a generic “Person” type, and after
reranking, EL model is able to leverage the pop-
ularity information (“Doctor Strange” is a movie

that was recently released and has a high popular-
ity in our knowledge base) and correctly label the
utterance as “movieTitle”. Reranking is also effec-
tive when the entity mentions are noisy, which will
cause mismatches for the gazetteer features that
NER uses. For “play Avengers Age of Ultra”, the
top NER hypothesis only predicts “Avengers” as
“movieTitle”, while after reranking, the EL model
is able to recover the full span “Avengers Age of Ul-
tra” as a “movieTitle”, and resolve it to “Avengers:
Age of Ultron”, the correct canonical title.

The entity relations from the knowledge base
are helpful for entity disambiguation. When the
user refers to a sports team with the name “Giants”,
they could be asking for either “New York Giants”,
a National Football League (NFL) team, or “San
Francisco Giants”, a Major League Baseball team.
When there are multiple sports team mentions in
an utterance, the EL model leverages a relation fea-
ture from the knowledge base indicating whether
the teams are from the same sports league (as the
user is more likely to mention two teams from the
same league and the same sport). Knowing entity
relations, the EL model is able to link the men-
tion “Giants” in “Cowboys versus Giants” to the
NFL team, knowing that “Cowboys” is referring to
“Dallas Cowboys”.

To validate the utility of our proposed NEU
framework, we illustrate performance improve-
ments in the Domain Classifier and the Semantic
Parsers corresponding to the three domains (music,
movies & TV and sports) as described in Section
3.3. Table 3 reports the classification accuracy for
the Domain Classifier and the parse accuracies for
the Semantic Parsers (the model is said to have
predicted the parse correctly if all the tokens are
tagged with their correct semantic parse labels).
We observe substantial improvements in all 4 cases
when NER features are used as additional input,
given all the other components of the system being
the same. In turn, we observe further improvements
when our NER+EL featurization is used.

6 Conclusion

In this work, we have proposed a Named Entity Un-
derstanding framework that jointly identifies and
resolves entities present in an utterance when a user
interacts with a voice assistant. Our proposed ar-
chitecture consists of two modules: NER and EL,
with the EL serving the additional task of possi-
bly correcting the recognized entities from NER

201

(a)
+ MLP

movie&TV +3.58
(noisy) +9.67
music +2.05
(noisy) +10.03

(b)
+ Relation

music +0.86
(related) +1.97
sports +0.07
(related) +0.81

(c)
+ Utterance
Embedding

(d)
+ Log-scale
Popularity

movie&TV +0.25 +0.27
music +0.39 +0.02
sports -0.07 +0.08

Table 2: EL mean F1 relative % improvements, reported on 10 runs average.

A B C
DC 88.95 89.46 90.04
SP [movie&TV] 89.62 90.99 91.67
SP [music] 83.97 84.26 84.42
SP [sports] 86.37 86.47 86.46

Table 3: Results for domain classifier (first row) and
semantic parser. A is the baseline, B is A+NER, C is
A+NER+EL.

by leveraging rich signals from entity links in the
knowledge base while simultaneously linking these
entities to the knowledge base. With several de-
sign strategies in our system targeted towards noisy
natural language utterances, we have shown that
our framework is robust to speech transcription
and user errors that occur frequently in spoken dia-
log systems. We have also shown that featurizing
the output of NEU and feeding these features into
other language understanding tasks substantially
improves the accuracy of these models.

7 Ethical Considerations

We randomly sampled transcripts from Siri pro-
duction datasets over a period of months, and we
believe it to be a representative sample of usage in
the domains described. In accordance with Apple’s
privacy practices with respect to Siri requests, Siri
utterances are not associated with a user’s Apple ID,
email address, or other data Apple may have from
a user’s use of other Apple services. In addition
to Siri’s baseline privacy guarantees, we filtered
the sampled utterances to remove transcripts that
were too long, contained rare words, or contained
references to contacts before providing the dataset
to our annotators.

Acknowledgements

We would like to thank Alex Acero, Anmol
Walia, Arjun Rangarajan, Barry-John Theobald,
Bhagyashree Shekawat, Christopher Klein, Dhivya
Piraviperumal, Hong Yu, Jianpeng Cheng, Jiarui

Lu, John Giannandrea, John Keesling, Katy Lin-
sky, Lanqing Wang, Ryan Templin, Robert Daland,
Shruti Bhargava, Xi Chen and Yvonne Xiao for
discussions and for their help and feedback. We
also want to thank all the anonymous reviewers for
the helpful feedback and suggestions on this work.

References
Abdalghani Abujabal and Judith Gaspers. 2018. Neu-

ral named entity recognition from subword units.
arXiv preprint arXiv:1808.07364.

Adrian Benton and Mark Dredze. 2015. Entity link-
ing for spoken language. In Proceedings of the
2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 225–230, Den-
ver, Colorado. Association for Computational Lin-
guistics.

Kalina Bontcheva, Leon Derczynski, and Ian Roberts.
2017. Crowdsourcing named entity recognition and
entity linking corpora. In Handbook of Linguistic
Annotation, pages 875–892. Springer.

Kevin Bowden, Jiaqi Wu, Shereen Oraby, Amita Misra,
and Marilyn Walker. 2018. SlugNERDS: A named
entity recognition tool for open domain dialogue sys-
tems. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Xi C Chen, Adithya Sagar, Justine T Kao, Tony Y Li,
Christopher Klein, Stephen Pulman, Ashish Garg,
and Jason D Williams. 2019. Active learning for
domain classification in a commercial spoken per-
sonal assistant. Proc. Interspeech 2019, pages 1478–
1482.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Leon Derczynski, Diana Maynard, Giuseppe Rizzo,
Marieke Van Erp, Genevieve Gorrell, Raphaël

202

Troncy, Johann Petrak, and Kalina Bontcheva. 2015.
Analysis of named entity recognition and linking
for tweets. Information Processing & Management,
51(2):32–49.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Yotam Eshel, Noam Cohen, Kira Radinsky, Shaul
Markovitch, Ikuya Yamada, and Omer Levy. 2017.
Named entity disambiguation for noisy text. In Pro-
ceedings of the 21st Conference on Computational
Natural Language Learning (CoNLL 2017), pages
58–68, Vancouver, Canada. Association for Compu-
tational Linguistics.

Ning Gao, Douglas W. Oard, and Mark Dredze. 2017.
Support for interactive identification of mentioned
entities in conversational speech. In Proceedings of
the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’17, page 953–956, New York, NY, USA. As-
sociation for Computing Machinery.

Tao Ge, Xingxing Zhang, Furu Wei, and Ming Zhou.
2019. Automatic grammatical error correction for
sequence-to-sequence text generation: An empiri-
cal study. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6059–6064, Florence, Italy. Association for
Computational Linguistics.

Sahar Ghannay, Antoine Caubrière, Yannick Estève,
Nathalie Camelin, Edwin Simonnet, Antoine Lau-
rent, and Emmanuel Morin. 2018. End-to-end
named entity and semantic concept extraction from
speech. In 2018 IEEE Spoken Language Technology
Workshop (SLT), pages 692–699. IEEE.

Stephen Guo, Ming-Wei Chang, and Emre Kiciman.
2013. To link or not to link? a study on end-to-
end tweet entity linking. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1020–1030, Atlanta,
Georgia. Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Nikolaos Kolitsas, Octavian-Eugen Ganea, and
Thomas Hofmann. 2018. End-to-end neural entity
linking. In Proceedings of the 22nd Conference
on Computational Natural Language Learning,
pages 519–529, Brussels, Belgium. Association for
Computational Linguistics.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Thomas Lin, Mausam, and Oren Etzioni. 2012. Entity
linking at web scale. In Proceedings of the Joint
Workshop on Automatic Knowledge Base Construc-
tion and Web-scale Knowledge Extraction (AKBC-
WEKEX), pages 84–88, Montréal, Canada. Associa-
tion for Computational Linguistics.

Xiaohua Liu, Yitong Li, Haocheng Wu, Ming Zhou,
Furu Wei, and Yi Lu. 2013. Entity linking for tweets.
In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1304–1311, Sofia, Bulgaria.
Association for Computational Linguistics.

Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Za-
iqing Nie. 2015. Joint entity recognition and disam-
biguation. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 879–888.

Pedro Henrique Martins, Zita Marinho, and André
F. T. Martins. 2019. Joint learning of named en-
tity recognition and entity linking. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics: Student Research Work-
shop, pages 190–196, Florence, Italy. Association
for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Lev Ratinov and Dan Roth. 2009. Design chal-
lenges and misconceptions in named entity recog-
nition. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning
(CoNLL-2009), pages 147–155, Boulder, Colorado.
Association for Computational Linguistics.

Allen Schmaltz, Yoon Kim, Alexander Rush, and Stu-
art Shieber. 2017. Adapting sequence models for
sentence correction. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2807–2813, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Avirup Sil and Alexander Yates. 2013. Re-ranking for
joint named-entity recognition and linking. In Pro-
ceedings of the 22nd ACM international conference
on Information and Knowledge Management, pages
2369––2374, San Francisco, USA.

203

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

204

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 205–213
June 6–11, 2021. ©2021 Association for Computational Linguistics

Goodwill Hunting: Analyzing and Repurposing
Off-the-Shelf Named Entity Linking Systems

Karan Goel∗
Stanford University

Laurel Orr
Stanford University

Nazneen Fatema Rajani
Salesforce Research

Jesse Vig
Salesforce Research

Christopher Ré
Stanford University

Abstract
Named entity linking (NEL) or mapping
“strings" to “things" in a knowledge base is
a fundamental preprocessing step in systems
that require knowledge of entities such as in-
formation extraction and question answering.
In this work, we lay out and investigate two
challenges faced by individuals or organiza-
tions building NEL systems. Can they directly
use an off-the-shelf system? If not, how eas-
ily can such a system be repurposed for their
use case? First, we conduct a study of off-
the-shelf commercial and academic NEL sys-
tems. We find that most systems struggle to
link rare entities, with commercial solutions
lagging their academic counterparts by 10%+.
Second, for a use case where the NEL model is
used in a sports question-answering (QA) sys-
tem, we investigate how to close the loop in our
analysis by repurposing the best off-the-shelf
model (BOOTLEG) to correct sport-related er-
rors. We show how tailoring a simple technique
for patching models using weak labeling can
provide a 25% absolute improvement in accu-
racy of sport-related errors.

1 Introduction

Named entity linking (NEL), the task of mapping
from “strings” to “things” in a knowledge base,
is a fundamental component of commercial sys-
tems such as information extraction and question
answering (Shen et al., 2015). Given some text,
NEL systems perform contextualized linking of
text phrases, called mentions, to a knowledge base.
If a user asks her personal assistant “How long
would it take to drive a Lincoln to Lincoln”, the
NEL system underlying the assistant should link
the first mention of “Lincoln” to the car company,
and the second “Lincoln” to Lincoln in Nebraska,
in order to answer correctly.

As NEL models have direct impact on the suc-
cess of downstream products (Peters et al., 2019),

∗ E-mail: kgoel@cs.stanford.edu

all major technology companies deploy large-scale
NEL systems; e.g., in Google Search, Apple Siri
and Salesforce Einstein. While these companies
can afford to build custom NEL systems at scale,
we consider how a smaller organization or individ-
ual could achieve the same objectives.

We start with a simple question: how would
someone, starting from scratch, build an NEL sys-
tem for their use case? Can existing NEL systems
be used off-the-shelf, and if not, can they be repur-
posed with minimal engineer effort? Our “protago-
nist" here must navigate two challenging problems,
as shown in Figure 1:

1. Off-the-shelf capabilities. Industrial NEL sys-
tems provide limited transparency into their per-
formance, and the majority of academic NEL
systems are measured on standard benchmarks
biased towards popular entities (Steinmetz et al.,
2013). However, prior works suggest that NEL
systems struggle on so-called “tail" entities that
appear infrequently in data (Jin et al., 2014; Orr
et al., 2020). As the majority of user queries
are over the tail (Bernstein et al., 2012; Gomes,
2017), it is critical to understand the extent to
which NEL systems struggle on the tail in off-
the-shelf academic and commercial systems.

2. Repurposing systems. If off-the-shelf systems
are inadequate on the tail or other relevant sub-
populations, how difficult is it for our protag-
onist to develop a customized solution with-
out building a system from scratch? Can they
treat an existing NEL model as a black box and
still modify its behavior? When faced with de-
signing a NEL system with desired capabili-
ties, prior work has largely focused on devel-
oping new systems (Sevgili et al., 2020; Shen
et al., 2014; Mudgal et al., 2018). The ques-
tion of how to guide or “patch” an existing NEL
system without changing its architecture, fea-
tures, or training strategy—what we call model

205

Popular
Entities

off-the-shelf

Tail
Entities

Winter
Sports

Soccer

English player Harry Kane scored a goal in their
match against Germany.

Germany German National
Football Team

Country Type Sports Team Type

weak label function: match against [sports team]

Data Augmentation

Weak Labeling

Model Patching Approaches

Synthetic Data
Architecture

Features

patched

Off-The-Shelf Capabilities

Training
Data Engineering Model Engineering

re-labeling

Beckham played for Real Madrid
before moving to LA.

Norway won the gold medal for
curling in the 1998 Olympics.

Where is Beckham in Appomattox
County, VA?

English player Harry Kane scored
a goal in their

match against Germany.

ExampleSubpopulation

Figure 1: Challenges faced by individuals or small organizations in building NEL systems. (left) the fine-grained per-
formance of off-the-shelf NEL systems varies widely—struggling on tail entities and sports-relevant subpopulations—
making it likely that they must be repurposed for use; (right) for a sports QA application where no off-the-shelf
system succeeds, the best-performing model (BOOTLEG) can be treated as a black box and successfully patched
using weak labeling. In the example, a simple rule re-labels training data to discourage the BOOTLEG model from
predicting a country entity (“Germany") when a clear sports-relevant contextual cue (“match against") is present.

engineering—remains unaddressed.

In response to these questions, we investigate the
limitations of existing systems and the possibility
of repurposing them:

1. Understanding failure modes (Section 3). We
conduct the first study of open-source academic
and commercially available NEL systems. We
compare commercial APIs from MICROSOFT,
GOOGLE and AMAZON to open-source systems
BOOTLEG (Orr et al., 2020), WAT (Piccinno
and Ferragina, 2014) and REL (van Hulst et al.,
2020) on subpopulations across 2 benchmark
datasets of WIKIPEDIA and AIDA (Hoffart
et al., 2011). Supporting prior work, we find
that most systems struggle to link rare entities,
are sensitive to entity capitalization and often ig-
nore contextual cues when making predictions.
On WIKIPEDIA, commercial systems lag their
academic counterparts by 10%+ recall, while
MICROSOFT outperforms other commercial sys-
tems by 16%+ recall. On AIDA, a heuristic
that relies on entity popularity (POP) outper-
forms all commercial systems by 1.5 F1. Over-
all, BOOTLEG is the most consistent system.

2. Patching models (Section 3.2). Consider a
scenario where our protagonist wants to use
a NEL system as part of a downstream QA
model answering sport-related queries; e.g.,

“When did England last win the FIFA world
cup?”. All models underperform on sport-
relevant subpopulations of AIDA; e.g., BOOT-
LEG can fail to predict national sports teams
despite strong sport-relevant contextual cues,
favoring the country entity instead. We there-
fore take the best system, BOOTLEG, and show
how to correct undesired behavior using data
engineering solutions—model agnostic meth-
ods that modify or create training data. Drawing
on simple strategies from prior work in weak
labeling, which uses user-defined functions to
weakly label data (Ratner et al., 2017), we re-
label standard WIKIPEDIA training data to patch
these errors and finetune the model on this re-
labeled dataset. With this strategy, we achieve
a 25% absolute improvement in accuracy on
the mentions where a model predicts a country
rather than a sports team.

We believe these principles of understanding
fine-grained failure modes in the NEL system
and correcting them with data engineering apply
to large-scale industrial pipelines where the NEL
model or its embeddings are used in numerous
downstream products.

2 Named Entity Linking

Given some text, NEL involves two steps: the
identification of all entity mentions (mention ex-

206

ExampleSubpopulation Definition gold entity relevant cue

strong-
affordance

Celtic kicked off their Scottish Premier
League campaign with a 3-1 win over
Aberdeen at Pittodrie Stadium.

sentence has words highly associated
(tf-idf) with the gold entity’s type(s)

league

Aberdeen (city)

Aberdeen FC
win

kicked

kg-
relation

ABK returned to the label in 2008 , and released “Mudface”.gold entity is related to another entity in
the sentence

Mudface (ABK album)

Mudface (Redman album)relation: album by

share-1-
type

Hellriegel was also second in the event in 1995 (to Mark Allen) and 1996 (to Luc Van Lierde).sentence has three consecutive entities
that share the same type

Mark Allen (triathlete) Mark Allen (DJ)
type: triathletes

one-of-
the-two

In 1920, she performed a specialty number in “The
Deep Purple”, a silent film directed by Raoul Walsh.

gold entity is one of the two most popular
candidates, which have similar popularity The Deep Purple (1915 film)

The Deep Purple (1920 film)

unpopular Croatia was beaten 4-2 by France in the final on 15th
July.

gold entity is not the most popular
candidate, which is 5x more popular France (country)

French national football team

Figure 2: Subpopulations analyzed on the WIKIPEDIA dataset, along with their definitions and examples. We
consider five subpopulations inspired by Orr et al. (2020).

traction), and contextualized linking of these
mentions to their corresponding knowledge base
entries (mention disambiguation). For exam-
ple, in “What ingredients are in a Manhattan",
the mention “Manhattan” links to Manhattan
(cocktail), not Manhattan (borough)
or The Manhattan Project. Internally,
most systems have an intermediate step that gen-
erates a small set of possible candidates for each
mention (candidate generation) for the disambigua-
tion model to choose from.

Given the goal of building a NEL system for a
specific use case, we need to answer two questions:
(1) what are the failure modes of existing systems,
and (2) can they be repurposed, or “patched”, to
achieve desired performance.

3 Understanding Failure Modes

We begin by analyzing the fine-grained perfor-
mance of off-the-shelf academic and commercial
systems for NEL.

Setup. To perform this analysis, we use Robust-
ness Gym (Goel et al., 2021b), an open-source eval-
uation toolkit for analyzing natural language pro-
cessing models. We evaluate all NEL systems by
considering their performance on subpopulations,
or subsets of data that satisfy some condition.

Systems. We use 3 commercially available APIs:
(i) GOOGLE Cloud Natural Language API (Google)
, (ii) MICROSOFT Text Analytics API (Microsoft)
, and (iii) AMAZON Comprehend API (Amazon)1.

1AMAZON performs named entity recognition (NER) to

We compare to 3 state-of-the-art systems: (i) BOOT-
LEG, a self-supervised system, (ii) REL, which
combines existing state-of-the-art approaches, (iii)
WAT an extension of the TAGME (Ferragina and
Scaiella, 2010) linker. We also compare to a simple
heuristic (iv) POP, which picks the most popular
entity among candidates provided by BOOTLEG.

Datasets. We compare methods on examples
drawn from two datasets: (i) WIKIPEDIA, which
contains 100, 000 entity mentions mined from
gold anchor links across 37, 492 sentences from a
November 2019 Wikipedia dataset, and (ii) AIDA,
the AIDA test-b benchmark dataset2.

Metrics. As WIKIPEDIA is sparsely labeled (Ghad-
dar and Langlais, 2017), we compare performance
on recall. For AIDA, we use Macro-F1, since
AIDA provides a more dense labeling of entities.

Results. Our results for WIKIPEDIA and AIDA
are reported in Figures 3, 4 respectively.

3.1 Analysis on WIKIPEDIA

Subpopulations. In line with Orr et al. (2020),
we consider 4 groups of examples — head, torso,
tail and toe — that are based on the popularity
of the entities being linked. Intuitively, head ex-
amples involve resolving popular entities that oc-
cur frequently in WIKIPEDIA, torso examples have
medium popularity while tail examples correspond
to entities that are seen rarely. Toe entities are a
subset of the tail that are almost never seen. We con-

identify entity mentions in text, so we use it in conjunction
with a simple string matching heuristic to resolve entity links.

2REL uses AIDA for training, so we exclude it.

207

49.9

68.7popular

everything 49.2

82.7

66.8

71.7

78.7

83.9

51.2

80.4

69.2

88.1

49.5K

8.32K

64.9

61.6

48.7

79.5

65.1

30.3unpopular

strong affordance

share-1-type

one-of-the-two

kg-relation

everything 73.3

80.3

65.3

81.5

73.3

37.8

73.2

69.9

65.3

89.1

73.1

49.5

85.1

83.8

77.2

94.7

85.5

79.2

71.6

77.3

65.3

85.4

71.2

33.7

83.2

85.5

78.6

92.8

83.2

50.6

15.5K

5.07K

885

1.25K

14.4K

650

44.4

55.5

43.0

45.4

45.6

23.6unpopular

strong affordance

share-1-type

one-of-the-two

kg-relation

everything 40.4

53.4

39.2

44.8

41.1

21.2

65.1

77.5

66.5

77.4

66.2

45.4

77.2

86.9

80.6

88.2

78.5

61.7

44.3

50.3

46.5

57.9

44.3

24.8
65.1

72.2

68.2

76.2

65.5

43.3

30K

6.23K

2.13K

2.78K

24.4K

3.51K

33.8

44.0

45.5

31.5

34.9

16.7unpopular

strong affordance

share-1-type

one-of-the-two

kg-relation

everything

21.6

30.5

31.2

24.5
22.5

5.1

55.1

70.4

65.6

62.9

57.8

37.4

65.2

80.4

74.9

80.7

67.9

44.1

23.6
19.6

34.4

38.0

23.6
7.6

46.2

51.8

57.7

64.0

46.5

28.1

4.04K

901

279

461

3.14K

449

25.0

27.8

50.0

14.3

26.9

30.0

0 100

unpopular

strong affordance

share-1-type

one-of-the-two

kg-relation

everything

15.6
16.7

41.7

28.6

18.3

0 100

50.8

66.7

58.3

64.3

55.8

40.0

0 100

66.4

75.0

75.0

78.6

69.2

40.0

0 100

18.0
22.2

41.7

35.7

19.2

0 100

36.7

47.2

75.0

64.3

37.5

20.0

0 100

128

36

12

14

104

10

Amazon Google Microsoft Bootleg Rel Wat Size
all

head
torso

tail
toes

Figure 3: Robustness Report (Goel et al., 2021b) for NEL on Wikipedia, measuring recall.

sider 5 subpopulations inspired by Orr et al. (2020),
described in Figure 2 with examples. These sub-
populations require close attention to contextual
cues such as relations, affordances and types.

We also consider aggregate performance on the
entire dataset (everything), and globally popular
entities, which are examples where the entity men-
tion is in the top 800 most popular entity mentions.

BOOTLEG is best overall. Overall, BOOTLEG out-
performs other systems by a wide margin, with a
12-point gap to the next best system (MICROSOFT),
while MICROSOFT in turn outperforms other com-
mercial systems by more than 16 points.

Performance degrades on rare entities. For all
systems, performance on head slices is substan-
tially better than performance on tail/toe slices.
BOOTLEG is the most robust across the set of slices
that we consider. Among commercial systems,
GOOGLE and AMAZON struggle on tail and torso

entities e.g. GOOGLE from 73.3 points on head
to 21.6 points on tail, while MICROSOFT’s perfor-
mance degrades more gracefully. GOOGLE is adept
at globally popular entities, where it outperforms
MICROSOFT by more than 11 points.

3.2 Analysis on AIDA

Subpopulations. We consider subpopulations that
vary by: (i) fraction of capitalized entities, (ii) aver-
age popularity of mentioned entities, (iii) number
of mentioned entities; (iv) sports-related topic.

Overall performance. Similar to WIKIPEDIA,
BOOTLEG performs best, beating WAT by 1.3%,
with commercial systems lagging by 11%+.

Sensitivity to capitalization. Both GOOGLE and
MICROSOFT are sensitive to whether the entity
mention is capitalized. GOOGLE’s performance
goes from 54.1% on sentences where all mentions

208

52.5

54.6

49.6

44.0

66.2

52.2

49.6

57.1

77.1

76.8

54.8

48.2

67.7

69.6

7.1

30.1

19.8

54.3

36.3

79.5

54.9

54.2

0 100

Sport(Soccer)

Sport(Skiing)

Sport(Skating)

Sport(Rugby)

Sport(Nordic)

Sport(NHL)

Sport(NFL)

Sport(NBA)

Sport(Golf)

Sport(Freestyle)

Sport(Cricket)

Sport(Basketball)

Sport(Badminton)

Sport(Alpine)

NumEntities(Top 10%)

NumEntities(1)

EntityPopularity(Top 10%)

EntityPopularity(Top 10% Variability)

EntityPopularity(Bottom 10%)

EntityCapitalization(None)

EntityCapitalization(All)

All 48.5

54.1

38.2

35.1

79.9

54.0

38.6

62.7

83.8

68.9

57.4

31.7

81.7

72.1

9.3

24.1
9.0

64.9

25.9

80.7

56.8

41.3

0 100

54.7

66.0

35.7

46.4

71.3

53.9

44.2

69.4

82.9

67.5

27.8

50.7

72.1

63.8

8.3

20.7
13.8

76.2

45.5

91.6

65.9

60.9

0 100

66.0

68.2

62.0

57.7

74.2

52.1

60.6

69.4

80.0

78.4

74.6

60.7

74.7

77.9

68.6

52.8

46.9

66.6

61.5

75.8

57.5

73.5

0 100

64.7

63.2

67.7

47.4

73.3

55.3

65.1

58.9

84.4

70.1

77.2

54.3

75.8

69.4

77.2

25.7

67.4

64.3

56.3

78.9

68.7

73.7

0 100

56.4

56.1

56.3

46.0

73.4

61.7

53.7

59.7

79.7

70.7

59.9

51.2

73.5

77.8

13.9
25.4

18.2

64.1

44.5

75.8

66.6

56.4

0 100

2.46K

1.4K

909

247

247

264

1.37K

428

155

24

37

124

44

30

99

65

107

20

63

42

22

654

Amazon Google Microsoft Bootleg Wat Pop Size

subpopulations

Figure 4: Robustness Report (Goel et al., 2021b) for NEL on AIDA, measuring Macro-F1.

are capitalized to 38.2% on sentences where none
are capitalized. Similarly, MICROSOFT degrades
from 66.0% to 35.7%. This suggests that mention
extraction in these models is capitalization sensi-
tive. In contrast, AMAZON, BOOTLEG and WAT

appear insensitive to capitalization artifacts.

Performance on topical entities. Interestingly, all
models struggle on some topics, e.g. on NHL ex-
amples, all models degrade significantly, with WAT

outperforming others by 20%+. GOOGLE and MI-
CROSOFT display strong performance on some top-
ics, e.g., GOOGLE on alpine sports (83.8%) and
MICROSOFT on skating (91.6%).

Popularity heuristic outperforms commercial
systems. Somewhat surprisingly, POP outperforms
all commercial systems by 1.7%. In fact, we note
that the pattern of errors for POP is very similar to
those of the commercial systems, e.g., performing
poorly on NBA, NFL and NHL slices. This sug-
gests that commercial systems sidestep the difficult
problem of disambiguating ambiguous entities in
favor of returning the more popular answer. Simi-
lar to WIKIPEDIA, GOOGLE performs best among
commercial systems on examples with globally
popular entities (top 10% entity popularity).

Our results suggest that state-of-the-art academic
systems outperform commercial APIs for NEL.

Next, we explore whether it is possible to simply
“patch" an off-the-shelf NEL model for a specific
downstream use case. Standard methods for de-
signing models with desired capabilities require
technical expertise to engineer the architecture and
features. As these skills are out of reach for many
organizations and individuals, we consider patch-
ing models where they are treated as a black-box.

We provide a proof-of-concept that we can use
data engineering to patch a model. For our ground-
ing use case, we consider the scenario where the
NEL model will be used as part of a sports question-
answering (QA) system that uses a knowledge
graph (KG) to answer questions. For example,
given the question “When did England last win the
FIFA world cup?”, we would want the NEL model
to resolve the metonymic mention “England” to the
English national football team, and not the country.
This makes it easy for the QA model to answer the
question using the “winner” KG-relationship to the
1966 FIFA World Cup, which applies only to the
team and not the country.

209

3.3 Predicting the Wrong Granularity
Our off-the-shelf analysis revealed that all models
struggle on sport-related subpopulations of AIDA.
For instance, BOOTLEG is biased towards predict-
ing countries instead of sport teams, even with
strong contextual cues. For example, in the sen-
tence “...the years I spent as manager of the Repub-
lic of Ireland were the best years of my life”, BOOT-
LEG predicts the country “Republic of Ireland” in-
stead of the national sports team. In general, this
makes it undesirable to directly use off-the-shelf in
our sports QA system scenario.

We explore repurposing in a controlled environ-
ment using BOOTLEG, the best-performing off-the-
shelf NEL model. We train a small model, called
BOOTLEGSPORT, over a WIKIPEDIA subset con-
sisting only of sentences with mentions referring
to both countries and national sport teams. We
define a subpopulation, strong-sport-cues, as men-
tions directly preceded by a highly correlated sport
team cue3. Examining strong-sport-cues reveals
two insights into BOOTLEGSPORT’s behavior:

1. BOOTLEGSPORT misses some strong sport-
relevant textual cues. In this subpopulation,
5.8% examples are mispredicted as countries.

2. In this supopulation, an estimated 5.6% of men-
tions are incorrectly labeled as countries in
WIKIPEDIA. As WIKIPEDIA is hand labeled
by users, it contains some label noise.

In our use case, we want to guide
BOOTLEGSPORT to always predict a sport
team over a country in sport-related sentences.

3.4 Repurposing with Weak Labeling
While there are some prior data engineering so-
lutions to “model patching”, including augmenta-
tion (Sennrich et al., 2015; Wei and Zou, 2019;
Kaushik et al., 2019; Goel et al., 2021a), weak
labeling (Ratner et al., 2017; Chen et al., 2020),
and synthetic data generation (Murty et al., 2020),
due to the noise in WIKIPEDIA, we repurpose
BOOTLEGSPORT using weak labeling to modify
training labels and correct for this noise. Our weak
labeling technique works as follows: any existing
mention from strong-sport-cues that is labeled as
a country is relabeled as a national sports team for

3We mine these textual cues by looking at the most com-
mmon two-grams proceeding a national sport team in the
training data. The result is phrases such as “scored against”,
“match against”, and “defending champion”.

Subpop. Gold Label Pred. Label Size (Off-The-Shelf→ Patched)

All Country Country 90885→ 90591 (↓)
Team 201→ 254 (↑)

Team Country 216→ 161 (↓)
Team 4057→ 4120 (↑)

Weak Country Country 15225→ 15139 (↓)
Sport Cues Team 154→ 190 (↑)

Team Country 151→ 106 (↓)
Team 3393→ 3447 (↑)

Table 1: BOOTLEGSPORT prediction matrix before and
after model patching. The weak sport cues subpopula-
tion contains sentences with more generic sport related
keywords.

that country. We choose the national sport team to
be consistent with other sport entities in the sen-
tence. If there are none, we choose a random na-
tional sport team. While this may introduce noise,
it allows us to guide BOOTLEGSPORT to prefer
sport teams over countries.

Results. After performing weak labeling, we fine-
tune BOOTLEGSPORT over this modified dataset.
As WIKIPEDIA ground truth labels are noisy and
do not reflect our goal of favoring sport teams in
sport sentences, we examine the distribution of pre-
dictions before and after guiding. In Table 1 we see
that our patched model shows an increased trend
in predicting sport teams. Further, the patched
BOOTLEGSPORT model now only predicts coun-
tries in 4.0% of the strong-sport-cues subpopula-
tion, a 30% relative reduction.

For examples where the gold entity is a sports
team that BOOTLEGSPORT predicts is a coun-
try, weak labeling improves absolute accuracy by
24.54%. Weak-labeling "shifts" probability mass
from countries towards teams by 20% on these
examples, and 1.8% overall across all examples
where the gold entity is a sports team. It does
so without "disturbing" probabilities on examples
where the true answer is indeed a country, where
the shift is only 0.07% towards teams.

4 Related Work

Identifying Errors. A key step in assessing off-
the-shelf systems is fine-grained evaluation, to
determine if a system exhibits undesirable be-
havior. Prior work on fine-grained evaluation in
NEL (Rosales-Méndez et al., 2019) characterizes
how to more consistently evaluate NEL models,
with an analysis that focuses on academic systems.
By contrast, we consider both academic and in-
dustrial off-the-shelf systems, and describe how
to assess them in the context of a downstream

210

use-case. We use Robustness Gym (Goel et al.,
2021b), an open-source evaluation toolkit for per-
forming the analysis, although other evaluation
toolkits (Ribeiro et al., 2020; Morris et al., 2020)
are possible to use, depending on the objective of
the assessment.
Patching Errors. If a system is assessed to have
some undesirable behavior, the next step is to cor-
rect its errors and repurpose it for use. The key
challenge lies in how to correct these errors. Al-
though similar to the related fields of domain adap-
tation (Wang and Deng, 2018) and transfer learn-
ing (Zhuang et al., 2020) where the goal is to trans-
fer knowledge from a pretrained, source model to
a related task in a potentially different domain, our
work focuses on user-guided behavior correction
when using a pretrained model on the same task.

For industrial NEL applications, Orr et al. (2020)
describe how to use data management techniques
such as augmentation (Sennrich et al., 2015; Wei
and Zou, 2019; Kaushik et al., 2019; Goel et al.,
2021a), weak supervision (Ratner et al., 2017), and
slice-based learning (Chen et al., 2019) to correct
underperforming, user-defined sub-populations of
data. Focusing on image data Goel et al. (2021a)
use domain translation models to generate synthetic
augmentation data that improves underperforming
subpopulations.
NEL. NEL has been a long standing problem in
industrial and academic systems. Standard, pre-
deep-learning approaches to NEL have been rule-
based (Aberdeen et al., 1996), but in recent years,
deep learning systems have become the new stan-
dard (see Mudgal et al. (2018) for an overview of
deep learning approaches to NEL), often relying on
contextual knowledge from language models such
as BERT (Févry et al., 2020) for state-of-the-art
performance. Despite strong benchmark perfor-
mance, the long tail of NEL (Bernstein et al., 2012;
Gomes, 2017) in industrial workloads has remained
a challenge. Recent papers Orr et al. (2020); Wu
et al. (2019) have begun to measure and improve
performance on unseen entities, but it remains an
open problem.

5 Conclusion

We studied the performance of off-the-shelf NEL
models and how to repurpose them for a down-
stream use case. In line with prior work, we found
that off-the-shelf models struggle to disambiguate
rare entities. Using a sport QA system as a case

study, we showed how to use a data engineering so-
lution to patch a BOOTLEG model from mispredict-
ing countries instead of sports teams. We hope that
our study of data engineering to effectuate model
behavior inspires future work in this direction.

Acknowledgements

CR gratefully acknowledges the support of NIH un-
der No. U54EB020405 (Mobilize), NSF under Nos.
CCF1763315 (Beyond Sparsity), CCF1563078
(Volume to Velocity), and 1937301 (RTML); ONR
under No. N000141712266 (Unifying Weak Su-
pervision); the Moore Foundation, NXP, Xilinx,
LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba,
TSMC, ARM, Hitachi, BASF, Accenture, Ericsson,
Qualcomm, Analog Devices, the Okawa Founda-
tion, American Family Insurance, Google Cloud,
Swiss Re, Total, the HAI-AWS Cloud Credits for
Research program, the Salesforce AI Research
grant and members of the Stanford DAWN project:
Facebook, Google, and VMWare. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Governmental purposes notwithstand-
ing any copyright notation thereon. Any opinions,
findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and
do not necessarily reflect the views, policies, or
endorsements, either expressed or implied, of NIH,
ONR, or the U.S. Government.

References
John Aberdeen, John D Burger, David Day, Lynette

Hirschman, David D Palmer, Patricia Robinson, and
Marc Vilain. 1996. Mitre: Description of the alembic
system as used in met. In TIPSTER TEXT PRO-
GRAM PHASE II: Proceedings of a Workshop held
at Vienna, Virginia, May 6-8, 1996, pages 461–462.

Amazon. Amazon comprehend api.

Michael S Bernstein, Jaime Teevan, Susan Dumais,
Daniel Liebling, and Eric Horvitz. 2012. Direct an-
swers for search queries in the long tail. In SIGCHI.

Mayee F. Chen, Daniel Y. Fu, Frederic Sala, Sen Wu,
Ravi Teja Mullapudi, Fait Poms, Kayvon Fatahalian,
and Christopher Ré. 2020. Train and you’ll miss
it: Interactive model iteration with weak supervi-
sion and pre-trained embeddings. arXiv preprint
arXiv:2006.15168.

Vincent Chen, Sen Wu, Alexander J Ratner, Jen Weng,
and Christopher Ré. 2019. Slice-based learning: A
programming model for residual learning in critical
data slices. In Advances in neural information pro-
cessing systems, pages 9392–9402.

211

P. Ferragina and Ugo Scaiella. 2010. Tagme: on-the-
fly annotation of short text fragments (by wikipedia
entities). ArXiv, abs/1006.3498.

Thibault Févry, Nicholas FitzGerald, Livio Baldini
Soares, and Tom Kwiatkowski. 2020. Empirical eval-
uation of pretraining strategies for supervised entity
linking. In AKBC.

Abbas Ghaddar and Philippe Langlais. 2017. Winer: A
wikipedia annotated corpus for named entity recog-
nition. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 413–422.

Karan Goel, Albert Gu, Yixuan Li, and Christopher
Ré. 2021a. Model patching: Closing the subgroup
performance gap with data augmentation. In The In-
ternational Conference on Learning Representations
(ICLR).

Karan Goel, Nazneen Rajani, Jesse Vig, Samson Tan,
Jason Wu, Stephan Zheng, Caiming Xiong, Mohit
Bansal, and Christopher Ré. 2021b. Robustness gym:
Unifying the nlp evaluation landscape.

Ben Gomes. 2017. Our latest qual-
ity improvements for search. https:
//blog.google/products/search/
our-latest-quality-improvements-search/.

Google. Google cloud natural language api.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust disambiguation of named entities in
text. In Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Processing,
pages 782–792.

Johannes M. van Hulst, F. Hasibi, K. Dercksen, K. Ba-
log, and A. D. Vries. 2020. Rel: An entity linker
standing on the shoulders of giants. Proceedings of
the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval.

Yuzhe Jin, Emre Kıcıman, Kuansan Wang, and Ricky
Loynd. 2014. Entity linking at the tail: sparse signals,
unknown entities, and phrase models. In Proceed-
ings of the 7th ACM international conference on Web
search and data mining, pages 453–462.

Divyansh Kaushik, Eduard Hovy, and Zachary C Lipton.
2019. Learning the difference that makes a differ-
ence with counterfactually-augmented data. arXiv
preprint arXiv:1909.12434.

Microsoft. Microsoft text analytics api.

John X Morris, Eli Lifland, Jin Yong Yoo, and Yanjun
Qi. 2020. Textattack: A framework for adversarial at-
tacks in natural language processing. arXiv preprint
arXiv:2005.05909.

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, An-
Hai Doan, Youngchoon Park, Ganesh Krishnan, Ro-
hit Deep, Esteban Arcaute, and Vijay Raghavendra.
2018. Deep learning for entity matching: A design
space exploration. In Proceedings of the 2018 Inter-
national Conference on Management of Data, pages
19–34.

Shikhar Murty, Pang Wei Koh, and Percy Liang.
2020. Expbert: Representation engineering with
natural language explanations. arXiv preprint
arXiv:2005.01932.

L. Orr, Megan Leszczynski, Simran Arora, Sen Wu,
N. Guha, Xiao Ling, and C. Ré. 2020. Bootleg:
Chasing the tail with self-supervised named entity
disambiguation. CIDR.

Matthew E Peters, Mark Neumann, Robert L Lo-
gan IV, Roy Schwartz, Vidur Joshi, Sameer Singh,
and Noah A Smith. 2019. Knowledge enhanced
contextual word representations. arXiv preprint
arXiv:1909.04164.

Francesco Piccinno and P. Ferragina. 2014. From tagme
to wat: a new entity annotator. In ERD ’14.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. In Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases,
volume 11, page 269. NIH Public Access.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of nlp models with checklist. In
Association for Computational Linguistics (ACL).

Henry Rosales-Méndez, Aidan Hogan, and Barbara
Poblete. 2019. Fine-grained evaluation for entity
linking. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
718–727.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Ozge Sevgili, Artem Shelmanov, Mikhail Arkhipov,
Alexander Panchenko, and Chris Biemann. 2020.
Neural entity linking: A survey of models based on
deep learning. arXiv preprint arXiv:2006.00575.

Wei Shen, Jianyong Wang, and Jiawei Han. 2014. Entity
linking with a knowledge base: Issues, techniques,
and solutions. IEEE Transactions on Knowledge and
Data Engineering, 27(2):443–460.

Wei Shen, Jianyong Wang, and Jiawei Han. 2015. Entity
linking with a knowledge base: Issues, techniques,
and solutions. IEEE Transactions on Knowledge and
Data Engineering, 27:443–460.

212

Nadine Steinmetz, Magnus Knuth, and Harald Sack.
2013. Statistical analyses of named entity disam-
biguation benchmarks. In NLP-DBPEDIA@ ISWC.

Mei Wang and Weihong Deng. 2018. Deep visual
domain adaptation: A survey. Neurocomputing,
312:135–153.

Jason W Wei and Kai Zou. 2019. Eda: Easy
data augmentation techniques for boosting perfor-
mance on text classification tasks. arXiv preprint
arXiv:1901.11196.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2019. Scalable zero-
shot entity linking with dense entity retrieval. arXiv
preprint arXiv:1911.03814.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing
He. 2020. A comprehensive survey on transfer learn-
ing. Proceedings of the IEEE, 109(1):43–76.

213

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 214–221
June 6–11, 2021. ©2021 Association for Computational Linguistics

Intent Features for Rich Natural Language Understanding

Brian Lester♠∗ and Sagnik Ray Choudhury♦ † and Rashmi Prasad♠ and Srinivas Bangalore♠
♠Interactions, 41 Spring Street, New Providence, NJ 07974

♦University of Copenhagen, Denmark
{blester,rprasad,sbangalore}@interactions.com, src@di.ku.dk

Abstract

Complex natural language understanding mod-
ules in dialog systems have a richer under-
standing of user utterances, and thus are criti-
cal in providing a better user experience. How-
ever, these models are often created from
scratch, for specific clients and use cases,
and require the annotation of large datasets.
This encourages the sharing of annotated data
across multiple clients. To facilitate this we
introduce the idea of intent features: domain
and topic agnostic properties of intents that
can be learned from the syntactic cues only,
and hence can be shared. We introduce a new
neural network architecture, the Global-Local
model, that shows significant improvement
over strong baselines for identifying these fea-
tures in a deployed, multi-intent natural lan-
guage understanding module, and, more gener-
ally, in a classification setting where a part of
an utterance has to be classified utilizing the
whole context.

1 Introduction

While generic dialog systems, or chatbots, such as
Amazon Alexa or Google Assistant, are increas-
ingly popular, to date, most industrial dialog sys-
tems are built for specific clients and use cases.
Typically, these systems have the following: 1. A
natural language understanding (NLU) module to
analyze the user utterance, 2. A dialog manager
module to reason over the analyzed utterance and
decide on an action, and 3. A natural language gen-
eration module to generate an appropriate response
based on the action.

Typically, an NLU module has two purposes:
understanding the intent or goal of an utterance
(classification) and identifying the entities in the
utterance (slot filling). As dialog managers have
evolved from simple flow-based systems to infor-
mation state update systems (Traum and Larsson,

∗∗Now an AI Resident at Google
†∗Work done while at Interactions

2003), NLU modules have progressed past simple
single intent detection and flat slot filling to multi-
ple intents and nested entities (Chen et al., 2018).
As these dialog systems need to be rebuilt for each
client, the NLU module faces a significant data
bottleneck; it is time-consuming and expensive to
collect data, develop a domain-specific annotation
scheme, and annotate data. Therefore, it is impera-
tive that the data is shared across clients as much
as possible.

In a production dialogue system, there are of-
ten similar situations that require drastically dif-
ferent responses. For example, “I want to cancel
my subscription.” and “I am thinking about cancel-
ing my subscription.” are very similar. They are
both about the canceling of a subscription. How-
ever, they differ in the users conviction. The latter
user is much more likely to not cancel if offered a
discount. Making this distinction is critical for cre-
ating sophisticated and nuanced dialogue systems.
A common approach to solve this problem would
be to split the intent space so the dialogue manager
can differentiate between these examples, creating
a cancel and a think-cancel intent. Using
intents to recognize specific situations leads to data
sparsity as each intent is broken into many sub-
categories like present vs. past tense, how certain a
user is in their actions, and if the user has tried an
action or not. There would be very few examples of
each intent. Additionally, the combinations of dif-
ferent sub-categories would cause a combinatorial
explosion of intents. Another short-coming of fine-
grained intents is the loss of compositionality. Fun-
damentally the cancel and think-cancel in-
tents are very similar, but because they are modeled
as independent output classes, there is not a shared
representation of these labels the model can lean
on.

In order to avoid these shortcomings, and allow
for many examples per intent, we factor out these
small differences in situations into what we call

214

intent features. Intent features are a set of domain-
independent properties for intents that can primar-
ily be understood from the syntax of the utterance.
These intent features represent specifics of situa-
tion, such as tense, without having a massive intent
space. By decoupling these small differences, we
can keep the intent categories general, while still
providing the dialogue manager with the informa-
tion it needs for nuanced, human-like responses.

In a multi-intent setting where each clause in
the utterance has an intent, intent features reduce
to the problem of classification of a span embed-
ded within a larger utterance. We propose a new
model, the Global-Local model, for this problem
which shows significant improvement over strong
baselines.

2 Intent Features

Table 1 shows a sample utterance with its intents
and features. This is a multi-intent setting where
non-overlapping spans of an utterance have dif-
ferent intents. Each intent span has the following
features:

Communicative functions: The communica-
tive functions (cf) captures what kind of response
(or action) the user is trying to elicit from the sys-
tem. We define five such functions:

• inform: The user is informing the system about
something. Typically, these intents are a response
to a question or they represent background in-
formation surrounding the main purpose of the
utterance. For example, in the utterance, “I am
installing X but it keeps saying I have an error”,
the first clause has a communicative function of
inform. The user provides background infor-
mation about installing something on a device
and then presents a problem with the install pro-
cedure, which would have a communicative func-
tion of issue.

• issue: The user is saying that something has
gone against their expectations (see above for an
example).

• request-action: The user requests for
some action to be undertaken in response to the
request, or requests help with something. For
example, “I would like to install X.”

• request-confirm: The user is requesting
confirmation, or disconfirmation, of their belief.
Often this warrants a yes/no answer. For example,

one expects a yes or no from, “Was my installa-
tion successful?”

• request-info: The user is requesting some
information about something. These are typically
expressed as “wh/how” questions, such as: “How
can I install X?”

All of our running examples above share the in-
tent of installing software; however, differences in
phrasing warrants different responses. An inform
does not typically require a targeted reply from the
system, whereas for an issue, the system should
start the response with “I am sorry you are having
trouble.”

Attribution: Attribution is concerned with
agency. There are two types of attribution. The
first type is the of attribution of the communica-
tive function (attr-cf) and it deals with who is the
primary source of the content of the topic. The
second type is the attribution of the event/action
(attr-ev) of a topic and describes who is the agent
of the event or action. This is perhaps best eluci-
dated by an example. In Table 2, we see multiple
utterances that all have the intent payment, but
we can see how the attribution features change as
both the payer and the informer of the payment
change. Both attr-cf and attr-ev take values self
(when the agent is the user) and other.

Negation: Topics of many intents are rep-
resented in their negated versions, as well.
For example, in the software domain, the
compatibility intent models whether a piece
of software is compatible with some device. A
negation feature would denote incompatibility.
The negation feature takes values positive and
negative.

Tense: Events and actions can occur in the
past, present, or future, which is modeled by the
tense feature using values of past, present, or
future. The steps to solve a problem as it occurs
are often quick-fixes, whereas the first step when
fixing a problem that occurred in the past is often
information gathering. The tense feature allows
the dialogue manager to distinguish between these
two possibilities. Tense information is common in
the annotation of event extraction, such as in ACE
2005 dataset (Consortium, 2005).

Modality: The real-world actions and events
represented by an intent can also be viewed in terms
of a modality of certainty, that is, whether or not the
event or action actually occurred, and to what de-
gree. We consider two types of modality. The first

215

text topic/intent attr-cf attr-ev cf modality negation tense
I am trying to install install self self inform modal-try positive present
and - - - - - -
I see a problem general self self issue other positive present

Table 1: A sample utterance from our dataset with multiple intents and features. Each row represents an intent
span and the columns are the features that apply to that particular intent. We see that intents are general categories
of actions like “install”, while intent features yield specifics of the current state of the user. Given the “modality”
and “tense” features, we see that the user is currently in the middle of installing the program, rather than telling us
they installed it last week. “cf” stands for communicative function.

Utterance Attribution CF Attribution Ev
I have paid $$ self self
I got an email confirming I paid $$ other self
I was charged $$ self other
I got an email confirming that I was charged $$ other other

Table 2: Different types of attribution with the same payment intent. The dialogue manager would react differ-
ently depending on whether the user paid voluntarily vs she was charged or if she was only informed that she was
charged.

is possibility—the expression of the event as hypo-
thetical, or being possible, rather than certain, as
in, “I am planning/going to install X on my laptop.”
We also consider attempts at action. An expression
can imply that it is unclear whether the action was
completed or is in the attempted stage. This is ex-
pressed with modifying verbs, such as, “try”, as
in, “I am trying to install X.” This feature takes the
values modal-poss, modal-try, and other.
A version of Modality is present in event extrac-
tion datasets like ACE 2005 (Consortium, 2005),
but instead of just marking an event as “Asserted”
or “Other”, our version of Modality distinguishes
between different aspects of hypothetical events.

3 Modeling

There are four different model types we explored
for intent features that we detail below. However,
before we can annotate an intent with a feature, we
need to have an intent span. First, we describe our
intent span extraction model whose predictions are
used as intent spans.

3.1 Multi-Intent as Annotatable Spans

The intents in our system are often conditionally de-
pendent. Some intents even appear sequentially, for
example, the cancel intent is often followed by
the refund intent, as users tend to request a can-
cellation first and then ask for a refund. Therefore,
we modeled our multi-intent system as a sequence
tagging problem, where intent spans are encoded

as token level annotations with the IOBES tagging
scheme (Ratinov and Roth, 2009). We used a stan-
dard BiLSTM-CRF architecture following Ma and
Hovy (2016). Each input token is represented both
as a character composition, by running a small con-
volutional neural network with a filter size of 3
over the characters and doing max-over-time pool-
ing as in Dos Santos and Zadrozny (2014), and as a
word embedding. We use the concatenation of mul-
tiple word embeddings, GloVe embeddings (Pen-
nington et al., 2014), as well as 100 dimensional,
in-domain embeddings trained in-house, follow-
ing Lester et al. (2020a). The token sequence is
then fed into an bidirectional LSTM (Graves et al.,
2005), where the LSTM (Hochreiter and Schmid-
huber, 1997) in each direction has a size of 200,
and projected to the final label space. Finally a Con-
ditional Random Field (CRF) (Lafferty et al., 2001)
with constrained decoding (Lester et al., 2020b) is
used to produce the final sequence of intents. This
model was trained using SGD with momentum us-
ing 0.0015 as the learning rate, 0.9 for momentum,
and a batch size of 10. Model results were satis-
factory, but not the focus of this paper. Instead,
intent spans are the atomic unit of text that can be
annotated with intent features and can be used as
features for a downstream intent feature model.

3.1.1 Convolutional Baseline

The first approach was to assume that the feature
labels for an intent are local to that intent span, and,

216

therefore, each intent span can be fed into a classi-
fier independently of the other intent spans. Under
this assumption, we used a convolutional neural
network with parallel filters (Kim, 2014), as it is a
strong baseline used in several of our production
systems. We used parallel filters of size 3, 4, and 5
with 100 filters each. Max-over-time pooling was
used to produce a final span representation, which
is projected into the label space. This model was
trained using Adadelta (Zeiler, 2012) with an initial
learning rate of 1.0 and a batch size of 50. How-
ever, this approach misses possible dependencies
across spans. Some features (such as “tense”) are
naturally co-dependent among spans; the use of a
past tense verb in one span dictates that all spans in
the utterance are past tense, even when there is no
explicit signal from the span itself. While less in-
tuitive, the “communicative function” features are
conditional as well: an utterance such as, “I would
like to order a pizza, but I am having a problem” (a
request-action followed by an issue) is far
more common than an utterance like “I am having a
problem, I would like to order a pizza” (an issue
followed by a request-action). It follows
that the “independence of intent spans” assumption
will become problematic and a contextual model
that takes other spans into account will be needed.

3.1.2 Contextual Features with a
BiLSTM-CRF

This motivated us to reuse the BiLSTM-CRF archi-
tecture we used for intents for the intent features, as
well. This model takes the utterance as input, just
like the intent model. This approach has a poten-
tial pitfall, the intent model and the feature model
may produce different boundaries which need to be
heuristically merged. A small modification to this
approach is to use a cascading tagger where the
output of the intent tagger is used in the input to the
feature tagger. This is done by creating an embed-
ding that represents the span each token is within
and concatenating it to the token representation.
This gives the feature tagger information about the
span boundaries and should keep the spans synced
between the intent and feature models. However,
the actual intent labels need to be masked. Instead
of seeing intent=issue as a feature, the fea-
ture model will just see intent. This is required
because we want the feature labels to be reusable
and therefore unconditioned on exact intent label.
Intent features are applied to intent spans within an
utterance, meaning our BiLSTM-CRF tagger is a

natural baseline that considers the global context
of an utterance.

3.1.3 Global-Local Model
Our fourth approach is a new model architecture
we call the Global-Local model. This model aims
to create a targeted representation for a subsection
of an utterance while also infusing information de-
rived from the whole utterance. An utterance U
of n tokens and a subsequence of k tokens from
U , are first encoded into matrices of dimension
n x e and k x e, respectively, where e is the di-
mension of some shared embedding space. This
encoding can be as simple as word embeddings or
more complex like a BiLSTM encoder. A “global”
pooling function g : Rn x e 7→ Re then collapses
the global sentence matrix to a sentence vector and
another “local” pooling function l : Rk x e 7→ Re
reduces the span matrix to a span vector (both with
dimension e). The local vector is a representation
based solely on the span, while the global vector
is a representation of the span that takes the whole
utterance into account. These vectors are concate-
nated to create the final representation for the span
S. This representation is then projected into the
output space. The pooling functions can be as sim-
ple as max or mean pooling, or as complicated as
self-attention (Vaswani et al., 2017). Each example
is represented as a sequence of tokens and a mask.
The mask is a sequence of zeros and ones, aligned
to the tokens, that marks a token as part of the lo-
cal span (a one) or not (a zero). A diagram of the
model architecture can be found in Figure 1.

Our implementation uses lookup-table based
word embeddings, the same embeddings used in
our convolutional baseline, to create a sequence
of vectors representing the input. Then a convolu-
tional neural network with multiple parallel filters,
followed by max-over-time pooling, is used as both
the local and global pooling functions. We found
that when g and l share parameters, results were a
bit worse compared to when they are learned sep-
arately. Like our convolutional baseline, we use
filter sizes of 3, 4, and 5 with 100 filters each. This
model was trained with a cross-entropy loss using
the Adadelta optimizer with an initial learning rate
of 1.0 and a batch size of 50.

4 Dataset

The data consists of customer utterances. They
were collected from the first customer turn in web-
chat conversations between customers and agents

217

Figure 1: The architecture of our Global-Local model.
There are four distinct phases of the model. First, the
input is encoded into a sequence of vector representa-
tions. This can be as simple as word embeddings or
it can use a more complex encoding like a BiLSTM.
Then, the local span is extracted from the sequence us-
ing the input mask. Global and Local pooling functions
are applied to create two vectors, which are joined by
concatenation. The local vector encodes the features of
the span while the global vector encodes the features of
the span as contextualized by the whole input. Finally,
this joint representation is used for classification.

from a software company after filtering out low con-
tent first turns such as “Hi”, “Hello”, and “Hey”.
Our training, validation, and testing datasets have
36,725; 9,256; and 4,993 examples respectively.
The data was annotated by a team of six (non-
overlapping) commercial annotators over a period
of a month and then corrected by an expert anno-
tator. A small subset of the data was annotated
(before the error correction) by two expert annota-
tors. The agreement was 53% between two expert
annotators and 42% between one expert and the
other non-expert annotators.

5 Experiments

The F1 scores for these models are reported in Ta-
ble 3. The BiLSTM-CRF tagger without any infor-
mation about the intent boundaries has the lowest
performance. Our analysis suggests that it is diffi-
cult for the tagger to learn the span boundaries for
the features. When that information is supplied—
as seen in the cascaded tagger column—the results
improve by a large margin. The span-level con-
volutional model, which is agnostic to the tokens
of the other spans, performs much worse than the
Global-Local model, which clearly validates our
hypothesis that global information is valuable.

We further ablate the Global-Local model to un-
derstand the reasons for the performance gain in
Table 4. To test if the performance improvement
is only due to the larger parameter count, and not
the global cues, we use only the span as the input
(as opposed to both the utterance and the span),
but the same Global-Local Model. If the Global-
Local model is only stronger because it is larger,
we should not see a drop in performance. As we
can see in the “– Global Context” row, limiting
the model to only see the span causes large perfor-
mance drops across the board. This model is even
worse than the simple convolutional model. This
implies that the global context is critical.

The current implementation has a shared encoder
step where the entire utterance in encoded into a
sequence of vectors before the span is extracted and
processed by the local pooling function separately.
Doing this efficiently in a batched computing en-
vironment, like TensorFlow (Abadi et al., 2015),
is slightly tricky to implement. A much simpler
model would feed the global utterance and the span
separately, to be encoded and processed indepen-
dently. Our ablations in the “– Shared Embedding”
row of Table 4 shows that using a shared embed-
ding space does yield performance gains, but it can
be removed for the sake of easier model deploy-
ment and still maintain superior performance over
the span-level model.

All models were trained with Mead-Baseline
(Pressel et al., 2018), an open-source library for the
development, training, and export for deep neural
networks for NLP.

6 Deployment

We have deployed a NLU component of a task-
oriented, production dialogue system that produces
intent features. The dialogue system deals with cus-
tomer service in the retail software domain. The
dialogue manager currently makes use of several
intent features. The easier feature to use is nega-
tion and it is critical to understand user intent. It
also uses the tense feature to understand if it needs
to wait because a user is currently performing an
action or if it can ask about the result because
the action had already been performed. The next
feature the dialogue manager plans to leverage is
the modality features. Understanding the user’s
convection in an action, like canceling, can help
make decisions about whether an upsale or discount
would be effective.

218

Feature BiLSTM-CRF
BiLSTM-CRF

Cascaded Tagger
Span-level

Convolutional Global-Local
Attribution CF 78.63 91.90 95.37 97.69
Attribution EV 80.06 92.27 95.86 98.16
Communicative Function 69.07 89.22 90.12 91.92
Modality 79.31 92.61 96.60 99.36
Tense 73.49 86.01 89.31 92.59
Negation 78.47 94.45 95.86 98.73

Table 3: F1 score of intent features using various models. BiLSTM-CRF is the feature tagger that was not given
intent boundaries. Cascaded Tagger is the same BiLSTM-CRF model, except the intent boundaries are fed into the
model. Span-level Convolutional is our model that classifies each intent span independently, and Global-Local is
our new model that encodes both the span and a global view of the sentence. We see that our Global-Local model
shows consistent improvements over other model types.

Model Attribution CF Attribution Ev CF Modality Tense Negation
Global-Local 97.69 98.16 91.91 99.36 92.59 98.73

– Global Context 93.55 95.47 90.14 96.74 87.18 95.74
– Shared Embedding 97.65 96.63 91.43 98.34 90.17 96.36

Table 4: Ablation of the Global-Local model. We see that removing the global context causes a large degradation
in F1 score, implying that the strong performance of the Global-Local model is due to the global feature, not just
the increased parameter count. We also see the removing the shared embedding hurts model performance but to a
much smaller degree.

In designing these intent features, we hoped they
would be general enough to be transferable across
domains without retraining a model on the new do-
main. Recent work with a new client in the general
retail domain gave the opportunity for a small scale
test. We were given approximately 500 sample
utterances that had been annotated with general la-
bels like, “Is this utterance equivalent to an FAQ?”
This is very similar to our request-info in-
tent feature. We ran our intent feature model on
this new data and compared how many FAQ ques-
tions were labeled with request-info. We
found that our model had high precision, 83.3%
of request-info utterances were in fact FAQ
questions, but had low recall, only 40.5%. This
small scale experiment suggests that our intent fea-
tures are general, but the low recall means our spe-
cific model is probably overfit to the lexical features
in our original domain.

7 Previous Work

Most popular intent taxonomies such as ATIS
(Price, 1990) are domain-specific. Dialog Acts
(DA) (Stolcke et al., 2000) are more formalized
and generalized versions of intents. The interna-
tional standard for DA annotations (Bunt et al.,
2010, 2012, 2016) defined the concept of commu-

nicative functions in a dialog act. However, these
functions are defined for a wide range of use cases.
We note that a very restrictive and reworked subset
of these suffices for our use cases. We believe the
other features in the annotation scheme are novel
or have an expanded range of possible values.

The Global-Local model draws inspiration from
the Lee et al. (2017) model for end-to-end neural
coreference resolution. Like us, they have regions
on interest embedded in a larger context. How-
ever, our models differ in several key ways: their
span representation is a hand-crafted combination
of token features while ours is a learned pooling
of token representations. Also, their model is re-
stricted to operating on contiguous spans (possibly
due to unavailability of spans a priori, or that non-
contiguous spans would lead to a combinatorial
explosion), while our model has no such restric-
tion.

8 Conclusion

Improvements in the complexity of conversations
that a dialogue system can handle have put tremen-
dous pressure on NLU systems to capture fine-
grained and domain-specific information. Diffi-
culty in the data generation process means the abil-
ity to share data across clients is critical. We define

219

intent features, a core set of general annotations, on
intents that provide context and clarity on the exact
nature of the user requests, and allow for a more
natural and intelligent response from the dialogue
manager. A NLU system that produces these intent
features has been deployed in a production system
with a dialogue manager that makes use of them.

To extract these intent features from an utterance,
we propose a new neural network architecture, the
Global-Local model, that fuses the representation
of the content of a span of text and its global con-
text through learned pooling functions. This model
shows large improvements over several strong base-
lines.

9 Ethical Considerations

The largest ethical concern about our work stems
from our goal to share these intent features, and
the models that identify them, across clients. It is
critical to ensure that models trained for one client
do not leak private user information to other clients.
Given that our model is a simple classifier, opposed
to a generative model, we do not believe informa-
tion is leaking, but we are working on verifying
this fact.

In addition to user privacy concerns, it is also
important that our models do not underperform on
a specific population of people. An internal tech
report has investigated differences in performance
based on user gender and has found none. This
method will be applied to future models, as well
as our currently deployed feature intent models, to
make sure our models remain un-biased.

References

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Harry Bunt, Jan Alexandersson, Jean Carletta, Jae-
Woong Choe, Alex Chengyu Fang, Koiti Hasida,

Kiyong Lee, Volha Petukhova, Andrei Popescu-
Belis, Laurent Romary, Claudia Soria, and David
Traum. 2010. Towards an ISO standard for dialogue
act annotation. In Proceedings of the Seventh In-
ternational Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta. European
Language Resources Association (ELRA).

Harry Bunt, Jan Alexandersson, Jae-Woong Choe,
Alex Chengyu Fang, Koiti Hasida, Volha Petukhova,
Andrei Popescu-Belis, and David Traum. 2012. ISO
24617-2: A semantically-based standard for dia-
logue annotation. In Proceedings of the Eighth
International Conference on Language Resources
and Evaluation (LREC’12), pages 430–437, Istan-
bul, Turkey. European Language Resources Associ-
ation (ELRA).

Harry Bunt, Volha Petukhova, Andrei Malchanau,
Kars Wijnhoven, and Alex Fang. 2016. The Di-
alogBank. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 3151–3158, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

J. Chen, R. Prasad, S. Stoyanchev, E. Selfridge, S. Ban-
galore, and M. Johnston. 2018. Corpus and annota-
tion towards nlu for customer ordering dialogs. In
2018 IEEE Spoken Language Technology Workshop
(SLT), pages 707–713.

Linguistic Data Consortium. 2005. Ace (automatic-
content extraction) english annotation guidelines for
events.

Cícero Nogueira Dos Santos and Bianca Zadrozny.
2014. Learning Character-level Representations for
Part-of-speech Tagging. In Proceedings of the 31st
International Conference on International Confer-
ence on Machine Learning - Volume 32, ICML’14,
pages II–1818–II–1826. JMLR.org.

Alex Graves, Santiago Fernández, and Jürgen Schmid-
huber. 2005. Bidirectional lstm networks for im-
proved phoneme classification and recognition. In
Proceedings of the 15th International Conference
on Artificial Neural Networks: Formal Models and
Their Applications - Volume Part II, ICANN’05,
page 799–804, Berlin, Heidelberg. Springer-Verlag.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional Neural Networks
for Sentence Classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:

220

Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, page 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end Neural Coreference Res-
olution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Brian Lester, Daniel Pressel, Amy Hemmeter, Sag-
nik Ray Choudhury, and Srinivas Bangalore. 2020a.
Multiple word embeddings for increased diversity of
representation. arXiv preprint arXiv:2009.14394.

Brian Lester, Daniel Pressel, Amy Hemmeter, Sag-
nik Ray Choudhury, and Srinivas Bangalore. 2020b.
Constrained decoding for computationally efficient
named entity recognition taggers. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1841–1848, Online. Association for
Computational Linguistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end Se-
quence Labeling via Bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074, Berlin, Ger-
many. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Daniel Pressel, Sagnik Ray Choudhury, Brian Lester,
Yanjie Zhao, and Matt Barta. 2018. Baseline: A li-
brary for rapid modeling, experimentation and de-
velopment of deep learning algorithms targeting nlp.
In Proceedings of Workshop for NLP Open Source
Software (NLP-OSS), pages 34–40. Association for
Computational Linguistics.

P. J. Price. 1990. Evaluation of spoken language sys-
tems: The atis domain. In Proceedings of the Work-
shop on Speech and Natural Language, HLT ’90,
page 91–95, USA. Association for Computational
Linguistics.

Lev Ratinov and Dan Roth. 2009. Design Chal-
lenges and Misconceptions in Named Entity Recog-
nition. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning
(CoNLL-2009), pages 147–155, Boulder, Colorado.
Association for Computational Linguistics.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliza-
beth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul
Taylor, Rachel Martin, Carol Van Ess-Dykema, and

Marie Meteer. 2000. Dialogue act modeling for au-
tomatic tagging and recognition of conversational
speech. Computational Linguistics, 26(3):339–374.

David R. Traum and Staffan Larsson. 2003. The In-
formation State Approach to Dialogue Management.
In Jan van Kuppevelt and Ronnie W. Smith, edi-
tors, Current and New Directions in Discourse and
Dialogue, Text, Speech and Language Technology,
pages 325–353. Springer Netherlands, Dordrecht.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Matthew D. Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. ArXiv, abs/1212.5701.

221

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 222–229
June 6–11, 2021. ©2021 Association for Computational Linguistics

Development of an Enterprise-Grade Contract Understanding System

A. Agarwal2, L. Chiticariu3, P. Chozhiyath Raman3, M. Danilevsky1, D. Ghazi5∗, A. Gupta2,
S. Guttula2, Y. Katsis1, R. Krishnamurthy3, Y. Li1, S. Mudgal3, V. Munigala2, N. Phan6*,

D. Sonawane3, S. Srinivasan3, S. Thitte3, M. Vasa3, R. Venkatachalam3, V. Yaski4*, H. Zhu1

1 IBM Research - Almaden 2 IBM Research - India 3 IBM Data and AI
4 Amazon 5 Google LLC 6 Visa

{arvagarw, ankushgupta, shguttul, vmunig10}@in.ibm.com; {chiti, pchozhi, mdanile,

rajase, yunyaoli, srthitte, mitesh.vasa, venkatra, huaiyu}@us.ibm.com;

{yannis.katsis, shubham.mudgal, dhaval.sonawane1, sneha.srinivasan1130}@ibm.com;

dimanghazi@google.com; thefryingphan@gmail.com; vinitha.yaski@gmail.com

Abstract

Contracts are arguably the most important type
of business documents. Despite their sig-
nificance in business, legal contract review
largely remains an arduous, expensive and
manual process. In this paper, we describe
the Transparent and Expert Contract Under-
standing System (TECUS): a commercial sys-
tem designed and deployed for contract under-
standing and used by a wide range of enter-
prise users for the past few years. We reflect
on the challenges and design decisions when
building TECUS. We also summarize the data
science life cycle of TECUS and share lessons
learned.

1 Introduction

A contract is an agreement between businesses
and/or individuals to create mutual obligations en-
forceable by law (Cornell Law School). Written
contracts are also used by companies to safeguard
their resources and as such, legal advice is sought
prior to participating in a binding contract. Cur-
rently, legal review remains an arduous and expen-
sive process. For instance, a procurement contract
requires 5 hours of legal review on average, con-
tributing to thousands of dollars in total cost (Cum-
mins, 2017).

While contract reviewing is a well-established
legal process, building an enterprise-grade system
for Contract Understanding (CU) to facilitate this
process poses three major challenges:

C1: Model CU as an NLP Problem. CU does
not have a corresponding standard NLP definition.

∗ Work done while author was working at IBM.

Table 1: Example Contract Understanding Use-cases

Context Application

Quote to Cash Identify non-standard, risky terms
Accounts Receivable Prevent leakage, improve cash-flow
Procurement Analyze numerous contracts in ne-

gotiation
Global Accounting Assist with numerous compliance

checklists
Mergers & Acquisi-
tions

Identify early termination notice pe-
riod, penalty amount etc.

The underlying processes and the associated
requirements for CU need to be well understood to
translate it to concrete NLP tasks.

C2: Lack of Representative Data. Contracts,
while often proprietary, also vary significantly
across domains and businesses. Thus, one
cannot assume the presence of representative
contracts towards building models. Moreover,
Subject Matter Experts (SMEs) qualified to
label ground truth are expensive1. As such,
NLP models may need to be developed with
limited non-representative labeled data but still be
able to generalize well over previously unseen data.

C3: Need for Model Stability. CU models are
integrated into existing business processes to drive
decisions. As the models evolve over time (e.g.
due to availability of new data, updates to existing
labeled data, etc.), users expect the models to be-
have in a stable manner and produce no surprising
results (Kearns and Ron, 1997).

1According to https://www.zippia.com/contract-attorney-
jobs/salary/, the average annual salary for a contract attorney
is $86,000 ($41.35/hour).

222

Nature & Party
Classification

Obligation - Supplier Nature: Definition, Disclaimer,
Exclusion, Obligation, Right, …
Party: Buyer, End User, Supplier, …

Category
Classification

This is Warranties
Category: Amendments, Asset Use,
Assignments, Audits, Business
Continuity, Communication,
Confidentiality, Deliverables, …

Attribute
Extraction

Attributes: Currency, DateTime,
DefinedTerm, Duration, Location,
Number, Organization, …

Location: New York

Metadata
Extraction

Metadata: Contract Types, Effective
Dates, Termination Dates, Contract
Amounts, Contract Terms, …

Effective Date:
1/1/2016

Multi-Label
Classification

Element-level
Extraction

Document-level
Extraction

Multi-Label
Classification

Problem Example Task Concepts Sample Supported Question

“Where will disputes regarding
this agreement be settled?”
(Location)

“Is there an additional charge
for services and utilities?”
(Pricing & Taxes)

“What is the effective & termination
date of this agreement?”
(Effective Date, Termination Date)

“Is Tenant allowed to install
additional fixtures?”
(Right - Tenant)

Figure 1: TECUS’ Sub-Problems (see (IBM, b) for complete list of supported concepts)

To overcome the above challenges, we designed
and developed the Transparent and Expert Con-
tract Understanding System (TECUS), a com-
mercial system that enables legal professionals to
review contracts with minimal effort.

TECUS first models CU as a series of text clas-
sification and extraction tasks, defined collabora-
tively with SMEs, to capture the information that
legal experts seek when reviewing contracts.

Second, it leverages SystemT, a state-of-the-art
declarative text understanding engine for the en-
terprise (Chiticariu et al., 2010, 2018), towards
developing transparent models on top of syntac-
tic and semantic linguistic features, to mitigate a
possible lack of representative labeled data and to
satisfy model stability requirements. This approach
enables (1) the development of stable models that
explicitly capture domain knowledge without re-
quiring large amounts of labeled data or representa-
tive samples; and (2) a data science workflow that
supports systematic error analysis and incorpora-
tion of user feedback towards continuous model
improvement (Section 3).

TECUS is available as part of multiple commer-
cial products including IBM Watson® Discovery
(IBM, a) and IBM Watson® Compare and Com-
ply 2. As part of these products, it has been in use
by enterprise customers since 2017 to support a va-
riety of contract understanding use-cases (Table 1).
While several other commercial offerings, such
as Cognitiv+ (Cog), Kira (Kir), LawGeex (Law),
LegalSifter (Leg), and Lexion (Lex) use NLP to
analyze contracts, their internals are not publicly
disclosed. Thus, TECUS is to the best of our knowl-

2IBM and IBM Watson are trademarks of International
Business Machines Corporation, registered in many jurisdic-
tions worldwide.

edge the first commercial automated contract un-
derstanding system ever presented to the scientific
community in such detail.

In addition to assisting in the understanding of a
single contract, as described in this paper, TECUS
also allows legal professionals to compare two
contracts, identifying similarities and differences
along multiple dimensions; another critical task in
the contract reviewing process. TECUS models
this problem as a clause-level comparison problem,
identifying (i) clauses that are identical between
two contracts, (ii) clauses that are on the same topic
but have changed, and (iii) clauses that appear in
one contract but not in the other. The comparison
component, similar to the contract understanding
component, leverages syntactic and semantic lin-
guistic features provided by SystemT and an as-
sociated data science workflow tuned towards a
systematic and stable model development. How-
ever, for space reasons, this work focuses on single
contract analysis, enabled by TECUS’ Contract
Understanding (CU) component.

2 Modeling CU as an NLP Problem

Working with legal experts, we first define the
CU problem as a combination of Multi-class
Multi-label3 Classification and Entity Extraction
tasks, as depicted in Figure 1.

Clause Classification. A business contract con-
sists of thousands of sentences, each defining one
or more clauses, such as Obligation, Exclusion, etc.
At the core of the legal review process are identi-

3The classification problems correspond to multi-label clas-
sification, as elements are often complex and cover multiple
Categories/Natures/Parties.

223

Labeling
Model

Development
Model

Evaluation

User
Feedback

Error Analysis Model
Deployment

Error Analysis Tool

Contracts

SMEs Model Developers

End Users

Model
Invocation

Document Visualizer

LLEs

Contract

Model Building

Runtime

Model

Feedback
Incorporation

Feedback
Incorporation

Ontology

Figure 2: TECUS’ Architecture

fying, classifying and reviewing individual clauses
to spot potential risks. For example, the sentence

"Purchaser will purchase the Assets by a cash
payment of FOUR HUNDRED FIFTEEN THOU-
SAND US DOLLARS."

is a clause related to Pricing & Taxes that describes
an Obligation for the Purchaser. To help legal
professionals focus on relevant parts of the contract,
we classify contract sentences (henceforth known
as elements 4) according to three dimensions of
interest to domain experts:

• Category: the topic associated with the ele-
ment, such as Pricing & Taxes in our example.

• Nature: the action described by the element,
such as Obligation in our example.

• Party: the individual or entity affected by the
action, such as Supplier in our example.

A consistent ontology (shown in Figure 1)
was defined in the early stages of the project, in
collaboration with SMEs via an iterative process,
and reflecting the prevailing views of legal experts.
However, to also accommodate users who adopt
slight variations of the definitions (which we
discovered can be common due to the subtle nature
of legal terms), users can also customize TECUS
through user feedback, as described in Section 3.3.

Attribute and Metadata Extraction. In addition
to classifying elements, legal teams are also inter-
ested in extracting entities of particular importance
to corporate law. These fall into two categories:

• Attributes: general entities of interest, such as
Organizations and Persons involved in a contract,

4TECUS supports classification of elements beyond sen-
tences, including bulleted list items and table content, which
often appear in contracts.

Dates, Locations and Currencies. Attributes are
extracted from individual elements.

• Contract Metadata: document-level legal en-
tities of interest, such as the Effective Dates, Ter-
mination Dates, and Contract Amounts. Contract
Metadata are extracted from across a contract, and
are thus applicable to the entire contract.

3 System Overview

As can be seen in Figure 2, TECUS consists of
three main components, which we subsequently
describe in detail: Runtime, Model Building, and
Feedback Incorporation.

3.1 Runtime
As shown in Figure 3, users can analyze their con-
tracts by interacting with TECUS’s Document Vi-
sualizer, via the following two panes:

The Faceted Exploration Pane (#1) allows
users to quickly acquire an overview of the con-
tract’s contents and drill down into specific cate-
gories/natures/parties of interest. In our example, a
user interested in Pricing & Taxes, focuses on such
clauses by selecting the corresponding checkbox.

The Contract View Pane (#2) allows users to see
the selected elements within the contract (#3) and
for each of them inspect the Category/Nature/Party
and Attributes identified by CU (#4). It also in-
cludes a Metadata View showing the metadata
extracted from the contract, such as Contract
Amounts, Effective Dates, Termination Dates, etc.
(omitted in the interest of space).

At any point in time, users can provide feedback
on the CU results through the “Suggest changes“
feature (#5). User feedback is then further analyzed
and incorporated as described in Section 3.3.

224

Contract Understanding
Results

User Feedback

Faceted Exploration Pane

4

5

1 Contract View Pane2

Selected Element3

Document Visualizer

Figure 3: Reviewing a Contract through TECUS’ Document Visualizer

Figure 4: Contract Understanding Components

3.2 Model Building

3.2.1 Model Development
Figure 4 illustrates the sequence of model compo-
nents used by TECUS to accomplish the tasks in
Figure 1. TECUS uses declarative models towards
both classification and extraction tasks 5:

5Here, we focus on classification due to its challenging
aspects. Attribute and Metadata extraction are performed
using entity extraction, enabled by SystemT.

(1) Once text and document structures such as
lists, sections, tables etc. are extracted from a con-
tract PDF document 6, sentences/elements (for clas-
sification) and tokens/phrases (for extraction) are
identified using syntactic analysis.

(2) Next, extended Semantic Role Labels (SRL)
(Palmer et al., 2010), provided by SystemT (Chiti-
cariu et al., 2010, 2018) 7are identified in elements.
As shown in Figure 4, SRL captures who did what
to whom, when, where, and how from the example
element.

(3) A collection of logical formulae, called Lin-
guistic Logical Expressions (LLEs), are constructed
using these SRLs to perform logical reasoning us-
ing linguistic patterns in contracts, similar to rea-
soning by legal experts. For instance, the two
LLEs 8 in Figure 4 identify the Category, Nature,
and Party concerning the example element.

Each classification model in TECUS consists of
a collection of such LLEs. Such a model not only
yields a transparent understanding of a contract
along the concepts outlined in Figure 1, it is also
uniquely positioned to handle the challenges
outlined in Section 1 for the following reasons:

Generalizability. LLEs are manually built by
model developers on top of SRL9, to explicitly

6Here, we use PDF as the business document format for
ease of exposition. The presented techniques apply also to
other document formats, such as Microsoft Word.

7SystemT also provides additional information, such as
tense and voice; please refer to (Zhu et al., 2019) for details.

8Simplified from the actual product LLEs for readability.
9Potentially aided by machine learning (Sen et al., 2019)

225

Figure 5: Analyzing CU Errors through the ModelLens Error Analysis Tool

capture domain knowledge. Each LLE reflects
patterns from not only the documents used during
the development process, but also unseen contracts
where similar semantic patterns appear. As a
result, the CU model generalizes much better to
yet unseen contracts than state-of-the-art black-box
models (see Section 4 for more details).

Enabling systematic model improvement work-
flow. Use of LLEs enable a fine-grained association
of CU model output with highly specific, lower-
level constructs of the model. This transparency
allows a team of developers to make localized up-
dates and develop models with stable and explain-
able behavior, aided by a carefully created data
science workflow of model evaluation, error analy-
sis and feedback incorporation, as described next.

3.2.2 Model Evaluation
As the CU model in TECUS evolves over time, it
is regularly evaluated for: (1) quality, in terms of
precision, recall and accuracy towards both Nature-
Party and Category classification tasks, and (2) per-
formance, in terms of throughput, memory con-
sumption and behavior profile.

We measure model quality over in-domain and
out-of-domain data split into the usual train (dev)
and test (hold-out) subsets. Similarly, we profile
runtime performance upon multiple in-domain and
out-of-domain sets, allowing developers to preemp-
tively rectify potentially problematic runtime be-
haviors, prior to deployment.

Beyond the typical global measurements, the
transparent nature of the CU model permits evalu-

ation at finer granularity: across classes, per-class
and per-LLE towards both quality and runtime per-
formance. Such detailed model evaluation along
with a systematic model improvement workflow
together enable TECUS to provide reliable guaran-
tees of consistency and robustness of its results.

3.2.3 Error Analysis
While evaluation provides an overview of model
performance, model improvement requires delving
deeper and analyzing individual errors to under-
stand their root causes and inform further model
development efforts (Ribeiro et al., 2020).

TECUS supports root cause identification of
errors through the ModelLens error analysis tool
shown in Figure 5 and the associated error analysis
workflow (Katsis and Wolf, 2019). Specifically,
ModelLens allows model developers to perform
the following error analysis tasks:
(1) Acquire a high-level overview of the errors
through a confusion matrix that depicts the types
of misclassifications made by the model, to help
prioritize errors for further analysis.
(2) Inspect erroneous instances in context. For a
chosen misclassification type, developers can drill
down and inspect all elements that exhibit it (shown
on the right side of the screen). For each element,
ModelLens also provides additional context, such
as the surrounding text, the SRL output, and the
provenance of the model output, to help model
developers identify the error root cause.
(3) Annotate errors with their root causes. Once a
developer identifies the root cause of an error, they
can record it through the drop-down next to the

226

corresponding label.
This error analysis process classifies errors based

on their root causes, separating true model errors
from other errors that have to be treated differently
(e.g., labeling errors, errors from preceding mod-
els, such as PDF conversion errors, and others).
Additionally, ModelLens exploits the transparent
nature of the model to allow developers to identify
specific LLEs that need to be revised to address
model errors. Moreover, by providing contextual
information for each error, it also assists in iden-
tifying additional linguistic patterns that could be
translated into new LLEs.

3.3 Feedback Incorporation

User feedback is essential for TECUS: First, it en-
ables model improvement, by communicating to
the development team cases not captured by the
current model. This is especially important given
the lack of representative labeled data discussed
in Section 1. Second, it allows the customiza-
tion of models. Custom models allow TECUS to
adapt to the needs of individual customers, who
may adopt slightly different definitions of the Cat-
egory/Nature/Party classes from our SMEs, as de-
scribed in Section 2. Feedback is enabled by the
following human-in-the-loop process:

(1) Users review model results and suggest the
exclusion of incorrect labels or the inclusion of
missing labels through the Document Visualizer.

(2) The system locates other elements that share
a similar linguistic pattern (i.e., LLE) with the ones
on which feedback was provided, and asks the user
whether they would like to propagate the suggested
label updates to those. This capability is to reduce
user efforts in providing feedback.

(3) The system associates user feedback to the
corresponding LLEs, allowing model changes to
be localized to a small part of the model.

The localized nature of the changes enable the
model to remain stable over time; in contrast, black
box models may regress in unexpected ways when
globally retrained over time with additional ground
truth data. Results on model stability and the effec-
tiveness of feedback incorporation are presented in
the next section.

4 Results & Discussion

We next present evaluation results, showing how
TECUS addresses the challenges discussed above.

Figure 6: Model Stability with Increasing Complexity

Precision Recall
Jan 59.79 25.33
…
July 64.7 59.96
Aug 71.53 67.41
Sep 73.5 68.09

Jan … July Aug Sep

Precision
Recall

Human Performance

Improvements observed BA
by company X leveraging
global model improvements

Improvements specific
to company X based on
their specific feedback

Figure 7: Effectiveness of Feedback Incorporation

Model generalizability. To verify our intuition
that the transparent nature of the CU model helps
it generalize to unseen contracts, we compare it
to state of the art black box ML models. In our
experiments, when trained on procurement con-
tracts (PCs) sourced from within IBM (in-domain)
and tested on PCs sourced randomly from the web
(out-of-domain), the CU model significantly out-
performs the alternatives, with 1.3x, 2.09x, and
2.58x higher micro-F1 score over a Bidirectional
Long Short-Term Memory (BiLSTM), Convolu-
tional Neural Network (CNN), and Logistic Re-
gression (LR) model, respectively.

For reference, prior state-of-the-art results of
nature identification in contracts (Chalkidis et al.,
2018) and financial legislation (Neill et al., 2017)
were based on different BiLSTM-based architec-
tures, which we have found in our experiments to
perform well on contracts similar to the ones on
which they were trained (e.g., contracts that follow
similar templates) but generalize poorly to other
unseen contracts.

Model stability. To verify the stability of model
performance over time, we capture in Figure 6
the CU model’s precision and recall on category
classification across six consecutive development
sprints (each two weeks long). During this time
period, the development team added support for
additional categories, increasing the supported
categories from 10 to 23. Despite a quick addition

227

of new categories (with 2.25 new categories
added per sprint on average), the model’s quality
remained stable across all categories, old and
new. This can be attributed (a) to the transparent
nature of the model, which allows changes to be
localized and (b) to the data science process which
allows quick additions of new categories without
compromising on quality.

Effectiveness of feedback incorporation. To
verify the effectiveness of TECUS’s feedback incor-
poration mechanism, we capture in Figure 7 the CU
model’s precision and recall for category classifica-
tion on data of interest for an individual customer
X over 9 months. During this period the model
development team incorporated two types of feed-
back: in the first few months (January-July), they
leveraged feedback solely from other customers,
while in the last few months (July-Sep), they in-
corporated focused feedback from customer X. As
shown in the chart, customer X benefited both from
the feedback given by other customers, as well as
its own feedback, which further improved quality.
Moreover, the model quality increased consistently
towards human performance (calculated internally
based on evaluation of inter-annotator agreement
among SMEs).

5 Conclusion

We have presented TECUS, a commercial system
that effectively assists and supplements legal ex-
perts in understanding and reviewing contracts.
TECUS’ effectiveness is based on (a) the transpar-
ent nature of the CU model, comprised of Linguis-
tic Logical Expressions on top of SRL, which in
turn enables (b) a systematic data science workflow
towards swift yet stable model development. This
leads to models that can be developed with limited,
non-representative labeled data and remain stable
and predictable over time; traits that are essential
not just in the contract understanding domain but
the wider legal domain as well. Finally, while the
system was developed for the CU problem, we be-
lieve that its design and associated insights could
inform efforts in other areas that pose similar re-
quirements of generalizability and stability.

References

Cognitiv+ (Accessed: 2021-04-09). http://www.
cognitivplus.com.

a. IBM Watson Discovery (Accessed: 2021-
04-09). https://www.ibm.com/cloud/
watson-discovery.

b. IBM Watson Discovery: Understanding Contract
Analysis (Accessed: 2021-04-09). https://
cloud.ibm.com/docs/discovery-data?
topic=discovery-data-contract_
parsing.

Kira (Accessed: 2021-04-09). https://
kirasystems.com.

LawGeex (Accessed: 2021-04-09). https://www.
lawgeex.com.

LegalSifter (Accessed: 2021-04-09). https://
www.legalsifter.com.

Lexion (Accessed: 2021-04-09). https://
lexion.ai.

Ilias Chalkidis, Ion Androutsopoulos, and Achilleas
Michos. 2018. Obligation and Prohibition Extrac-
tion Using Hierarchical RNNs. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 254–259, Melbourne, Australia. Association
for Computational Linguistics.

Laura Chiticariu, Marina Danilevsky, Yunyao Li, Fred-
erick Reiss, and Huaiyu Zhu. 2018. SystemT:
Declarative Text Understanding for Enterprise. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 3 (Industry Papers), pages 76–83. Associa-
tion for Computational Linguistics.

Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li,
Sriram Raghavan, Frederick R. Reiss, and Shivaku-
mar Vaithyanathan. 2010. SystemT: An Algebraic
Approach to Declarative Information Extraction. In
Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics. ACL ’10,
pages 128–137. Association for Computational Lin-
guistics.

Cornell Law School (Accessed: 2021-04-09). Con-
tract. https://www.law.cornell.edu/
wex/contract.

Tim Cummins. 2017. Cost of processing a ba-
sic contract soars to $6900 (accessed: 2021-
04-09). https://blog.lawgeex.com/
contractcosts/.

Yannis Katsis and Christine T. Wolf. 2019. ModelLens:
an interactive system to support the model improve-
ment practices of data science teams. In Conference
Companion Publication of the 2019 on Computer
Supported Cooperative Work and Social Computing,
CSCW ’19, page 9–13, New York, NY, USA. Asso-
ciation for Computing Machinery.

228

Michael Kearns and Dana Ron. 1997. Algorithmic
stability and sanity-check bounds for leave-one-out
cross-validation. In Proceedings of the Tenth An-
nual Conference on Computational Learning The-
ory, COLT ’97, page 152–162, New York, NY, USA.
Association for Computing Machinery.

James O’ Neill, Paul Buitelaar, Cecile Robin, and
Leona O’ Brien. 2017. Classifying Sentential
Modality in Legal Language: A Use Case in Finan-
cial Regulations, Acts and Directives. In Proceed-
ings of the 16th Edition of the International Confer-
ence on Articial Intelligence and Law, ICAIL ’17,
page 159–168, New York, NY, USA. Association for
Computing Machinery.

Martha Palmer, Daniel Gildea, and Nianwen Xue. 2010.
Semantic Role Labeling. Synthesis Lectures on
Human Language Technology Series. Morgan and
Claypool.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Prithviraj Sen, Yunyao Li, Eser Kandogan, Yiwei Yang,
and Walter Lasecki. 2019. HEIDL: Learning linguis-
tic expressions with deep learning and human-in-the-
loop. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 135–140, Florence, Italy.
Association for Computational Linguistics.

Huaiyu Zhu, Yunyao Li, and Laura Chiticariu. 2019.
Towards universal semantic representation. In Pro-
ceedings of the First International Workshop on De-
signing Meaning Representations, pages 177–181,
Florence, Italy. Association for Computational Lin-
guistics.

229

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 230–237
June 6–11, 2021. ©2021 Association for Computational Linguistics

Discovering Better Model Architectures for Medical Query
Understanding

Wei Zhu1,2 ∗, Yuan Ni2, Xiaoling Wang1, Guotong Xie2,3,4, Fang Zhang5

1 East China Normal University, China
2 PingAn Health Technology, China

3 Ping An Health Cloud Company Limited, China
4 Ping An International Smart City Technology Co., Ltd, China

5 Shanghai Municipal Center for Disease Control and Prevention, China

Abstract

In developing an online question-answering
system for the medical domains, natural lan-
guage inference (NLI) models play a central
role in question matching and intention de-
tection. However, which models are best for
our datasets? Manually selecting or tuning
a model is time-consuming. Thus we experi-
ment with automatically optimizing the model
architectures on the task at hand via neural
architecture search (NAS). First, we formu-
late a novel architecture search space based on
the previous NAS literature, supporting cross-
sentence attention (cross-attn) modeling. Sec-
ond, we propose to modify the ENAS method
to accelerate and stabilize the search results.
We conduct extensive experiments on our two
medical NLI tasks. Results show that our sys-
tem can easily outperform the classical base-
line models. We compare different NAS meth-
ods and demonstrate that our approach pro-
vides the best results.

1 Introduction

Nowadays, online medical question answering
(QA) systems are becoming more and more pop-
ular. Since the breakout of COVID-19, people
grapple with going to the hospital, and hospitals’
emergency rooms in some cities are even empty
during the daytime.1 Thus, medical QA systems
are of essential importance. NLI models play a
central role in such a QA system (Xie et al., 2020).
In our QA scenario, we usually use NLI models to
determine whether a query has the same intention
as some of our labeled questions. For in-domain
tasks like ours, modeling experiences are scarce,
so selecting a suitable model for our medical NLI
tasks becomes a time-consuming procedure. From
our experience, different datasets have different op-
timal models. Thus when a new dataset comes, our

∗Contact: 52205901018@stu.ecnu.edu.cn.
1https://www.cbc.ca/news/health/covid-19-emergency-

departments-canada-1.5510778

engineers usually devote 4 to 5 days experimenting
on model tuning and hyper-parameter search with
multiple GPU cards.

To speed up the development of our medical QA
system and free up the NLP engineers from labori-
ous work, we propose developing a neural architec-
ture search (NAS) framework. Neural architecture
search (NAS) has recently attracted intensive at-
tention, both in computer vision and NLP. New
RNN models are learned in NASNet (Zoph and Le,
2017), ENAS (Pham et al., 2018), DARTS (Liu
et al., 2018), improved DARTS(Jiang et al., 2019)
for language modeling. Evolved transformer (So
et al., 2019) use the evolution-based NAS algo-
rithm to search for better transformer architectures.
TextNAS (Wang et al., 2020) design a new search
space for NLU tasks. We will refer to our system
as NASQU, shorted for Neural Architecture Search
for Query Understanding.

NASQU consists of two parts. First, we design
a search space that is suited for NLI tasks. The
search space is an extension of the search spaces of
TextNAS (Wang et al., 2020). First, for sentence
pair modeling, cross-sentence attention plays a cen-
tral role in aligning the two sentences’ contexts and
providing a more in-depth understanding of the
semantic relations between two sentences (Chen
et al., 2016). We add cross-sentence attention op-
erations in the search space, enabling NASQU to
search for models with cross-sentence attention
mechanisms. Second, aggregating the encoder’s
outputs to a fixed vector is essential for an NLI
model’s performance. In this work, we use NAS to
decide which layers’ outputs are fed into the aggre-
gator and the specific operation in the aggregator
layer.

Second, for improving the search results, we
employ two modifications to the search method.
Our search method mainly follows ENAS (Pham
et al., 2018), a reinforcement learning (RL) based
search approach. An LSTM controller is employed

230

Figure 1: The sentence vector-based framework for the NLI task.

to generate a novel child model, and it will receive
a reward based on the child model’s performance.
Then the controller can update its parameters to
improve its ability to generate better child mod-
els. A key ingredient for ENAS is weight sharing.
We propose further to enhance the weight shar-
ing strategies during architecture search. Besides,
we suggest that search warm-ups can stabilize the
search processes and provide better search results.

We conduct experiments on two medical NLI
datasets designated for intent identification in our
medical QA system. The experimental results show
that NASQU can learn novel models that perform
better than baseline models and meet efficiency re-
quirements. Also, a comparison among the search
methods shows that our NASQU obtains better re-
sults than other search methods. Besides, we show
that the search space design of NASQU is essential.

Our work contributes to the field by the follow-
ing aspects:

• We extend the search space for neural archi-
tecture search in NLP tasks by including cross-
sentence attention modules and many design
choices.

• We experiment on more in-depth parame-
ter sharing strategies than ENAS, which are
proven to provide better search results within
less time.

2 NASQU

In this section, we first describe the architecture
framework of NLI tasks. Then we extend the search
space of TextNAS to support cross-attn modeling
and aggregator search. And Finally, we elaborate
on the search algorithm in NASQU.

2.1 Architecture framework

We adopt the sentence vector-based frame-
work (Bowman et al., 2015) for NLI tasks. The

framework is illustrated in Figure 1. The two sen-
tences (i.e., hypothesis and premise) are encoded
and aggregated in siamese network architecture.
After obtaining the sentence embedding vector u
and v, the final feature vector is [u; v; |u−v|;u ·v],
where [] is concatenation operation.

Note that our framework is different from
TextNAS in two ways. First, we enable attention
to flow between the two sentences, which we will
elaborate on in the next subsection. Second, we add
the search space for aggregators, where TextNAS
(Wang et al., 2020) fixes the aggregator to the self-
attention aggregator.

2.2 Encoder Search space

To ensure efficiency, we do not stack blocks of the
same structure in the encoder. Thus the micro and
macro search space are the same. The search space
for the encoder is depicted as a fully connected
DAG. As is shown in Figure 2, the encoder has K
(= 5) layers. Node i in the DAG is a neural network
layer, and edge <i, j> means the output of layer i is
fed into layer j. If a layer has multiple inputs, then
the inputs will be summed.

For each node, the controller first decides
whether the node encodes the sentence itself (self-
encoding layer), or it encodes the attention from
one sentence to each other (cross-attention layer).

If layer i is a cross-sentence layer, it will make
its input attend to its counterpart’s input in the other
sentence’s encoder. For example, in Figure 2, layer
2 of the premise encoder is a cross-sentence atten-
tion layer. So its input will attend to the input of
layer 2 in the hypothesis encoder. In addition to
the dot product attention used in the multi-head
attention of Transformers (denote as dot), we in-
corporate the four attention functions in Tan et al.
(2018), referred to as p_dot2, concat, add, minus.

2Note that the dot attention in Tan et al. (2018) (denoted
as p_dot by us) is not the same as the dot product attention
in MHA, where the former is a pointwise product (‘A * B’ in

231

Figure 2: The DAG for the encoder. The layers can be self-encoding layers or cross-attention layers. If layer i is a
cross-sentence layer, it will make its input attend to its counterpart’s input in the other sentence’s encoder.

Figure 3: The DAG for the aggregation layer.

For the self-encoding layer, we incorporate four
categories of candidate layers which are com-
monly used for text representation, namely con-
volutional layers with kernel size 1, 3, 5 (denoted
as conv1, conv3, conv5), recurrent layers such as
LSTM/GRU (lstm, gru), max pooling layers with
window size 3 and 5 (denoted as pool_3, pool_5),
and multi-head self-attention layers with number of
heads 4 and 8 (mha_4, mha_8). Skip connection
(skip) is also included to support residual layers.
Zero layer (zero), which is to output zero tensors, is
also included, so that the final model can be sparser
than is shown in Figure 2.

2.3 Aggregator search space

As depicted in Figure 3, the DAG for aggrega-
tor is much simpler. One has to decide whether
each layer’s output in the encoder DAG should
be fed into the aggregation layer. If multiple lay-
ers are selected, their outputs are summed. There
are several different aggregation operations. The
most common two are the max-pooling aggrega-
tor (max_agg) and the average-pooling aggregator

PyTorch), and the latter is (batch-wise) matrix multiplication
(‘torch.matmul(A, B)’).

(avg_agg). The self-attention (sa_agg) technique
is also used for aggregation (Gong et al., 2018;
Chen et al., 2018) . We also include dynamic rout-
ing (Gong et al., 2018) (henceforth dr_agg) into
our aggregator operation space.3

2.4 Architecture search algorithm
We adopt the ENAS (Pham et al., 2018) frame-
work for search since it is one of the most effective
and efficient among all state-of-the-art search al-
gorithms. ENAS searches for the best network ar-
chitecture via reinforcement learning with weight
sharing. ENAS leverages an LSTM as the con-
troller. In each step, the controller samples several
child networks from the search space. The child
networks share the same set of parameters with
the global super-graph to accelerate the evaluation
procedure. After child models’ performances are
obtained, they are fed back to the controller as re-
ward signals. The parameters of the controller are
updated through policy gradients based on REIN-
FORCE (Williams, 1992). We implement ENAS
via NNI4.

In this work, we try to improve the search results
by deeper parameter sharing and search warm-up.
First, the parameter sharing in ENAS is relatively
shallow. The parameters are shared only when
precisely the same operation is used in the same po-
sition of the DAG. We share the parameters across
related operations. For convolutional layers, we use
depthwise separable convolution networks since
they are more parameter efficient. And the point-

3Following Gong et al. (2018), we set the number of cap-
sules as 4 and the number of iterations as 3.

4https://github.com/microsoft/nni

232

wise convolution inside each convolutional layer
is shared across conv1, conv3, and conv5. The
key, query and value matrices inside mha_4 and
mha_8 are shared for multi-head attention layers.
The key, query, and value matrices for cross-attn
modules of different attention functions are shared.

Second, we add a search warm-up phase before
the search begins, and the learning rate of the RL
controller is also gradually increased to the max-
imum value and follows a linear decay schedule.
The intuition is that when the shared parameters
are trained for pre-specified steps, the controller
can receive much more reliable reward signals.

To make the model efficient enough for online
deployment, we add efficiency constraints to the
generated child models, which will be specified
in the next section. Child models that fail these
requirements will be assigned a zero reward so that
the controller will learn how to generate models
that meet the requirements.

3 Experiments and Discussion

3.1 Datasets

We conduct experiments on two medical NLI
datasets we build for developing our medical di-
alogue system, whose statistics and metrics for
evaluation are shown in Table 1.

Chinese Medical Frequent Asked Queries
(CMFAQ). These datasets contain pairs of Chi-
nese medical frequently asked questions (FAQs),
and the model has to determine whether the two
queries contain the same meaning. The dataset is
collected from the logs of an online medical con-
sultation provider. The sentences in this dataset are
usually general health-related questions.5

Chinese Medical Query Patterns (CMQP).
This dataset is designated for semantic matching
of the query patterns. The model has to determine
whether two patterns have the same intention. We
collect queries that are related to medical entities
and annotate their NER tags. Then we replace the
named entities with special tokens that reflect the
entity types in the sentence and transform the query
into a query pattern.6

5For examples, "现在在居家隔离，我要怎么保持健
康？" (Now in isolation at home, how can I keep healthy?) is
a quite popular query during the breakout of COVID-19, and
it is matched to one of our collected FAQs, "居家隔离如何
养生？" (How to keep healthy when quarantined at home?)

6For example, a common question we received is "立普
妥是饭前吃吗？" (Is Lipitor taken before meals?). In this
sentence, "立普妥" (Lipitor) is a drug entity, so the query

The train/valid/test split is defined by randomly
splitting the whole annotated dataset with a ratio
7:1:2.

3.2 Experimental settings

To improve the performances of models that are not
pre-trained on a large corpus, we will distill knowl-
edge from a pre-trained large teacher model both
during search and model evaluation. The knowl-
edge distillation method follows Liu et al. (2019),
and the distillation temperature is set to be 10.
We select the Chinese BERT-wwm-ext (Cui et al.,
2019) as the teacher model. To make it more suit-
able for our domain applications (Gu et al., 2020),
we further pre-train it on our 2.3GB medical cor-
pus.

In our experiments, the encoder has five layers
at most. The 128d word embedding vectors are
initialized by a pre-trained Word2Vec (Mikolov
et al., 2013) model trained on our medical corpus
and are fine-tuned during training. The hidden
dimension is kept to 256 in the model. During
the architecture search, the batch size is 128, max
input length is 64 for both premise and hypothesis,
the dropout ratio is 0.2, and the weight decay is
2e-6. For both model weights and controller, we
utilize Adam optimizer and learning rate decay
with cosine annealing. The maximum learning rate
lmax is 3e-3, and the minimum learning rate lmin
is 1e-6, and the cosine cycle is 10. For model
weights, at the beginning of training, the learning
rate is linearly warmed up for 0.8 of one epoch to
lmax. For search warm-up, in the first 3 epochs, the
controller is not updated, and at the beginning of
the fourth epoch, the controller learning rate is also
linearly warmed up for 0.8 of one epoch to lmax.

After each epoch, ten candidate architectures are
generated by the controller and evaluated on the
validation set. The inference batch size is 1, which
mimic the scenario for online deployment. When
obtaining the validation performance, we also cal-
culate the inference speed and memory consump-
tion. The efficiency requirement is that the model’s
GPU memory consumption is less than 1 GB, and
the per-sample inference time is lower than 20ms.
If the efficiency requirements are not satisfied, the
child model’s reward is set to be zero. After train-

is transformed into a query pattern "<drug>是饭前吃吗?"
(<drug> should be taken before meals?), and it is matched to
one of our collected query patterns "<drug>应该饭前吃还
是饭后吃？" (<drug> should be taken before meals or after
meals?).

233

Dataset avg seq_len Train # Dev # Test # Label # Metrics
CMFAQ 32.5 37676 5382 10764 2 F1
CMQP 19.6 32476 4639 9279 2 F1

Table 1: Overview of medical NLI datasets in experiments.

ing 150 epochs, the architecture with the highest
evaluation F1 is chosen as the final network. And
this model is retrained from scratch with optimal
hyper-parameters tuned using NNI’s implementa-
tion of Bayesian optimization. We mainly focus on
three hyper-parameters: (1) batch size, (2) learning
rate, (3) dropout rate.

We assign 2 CPU cores, 8G memory, and 1 Tesla
V100 GPU card for each search or evaluation in
our experiments. The search lasts 12 hours and 4
hours for CMFAQ and CMQP, respectively.

3.3 Baseline methods

The best learned architectures are evaluated
by training from scratch (with hyper-parameter
search). The baseline models include: (a) LSTM +
max_agg; (b) LSTM + sa_agg, which are evaluated
by Wang et al. (2018); (c) LSTM/Transformer +
dr_agg (Gong et al., 2018); (d) ESIM (Chen et al.,
2016); (e) Decomposable attention (DecompAttn)
model (Parikh et al., 2016). The number of en-
coder layers is treated as a hyper-parameter and
are tuned together with other parameters. We also
compare our search space with that in TextNAS.
We also compare different search algorithms that
have similar time complexities as ENAS, including
DARTS (Liu et al., 2018), One-Shot (Luo et al.,
2019), and Random Search with Weight Sharing
(RandomSA) (Li and Talwalkar, 2019). 7 The
BERT-wwm-ext teacher model’s performances are
also reported.

3.4 Search Results

As depicted in Figure 4(a) and 4(b), the learned
architectures consist of different layers categories.
For convenience, we will refer to the best model
learned on CMFAQ as NASQU-1 and the best
model learned on CMQP as NASQU-2. NASQU-
1’s encoder has 3 self-encoding encoders, 2 of
which are two convolutional layers, and the other
one is a MHA layer, and it has a cross-attn layer
with the add attention function. Note that NASQU-
1 discards the 4th layer in the DAG since it is zero

7Unless specified, the default settings of their open-source
codes are used.

MODEL CMFAQ CMQP
Baseline models

GRU + max_agg 81.8 83.6
LSTM + max_agg 82.3 84.6
LSTM + sa_agg 83.6 85.4
LSTM + dr_agg 85.3 87.7

Transformer + dr_agg 84.3 86.8
ESIM 85.8 87.6

DecompAttn 84.5 86.9
NAS models

DARTS 86.4 87.9
One-Shot 86.3 88.1

RandomSA 85.5 87.2
TextNAS 86.3 88.6

Our models
NASQU-1 87.1∗ 88.5
NASQU-2 86.2 89.5∗

BERT-wwm-ext 88.9 90.5

Table 2: Results of the two medical NLI dataset. For
each dataset, we conduct a significance test against the
best reproducible model, and * means that the improve-
ment is significant at the level of 0.05 significance level.

operation. The aggregator of NASQU-1 takes lay-
ers 2 and 4 as input, and the aggregator is sa_agg.
Meanwhile, NASQU-2 is more lightweight than
NASQU-1 since it discards the 3rd and 5th layer.
NASQU-2’s encoder has a GRU layer, a conv layer,
and a cross-attn layer with p_dot attention function.
The aggregator of NASQU-2 takes all valid layers
as input, and the aggregator is dr_agg.

Although the learned model seems to be more
involved than manual architectures, we still find
that there are some design principles in line with
the commonsense and previously established ob-
servations:

• Convolution layers are combined with GRU
and multi-head self-attention layers, which
are similar to C-LSTM (Zhou et al., 2015)
and Transformer (Vaswani et al., 2017). In-
tuitively, convolution operations extract local
features similar to n-gram, which complement
long-term dependency features captured by
GRU/self-attention.

234

(a) NASQU_1

(b) NASQU_2

Figure 4: Learned architectures on the two medical NLI datasets.

• We find that the best learned architectures
include cross-attn modules, which are in
line with observations in the previous liter-
ature (Parikh et al., 2016; Chen et al., 2016).
Cross sentence attention can align the seman-
tics of two text inputs and provide better fea-
ture extraction for NLI tasks.

• Different tasks result in quite different archi-
tectures, emphasizing the importance of task
specificity. Besides, a smaller dataset size
prefers a more light-weighted architecture,
since intuitively, a heavier architecture is more
prone to over-fitting on a small dataset.

The performance results are shown in Table 2.
The learned architecture discovered by NASQU
achieves higher average F1 scores than all the base-
line models. Also, it outperforms other network
architectures found automatically by other search
spaces and algorithms. Note that on CMQP, the
improvement over different baselines is statisti-
cally significant. We also evaluate the transferring
ability of the two best learned architectures. Al-
though NASQU-1 also performs well on CMQP
compared with baselines, it is significantly worse
than NASQU-2. This observation also stands for
NASQU-2 on the CMFAQ dataset. These observa-

Model GPU memory inference speed
BERT-wwm-ext 4.8 GB 66ms/it

NASQU-1 0.84 GB 14ms/it
NASQU-2 0.71 GB 11ms/it

LSTM + dr_agg 0.72GB 15ms/it
ESIM 1.12GB 21ms/it

Table 3: Comparison of GPU memory consumption
and inference speed between the teacher model BERT
Large and NASQU-1, and NASQU-2.

tions validate the importance of customizing differ-
ent architecture for different tasks.

Table 2 also shows that the performances of the
two learned models is close to the BERT teacher.
We now compare the inference speed and GPU
memory consumptions of BERT and the learned
models. The results are reported in Table 3. We
can see that the learned models achieve significant
speed-up over the BERT teacher models without
too much performance loss, and they are more ef-
ficient than ESIM. LSTM + dr_agg has compara-
ble efficiency, but the performance is significantly
worse.

3.5 Ablation studies

We now conduct extensive ablation studies to
demonstrate our search space design, and modi-

235

strategies test F1
NASQU 87.1∗
- deeper weight sharing 85.9
- search warm-up 84.5

Table 4: Results for ablations studies on the strategies
we propose for search.

search space test F1
NASQU 87.1∗
- cross sentence attention 86.2
- aggregator search space 84.6

Table 5: Results for ablations studies on the search
space we construct for architecture search for NLI
tasks.

fications to the search algorithm are essential. The
ablation studies are performed on CMFAQ.

First, we conduct ablation on the proposed modi-
fications to the search method. As we can see from
Table 4, deeper weight sharing is beneficial. Intu-
itively, deeper parameter sharing reduces the num-
ber of shared parameters during the search phase,
making the reward signal more reliable. The results
also show that the search warm-up also contributes
to better search results.

We now conduct an ablation study on our entire
search space. The results are shown in Table 5.
Note that for our NLI tasks, when we drop the
cross attention mechanism from the search space,
the search results drop from 87.1 to 86.2. And we
can see that dropping the aggregator search space
(fixing the aggregator to be sa_agg) also results in
worse performances.

4 Conclusion and Future Work

In this work, we experiment on modeling NLI tasks
via NAS on our medical NLI tasks. Our search
space is an extension to TextNAS and ENAS, which
enable us to search for novel models with cross
sentence attention and suitable aggregators. To
improve the search results, we also propose a more
in-depth weight sharing strategy than ENAS and
search warm-up steps. Experiments on our NLI
tasks demonstrate that our search space is beneficial
for NLI tasks.

References
Samuel R. Bowman, Gabor Angeli, Christopher Potts,

and Christopher D. Manning. 2015. A large anno-

tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Qian Chen, Zhen-Hua Ling, and Xiaodan Zhu. 2018.
Enhancing sentence embedding with generalized
pooling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1815–1826, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei,
Hui Jiang, and Diana Inkpen. 2016. Enhanced
lstm for natural language inference. arXiv preprint
arXiv:1609.06038.

Yiming Cui, W. Che, T. Liu, B. Qin, Ziqing Yang,
S. Wang, and G. Hu. 2019. Pre-training with
whole word masking for chinese bert. ArXiv,
abs/1906.08101.

Jingjing Gong, Xipeng Qiu, Shaojing Wang, and Xu-
anjing Huang. 2018. Information aggregation via
dynamic routing for sequence encoding. arXiv
preprint arXiv:1806.01501.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas,
Naoto Usuyama, Xiaodong Liu, Tristan Naumann,
Jianfeng Gao, and Hoifung Poon. 2020. Domain-
specific language model pretraining for biomedical
natural language processing.

Yufan Jiang, Chi Hu, Tong Xiao, Chunliang Zhang,
and Jingbo Zhu. 2019. Improved differentiable ar-
chitecture search for language modeling and named
entity recognition. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3585–3590, Hong Kong, China. As-
sociation for Computational Linguistics.

Liam Li and Ameet Talwalkar. 2019. Random search
and reproducibility for neural architecture search.
ArXiv, abs/1902.07638.

H. Liu, K. Simonyan, and Y. Yang. 2018. Darts:
Differentiable architecture search. arXiv preprint
arXiv:1806.09055.

Xiaodong Liu, Pengcheng He, W. Chen, and Jianfeng
Gao. 2019. Multi-task deep neural networks for nat-
ural language understanding. In ACL.

Renqian Luo, Tao Qin, and E. Chen. 2019. Understand-
ing and improving one-shot neural architecture opti-
mization. ArXiv, abs/1909.10815.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS.

236

Ankur P Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. arXiv preprint
arXiv:1606.01933.

H. Pham, M.Y. Guan, B. Zoph, Q.V. Le, and J. Dean.
2018. Efficient neural architecture search via param-
eter sharing. arXiv preprint arXiv:1802.03268.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le,
and Jeff Dean. 2018. Efficient Neural Architecture
Search via Parameter Sharing. arXiv e-prints, page
arXiv:1802.03268.

David R So, Chen Liang, and Quoc V Le.
2019. The evolved transformer. arXiv preprint
arXiv:1901.11117.

Chuanqi Tan, Furu Wei, Wenhui Wang, Weifeng Lv,
and Ming Zhou. 2018. Multiway attention networks
for modeling sentence pairs. In IJCAI, pages 4411–
4417.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Yujing Wang, Yaming Yang, Yiren Chen, Jing Bai,
Ce Zhang, Guinan Su, Xiaoyu Kou, Yunhai Tong,
Mao Yang, and Lidong Zhou. 2020. Textnas: A neu-
ral architecture search space tailored for text repre-
sentation. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(05):9242–9249.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Ruobing Xie, Yanan Lu, F. Lin, and Leyu Lin. 2020.
Faq-based question answering via knowledge an-
chors. In NLPCC.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and
F. C. M. Lau. 2015. A c-lstm neural network for
text classification. ArXiv, abs/1511.08630.

B. Zoph and Q.V. Le. 2017. Neural architecture search
with reinforcement learning. In ICLR.

237

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 238–245
June 6–11, 2021. ©2021 Association for Computational Linguistics

OodGAN: Generative Adversarial Network for Out-of-Domain Data
Generation

Petr Marek∗

Czech Technical University in Prague
Prague, Czech Republic

marekp17@fel.cvut.cz

Vishal Ishwar Naik
Amazon Alexa AI

Sunnyvale, California
naikvish@amazon.com

Vincent Auvray
Amazon Alexa AI

Sunnyvale, California
vauvray@amazon.de

Anuj Goyal
Amazon Alexa AI

Sunnyvale, California
anujgoya@amazon.com

Abstract

Detecting an Out-of-Domain (OOD) utterance
is crucial for a robust dialog system. Most dia-
log systems are trained on a pool of annotated
OOD data to achieve this goal. However, col-
lecting the annotated OOD data for a given do-
main is an expensive process. To mitigate this
issue, previous works have proposed genera-
tive adversarial networks (GAN) based mod-
els to generate OOD data for a given domain
automatically. However, these proposed mod-
els do not work directly with the text. They
work with the text’s latent space instead, en-
forcing these models to include components
responsible for encoding text into latent space
and decoding it back, such as auto-encoder.
These components increase the model com-
plexity, making it difficult to train.

We propose OodGAN, a sequential generative
adversarial network (SeqGAN) based model
for OOD data generation. Our proposed model
works directly on the text and hence eliminates
the need to include an auto-encoder. OOD
data generated using OodGAN model outper-
forms state-of-the-art in OOD detection met-
rics for ROSTD (67% relative improvement in
FPR 0.95) and OSQ datasets (28% relative im-
provement in FPR 0.95) (Zheng et al., 2020).

1 Introduction

OOD detection is an essential task in AI voice
assistants like Alexa, Siri, or Google Assistant. The
task is to recognize whether a given user utterance
belongs to the in-domain (IND) distribution or not.
Users usually do not know the limitations of a voice
application and assign requests which the system
can not act upon. These requests are referred to as
OOD since these do not belong to the application’s
domain. Voice assistants should be able to handle

∗ Research conducted during an internship at Amazon
Alexa AI

OOD utterances robustly by not taking unintended
action or giving wrong or nonsensical responses
leading to a poor user experience.

Intent classification (IC) is one of the main tasks
in a conversational system that selects the best in-
tent given a user input. IC can be extended to
support OOD detection in two different ways. The
first one is to add OOD as another intent to the IC
model, but this requires annotated OOD data for
training. The second method is to use a threshold
on the classifier’s output probability distribution
during the runtime. This method does not require
OOD data for training necessarily. Nevertheless, it
proves difficult to select the threshold in practice
without it.

The state-of-the-art IC algorithms are trained us-
ing neural networks to produce probability distribu-
tion over output classes and use cross-entropy loss.
However, Lakshminarayanan et al. (2017), and Guo
et al. (2017) pointed out that the neural network
classifier tends to be overconfident in its classifica-
tion. This means that the classifier tends to assign a
high probability for one class, even when the exam-
ple was not seen in the training phase. Thus, such a
classifier cannot correctly recognize if an example
belongs to an IND or OOD distribution during run-
time with any reasonable threshold value. In this
paper, we focus on improving the performance of
the threshold-based OOD detection method with
the help of generated OOD data.

Zheng et al. (2020) proposed to use negative
entropy as an additional loss for the classification
task in a neural network. The negative entropy loss
trains the network to flatten the produced probabil-
ity distribution as opposed to cross-entropy, which
teaches the network to maximize the correct class
probability. Thus, the idea is to apply cross-entropy
loss on IND data and negative entropy loss on OOD
data. The result is that IND data receives a high

238

probability for the correct class, and OOD data re-
ceives low probabilities for all classes. Thanks to
this fact, we can select a reasonable threshold on
the output probability that will classify both IND
and OOD data correctly. We need OOD data to
train models in this way. However, the collection
of OOD data is a manual and expensive process.

The IND data forms a small distribution cluster
in the space of vector text representation. In princi-
ple, the rest of that space is covered by OOD data.
Also, in real-world scenarios, most OOD data share
patterns with IND data. Nevertheless, Zheng et al.
(2020) demonstrated that training IC model with
OOD data that are just outside IND distribution
should be sufficient to handle most of the OOD
requests during runtime.

In this paper, we propose a novel OOD data
generation model OodGAN, which is an extension
of SeqGAN (Yu et al., 2017). We use GAN to
generate OOD data that share the same patterns as
IND and are very close to IND distribution.

Our proposed model aims to be deployed to Nat-
ural Language Understanding (NLU) frameworks
offered by popular voice assistants like Amazon
Alexa and Google Assistant. These NLU frame-
works are offered to third-party developers to cre-
ate voice applications. Third-party developers can
define any number of IND intents and provide sam-
ple utterances for each to build voice applications.
These voice applications should recognize OOD re-
quests during run time without additional developer
effort to provide OOD training data. The proposed
model can be deployed in a NLU framework to
generate application-specific OOD data that the IC
model can use during training to recognize OOD
requests robustly and improve the end-user experi-
ence.

Our main contributions are:

(1) We propose a novel and simple OOD data
generation model OodGAN that improves on the
model proposed by Zheng et al. (2020). It works
with a sequence of words directly unlike the previ-
ously proposed models, which work on latent space
represented by auto-encoder. Our model eliminates
the need for the auto-encoder, which reduces the
overall size of the model.

(2) We evaluate our model on the ROSTD and
OSQ datasets, and we show that OOD examples
generated by OodGAN achieved state-of-the-art
results.

2 Related Work

There are three research areas relevant to our work:
OOD detection, text generation and OOD genera-
tion.

Out-of-Domain Detection

Larson et al. (2019) introduced a dataset for in-
tent classification that includes OOD queries. They
propose three baseline approaches for OOD detec-
tion that rely on OOD training data. Gangal et al.
(2019) created a ROSTD dataset and explored like-
lihood ratio based approaches. Lee and Shalymi-
nov (2019) proposed an OOD detection method
that does not require OOD data by utilizing coun-
terfeit OOD turns in the context of a dialog. Ryu
et al. (2018) proposed an OOD detection system
that uses only IND sentences to build a genera-
tive adversarial network in which the discriminator
generates low scores for OOD sentences.

Text Generation

Donahue and Rumshisky (2018) proposed a two-
step solution to text generation using auto-encoder
and GAN that works with a low-dimensional repre-
sentation of sentences. Yu et al. (2017) proposed
a sequence generation framework SeqGAN that
works directly on the text and hence eliminates the
need for an auto-encoder.

Out-of-Domain Data Generation

Zheng et al. (2020) proposed a GAN based model
to generate pseudo-OOD examples that are akin
to IND input utterances. The model uses a denois-
ing auto-encoder that is trained to map an input
example into a latent code. The functions of the
auto-encoder’s parts are the following. The en-
coder learns to create a latent representation of
the examples. The decoder learns to convert the
vector of the latent representation into text. The
model’s generator produces vectors in the latent
space. The discriminator evaluates the closeness
of latent space vectors generated by the generator
to real latent space vectors created by the encoder.
Discriminator sends a training signal to the genera-
tor to force it to generate indistinguishable vectors
from vectors encoded by the encoder. An auxiliary
classifier trained on IND examples is introduced to
force the generator to generate latent code belong-
ing to OOD. The resulting utterances share patterns
with IND examples but belong to OOD.

239

Figure 1: The illustration of SeqGAN (Yu et al., 2017).
Left: Discriminator D is trained over the real data and
the data generated by generator G. Right: Generator is
trained by policy gradient where the final reward signal
is provided by the discriminator and is passed back to
the intermediate action value via Monte Carlo search.

Reward RT

Reward RC

Pretraining

IND
Examples X

Generated OOD
Sequences Y

Generator Gθ
Auxiliary Intent

Classifier Cψ

Discriminator Dφ

Figure 2: The overall architecture of the OodGAN. Cψ
is pretrained to recognize intent classes for IND exam-
ples. Dφ is trained to distinguish between IND and gen-
erated OOD examples during adversarial training. Gθ
is trained by the REINFORCE algorithm during adver-
sarial training to generate OOD sequences. The train-
ing is guided by rewards originating in Cψ and Dφ.

3 Generative Adversarial Networks for
Out-of-Domain Data Generation

3.1 SeqGAN
The SeqGAN model proposed by Yu et al. (2017)
is a starting point for the proposed OodGAN. Se-
qGAN is a sequence generation framework illus-
trated in Figure 1. Yu et al. (2017) denote the
problem of sequence generation as follows. Given
a dataset of real-world structured sequences, train a
θ-parameterized generative model Gθ to produce a
sequence Y1:T = (y1, ..., yt, ...yT), yt ∈ Y where
Y is the vocabulary of candidate tokens. They
apply reinforcement learning to this problem. In
timestep t, the state s is the current produced tokens
(y1, ..., yt−1) and the action a is the next token yt
to select.

They propose to additionally train a φ-
parameterized discriminative model Dφ that pro-
vides guidance for improving generator Gθ. Dφ

produces a probability Dφ(Y1:T) representing the
probability of Y1:T being a real sequence vs. a gen-
erated one. The discriminative model Dφ is trained
with real sequence data, labeled as positive exam-
ples, and synthetic sequences from the generative

model Gθ, labeled as negative examples.
SeqGAN uses the REINFORCE algorithm

(Williams, 1992) to train generative model Gθ. Pa-
rameters of generative model Gθ are updated at the
same time by a policy gradient and Monte Carlo
search based on the expected end reward received
from the discriminative model Dφ for the gener-
ated sequence. The reward is represented by a
likelihood that the generated sequence will fool
the discriminative model Dφ. Thus the generator’s
goal is to generate a sequence that would fool the
discriminator into considering it as real.

3.2 OodGAN

We propose OodGAN based on SeqGAN. There
are two benefits of SeqGAN for our task of OOD
data generation. SeqGAN produces sequences sim-
ilar to the training data, and it works directly on
input sequence unlike earlier model (Zheng et al.,
2020), which works on latent space. Eliminating
the auto-encoder responsible for converting a se-
quence of words into latent space reduces the over-
all model size. Also, our experiments with Zheng
et al. (2020) show a degradation in the overall per-
formance due to the auto-encoder component (see
the Results section for details).

Since our task is to generate OOD data, we have
the additional criterion that generated sequences
should be close to the training IND sequences.
However, we also want them not to belong to any
IND intent class. We propose the OodGAN to
achieve the two criteria.

The main difference between SeqGAN and
OodGAN is the introduction of an auxiliary in-
tent classifier. The auxiliary intent classifier Cψ
estimates the probability Cψ(zi|Y) of example Y
belonging into intent class zi. The task of the
auxiliary intent classifier is to produce an addi-
tional reward signal. The reward signal guides the
generator to produce a sequence not belonging to
any IND intent class. The reward RCψ coming
from the auxiliary intent classifier for each gen-
erated example is defined as Shannon’s Entropy
RCψ = −∑m

i=1Cψ(zi|Y) · log(Cψ(zi|Y)), where
m is the number of IND intent classes. The intu-
ition for using Shannon’s Entropy is that we want
to reward a generator for producing examples for
which the auxiliary intent classifier cannot clearly
assign one of IND classes. In other words, the auxil-
iary classifier should assign a nearly uniform distri-
bution across all intent classes for a good generated

240

example. The generator obtains a high reward for
such examples because the uniform distribution has
the highest Shannon’s Entropy.

We train the auxiliary intent classifier to predict
one of the classes z1...m for each training IND ex-
ample X1...n during the pre-training step. We do
not have to retrain it during adversarial training
because IND intent classes’ distribution does not
change.

The goal of the generator is to generate a se-
quence that maximizes the expected sum of rewards
from discriminator Dφ (the estimated probability
of the sequence being real), and auxiliary intent
classifier Cψ (Shannon’s Entropy calculated using
estimated probabilities of sequence belonging to
IND intent classes by auxiliary intent classifier).

Empirically, we evaluated different training
strategies. We found that optimizing generator
G using only the discriminator’s reward first, fol-
lowed by using only the auxiliary intent classifier
reward, and then repeating the process for each
training batch produced the most stable results.
This worked better than summing up the rewards
from the discriminator and auxiliary intent classi-
fier. When we tried summing up the two rewards,
we noticed that the generator tended to collapse
into a state in which it generated a single sequence
highly rewarded by the auxiliary intent classifier,
even though this did not happen for all training
runs. We observed this situation even when we
normalized rewards to a value between 0 and 1.

We also observed that part of the examples gen-
erated by OodGAN is semantically similar to some
IND training example or is generated multiple
times. Examples that are identical or too close
to IND examples are problematic and confuse the
OOD classifier. Duplicated examples do not rep-
resent the OOD distribution effectively. For those
reasons, we removed with an automatic filter the
generated OOD examples that are identical or sim-
ilar to IND examples or that are generated repeat-
edly.

To summarize, OodGAN’s training procedure
has the following steps.

(1) Train Auxiliary classifier: First train auxil-
iary classifier to predict the classes z1...m for IND
data X1...n until convergence.

(2) Train Generator as Language Model:
Next, train the generator on the IND data X1...n

as a language model until it converges. Thanks
to this step, it is easier for the generator to fool

the discriminator from the start of the adversarial
training.

(3) Train Discriminator: Generate adversarial
examples from the generator. This training step
helps the discriminator to provide a useful reward
signal from the start of adversarial training.

(4) Adversarial Training: Perform adversarial
training of generator and discriminator. There are
three optimization steps for each training batch.
First, optimize the generator using reward from dis-
criminator as proposed by Yu et al. (2017). Next,
optimize the generator using a reward from the aux-
iliary classifier. Lastly, optimize the discriminator.

4 Experiments

4.1 Datasets

We conducted experiments on ROSTD (Gangal
et al., 2019) and OSQ (Larson et al., 2019) datasets.

• ROSTD contains three categories (alarm, re-
minder, and weather), each consisting of four
intents. The dataset consists of 30,000 train-
ing, 4,000 validation and 8,000 testing IND
examples. OOD examples were selected in a
way that they do not belong to any category
and do not share patterns with any IND exam-
ples. There are also no OOD examples in the
training set of the dataset. The testing set con-
tains 4,500 OOD examples. IND and OOD
examples from ROSTD are listed in Table 5.

• OSQ consists of 150 intents. The datases con-
sists of 15,000 training, 3,000 validation and
4,500 testing IND examples. The dataset was
created using Mechanical Turk. The turkers
were given the name of the intent, and they
were supposed to write intent examples fitting
into the intent. The dataset authors manu-
ally went through examples and moved ex-
amples not fitting into the given intent class
to the OOD class. In this way, OOD exam-
ples share the same patterns as IND examples.
The OSQ dataset contains 100 training OOD
examples. However, we decided not to use
them for training due to the nature of our ex-
periments. There are also 100 validation and
1,000 testing OOD examples.

4.2 Evaluation Process

We evaluate the model on the downstream task of
OOD data detection and measure the change in

241

OOD data detection metrics. We designed experi-
ments in the following way. We train the OodGAN
on IND training examples as a first step. Next,
we generate the OOD examples using the trained
model of OodGAN. We generate the same number
of OOD examples as a number of IND examples
in the training set. In a third step, we train the
threshold-based OOD detection model using cross-
entropy loss on training IND examples and negative
entropy loss on generated OOD examples. In the
last step, we evaluate both IND and OOD metrics.

4.3 Metrics
We evaluate the OodGAN by measuring metrics on
the downstream task of OOD detection. We mea-
sure AUROC, AUPR, and FPRN metrics (Ren et al.,
2019; Hendrycks and Gimpel, 2017; Hendrycks
et al., 2019) to evaluate OodGAN’s ability to gener-
ate OOD data that helps IC to distinguish IND and
OOD input utterances. We treat OOD examples as
the positive class.

• AUROC The area under the receiver operat-
ing characteristic (ROC) curve. The score
says the probability that a randomly selected
OOD example will have a higher predicted
probability of being an OOD than a randomly
selected IND example. Higher AUROC score
is better.

• AUPR The area under the precision-recall
curve when OOD inputs are treated as posi-
tive samples. AUPR calculates the average
precision score for all recall values. Intu-
itively, the higher the classification threshold
we select, the more OOD will be classified as
OOD. However, we risk that more IND will
be classified as OOD. AUPR expresses this
risk. Higher AUPR score is better.

• FPRN The false-positive rate (FPR) when the
true positive rate (TPR) is N%. FPRN metric
is a practical value in real-world application
since it evaluates an OOD detection perfor-
mance at a particular threshold. Lower FPRN
means there is a smaller chance of IND ex-
amples triggering false alarm (IND getting
classified as OOD) when the model’s perfor-
mance on OOD example is N%. We report
FPR when TPR is 0.95 and 0.90. Lower FPRN
score is better.

We consider FPRN metric as the most practical
value in real-world application since it evaluates an

OOD detection performance at a particular thresh-
old. Lower FPRN means there is a smaller chance
of IND examples triggering false alarm (IND get-
ting classified as OOD) when the model correctly
recognizes N% of OOD examples.

We also measure IND accuracy that evaluates
generated OOD data’s influence on the IC’s ability
to recognize the intents of IND data correctly.

• IND accuracy The percentage of IND data
that have assigned correct intent label. We
expect that generated OOD examples cannot
improve the IC’s ability to recognize intent
labels for ID. However, generated OOD exam-
ples can degrade the IC’s ability to recognize
IND intents. Thus, we measure the IND ac-
curacy to evaluate whether generated OOD
negatively impacts the IC. Higher IND accu-
racy is better.

4.4 Implementation
We based our implementation on the Github repos-
itory1 of SeqGAN implemented in PyTorch. The
generator is one layer GRU recurrent neural net-
work trained using Adam optimizer with a learning
rate set to 0.001. Input to the generator is embed-
ded with fastText embeddings (Joulin et al., 2016)
trained on Wikipedia. The generator uses nega-
tive log-likelihood loss during LM training and
policy gradient loss during GAN training. The
discriminator is a two-layer bidirectional GRU re-
current neural network with a tanh activation func-
tion. Adagrad optimization is used for training the
discriminator with a learning rate set to 0.1 and bi-
nary cross-entropy loss is optimized. The auxiliary
classifier uses the convolutional neural network pro-
posed by Kim (2014), which has filters of size 2,
3, 4, and 5, and for each size, there are 256 filters.
We used the LeakyReLU activation function and
0.5 dropout in output dense layers. The auxiliary
classifier is trained using the Adam optimizer with
a learning rate set to 0.0001 and cross-entropy loss
is optimized.

We show the comparison of number of parame-
ters between OodGAN, SeqGAN, and Zheng et al.
(2020) in Table 1.

5 Results

5.1 Results on Zheng et al. (2020)
We first conducted experiments to replicate results
reported by Zheng et al. (2020) on the OSQ dataset.

1https://github.com/suragnair/seqGAN

242

Parameters
Zheng et al. (2020) 7M
SeqGAN (Yu et al., 2017) 800k
OodGAN 2M

Table 1: Number of parameters

OSQ
(Larson et al., 2019)

AUROC ↑ AUPR ↑ FPR
0.95

↓ FPR
0.90

↓ IND
Acc.

↑
Results reported
by Zheng et al. (2020)

95.4 98.9 25.0 10.1 93.3

Our implementation of
Zheng et al. (2020)

88.79 58.22 36.49 26.87 88.00

Table 2: OOD detection performance on the OSQ
dataset with model proposed by Zheng et al. (2020)

We created our implementation according to the
paper’s description because there is no publicly
accessible implementation of their proposed model.
We report results in Table 2.

We could not reproduce the number reported by
Zheng et al. (2020) even though we implemented
the model as was described in the paper. The exper-
iments showed that the denoising auto-encoder is a
weak part of the architecture. Its token accuracy of
text reconstruction on the validation set was only
0.37%. Thus, the low performance of the auto-
encoder is the reason why the generator generates
poor quality examples.

5.2 Results on proposed model OodGAN

First, we want to compare OodGAN with base-
lines. We selected two baselines to evaluate im-
provements of our proposed OodGAN. Our base-
lines for the ROSTD dataset is our implementation
of Zheng et al. (2020) and the work of Gangal et al.
(2019). The baseline for the OSQ dataset is our
implementation of Zheng et al. (2020).

Table 3 shows results on ROSTD dataset and
Table 4 shows results on OSQ dataset. Results on
ROSTD data are promising. They show around
65% relative improvement in FPR 0.95 compared
to baseline of our implementation of Zheng et al.
(2020) and around 5% absolute improvement in
FPR 0.95 compared to baseline of Gangal et al.
(2019). For the more challenging OSQ dataset,
there is around 28% relative improvement in both
FPR 0.95 and FPR 0.90 compared to the baseline.

To evaluate whether OodGAN helps the
threshold-based OOD detection model to discrimi-
nate between OOD and IND examples, we plotted
the histogram of the test data’s maximum intent
probability for system trained with and without

ROSTD
(Gangal et al., 2019)

AUROC ↑ AUPR ↑ FPR
0.95
↓ FPR

0.90
↓ IND

Acc.
↑

w.o. OOD 97.64 93.86 8.10 5.56 99.05
Our implementation
of Zheng et al. (2020)

88.67 54.84 37.82 26.04 88.00

Gangal et al. (2019) 98.22 96.47 7.41 - -
OodGAN 98.99 96.26 2.59 1.37 98.31

Table 3: OOD detection performance on the ROSTD
dataset

OSQ
(Larson et al., 2019)

AUROC ↑ AUPR ↑ FPR
0.95
↓ FPR

0.90
↓ IND

Acc.
↑

w.o. OOD 90.89 97.99 28.11 20.98 89.04
Our implementation
of Zheng et al. (2020)

88.79 58.22 36.49 26.87 88.00

OodGAN 91.24 97.79 26.07 19.29 90.11

Table 4: OOD detection performance on the OSQ
dataset

(a) Model trained with no OOD

(b) Model trained with generated OOD

Figure 3: Distributions of detection scores correspond-
ing to the IND and OOD examples of the ROSTD
dataset

generated OOD examples. Figure 3 shows the his-
togram for ROSTD dataset. Probability scores for
IND (blue) and OOD (red) data are spread out over
all probability values when there are no OOD data
used for model training. Thus it is hard to select

243

a well discriminating threshold. The result of the
model trained with OOD data is significantly better.
The graph shows a clear separation between IND
and OOD data, with IND data receiving high intent
score and OOD data receiving a low score.

The OOD detection model is combined with IC
in many real-world applications. For this reason,
the joint accuracy of OOD detection and IND intent
recognition is an important metric. We show how
the joint accuracy depends on the selected threshold
in Figure 4. To draw this graph, we select different
thresholds, and we tag examples having an intent
score below the threshold as OOD. We classify the
intent for the rest. Our proposed approach leads
to high joint accuracy of OOD detection and IND
intent recognition with low threshold values. That
confirms that models trained with generated OOD
assign low scores to OOD and high scores to IND
examples.

Figure 4: Joint accuracy for ROSTD data across differ-
ent threshold value. Points mark the highest joint accu-
racy of OOD detection and IND intent recognition.

The separation between generated OOD exam-
ples and IND examples is visible in t-SNE (Hinton
and Roweis, 2002) visualization as well. Figure 5
shows the t-SNE visualization of IND and gener-
ated OOD data. We can notice that generated data
create recognizable clusters close to IND data but
do not mix with it. Finally, we list OOD examples
generated by OodGAN in table 5.

6 Conclusion

This paper proposed a novel OOD data generation
model OodGAN that generates OOD examples that
improved OOD detection performance in a dialog
system. The model does not require any OOD train-
ing examples. Moreover, the model does not rely
on the auto-encoder to map utterances into latent
space, reducing the model size. It models the data

Figure 5: t-SNE visualization of the BERT feature vec-
tors associated with the examples from the ROSTD
dataset. IND examples are blue, testing OOD exam-
ples are red, and examples generated by OodGAN are
green.

IND Examples

Should I be expecting rain today
I need a new alarm for 8:30 am
Show my reminders
Show me the extended forecast please
Snooze alarm for 5 more minutes

OOD Examples

Why do people watch television
Where do pineapples grow
Should I go to the mall today or tomorrow
Tell me how to install a pool
Transfer my PayPal balance to my bank

Generated by
OodGAN

Remind me of my 4pm and Game of Thrones alarm
When should I unpack
Add day at workout please
Give me my Sarasota appointment
Do I need to pack to Galway this umbrella

Table 5: Examples sampled from the IND and OOD
test set of the ROSTD dataset and OOD utterances gen-
erated using OodGAN model.

generator as a stochastic policy in reinforcement
learning instead. The model uses two rewards for
the generator. The discriminator’s reward guides
the generator to generate examples as close to the
IND data as possible. The auxiliary intent classi-
fier’s reward guides the generator to generate ex-
amples with low probabilities for all intent classes.
Our experiments show that OOD examples gener-
ated by OodGAN improve the performance of the
OOD detection problem.

References
David Donahue and Anna Rumshisky. 2018. Adversar-

ial text generation without reinforcement learning.
arXiv preprint arXiv:1810.06640.

Varun Gangal, Abhinav Arora, Arash Einolghozati,
and Sonal Gupta. 2019. Likelihood ratios and gen-
erative classifiers for unsupervised out-of-domain

244

detection in task oriented dialog. arXiv preprint
arXiv:1912.12800.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. arXiv preprint arXiv:1706.04599.

Dan Hendrycks and Kevin Gimpel. 2017. A
baseline for detecting misclassified and out-of-
distribution examples in neural networks. ArXiv,
abs/1610.02136.

Dan Hendrycks, Mantas Mazeika, and Thomas G. Di-
etterich. 2019. Deep anomaly detection with outlier
exposure. ArXiv, abs/1812.04606.

Geoffrey E Hinton and Sam Roweis. 2002. Stochastic
neighbor embedding. Advances in neural informa-
tion processing systems, 15:857–864.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In
Advances in neural information processing systems,
pages 6402–6413.

Stefan Larson, Anish Mahendran, Joseph J Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K Kummerfeld, Kevin Leach, Michael A
Laurenzano, Lingjia Tang, et al. 2019. An evalua-
tion dataset for intent classification and out-of-scope
prediction. arXiv preprint arXiv:1909.02027.

Sungjin Lee and Igor Shalyminov. 2019. Contextual
out-of-domain utterance handling with counterfeit
data augmentation. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 7205–7209.
IEEE.

J. Ren, Peter J. Liu, E. Fertig, Jasper Snoek, Ryan
Poplin, Mark A. DePristo, Joshua V. Dillon, and Bal-
aji Lakshminarayanan. 2019. Likelihood ratios for
out-of-distribution detection. In NeurIPS.

Seonghan Ryu, Sangjun Koo, Hwanjo Yu, and
Gary Geunbae Lee. 2018. Out-of-domain detection
based on generative adversarial network. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 714–
718.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In Thirty-first AAAI conference
on artificial intelligence.

Yinhe Zheng, Guanyi Chen, and Minlie Huang. 2020.
Out-of-domain detection for natural language under-
standing in dialog systems. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing,
28:1198–1209.

245

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 246–254
June 6–11, 2021. ©2021 Association for Computational Linguistics

Coherent and Concise Radiology Report Generation via
Context Specific Image Representations and Orthogonal Sentence States

Litton J Kurisinkel, Ai Ti Aw, Nancy F. Chen
Institute for Infocomm Research, A*STAR, Singapore

litton_kurisinkel, aaiti, nfychen@i2r.a-star.edu.sg

Abstract

Neural models for text generation are often
designed in an end-to-end fashion, typically
with zero control over intermediate computa-
tions, limiting their practical usability in down-
stream applications. In this work, we incor-
porate explicit means into neural models to
ensure topical continuity, content comprehen-
siveness and informativeness of automatically
generated radiology reports. We propose a
method to compute image representations spe-
cific to each sentential context to minimize hal-
lucination caused by sequence-to-sequence ap-
proaches and to further eliminate redundant
content by exploiting diverse sentence states.
We conduct experiments to generate radiology
reports from medical images of chest x-rays
using MIMIC-CXR. Our model outperforms
baselines by up to 18% and 29% respective in
the evaluation for informativeness and content
ordering respectively on objective metrics and
16% on human validations.

1 Introduction

Presenting information in text format has been
critical to the development of human civilizations.
Thus text generation is an important field in artifi-
cial intelligence and natural language processing,
where the input to such natural language generation
models could take on the form of text, graphs, im-
ages or database records (Koncel-Kedziorski et al.,
2019; See et al., 2017; Kinghorn et al., 2018).

Recent advancements in natural language gener-
ation has been propelled by end-to-end neural mod-
els (e.g. (Chopra et al., 2016)), which has strong
capabilities to learn associations within large-scale
datasets. However, since it is challenging to exert
control over the neural generation process and the
corresponding output, the usability of such models
in practical scenarios are limited, as the generated
content could be erroneous, incoherent, or even
socially inappropriate (Liu et al., 2020; Wiseman
et al., 2017). It is therefore ideal to include explicit

provisions in neural text generation to better model
characteristics such as informativeness and topical
continuity. It has also been shown that informative-
ness and textual cohesion are important properties
in clinical texts to make them more easily compre-
hensible (Smith et al., 2011; Liu and Rawl, 2012).

Image to text generation is a natural language
generation task that has been popular in communi-
ties beyond NLP (e.g. computer vision, machine
learning). A general approach is to construct the
representation of the entire input image and decode
the output text conditioned on the image representa-
tion (You et al., 2016). Such approaches work well
for scenarios where only a short generated sentence
is needed in the output (e.g. image captioning),
as typically what is needed is to identify individ-
ual objects and fill in the most probable words to
describe the overall situation. However, such ap-
proaches might not generalize to scenarios where
complex semantics embodied in the input images
need further inferencing or where the generated
outputs need to articulate detailed or specific infor-
mation, logical reasoning, or recommendations —
all of these cases typically require at least multi-
ple sentences (to form a report) (Jing et al., 2017).
Medical reports are a classic example of such a
scenario where each sentence in a report describes
very precise clinical observations or inferences.

We present a neural approach for producing
radiology reports from images in a sentence-by-
sentence order to pinpoint more targeted and pre-
cise medical information from the input images
and at the same time minimize hallucination from
neural text generation. The modeling components
ensures the generated report is informative, coher-
ent, and concise via gated mechanisms to model
topical continuity, orthogonality criteria in sentence
state selection to reduce redundancy, and a neural
architecture that is pretrained to predict domain
entities during each context of sentence generation
in order to encourage induction bias.

246

2 Related Work

2.1 Natural Language Generation
Quests for more efficient methods arising from ma-
chine translation using dense sentence representa-
tions resulted in the development of neural text-to-
text generation models (Bahdanau et al., 2014; Cho
et al., 2014; Srivastava et al., 2014; Wiseman et al.,
2018). Subsequently, neural approaches for text-to-
text generation for summarization tasks also started
to gain traction (Cheng and Lapata, 2016; Nallapati
et al., 2017; See et al., 2017; Paulus et al., 2017).
A major interest in the medical NLP community
focuses on information extraction (see Wang et al.
(2018) for a review). There has been work in areas
such as automatic ICD code assignment (Zhang
et al., 2017; Scheurwegs et al., 2017; Mullenbach
et al., 2018), risk prediction (Ma et al., 2018), and
dialogue comprehension (Liu et al., 2019), and
text generation (Buchanan et al., 1995; Moradi and
Ghadiri, 2018; Pauws et al., 2019).

2.2 Image to Text
There has been much work in image to text gener-
ation, which typically constructs a representation
of the input image using CNN and generates the
output text using RNN (Fang et al., 2015; Krause
et al., 2017; Vinyals et al., 2015). Such work has
been improved further by incorporating the atten-
tion mechanism on input representations (Xu et al.,
2015; You et al., 2016). Xu et al. (2015) used
visual spatial attention for improving text genera-
tion while You et al. (2016) introduced semantic
attention on concepts. All of the aforementioned
work demonstrated effectiveness on single sentence
generation such as captions. Image to text genera-
tion becomes more challenging when considering
multi-sentence outputs. Some recent work gen-
erated multi-sentence outputs using hierarchical
decoding (Krause et al., 2017; Liang et al., 2017).
Jing et al. (2017) adapted this approach for radiol-
ogy report generation by incorporating co-attention.
Yuan et al. (2019) further improved the design by
incorporating concept prediction and leveraging
the predicted concept for guiding generation. In
our work, the network is pre-trained to predict con-
text entities so that each sentence generation is
implicitly guided by domain entities. In addition,
our system explicitly models informativeness and
topical continuity to improve coherence while re-
ducing redundancy to increase factual correctness
and readability.

3 Method

In this section we delineate the following: (1) The
proposed neural architecture and the correspond-
ing network computations; (2) How we pre-train
the network to predict the context entities from
each sentence representation using a multi-label
classifier; (3) How we further train the neural archi-
tecture to decode the corresponding sentences from
each sentence representation to form the report.

3.1 Neural Architecture

Each input to our network is a set of images SI
with different views of the chest from the same
patient and an indication text Q, which is a short
sentence or phrase describing the purpose of the ra-
diology investigation (e.g. intense coughing)1. Fig-
ure 1 depicts the architecture of our neural model,
consisting of components for image encoding, in-
dication text encoding, image feature selection for
informativeness, sentential content creation for top-
ical continuity and redundancy reduction and for
decoding individual sentences in the report. Be-
fore the network computations commence, content
creation RNN is initialized with a zero vector hid-
den state. We elaborate each component in the
following subsections.

3.1.1 Image Encoding and Sentential
Content Creation

Our network is designed to generate the radiology
report in a sentence-by-sentence manner from the
input set of images, guided by the indication text.
The sentence-by-sentence design allows the report
generation to focus on specific and important
details in the medical image and reduces possible
pitfalls of hallunciation in neural text generation.
The Image encoder is a ResNet152 network with
pretrained weighs (He et al., 2016). Using the
encoder, each of the image matrix i in the input
image set is converted to Ii ε Rn, as depicted on
the left hand side of Figure 1. The network updates
the image representations during each context
of sentence generation. The network employs
gates for informative content selection and topical
continuity weighted by a control gate.

Informative Content Selection: The con-
tent selection gate is represented by the trapezium
on the top of Figure 1. Gate gc selects the

1An example of indication text: male with cough
and rib pain.

247

I1: LA view

I2:

I3:

INDICATION TEXT ENCODER

Q

Ht

I1,t-1 : LA view

I2,t -1:

I3,t-1 : SENTENCE
DECODER

Finding 1

Finding 2

:
Finding t

Content Creation
RNNOriginal Image

Represenations: Ii

ht'

Output
Sentences

HQ

SI

D
I
V
E
R
S
E

S
T
A
T
E

C
O
M
P
U
T
A
T
I
O
N

Entity Set 1

Entity Set 2

Entity Set t

:
ENTITY

PREDICTION

H'
t

Content
gate

Coherence
gate

gci,t

I1,t : LA view

I2,t :

I3,t :

Current Image
Representations: Ii,t

C
O
N
T
R
O
L

G
A
T
E

It

gconti,t

Sentence
Context Entities

Previous Image
Representations: Ii,t-1

PRE- TRAINING

TEXT GENERATION

Repeated During the Generation of each Sentence

Figure 1: Proposed Neural Architecture

informative content from the original image
representations during each time-step t of the
content creation RNN. Gate gc filters the features
of the input image representation Ii as follows:

gci,t = sigmoid(Wgc[Ii;Ht−1;HQ])

Ici,t = gci,t � Ii
where Wgc is the parameter matrix, Ht−1 is the
previous hidden state of content creation RNN
and HQ is the indication text encoded using
a transformer network. The presence of Ht−1

ensures that features are selected in the context of
previously generated sentences.

Content Selection for Topical Continuity:
The gate gcont selects the content for topical
continuity at time- step t from the image represen-
tations computed for the previous time- step t− 1.
In Figure 3.1, the continuity gate is represented
by the trapezium at the bottom. The Gate gcont
selects the content for topical continuity as follows:

gconti,t = sigmoid(Wgcont[Ii,t−1;Ht−1;HQ])
(1)

Iconti,t = gconti,t � Ii,t−1 (2)

Wgcont is a parameter matrix and Ii,t−1 is the
representation of the ith image in the input set
computed at time-step t− 1.

Control Gate: The control gate is repre-
sented by the first vertical rectangle in Figure 1.
Control gate weighs and creates the representation
of the ith image for time step t as follows.

αi,t = sigmoid(Wcont[Ht−1]) (3)

Ii,t = αi,t ∗ Ici,t + (1− αi,t) ∗ Iconti,t, (4)

where Wcont is a parameter matrix.

3.1.2 Sentence Content Creation
The content creation RNN is represented by the
vertical rectangle, encompassing smaller rectangles
corresponding to different states as depicted in the
middle of Figure 3.1. Content Creation RNN com-
putes the content for the sentence to be decoded at
time step t by taking final representations for the
images in the input set into account. The input It
at the current time step t of content creation RNN
is computed as follows:

It =

∑
i Ii,t
m

(5)

248

where m is the number of images in the input set.
The hidden state Ht for content creation RNN at
time step t is computed as below.

Ht = GRU(It, Ht−1), (6)

3.1.3 Reducing Redundancy via Orthogonal
Sentence States

Avoiding redundant content generation is a prob-
lem to be explicitly addressed by text generation
systems (Nema et al., 2017). Hidden states of con-
tent creation RNN represents the content corre-
sponding to each sentence in the final report. En-
forcing diversity among these hidden representa-
tions can reduce the redundant content in the re-
sultant report. We ensure that each hidden state
of content creation RNN used to initialize decoder
to be orthogonal to the mean of previous hidden
states. In the purview of this orthogonality Ht of
content creation RNN is updated as follows.

H
′
t = Ht −

HT
t H

M
t−1

(HM
t−1)

THM
t−1

(7)

where HM
t−1 is the mean of previous hidden states.

3.2 Pre-Training via Entity Prediction
For the purpose of pre-training we predict context
entities from the constructed content H

′
t using a

multi-label classifier:

H”
t = NN(H

′
t)

Scorest = softmax(H”
t)

Entkt = argmaxk(Scorest)

(8)

NN is a two layered fully connected neural net-
work where the individual layer computations are
a linear transformation followed by a ReLU acti-
vation. Entkt represents the set of top k ranking
context entities, which are intended to contain the
entities to be mentioned in the sentence to be gen-
erated at time-step t of content creation RNN. The
pre- training is done using binary cross entropy
loss.

3.3 Training the Sentence Decoder
We use a decoder with beam search decoding to
generate sentences. The sentence decoder RNN is
initialized with H

′
t , which represents the content to

be materialized at time step t. At each time step
t
′

of decoder RNN, a word in the sentence under
construction is generated as follows:

P (wt′ |w<t′) =softmax(Wo(ht′) + bo), (9)

where ht′ is the hidden state of decoder RNN at
time-step t

′
. Negative log likelihood is used for

training the network to generate sentences.

4 Results

4.1 Data Setup

A subset of 19,800 entries were selected from the
MIMIC-CXR Database2 for generating radiology
reports from medical images of chest X-rays (John-
son et al., 2019), where each entry is represented
by a triplet (SI , Q, SEQF). SI is a set of m in-
put radiology images where there are one or more
images corresponding to different views of a pa-
tient’s chest, Q is a short text span specifying the
purpose of the radiology investigation, and SEQF
represents the sentences written by a radiologist in
the context of SI and Q. SEQF is a sequence of
sentences f1, .., fn, each representing an individual
finding.

We reformulate the dataset so that each entry
record is (SI , Q, SEQF , SEQE). SEQE rep-
resents a sequence of entity sets ent1, ..., entn,
where enti represents the set of entities mentioned
in sentence fi. We extracted entities from individ-
ual sentences3 and identified a frequently occurring
set of 1,060 entity clusters4 suitable for learning
to predict context entities and subsequent sentence
generation. Sentences that do not consist a single
mention of any of these entities were removed be-
cause they were evaluated to be subject to informa-
tion not included in the corresponding images. Our
dataset consists of 18,000, 900 and 900 training,
test and development records respectively.

4.2 Experimental Setup

• Img + RNN : The entire radiology report is
decoded as a single sequence from the mean
of image representations (Fang et al., 2015).

• Img + Attn : The decoder RNN attends over
the input image representation to generate
a single sequence that constitutes the report
(You et al., 2016).

2https://physionet.org/content/mimic-cxr/2.0.0/
3A pilot study was conducted to compare the effec-

tiveness of entities extracted from https://spacy.io/ and
https://ctakes.apache.org/, which showed no obvious differ-
ence between the two named entity recognition tools. The
former was thus chosen due to ease of integration into our
existing codebase.

4Entities that refer to the same medical phenomenon (e.g.
acute pneumonia and pneumonia) were clustered to further
streamline the modeling process.

249

Experimental Text Gen Cont Order
Setting R -1 R - 2 B -2 B - 4 P R F
Img + RNN 0.241 0.070 0.200 0.070 0.040 0.050 0.045
Img + Attn 0.270 0.079 0.200 0.075 0.060 0.070 0.064
Img + Pred + Co-Attn 0.291 0.093 0.250 0.091 0.081 0.110 0.093
Img + Ent + Attn 0.300 0.096 0.273 0.102 0.080 0.100 0.089
Img + IC 0.291 0.090 0.261 0.100 0.070 0.090 0.772
Img + IC + TC 0.310 0.097 0.291 0.109 0.090 0.126 0.100
Img + IC + TC + O 0.318 0.109 0.328 0.117 0.120 0.135 0.127
Img + IC+ TC + O + PT 0.323 0.106 0.334 0.120 0.117 0.137 0.126

Table 1: Report Generation Performance Comparison. Text Generation: R-1, R-2, B-2, B-4 denote ROUGE-1,
ROUGE-2, BLEU-2, BLUE-4, respectively. Content Ordering: P: Precision, R:Recall, F: F-Measure.

Experimental HR
Setting mean std
Img + RNN 2.70 2.07
Img + Attn 3.51 1.70
Img + Pred + Co-Attn 6.16 1.46
Img + Ent + Attn 6.02 1.53
Img + IC 4.50 1.65
Img + IC + TC 6.10 1.45
Img + IC + TC + O 7.02 1.26
Img + IC+ TC + O + PT 6.71 1.33

Table 2: Human Ratings is denoted as HR; the mean
and standard deviation (denoted as std) are computed
for each setting, and the overall Pearson Coefficient is
0.67.

• Img+ Pred + Co-Attn : A multi-image vari-
ant of the co-attention based method (Jing
et al., 2017), in which sentence context vec-
tors by co-attending over input images and
entities.

• Img + Ent+Attn : This setting is a variant of
(Yuan et al., 2019), where the decoder attends
over a predicted set of entities to generate
sentences.

• Our Method: We experiment with different
settings of our approach depicted in Figure
3.1 with different combinations of Informa-
tive Content selection (IC), Topical Continu-
ity (TC), Orthogonal Sentence States (O) and
Pre-Training (PT).

Encoded image size is 900 after linear transfor-
mation of ResNet output, HtεR

900 and ht′εR900.
Other parameters are adjusted accordingly. For all
settings, a beam size of 9 is set for the decoder.

For all the settings and for each of the test record
we generate five sentences as the average number
of sentences in development set reports is approx-
imately five. The set of parameters which gave
maximum recall for entity prediction in the devel-
opment set during pre- training is used initialize
the network during training.

4.3 Text Generation and Content Ordering

We evaluated the quality of text generation using
BLEU and ROUGE metrics as shown in Table 1.
The setting Img + IC did not perform well with
respect to other counterparts. This suggests that
just informative content selection gate and hidden
state of content ordering RNN alone is insufficient
for defining the context of a sentence. However
Img+IC+TC achieves an incremental accuracy
by employing the efficient gated mechanism for
sentence content creation. Img+IC+TC+O per-
forms consistently well on all metrics, especially
using BLEU-4, implying the approach of eliminat-
ing redundant content in long text generation via
enforcing topic diversity with orthogonal sentence
states is effective. The setting with pre-training on
entity prediction (Img + IC + TC + O + PT)
achieved a slight incremental improvement in ac-
curacy. We observe that for a large set of 1,060 do-
main entities, our training data is not dense enough
for a significant improvement through pre-training.
However the incremental improvement is encour-
aging.

Coherent reading results from accurate content
ordering. For evaluating content ordering we relied
on the method used by Kurisinkel and Chen (2019).
They utilize the bigrams constituted by words in
preceding and succeeding sentences irrespective
of their positions within text in order to measure

250

ImgEnc + Ent + Attn

1) The lungs are clear without airspace consolidation.

2) Lungs are hyperinflated with no pleural effusion or pneumothorax is seen.

3) Lungs are hyperinflated with no pleural effusion or pneumothorax is seen.

4) The lungs are clear without focal consolidation.

5) No evidence of pleural effusion, pulmonary edema, pneumothorax, or focal airspace consolidation.

Img + IC+ TC

1) The lungs are clear without airspace consolidation.

2) No pleural effusion, pulmonary edema, pneumothorax, or focal consolidation.

3) Lungs are hyperinflated with no pleural effusion or pneumothorax is seen.

4) Lungs are hyperinflated with no pleural effusion or pneumothorax is seen.

5) Degenerative changes of the thoracic spine with calcification of the anterior longitudinal ligament
are present.

Img + IC + TC + O + PT (Proposed)

1) The lungs are clear without focal consolidation.

2) Lungs are hyperinflated with no pleural effusion, pulmonary edema or pneumothorax is seen.

3) Interstitial prominence is chronic.

4) The cardiac and mediastinal silhouettes are stable.

5) Degenerative changes of the thoracic spine with calcification of the anterior longitudinal ligament
are present.

Radiologist Report Written by Physicians

1) PA and lateral views of the chest demonstrate the lungs are well expanded, with no evidence of
pleural effusion, pulmonary edema, pneumothorax, or focal airspace consolidation.

2) Mild interstitial prominence is chronic, and unchanged.

3) Previously demonstrated bilateral fat-containing Bochdalek hernias are better assessed on
prior CT of the chest.

4) The heart is mildly enlarged, Otherwise, the cardiomediastinal silhouette is unremarkable.

5) Multilevel degenerative changes are noted throughout the thoracic spine, with calcification.
of the anterior longitudinal ligament

Table 3: Text generated from different experimental setups. Capital letters and dots are manually added for ease
of reading. Red text: redundancy; blue text: named entities; green text: content that cannot be inferred from the
given medical images in the dataset.

the accuracy of ordering. Accuracy depends on the overlap of such bigrams in generated and ref-

251

erence texts, measured using Precision, Recall and
F- Measure. The results of content ordering are
shown on the right side of Table 1. It is evident
that adding explicit means for topical continuity
(TC) and Redundancy reduction (O) increased the
quality of content ordering at each phase.

4.4 Human Evaluation

We resort to human evaluation for rating the factual
accuracy of radiology reports with respect to the
reference report in hand. Four human evaluators
were asked to rate the reports generated by all set-
tings in Table 2 for a set of 100 test records that
were randomly chosen. Reports were presented
to the evaluators in a random order to minimize
potential bias. The rating of a sentence is the sum
of individual ratings of all the sentences in a re-
port. Sentences describing an abnormal condition
is weighed more than a sentence explaining a nor-
mal condition as they are clinically more relevant.
A non-redundant sentence explaining an accurate
normal condition is given a rating of 1.5 while that
explaining an abnormal condition is given a rating
of 3. A factually incorrect or redundant sentence
receives a score of 0. The mean and standard de-
viation for each experimental setting are shown
in the rightmost column of Table 1. The Pearson
Coefficient is 0.67, suggesting that the agreement
among the human evaluators are reasonably con-
sistent (Benesty et al., 2009). The settings with
content selection and continuity gates and diverse
state computation achieved a clear advantage over
the other settings implying it is effective to generate
specific content for each sentence while explicitly
eliminating redundancy in our proposed approach.

4.5 Qualitative Comparisons

Examples of radiology reports generated by differ-
ent settings for the same set of images are shown
in Table 3 to give readers more qualitative context
of the generation results. Settings which used the
gated mechanism for sentence content creation and
orthogonal state computation better emulate human
written reports in terms of informativeness and con-
tent ordering. There is an adequate number of
domain entities in the generated report. which are
found to be clinically relevant when compared with
the corresponding human written report. There are
portions of text in the human written report which
are subjective to the situation and are irrelevant in
the objective scheme of text generation.

5 Conclusion

We presented a technical approach on radiology
report generation which ensures global text proper-
ties such as informativeness, topical continuity for
coherence while reducing redundant content. Both
objective metrics and human evaluations showed
significant performance over competitive baselines.

6 Acknowledgements

The authors would like to thank the insightful dis-
cussions with I. Ho Mien, Z. Liu, P. Krishnaswamy,
M. Nguyen, R. Puduppully, B. Unnikrishnan, and
Y. Zhang. This research was supported by grant
funding from A*STAR, Singapore (CR-2020-001,
SSF A1818g0044, IAF H19/01/a0/023).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Jacob Benesty, Jingdong Chen, Yiteng Huang, and Is-
rael Cohen. 2009. Pearson correlation coefficient.
In Noise reduction in speech processing, pages 1–4.
Springer.

Bruce G Buchanan, Johanna D Moore, Diana E
Forsythe, Giuseppe Carenini, Stellan Ohlsson, and
Gordon Banks. 1995. An intelligent interactive sys-
tem for delivering individualized information to pa-
tients. Artificial intelligence in medicine, 7(2):117–
154.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 484–494.

Kyunghyun Cho, B van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. In Eighth Workshop on Syntax, Seman-
tics and Structure in Statistical Translation (SSST-8),
2014.

Sumit Chopra, Michael Auli, and Alexander M Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 93–98.

Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh K
Srivastava, Li Deng, Piotr Dollár, Jianfeng Gao, Xi-
aodong He, Margaret Mitchell, John C Platt, et al.
2015. From captions to visual concepts and back.

252

In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1473–1482.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Baoyu Jing, Pengtao Xie, and Eric Xing. 2017. On
the automatic generation of medical imaging reports.
arXiv preprint arXiv:1711.08195.

Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz,
Nathaniel R Greenbaum, Matthew P Lungren, Chih-
ying Deng, Roger G Mark, and Steven Horng.
2019. Mimic-cxr, a de-identified publicly available
database of chest radiographs with free-text reports.
Scientific Data, 6.

Philip Kinghorn, Li Zhang, and Ling Shao. 2018. A
region-based image caption generator with refined
descriptions. Neurocomputing, 272:416–424.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019.
Text generation from knowledge graphs with graph
transformers. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2284–2293.

Jonathan Krause, Justin Johnson, Ranjay Krishna, and
Li Fei-Fei. 2017. A hierarchical approach for gener-
ating descriptive image paragraphs. In Proceedings
of the IEEE conference on computer vision and pat-
tern recognition, pages 317–325.

Litton J Kurisinkel and Nancy Chen. 2019. Set
to ordered text: Generating discharge instructions
from medical billing codes. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6166–6176.

Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan,
and Eric P Xing. 2017. Recurrent topic-transition
gan for visual paragraph generation. In Proceedings
of the IEEE International Conference on Computer
Vision, pages 3362–3371.

Chiung-Ju Liu and Susan M Rawl. 2012. Effects
of text cohesion on comprehension and retention
of colorectal cancer screening information: A pre-
liminary study. Journal of health communication,
17(sup3):222–240.

Haochen Liu, Zhiwei Wang, Tyler Derr, and Jiliang
Tang. 2020. Chat as expected: Learning to ma-
nipulate black-box neural dialogue models. arXiv
preprint arXiv:2005.13170.

Zhengyuan Liu, Hazel Lim, Nur Farah Ain Suhaimi,
Shao Chuen Tong, Sharon Ong, Angela Ng, Shel-
don Lee, Michael R Macdonald, Savitha Ramasamy,
Pavitra Krishnaswamy, et al. 2019. Fast prototyping
a dialogue comprehension system for nurse-patient
conversations on symptom monitoring. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2
(Industry Papers), pages 24–31.

Fenglong Ma, Jing Gao, Qiuling Suo, Quanzeng You,
Jing Zhou, and Aidong Zhang. 2018. Risk predic-
tion on electronic health records with prior medi-
cal knowledge. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1910–1919. ACM.

Milad Moradi and Nasser Ghadiri. 2018. Different ap-
proaches for identifying important concepts in prob-
abilistic biomedical text summarization. Artificial
intelligence in medicine, 84:101–116.

James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng
Sun, and Jacob Eisenstein. 2018. Explainable pre-
diction of medical codes from clinical text. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 1101–1111.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In Thirty-First AAAI Conference on Artificial
Intelligence.

Preksha Nema, Mitesh Khapra, Anirban Laha, and
Balaraman Ravindran. 2017. Diversity driven atten-
tion model for query-based abstractive summariza-
tion. arXiv preprint arXiv:1704.08300.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304.

Steffen Pauws, Albert Gatt, Emiel Krahmer, and Ehud
Reiter. 2019. Making effective use of healthcare
data using data-to-text technology. In Data Science
for Healthcare, pages 119–145. Springer.

Elyne Scheurwegs, Boris Cule, Kim Luyckx, Léon
Luyten, and Walter Daelemans. 2017. Selecting rel-
evant features from the electronic health record for
clinical code prediction. Journal of biomedical in-
formatics, 74:92–103.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083.

253

Catherine Arnott Smith, Scott Hetzel, Prudence Dal-
rymple, and Alla Keselman. 2011. Beyond read-
ability: investigating coherence of clinical text for
consumers. Journal of Medical Internet Research,
13(4):e104.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 3156–3164.

Yanshan Wang, Liwei Wang, Majid Rastegar-Mojarad,
Sungrim Moon, Feichen Shen, Naveed Afzal, Sijia
Liu, Yuqun Zeng, Saeed Mehrabi, Sunghwan Sohn,
et al. 2018. Clinical information extraction appli-
cations: a literature review. Journal of biomedical
informatics, 77:34–49.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2018. Learning neural templates for text generation.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3174–3187.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual atten-
tion. In International conference on machine learn-
ing, pages 2048–2057.

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang,
and Jiebo Luo. 2016. Image captioning with seman-
tic attention. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
4651–4659.

Jianbo Yuan, Haofu Liao, Rui Luo, and Jiebo Luo.
2019. Automatic radiology report generation based
on multi-view image fusion and medical concept en-
richment. In International Conference on Medical
Image Computing and Computer-Assisted Interven-
tion, pages 721–729. Springer.

Danchen Zhang, Daqing He, Sanqiang Zhao, and Lei
Li. 2017. Enhancing automatic icd-9-cm code as-
signment for medical texts with pubmed. In BioNLP
2017, pages 263–271.

254

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 255–262
June 6–11, 2021. ©2021 Association for Computational Linguistics

An Empirical Study of Generating Texts for Search Engine Advertising

Hidetaka Kamigaito∗ 1, Zhang Peinan∗ 2, Hiroya Takamura3 and Manabu Okumura1

1Tokyo Institute of Technology, 2CyberAgent, Inc.
3National Institute of Advanced Industrial Science and Technology (AIST)
kamigaito@lr.pi.titech.ac.jp, zhang_peinan@cyberagent.co.jp

takamura.hiroya@aist.go.jp, oku@lr.pi.titech.ac.jp

Abstract

Although there are many studies on neural lan-
guage generation (NLG), few trials are put into
practice, particularly in the advertising domain.
Generating ads with NLG models can help
copywriters in their creation. However, few
studies have adequately evaluated the effect of
generated ads with actual serving because this
requires a large amount of training data and
a particular environment. In this study, we
demonstrate a practical use case of generating
ad-text with an NLG model. Particularly, we
show how to improve the ads’ impact, deploy
models to a product, and evaluate the gener-
ated ads.

1 Introduction

Search engine advertising (SEA) displays ads rel-
evant to the queries that users have searched on
search engines as a part of the search results. On
the ad creation side, ad copywriters develop key-
words and ad-texts that are likely to be searched
by users, and ad-texts are attractive to users based
on the keywords and landing page (LP) contents.
Advertisers or advertising agencies then submit
these keywords and ad-texts to the ad delivery ser-
vice. After submission, if the user’s search queries
and the submitted keywords match, the service se-
lects an ad-text from the submissions through an
auction and displays it to the user. SEA plays an
important role in the advertising market because
it can mutually satisfy users’ and advertisers’ re-
spective demands. Advertising agencies have many
copywriters on staff; however, manual creation will
eventually reach its limit with the ever-increasing
content. Therefore, auto-generating ads are ex-
pected to be a great support for ad creation.

Fill templates with words and phrases extracted
from web search results or LPs are commonly used
in ad-text generation (Bartz et al. (2008), Fujita
et al. (2010), Fujita et al. (2011), Thomaidou et al.

∗Equal contribution.

Input LP Content: Introducing popular insurance services in a
ranking format! You can compare insurance services in the
largest domestic comparison site of insurance A operated
by B in various forms, such as by the order of request for
information and the order of application by type of insurance.
Keyword: [insurance, comparison]
Query: [comparison of insurance services]

Output Title: Which insurance is the best deal? Latest rankings.
Description: This is the largest insurance comparison site.
It is recommended for you from the top of the ranking order.

Table 1: Example of an input and its ad-text.

(2013)). These approaches create limited ad-text
because they strongly rely on a pre-built list of tem-
plates or an LP containing ad-related texts. Hughes
et al. (2019) proposed a method to incorporate a re-
inforcement learning (RL) framework into an end-
to-end sequence-to-sequence (Seq2Seq) model for
generating effective search engine ad-text consid-
ering feedback regarding ad effectiveness from ad
delivery services.

However, unlike typical natural language gen-
eration tasks, ad-texts are determined from input
and characteristics such as previous ad delivery
performance, the contexts in overall ads, and the
relevance between the search queries and the re-
sults. Diversity is also an importance factor in this
task because readers can be bored if a model gener-
ates ad-text that has already been used. Therefore,
to make ad-texts more attractive, the model must
generate ad-texts that were not used previously.
In addition, the model must consider the ad-text’s
length because ads are presented in a limited space,
which imposes a limitation on the length in prac-
tical usage. The addition of important keywords
in the ad-text is also necessary to enhance user en-
gagement because the search result page highlights
the searched keyword in the user query and the ad-
text. Furthermore, few ad-text generation models
are used in real-world applications notwithstanding
the commercial domain of advertising. Therefore,
few studies have evaluated all end-to-end processes
from generation to actual delivery.

Considering these requirements, we propose a
255

method for generating ad-text by utilizing RL with
rewards. This approach enables using ad-texts not
included in the original training dataset through
sampling from the training model. Therefore, we
can expect improvements in diversity for gener-
ated ad-texts. We compared models specifically
constructed for ad-text generation to determine the
important factors for this task. We investigated
our models in a real-world application, and per-
formed an ad-delivery evaluation. The evaluation
results showed that the proposed method improved
the both human-rated attractiveness and relevance
scores and the ad-delivery results compared to other
approaches, while also maintaining diversity of the
generated ad-texts.

Our contributions are as follows.
• We present a case study of ad-text generation as

a real-world application. This study confirmed
that the automatic generation of ad-texts using
the RL-based encoder-decoder model is effective
in actual advertisement creation.

• We propose a method for generating ad-text that
utilizes RL with rewards to improve advertising
performance. We performed automated evalua-
tions on different types of metrics, as well as hu-
man evaluations involving crowdsourcing work-
ers and professional copywriters. The results
showed the usefulness of the methods.

• We describe how to incorporate our model into
an ad-delivery service and performed an online
evaluation to compare the performance of ad-
texts generated by the model with traditional ads
written by a human.

2 Generating Ad-text with RL

As shown in Table 1, Seq2Seq generates ad-texts
from the given keywords and contents of LPs. Note
that we concatenated these elements as sequences
for each side by a separator symbol <SEP>. Fig-
ure 1 presents an overview of the proposed ad-
text generation method. We use a model proposed
by Paulus et al. (2018) as our Seq2Seq. In our
method, Seq2Seq is trained using RL to capture
useful features for generating effective ad-texts. In
Sections 2.1 and 2.2, we describe each part of the
proposed ad-text generation method.

2.1 RL for Seq2seq
In Seq2Seq, for the input sequence x = x1 · · ·xn,
the ad-text y = y1 · · · ym is generated by maximiz-
ing the output probability, which is calculated by

the following formula:

y = arg max
y

m∏

t=1

P (yt|x, yt−1 · · · y1). (1)

For training Seq2Seq in consideration of the
characteristics of an effective ad, we use RL in
training. Because considering all possible outputs
in the decoder is intractable, we use an approach
based on a policy gradient method called self-
critical sequence training (SCST) (Rennie et al.,
2017), which can train models on sampled output
sequences. In SCST, using ys = ys1 · · · yst (a se-
quence sampled from Seq2Seq) and ŷ = ŷ1 · · · ŷt
(a sequence obtained by greedy decoding), the RL
loss Lrl is calculated as follows:

Lrl = (r(ŷ)− r(ys))
m∑

t=1

logP (yst |yst−1 · · · ys1,x),

(2)
where r(ŷ) and r(ys) are the rewards of ŷ and ys,
respectively. It is difficult to optimize the model us-
ing only RL owing to its instability. We must, there-
fore, use maximum likelihood estimation (MLE),
which maximizes the probability of the reference
sequence y?t · · · y?1 as follows:

Lmle = −
m∑

t=1

logP (y?t |y?t−1 · · · y?1,x). (3)

Considering Lrl and Lmle, our final loss function
Lmix is defined as follows:

Lmixed = γLrl + (1− γ)Lmle, (4)

where γ is a hyperparameter weighting the impor-
tance of Lrl.

2.2 Rewards

To explicitly capture the characteristics of effective
ad-text, we use the following three rewards: flu-
ency, relevance, and ad quality. These rewards are
summed and incorporated in the loss function of
Eq.(2) to enhance the effectiveness of the ad. Thus,
the reward for the generated text y is calculated as
follows:

r(y) = rF (y) + rR(x,y) + rQ(x,y), (5)

where rF (y) is a reward for fluency, rR(y) is a
reward for relevance, and rQ(y) is a reward for ad
quality. In Sections 2.2.1 through 2.2.3, we discuss
these rewards in detail.

256

If you are �nding the most popular insurance ...

Decoder Output
by Sampling ys

Decoder Output
by MLE y*Input x

BiLSTM
Layer

Attention
Layer

Context
Vector c

Calculating
Rewards r

Advertisement Quality
score calculated with GBRT

Fluency score calculated with
LSTM Language Model

Relevance score calculated with Keyword Matching

Lmle : Loss of Maximum
Likelihood Estimation

Lrl : Loss of
Reinforcement Learning

Model Parameters

Reference y

Which insurance is the best ...

Checkout the most popular insurance ...

Document Tag Keywords Contents of a web-page

r = rF + rR + rQ

...

...

...

Figure 1: Overview of proposed ad-text generation method

2.2.1 Fluency

Fluency is an essential factor in generating natural
language texts. In addition, the length limitation of
the text must be considered, as space for advertising
is limited. If the ad-text is truncated owing to space
limitations, its fluency is significantly degraded. To
address these problems, our fluency reward consists
of two types of scores as follows:

rF = sLM (y) + sLen(y), (6)

where sLM (y) is a grammatical score and sLen(y)
scores the fidelity of |y| to the given desired length.
We use the function described in Eq. (10) of Zhang
and Lapata (2017) as the first score sLM (y).

The second score, sLen(y), measures the appro-
priateness of the length of the generated text. The
length of the generated text must not exceed the
length limit. However, to maintain informativeness,
it should not be significantly shorter than the limit.
We incorporate these factors into sLen. Let ytitle
be the title part of y, ydesc be the description part of
y, Ctitle be the length limit of the title part, Cdesc
be the length limit of the description part, and sl be
a score function for each part of the generated text.
The score sLen is calculated as follows:

sLen(y) =
sl(ytitle, Ctitle) + sl(ydesc, Cdesc)

2
, (7)

where sl(ȳ, C) is a function that returns exp(|ȳ| −
C) when |ȳ| ≤ C, whereas it returns 0 when |ȳ| >
C.

2.2.2 Relevance

Effective ad-text is generally consistent with what
it advertises. Therefore, we consider the relevance
between the input text and output ad-text as a re-
ward. In ad-text generation, the input text includes
important keywords that should be emphasized in
the generated ad-text. For the generated ad-text to
be relevant to the input, the ad-text should contain
keywords from the input text as important words1.
Therefore, we focus on the use of important key-
words in the generated ad-text for building a reward
to measure relevance. In addition to the coverage of
keywords, the positions of keywords in the gener-
ated ad-text are also important, because keywords
should appear at the beginning of ad-text. Con-
sidering these factors, we calculate rR(x,y), the
reward of the relevance for input x and the gener-
ated ad-text y as follows:

rR(x,y) = scov(x,y) + spos(x,y), (8)

where scov(x,y) scores the coverage of keywords
in x and spos(x,y) scores the position of keywords
in y. The first score scov(x,y) calculates the pro-
portion of keywords in x that are covered by y.
The second score spos(x,y) calculates the average
position of keywords in y. To prevent this reward
from reducing the coverage of keywords, we im-
pose the length of the generated ad-text as a score
of a keyword not included in the ad-text. Then,

1Actually, Google Ads recommends to include at least
one of advertisement keywords as described in the sup-
port page: https://support.google.com/google-ads/
answer/1704392?hl=en

257

spos(x,y) is calculated as follows:

spos(x,y) = exp

(
− 1

|K|
∑

k∈K
sp(k,y)

)
, (9)

where K is a set of keywords included in x and
sp(k,y) is a function that returns a character-based
position of k in y if k ∈ y, whereas it returns |y|
if k 6∈ y.

2.2.3 Ad Quality
Ad quality score (QS) is an important factor indi-
cating ad-text quality based on the delivery per-
formance and keyword relevance. Because QS is
reported by the ad delivery service as the effec-
tiveness of the delivered ad-text, we cannot use it
directly to evaluate the generated ad-text. Thus, we
predict the QS from x and y in accordance with
previous research (Hughes et al., 2019). We treat
the predicted QS as rQ(x,y), the reward of the
ad-text’s quality. To train a classifier to predict QS
from the given x and y, we prepare an ad dataset
from our ad-text databases. This dataset consists
of a title, description, and score that represent the
quality of each ad. The QS ranges from 1 to 10,
where a lower score corresponds to lower ad quality
and a higher score indicates higher ad quality.

We develop a simple regression model to pre-
dict the QS from the title and description. In the
model, the title and description are joined and en-
coded into embeddings by fastText (Bojanowski
et al., 2017) and max-pooling of simple word em-
bedding (SWEM) (Shen et al., 2018). After the en-
coding, we use the gradient boosting regression tree
(GBRT) (Ke et al., 2017) to predict the QS. We de-
veloped a simple model because that the predicted
quality score is used as a reward in RL, which re-
quires a large computational time; therefore, efforts
should be made to shorten it.

3 Experimental Settings

3.1 Dataset

We prepared a dataset that contained pairs consist-
ing of an input and ad-text in Japanese for training
and evaluating our models. This dataset consisted
of eight clients (one real estate company, one health
food company, one media service company, two
cosmetic companies, one job recruiting company,
and three financial companies). We carefully split
the dataset into 713,928, 8,000, and 8,000 pairs for
training, development, and the test set, respectively.

In this dataset, we used the meta-description as
the content of the LP. In addition to the ad-texts,
we prepared Japanese Wikipedia articles2 to pre-
train the language model. The fine-tuning of LM
was performed on the ad-text dataset. All texts in
this dataset were tokenized by MeCab3 with the
Neologd dictionary (Sato et al., 2017).

3.2 Models

The baselines are as follows:
Separated (Sep): This baseline trains the models
for different clients separately. Therefore, it is nec-
essary to build as many models as the number of
clients, which can be significantly high. In addi-
tion, the diversity of the ad-text generated from
this model was considerably low. Such unpractical
features are not suitable for automatic ad-text gen-
eration; however, this model can generate ad-text
that is highly similar to the given dataset. There-
fore, we treated this model as a type of upper limit
for generating ad-texts.
Mixed without Domain Tags (Mix w/o tag): This
model was trained on the entire dataset with the
MLE loss of Eq. (3).
Mixed (Mix): Similar to Mix w/o tag, this model
was trained on the entire dataset with the MLE
loss of Eq. (3). However, in this model, we in-
cluded additional labels to identify the domain and
the client of the input in both the training and the
prediction steps. Particularly, we added the tags
<domain_id> and <client_id> to the beginning
of the input.

The methods employed are as follows:
Mixed with Rewards (Mix+[Rewards]): This
model was trained on the mixed loss function,
which is a combination of the RL loss and MLE
loss, as defined in Eq. (4). The data format used
in this model is similar to that in the Mixed model.
We combined several rewards: reward of the flu-
ency rF in Eq. (6) (Flu), the reward of the rele-
vance rR in Eq. (8) (Rel), and reward of the ad
quality rQ discussed in Section 2.2.3 (QS). The
combinations of Flu, Rel, and QS are represented
by the + symbol. It should be noted that Mix+QS
is the model proposed by Hughes et al. (2019); thus,
it is categorized as a baseline.

Table 2 presents the parameter settings. We
adapted to the settings used in previous research
(Paulus et al., 2018) and choose λ as 0.98 for the re-

2https://dumps.wikimedia.org/jawiki/
3https://github.com/taku910/mecab

258

Figure 2: Screenshot of the ad-text generation tool
displaying the current serving ads, generated ads, and
search results corresponding to the keyword “insurance
comparison.” The scores in the figure are examples for
clarity and are not equivalent to the scores used in the
actual tool.

Seq2Seq

Dim 200

LM

Dim 200
Vocab cut word its freq. <2 Vocab 50,000
Optimizer Adam Optimizer SGD
Learning rate 0.0001 Learning rate (LR) 20
LR decay - LR decay 0.25
Gradient normalization 0.5 Gradient normalization 0.25
Dropout 0.3 Dropout 0.2
Batch size 50 Batch size 20
Epoch 10 Epoch (pretrain) 40
γ 0.98 Epoch (fine-tuning) 10
Ctitle 60 Max length 300
Cdesc 180

Table 2: Parameter settings.

inforcement learning. If the method does not have
any reward, we set λ as 0.0.

3.3 Automatic Evaluation
We used BLEU, F1 scores of Rouge-1 (R-1),
Rouge-2 (R-2), Rouge-L (R-L), and the follow-
ing metrics for our automatic evaluation:
Estimated Quality Score (EQ): To measure ad
quality for the generated ad-text, we used rQ(x, y)
as discussed in Section 2.2.3.
Language Model Score (LM): To evaluate how
a generated ad-text is grammatical, we used the
language model for calculating sLM .
Coverage of Keywords (Cov): To evaluate
whether the keywords were included in the gener-
ated ad-text, we used the coverage score scov(x,y)
defined in Section 2.2.2.
Position of Keywords (Pos): To investigate if im-
portant keywords appeared at the beginning of
the generated ad-text, we used the position score
sp(x,y) used in Eq. (9).
Format Correctness (FC): This metric measures
the number of generated ad-texts that followed the
appropriate format. We verified whether the gen-
erated ad-texts contained the title and description
parts, and that the lengths of these parts did not
exceed the length limit. The percentage of ad-texts
with the appropriate format was reported.

Diversity (Div): This metric evaluates the diver-
sity of the generated ad-text by calculating the per-
centage of generated ad-texts excluded from the
training dataset for each model.

3.4 Human Evaluation
We hired 10 annotators through Lancers4, a
crowdsourcing service in Japan, and 3 profes-
sional copywriters to evaluate the quality of ad-
texts that were generated by the seven models:
ad-text written by a human (Reference), Sep,
Mix, Mix+QS, Mix+Flu+QS, Mix+Flu+Rel, and
Mix+Flu+QS+Rel. It should be noted that, for this
human evaluation, we omitted some models that
performed poorly in the automatic evaluation.

We generated ad-texts from randomly sampled
240 ads in the test set and performed two tasks to
evaluate three criteria: (i) fluency, (ii) attractive-
ness, and (iii) relevance. In the first task, anno-
tators were instructed to evaluate the fluency of
a displayed single ad-text.In the second task, the
annotators were instructed to select one of the two
ad-texts displayed side-by-side from the perspec-
tive of the ad-texts’ attractiveness and relevance to
the keywords5. We generated 11,760 questions in
total, including 1,680 questions for the first task
and 10,080 questions for the second task.
In the first task, fluency scores were obtained by
calculating the percentage of annotators who an-
swered “yes” to all questions. All answers were
represented as a relation of each pair such as “win,”
“lose,” and “tie” in the second task. We then scored
each method’s performance through these rela-
tion pairs using TrueSkill™(Herbrich et al., 2007),
a widely used rating system that incorporates a
Bayesian inference algorithm6. This algorithm
treats the performance of each method as a stan-
dard distribution, where the mean µ represents the
performance, and variance σ represents confidence.
These are updated by repeating the pairwise com-
parison through the annotators’ evaluations. We
used the µ value of each method as the final result.

3.5 Deployment and Ad-delivery Evaluation
We deployed the baselines and our models to an
ad-text generation tool, as shown in Figure 2. In

4https://www.lancers.jp
5There was also the option “same,” but it was explicitly

stated in the tutorial that this was deprecated.
6Following the official settings, the parameters were initial-

ized as follows: µ = 25.0, σ = 8.33. The draw probability
was set to the ratio of the number of “same” options selected
out of all answers.

259

Model R-1 R-2 R-L BLEU EQ LM Cov Pos FC Div

Sep 36.4 20.2 36.4 44.2 64.1 10.6 55.7 11.0 99.2 19.7

Mix w/o tag 36.8 17.9 36.8 43.7 64.0 10.4 51.6 10.4 99.3 36.0
Mix 35.6 18.5 35.6 44.7 64.3 12.4 55.6 10.6 99.5 40.6
Mix+QS 35.8 18.0 35.8 44.2 64.6 13.4 53.1 10.2 99.6 42.0

Mix+Flu 36.8 17.9 36.8 44.9 64.2 12.1 54.4 10.8 99.6 35.3
Mix+Rel 34.6 17.3 34.6 42.9 64.6 12.2 52.8 11.3 99.3 45.1
Mix+Flu+QS 36.3 16.9 36.3 45.4 64.5 12.9 52.2 10.8 99.3 37.4
Mix+Flu+Rel 37.5 20.5 37.5 44.4 64.9 13.3 53.2 11.9 99.4 40.8
Mix+Flu+Rel+QS 35.3 18.4 35.2 43.1 64.9 13.1 55.2 11.8 99.4 42.7

Table 3: Results of automatic evaluation.

Copywriter Crowdsourcing

Model (1) Flu. (2) Att. (3) Rel. (1) Flu. (2) Att. (3) Rel.

Reference 87.5 25.5 24.4 75.6 26.8 29.1
Sep 82.1 25.2 24.0 65.7 24.6 28.4

Mix 83.3 25.1 23.7 64.5 23.8 26.1
Mix+QS 80.8 25.0 23.7 64.0 23.2 26.5

Mix+Flu+QS 81.7 25.3 22.8 64.3 24.4 26.6
Mix+Flu+Rel 77.5 24.2 23.7 60.9 24.8 26.2
Mix+Flu+QS+Rel 81.2 23.9 24.3 62.7 25.4 26.9

Table 4: Results of human evaluation. Flu., Att., and Rel. refer to Fluency, Attractiveness, and Relevance, respec-
tively.

addition to the generated ad-texts, the tool also dis-
plays currently serving ads, other ads in the search
result, and the non-ad search results on the same
screen. Besides, we predict the quality scores for
all items using the method described in Section
2.2.3. This tool aids copywriters to edit the gener-
ated ad-text effectively and obtain a comprehensive
understanding of market trends.

We also performed an ad-delivery evaluation us-
ing the deployed tool. We gathered the ad-texts
generated by the different models7, including those
written by copywriters, into the same ad-group per
product and served each ad-group for one to two
weeks. In total, we served 104 ads, 11 ad-groups,
and 1,568 keywords for three weeks. In the re-
sult section, we show the number of impressions,
click-through rates (CTRs), and costs averaged by
ad-groups from the serving result. The Impression
is the number of times an ad is displayed, the CTR
is the percentage of clicks that out of impressions,
and the Cost is the budget spent; the higher, the
better for all metrics.

7Mix+Flu+QS was not included because it had a high
percentage of output overlap with the other models, and we
filtered out ad-texts that could cause legal problems.

4 Results and Discussions

4.1 Automatic Evaluation

Table 3 presents the results of the automatic evalu-
ation. Mix achieved the best diversity among the
three models Sep, Mix, and Mix w/o tag. The di-
versity of Mix w/o tag was also better than that
of Sep. This result indicates that a dataset cov-
ering many domains is useful for improving di-
versity. Furthermore, a comparison between Mix
and Mix w/o tag illustrated that discriminating
domains and clients is useful in terms of diver-
sity. Mix+Flu+Rel improved R-1, R-2, and R-L
by 0.7, 2.0, and 0.7 points, respectively, whereas
Mix+Flu+QS achieved the best BLEU score. Be-
cause Rouge uses the F1 score and BLEU uses the
precision of overlapped words between references
and system outputs, we conclude that Rel gener-
ated ad-texts with words that were not included in
the references. This is consistent with the improve-
ments of Mix+Rel and Mix+Flu+Rel in Div. In
EQ, Rel improved EQ similar to QS. This result
is consistent with our expectation that Rel is an
important factor for the effectiveness of ad-texts.
In both LM and Pos, QS achieved the best scores.
This result indicates that LM and Pos are corre-
lated with EQ. In Cov, only Mix+Flu+Rel+QS

260

achieved a score comparable to that of Mix. The
results for each metric suggest the importance of a
combination of rewards. However, the importance
of each metric in ad-text generation is uncertain.
To clarify this concept, we performed additional
human evaluations.

4.2 Human Evaluation

Table 4 presents the results of these human evalu-
ations. Our methods achieved better scores than
all other methods in terms of the attractiveness
and relevance criteria by both the copywriter’s
and crowdsourcing’s evaluations. Particularly,
Mix+Flu+QS+Rel improved attractiveness and
relevance scores by 1.6 and 0.4 points, respectively.
Considering the attractiveness evaluation results,
there are some differences between the annotations
by copywriters and crowdsourcing workers. This
is due to the stance of each annotator, where copy-
writers evaluate ad-texts as editable sources. By
contrast, crowdsourcing workers treat ad-texts as
a part of completed ads. In other words, copy-
writers rate an ad-text highly if they regard that
they can fix it to a good one, whereas crowdsourc-
ing workers evaluate ad-texts in their current form.
This trend also appears in the fluency task, as pre-
sented in Table 4; overall, the score of the fluency
task in the copywriter section is higher than that in
the crowdsourcing section. Mix produced the best
score for the fluency task; however, the proposed
Mix+Flu+QS had a highly competitive result with
a difference of just 0.2 points.

4.3 Ad-Delivery Evaluation

Table 5 presents the result of the ad-delivery eval-
uation. Mix+Flu+Rel achieved the best score
in terms of impression and cost, whereas Sep
achieved the best score in CTR. Because Sep and
Reference have similar ad-texts, their CTRs are
almost identical. These results indicate that con-
sidering the relevance between ad-texts and user
queries is important to enhance user recognition
for the ad-texts.

Based on these results, we used linear regression
to investigate if the evaluation metrics are related to
each ad-delivery evaluation metric. Figure 3 shows
the results. With regard to impression and cost,
considering the coverage of keywords in generated
ad-texts is important. In CTR, it is necessary to

7CW and CS denote the copywriter and the crowdsourcing
results, respectively.

Model Impression CTR (%) Cost

Reference 1.33 7.82 23.79
Sep 3.96 7.98 47.43

Mix 4.71 5.18 78.80
Mix+QS 2.77 7.01 51.89

Mix+Flu+Rel 5.06 4.10 86.01
Mix+Flu+QS+Rel 1.75 5.53 61.48

Table 5: Results of ad-delivery evaluation.

R-
1

R-
2

R-
L

BL
EU

EQ LM Co
v

Po
s

FC Di
v

(1
)F

lu
.

(2
)A

tt.
(3

)R
el

.
(4

)F
lu

.
(5

)A
tt.

(6
)R

el
.

Imp.
CTR
Cost

0.16 0.72 0.19 0.15 0.04 -0.38 1.0 0.54 0.38 0.12 0.33 -0.16 -0.08 -0.55 0.58 -0.37

-0.3 -1.19 -0.35 -0.23 -0.09 0.55 -1.51 -0.89 -0.61 -0.48 -0.35 0.28 0.14 1.0 -0.95 0.62

0.15 0.74 0.18 0.13 0.06 -0.37 1.0 0.56 0.46 0.26 0.32 -0.16 -0.1 -0.58 0.6 -0.4

Figure 3: The weights for each metric. All weights are
scaled by maximum values for each row.

focus on the fluency rated by crowdsourcing work-
ers. The attractiveness of crowdsourcing workers
is counterproductive. This is because people avoid
clicking on an ad-text that looks like an ad-text.
Based on the result, we conclude that the keyword-
related automatic evaluation metric and evaluations
via crowdsourcing are important for generating ef-
fective ad-texts.

5 Conclusion

In this paper, we proposed several rewards based
on RL, which can consider the various character-
istics of ad-texts. In experiments, ad-texts gener-
ated from Seq2Seq incorporated with these rewards
achieved better automatic, human, and ad-delivery
evaluation results than the basic Seq2Seq methods.
Our analysis showed that considering results from
the keyword-related automatic evaluation metric
and the fluency by crowdsourcing workers is im-
portant for generating effective ad-texts. As further
work, we plan to consider diversity as a reward to
generate more diverse ad-texts.

Acknowledgement

The ad-delivery results used in this paper were
served and aggregated by the AI Tech Studio of
CyberAgent, Inc. We would like to take this oppor-
tunity to thank them.

261

References

Kevin Bartz, Cory Barr, and Adil Aijaz. 2008. Natural
language generation for sponsored-search advertise-
ments. In Proceedings of the 9th ACM Conference
on Electronic Commerce, EC ’08, page 1–9, New
York, NY, USA. Association for Computing Machin-
ery.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Atsushi Fujita, Katsuhiro Ikushima, and Satoshi Sato.
2011. Automatic generation of listing ads and as-
sessment of their performance on attracting cus-
tomers: a case study on restaurant domain. Journal
of Information Processing, 56(6):2031–2044.

Atsushi Fujita, Katsuhiro Ikushima, Satoshi Sato, Ryo
Kamite, Ko Ishiyama, and Osamu Tamachi. 2010.
Automatic generation of listing ads by reusing pro-
motional texts. In Proceedings of the 12th In-
ternational Conference on Electronic Commerce:
Roadmap for the Future of Electronic Business,
ICEC ’10, page 179–188, New York, NY, USA. As-
sociation for Computing Machinery.

Ralf Herbrich, Tom Minka, and Thore Graepel. 2007.
Trueskill™ : A bayesian skill rating system. In
B. Schölkopf, J. C. Platt, and T. Hoffman, editors,
Advances in Neural Information Processing Systems
19, pages 569–576. MIT Press.

J. Weston Hughes, Keng-hao Chang, and Ruofei Zhang.
2019. Generating better search engine text advertise-
ments with deep reinforcement learning. In Proceed-
ings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
KDD ’19, page 2269–2277, New York, NY, USA.
Association for Computing Machinery.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. 2017. Lightgbm: A highly efficient gradient
boosting decision tree. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 30, pages 3146–3154. Cur-
ran Associates, Inc.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In International Conference on Learn-
ing Representations.

S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and
V. Goel. 2017. Self-critical sequence training for im-
age captioning. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
1179–1195, Los Alamitos, CA, USA. IEEE Com-
puter Society.

Toshinori Sato, Taiichi Hashimoto, and Manabu Oku-
mura. 2017. Implementation of a word segmen-
tation dictionary called mecab-ipadic-neologd and
study on how to use it effectively for information re-
trieval (in japanese). In NLP, pages NLP2017–B6–1.
The Association for Natural Language Processing.

Dinghan Shen, Guoyin Wang, Wenlin Wang, Mar-
tin Renqiang Min, Qinliang Su, Yizhe Zhang, Chun-
yuan Li, Ricardo Henao, and Lawrence Carin.
2018. Baseline needs more love: On simple
word-embedding-based models and associated pool-
ing mechanisms. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 440–
450, Melbourne, Australia. Association for Compu-
tational Linguistics.

Stamatina Thomaidou, Ismini Lourentzou, Panagiotis
Katsivelis-Perakis, and Michalis Vazirgiannis. 2013.
Automated snippet generation for online advertis-
ing. In Proceedings of the 22nd ACM International
Conference on Information and Knowledge Manage-
ment, CIKM ’13, page 1841–1844, New York, NY,
USA. Association for Computing Machinery.

Xingxing Zhang and Mirella Lapata. 2017. Sentence
simplification with deep reinforcement learning. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
584–594, Copenhagen, Denmark. Association for
Computational Linguistics.

262

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 263–271
June 6–11, 2021. ©2021 Association for Computational Linguistics

1

Ad Headline Generation using Self-Critical Masked Language Model

Yashal Shakti Kanungo Sumit Negi Aruna Rajan
yashalk@amazon.com suminegi@amazon.com rajarna@amazon.com

Abstract

For any E-commerce website it is a nontrivial
problem to build enduring advertisements that
attract shoppers. It is hard to pass the creative
quality bar of the website, especially at a large
scale. We thus propose a programmatic solu-
tion to generate product advertising headlines
using retail content. We propose a state of
the art application of Reinforcement Learning
(RL) Policy gradient methods on Transformer
(Vaswani et al., 2017) based Masked Language
Models (Devlin et al., 2019). Our method cre-
ates the advertising headline by jointly con-
ditioning on multiple products that a seller
wishes to advertise. We demonstrate that our
method outperforms existing Transformer and
LSTM + RL methods in overlap metrics and
quality audits. We also show that our model-
generated headlines outperform human sub-
mitted headlines in terms of both grammar and
creative quality as determined by audits.

Introduction

There are a various types of ads. A set of exam-
ple ads that showcase products selected by sellers
along with headlines that advertise them are shown
in Figure 1. Sellers create multiple ad campaigns
for multiple products, bid in an auction to advertise
and pay for clicks on the ad.

An E-Commerce product catalog may have mil-
lions of products which can be advertised. To ease
the ad headline writing process, humans resort to
programmatically padding keywords, or repasting
the retail catalog content in the advertisement.

Templated creatives such as “Save Now on ..." or
“Buy more (product) of (brand)" save the creative
effort but fail to create any excitement or brand
identity in the minds of shoppers. High quality
headlines are more attractive to shoppers and of-
fer better value proposition. In this paper, we de-
scribe how we built a Natural Language Generation
(NLG) system to generate instantaneous, attractive

and brand identity building headlines for adver-
tisements that intend to promote a wide range of
products offered by a brand.

The content associated with a retail product has
challenging characteristics. Some product titles
have poor structure, grammatical issues, or par-
tial phrases. The product titles also include vary-
ing number of product features such as “Hyper
Tough 18V Cordless Drill, 3/8 inch Chuck, Vari-
able Speed, with 1.2Ah Nickel Cadmium Battery,
Charger, Bit Holder LED Light" along with titles
such as “ZIPIT Grillz Backpack, Camo Grey".

The generated headlines need to capture the in-
formation present in the retail attributes and at the
same time be different and uniquely attractive. Ad-
vertisers select multiple related products that are
advertised as part of a single ad campaign. The ad
campaign headline is then shared across all of these
related products. Thus, the headline also needs to
generalize the shared characteristics of the products
and cannot be specific to a single product within
the campaign.

The key contributions of our work are:

• We use Masked Language Model (MLM) for
the generation of advertisement headlines us-
ing multiple products at the same time. Ex-
tensive test-set metrics, quality and grammar
audits show that the proposed model out-
performs all the baselines and the human-
submitted headlines in terms of quality and
grammar.

• The novel usage of RL for the training of
MLM allows us to directly optimize the MLM
for improved headline quality metrics with-
out changing inference setup or latency. Our
method can also be applied to any other NLG
task such as summarization, translation etc.

• Our model reduces the extensive effort and
time that is required to manually create head-
lines and has low latency.

263

2

Figure 1: Examples of different product ads from multiple websites across the internet. A variety of ad headlines
accompany the products in these ads.

Related Work

Natural Language Understanding (NLU) using Lan-
guage Models (LM) has observed great leaps in
recent years. LMs have evolved from using word
level models (Joulin et al., 2016) to to a variety
of extensions to the Transformer (Vaswani et al.,
2017). The BERT (Devlin et al., 2019) employs
Transformer in a pre-training setting and intro-
duced the MLM training objective.

Ramachandran et al. (2016) first demonstrated
textual generation by using auto-regressive predic-
tion in a seq2seq architecture. Transformer based
auto-regressive methods such as GPT2 (Radford
et al., 2019) and BART (Lewis et al., 2019) which
predict one word at a time have also shown good
results. Zhu et al. (2020) concatenated BERT rep-
resentations with the Encoder and Decoder layers
of another LM to incorporate pre-trained LM. An-
other model (Dong et al., 2019) combines BERT-
based Transformer Encoder with attention masking
from the Transformer decoder. Rothe et al. (2019)
combined pre-trained BERT Encoder with GPT
decoder for NLG.

Ranzato et al. (2016) framed NLG as an RL prob-
lem and the generation quality as a reward. The
Self-Critical Sequence Training (SCST) approach
(Rennie et al., 2017) replaces the learned baseline
from other approaches (Bahdanau et al., 2017) with
the model’s own inference time algorithm to nor-
malize the rewards.

For advertising, recent works (Xu et al., 2019;
Hughes et al., 2019) have combined LSTM based
pointer network (See et al., 2017) with RL methods
to generate advertisement headlines. While these
methods improve the results, they fail to utilize
extensive pre-training of Transformer based models
and their various well-demonstrated advantages.

Our method extends BERT based generation

(Dong et al., 2019) by using Self-Critical policy
gradient method (Rennie et al., 2017) and jointly
conditioning the generated sentence on multiple
products at the same time. This allows us to use
pre-trained BERT based LMs that can be trained
to optimize various inference time metrics that are
typically non-differentiable such as BLEU, Rouge,
Readability etc.

3 Self-Critical Masked Language Model

3.1 Masked Language Model
The BERT model takes an unlabeled input se-
quence x = (x1, x2, ..., x|x|) and randomly masks
some positions Mx by replacing them with a spe-
cial mask token [MASK], to produce a sequence
like (x1, [MASK], ..., x|x|). All the tokens are em-
bedded and added to special positional embeddings.
It then uses N identical Transformer layers to gen-
erate contextualized representation, with each layer
employing self-attention by taking in the output of
the previous layer. To compute self-attention, the
output of the previous layer is projected into triplets
of vectors named Query, Key and Value (Q, K, V)
of dimensions d. The attention A is then given as:

QKT

A = softmax(√)V (1)
d

After the final Transformer layer the model uses
a feed forward layer followed by a softmax over
the vocabulary to predict the masked tokens. The
MLM loss for the sequence x is then calculated as:

Y
LMLM = − log p(xm|(xm0 ∈ x \ Mx))

m∈Mx

(2)
where (xm0 ∈ x \ Mx) represents all the tokens

in x that are not masked and m ∈ Mx are all the
masked positions.

264

Figure 2: The sub-tokens from the product titles and
headline are embedded and added with other embed-
dings that encode the positional and segment informa-
tion. We also optionally add an embedding that repre-
sents the category of the product. During training, the
masked tokens are predicted using Transformer layers
and the cross-entropy (Eq. 2) loss and Self-Critical (Eq.
9) gradient is used to optimize the model. During infer-
ence, we predict one word at a time (left-to-right) in an
auto-regressive manner using Beam Search.

3.2 Encoding multiple products and common
headline for Proposed MLM

During training, for a given advertising campaign,
hour model takes as input it’s headline x =

h h(x1 , ..., x|xh|) and a set P of one or more prod-
ucts. Each product p is represented by its title

p ppx = (x1, ..., x). The titles and the headline are |xp|
tokenized to sub-word tokens.

To encode using the model that only accepts a
single product, we simply append ‘[EOS]’ ∈ V
to both the title and the headline and concatenate
their tokens. The entire concatenated sequence is
prepended with ‘[SOS]’ ∈ V.

We encode multiple products by concatenating
the tokens from different products using a spe-
cial token ‘[P_SEP]’ ∈ V. We replace a token
‘[UNUSED_0]’ ∈ V that remains unused during
pre-training, with this special token during multi-

product fine-tuning. This makes a distinction be-
tween different titles as well as the source and tar-
get sub-sequences. It also yields individual embed-
dings for each product for other tasks.

hOnly the tokens from the headline x are ran-
domly masked with token ‘[MASK]’ ∈ V. We
discuss results for the model that additionally also
masks the source tokens in section 5.1.

The complete process for an example such that
all products in the ad have two tokens and the head-
line has 4 tokens is illustrated in Figure 2.

We also experimented with adding of category
based embeddings. The category labels for each
product such as “Cell Phones and Accessories"
are tokenized to subword units, encoded using the
same embedding matrix as that of the title tokens,
averaged and added to the title token embeddings.

3.3 Generation using Self-Critical Masked
Language Model

The BERT MLM framework with multi-directional
attention discussed in Section 3.1 cannot be used
for auto-regressive generation directly. This is
because, during training, the masked headline
words may condition on the future words which
are not available during auto-regressive inference.
For MLM auto-regressive generation, we employ
masked attention (Dong et al., 2019) that modifies
the attention from equation 1 as below:

QKT

Amasked = softmax(√ +Φij)V (3)
d

where Φij represents the attention mask between
the positions i and j. The elements are set to 0 if
attention is allowed and −∞ if it is not allowed.
Figure 3 illustrates the attention mask for headline
generation using multiple input products.

The BERT MLM uses log-likelihood (Equation
2) of masked words during training to optimize
the model parameters. The likelihood is predicted
using other ground-truth words during training
and other predicted words during inference. This
causes exposure bias (Ranzato et al., 2016; Ren-
nie et al., 2017) and accumulates error during in-
ference. Moreover, the training is optimized for
log-likelihood, while we actually care about other
more evolved measures of headline quality such as
overlap metrics BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004).

To overcome these issues and improve the qual-
ity of the generated headlines, we frame the MLM

265

Figure 3: Masked attention partially restricts attention
for some token pairs. It prevents attention to headline
tokens that would not be accessible during each step of
generation during inference.

as an RL problem. The model is an ‘agent’ that
takes the ‘action’ of predicting masked words
and updates the ‘state’ such as the self-attention
weights. The MLM follows a policy πθ defined
by the parameters θ of the model. It receives a
reward that is proportional to the quality of the
generated headline. This quality may either be the
overlap with ground truth headlines that have been
approved by internal subject-matter-experts or be
predicted by another model. Our goal is to maxi-
mize the reward corresponding to a generated head-
line x̂h during training, with the tokens at some
masked positions M h sampled from the model. x

We thus minimize the negative expected reward
defined by any reward function r(·) for headline
quality r(x̂h) as:

LRL = −Ex̂h∼πθ
[r(x̂ h)] (4)

We can compute the gradient rθLRL using the
REINFORCE algorithm (Williams, 1992). It is
defined as:

rθLRL = −Ex̂h∼πθ
[r(x̂ h)rθP] (5)

where,
X

h hP = log pθ(x̂ |(x̂ 0 ∈ x̂h \ Mˆh) (6)m m x
m∈M hx̂

such that Mˆh are the masked positions and x̂h \x
Mˆh are all the unmasked tokens. x

To reduce the variance without changing the ex-
pected gradient, the algorithm proposes to use a
baseline b that does not depend on the generated
headline x̂h . b is used to normalize the reward
along with P from equation 6 as:

rθLRL = −Er(x̂h)∼πθ
[(r(x̂ h) − b)rθP] (7)

A single Monte-Carlo sample for each set of
products and headline can be used to approximate
the gradient. Using the definition of P from equa-
tion 6, we have the approximate gradient:

rθLRL ≈ −(r(x̂ h) − b)rθP (8)

Instead of using other models to estimate the
expected baseline reward (Ranzato et al., 2016;
Bahdanau et al., 2017), we employ Self-Critical
training (Rennie et al., 2017) that involves generat-
ing two headlines using the same underlying MLM.
The first headline x̂h is generated by sampling from
the vocabulary distributions generated by the model
for the masked tokens. The second headline ẑh is
generated using the inference time strategy, which
uses the token with the maximum probability at
each step rather than sampling. The difference in
the reward achieved by these two headlines is used
to compute the gradient:

rθLSC_MLM ≈ −(r(x̂ h) − r(ẑ h))rθP (9)

where P is defined by equation 6.
Thus, this method maximizes both the reward

of the headlines generated by MLM and the like-
lihood of correct words by incorporating both the
likelihood and the reward in the loss function.

3.4 Inference

During inference, we generate the headline auto-
regressively using beam search until we reach the
predetermined max length or each beam generates
the end token. We have employed a modified ver-
sion of Length Normalization (Wu et al., 2016) to
better adapt to our headline lengths and training
setup. This is necessary as the default beam search
setup uses the log probability of each word to select
the best headline. However, this biases the results
as longer headlines would have lower probability of

266

generation. We thus use the following normalized 4.2 Baseline
scores for each word to select the best headline:

(2 + 1)α
h hscore(x̂i) = log-likelihood(x̂i) ∗ (10)

(2 + i)α

where α is the length normalization coefficient
hand x̂ is the ith word of the generated headline i

in each beam. We also include additional Regular
Expression based post-processing to remove extra
spaces around various symbols such as ‘-,+()’ etc.

4 Experiments

4.1 Training and Inference

We used over 500,000 ad campaigns that were cre-
ated on Amazon by sellers who have signed-up for
advertising. Each campaign contains a set of re-
lated products along with an ad headline. We only
selected the campaigns that contained English head-
lines and products with English titles. They were
also de-duplicated to only have unique products-
headline pairs. The mean product title length is
19.6 words and the mean headline length is 6.16
words. The entire dataset was divided into train
(85%), validation (5%) and test (10%) sets. For
training, we only selected the campaigns that com-
ply with ad policies as verified by internal experts.

We use the HuggingFace (Wolf et al., 2020)
implementation of the Transformer BERT ‘Large’
models as the base for our experiments. The mod-
els are pre-trained on WikiPedia and BookCor-
pus (Devlin et al., 2019; Dong et al., 2019). We
first fine-tune the pre-trained model for up-to 15
epochs with early stopping using LMLM and Adam
(Kingma and Ba, 2014). We then further fine-tune
the model for another 15 epochs with early stop-
ping using Adam with rLSC_MLM (Equation 9).
We use the Rouge L F1 (Lin, 2004) overlap with
the approved headlines as the headline quality re-
ward. For a fair comparison, the MLM-only model
is fine-tuned for upto 30 epochs.

The model training is very time expensive with
a single fine-tuning sub-experiment of 30 epochs
taking over 20 days on an Nvidia v100. We
thus only performed the essential experiments that
help to determine the contribution of different sub-
experiments and proposals. We estimated post-
experiment that a single fine-tuning sub-experiment
of 30 epochs would consume approximately 150
kWh of energy based on the GPU’s power draw.

We used a Pointer Network (See et al., 2017) based
bi-LSTM with intra-decoder and temporal atten-
tion. We also used Self-Critical training with the
bi-LSTM, similar to other ad headline generation
methods (Xu et al., 2019; Hughes et al., 2019) meth-
ods for a fair comparison to Self-Critical MLM.

4.3 Ablations

We trained a model with the same architecture,
number of parameters and input as the proposed
models but without MLM pre-training and sepa-
rately without Self-Critical loss to study the impact
of the proposals.

We also trained a model with MLM pre-training
but fine-tuning only using the primary first prod-
uct from each campaign instead of using all the
products. This is interesting since some of the cam-
paigns are cohesive to a degree with similar prod-
ucts and using only one product improves training
time and inference latency.

We also report overlap metrics for model
that does not use length normalization and post-
processing discussed in equation 10. We also in-
clude results for model that uses BERT Base as the
base model instead of BERT Large.

5 Results

5.1 Overlap with Approved Headlines

The first evaluation criterion we adopt is over-
lap (Sharma et al., 2017) of model headlines with
subject-matter-experts approved human-submitted
headlines from the test set (Table 1).

Masking the source product title words reduces
the performance as the titles and headlines do not
follow the same sentence structure and distribution.
Adding product category embedding reduces per-
formance and our hypothesis is that this is because
the base model cannot be pre-trained with these em-
beddings. Only using one title achieves lesser but
respectable performance, highlighting the efficacy
of multi-product conditioning.

“No pre-training of MLM" highlights the advan-
tage of using non-pretrained Transformer based ar-
chitecture over bi-LSTM. ‘Proposed MLM’ shows
the advantage of using pre-training, BERT Large
and only masking the headline. ‘Proposed Self-
Critical MLM’ achieves the best scores across all
the metrics and highlights the applicability of our
proposed approach.

267

Model Rouge-L CIDEr BLEU-4 METEOR Avg. Cos. Sim.

Baseline bi-LSTM Pointer Network model
bi-LSTM - - - - -
Self Critical bi-LSTM 0.62 0.01 1.06 0.42 -4.31

MLM Baselines and Ablations (Single Product and No Self Critical Training)
First Product Only 2.14 0.19 5.03 3.55 0.36
First Product and Category embedding 1.52 0.13 4.18 2.938 0.15

Proposed MLM and Ablations (Multiple Products and No Self Critical Training)
Using BERT Base instead of BERT Large 2.85 0.22 4.96 3.58 1.53
No pre-training of MLM (Training from scratch) 3.38 0.27 5.72 3.79 -0.04
Additional Source Titles Masking 4.13 0.29 4.42 5.41 -2.09
Proposed MLM 5.08 0.42 7.49 5.46 1.31

Proposed Self-Critical MLM (SC-MLM) and Ablation
No beam search normalization and post-processing 5.37 0.43 7.81 5.61 1.96
Proposed Self-Critical MLM 6.33 0.55 9.11 6.14 3.75

Table 1: Absolute improvement over baseline in terms of overlap measures with over 50,000 manually approved
human-submitted headlines from the test set. We have reported the differences in the F1 of Rouge-L and BLEU-4
scores to the baseline bi-LSTM model. ‘Avg. Cos. Sim.’ is the average cosine similarity of model headlines to the
human-submitted headlines measured using an independently pre-trained Language Model.

SC-BILSTM MLM - SINGLE PRODUCT PROPOSED MLM PROPOSED SC-MLM

% IMPROVEMENT IN MEAN RATING OVER HUMAN-SUBMITTED HEADLINES
-9.87% 0.40% 1.15% 2.07%

% IMPROVEMENT IN NUMBER OF HEADLINES
RATED ≥ 2 OUT OF 3 -4.99%
RATED 3 OUT OF 3 -42.96%

2.75%
-0.06%

2.42%
1.22%

2.37%
6.53%

Table 2: Comparison of model-generated headlines to human-submitted headlines on a 3-point scale quality audit
of a random blind test set (N ≈ 5000).

5.2 Quality and Grammar Audits

We also conducted large scale crowd-sourced eval-
uation studies of the headlines with over 150,000
judgments. All headlines are shuffled and each
headline is rated by 3 random and double-blind
crowd-sourced auditors. The quality is judged on
a 3-point scale of [1. Incorrect or Irrelevant, 2.
Correct, 3. Correct and Attractive] and we use the
mode of the 3 judgments.

In this double-blind audit, the auditors were
not aware of the source of the headlines and we
were not aware of the identity or demographics
of any auditor. More details about the work-
force may be found in the platform documentation
(Ground Truth, 2021). In order to determine the
compensation for the crowd-sourced workers, we
used the guideline provided by the crowd-sourcing
platform to “choose a price consistent with the ap-
proximate time it takes to complete a task" (Visible
in the Console while creating the Labeling (2021)
job). We thus first conducted an internal audit by
volunteers across our organization to determine the

time required to complete the task (average 21.59s)
and then used the remuneration recommended for
the corresponding time range ($0.12 for 20s - 22s).

Table 2 summarizes the quality audits. The
SC-biLSTM model performed worse compared
to human-submitted headlines. The proposed SC-
MLM model achieves the highest average rating
and the most number of perfectly rated headlines.
Using just a single product does produce correct
headlines with 8% faster inference latency but fails
to produce attractive headlines due to lack of input
from multiple products.

We also conducted Grammar specific audits (N
≈ 10000) in which the grammar of the headlines
is judged independently. 98.13% of SC-MLM and
98.12% of MLM generated headlines were judged
to have correct grammar against 93.14% of human
submitted headlines.

Table 3 shows a sample of headlines for cam-
paigns in the blind test-set. Excessive keyword
stuffing in source product titles does hamper head-
line quality at times and post-filtering using beam

268

One of the source product’s title Human Submitted Headline Proposed MLM Proposed SC-MLM

BEST Natural Hair Growth Oil for
GUARANTEED Hair Strength,

Thickening, Hair Gro...

Natural Hair Growth & Beard Care Protect Your Hair and Beard With All All Natural Hair care products Products Natural Oils

Royal 310DX Thermal Print Electronic
Cash Register

Affordable Reliable Cash Management
from Royal

Blue Copper 5 Anti-Aging Products

Soft & Hypoallergenic Twin Sheets

Share the Love with this Classroom
Decor

Print more for less with SuperTank
printers. Canon

Royal Cash Registers - Retail & Event
Supplies

Secure your cash with Royal Cash
Registers

Blue Copper 5 Anti-Aging Body Lift,
Pregnancy Stretch Marks Prevention and

Removal Cream 5 Oz
Discover Osmotics Best Selling Products Say Goodbye to Stretch Marks

Cosy House Collection Twin Size Bed
Sheets - Cream Bedding Set - Deep

Pocket - Extra Soft Luxury...

Luxury Twin Sheets - These Will Change
Your Life.

Soft Luxury Sheets - These Will Change
Your Life.

Carson Dellosa | Valentine’s Day Heart
Stickers | 1-inch x 1-inch, 216ct

Show your Valentine some love this
Valentine’s Day Valentine’s Day Celebrations

Canon GI-20 PGBK Ink Bottle,
Compatible to PIXMA G6020 and

G5020 MegaTank Printers

All-in-one solution for professional
grade prints.

All-in-one solution for professional
grade prints.

LABILUS iPhone Xs MAX case,
(Rugged Armor Series) TPU Soft Stripe

Designed Protective Cover Case...

360° Protection Heavy Duty for iPhone
Xs Max

Rugged Protective Case for iPhone Xs Rugged Armor Protective Case for
MAX iPhone Xs Max

Biscotti Cookie Gift Basket, Gourmet
Gift Basket, Delicious Biscotti Artfully

Decorated 18 Count...
Valentines Gifts Gourmet Chocolate Gift Baskets Gourmet Holiday Gift Baskets

Le Angelique Tapered Curling Iron
Wand with Glove And 2 Clips - 3/4 to 1

Inch (18-25mm) Conical ...

Tapered Curling Wands with Glove and 2
Clips Le Angelique Tapered Curling Iron Wand Le Angelique Tapered Curling Iron Wand

JUNK Brands London Fog-BBL London
Fog Big Bang Lite Headband Headbands for Every Adventure Headbands for Every Adventure BBL Headbands for Adventure

Jump&Go Portable Car Battery Jump
Starter set -16,000mAh, 600A Peak,

Mini Automotive Power Boost...
Portable Jump and go Jumpstarter Jump and Go Portable Car Jump Starter Jump and Go Portable Jump Starters

decanit Silver Metal Thin Edge 5x7
Picture Frames, Silver Thin Profile Phot

Frames 5 by 7 Inch,...
o Life-Style-Living Metal Thin Edge Picture Frames Thin Edge Picture Frames

CARSYS Coating Thickness Gauge
DPM-816 Extended Range Precision
Probe Fe/NFe Paint Meter for Car...

Coating Thickness Gauge - Range
Precision Coating Thickness Gauges Coating Thickness Gauge

Rich & Creamy Buttermilk Syrup
Original Flavor by Uncle Bob’s Butter

Country 16 fl oz/1 Pack

Rich and Creamy Buttermilk Syrup -Fresh and Premium Buttermilk Syrup Rich and Creamy Buttermilk Syrup Taste Great

Sesame Street Ernie Face Tee Funny
Humor Pun Adult Mens Graphic T-Shirt

Apparel (Small), Orange
Sesame Street Tees for Adults Sesame Street Men’s Shirts Sesame Street Men’s Shirts

Agvee Unbreakable End Tip [3 Pack 6ft]
4A Heavy Duty USB Phone Charger AGVEE Fast Lightning Charging Cable

for iPhone
AGVEE Fast iPhone 11 X 10s 10s XR

Cable
AGVEE Heavy Duty iPhone 11 Xs XS

XR Cable Cable, Durable Charging for iPhone 11
Pro Max X XS XR, i-Phone 10x 10xs

......

Table 3: Some samples of model generated headlines from subsets rated 3, 2 and 1. The frequency of headlines is
not indicative of true distribution of headline quality.

search score helps to filter them out.
We do observe cases where both the models gen-

erate the same headline. This is an artifact of the
fact that both the models share the first 15 epochs.
The SC-MLM model generates more descriptive
headlines and both models are able to abstract the
product qualities.

Conclusion

Ad headline generation is a difficult problem owing
to the varying nature of retail product attributes. A
lot of historical methods focus on template based
creation of ad headlines that are not very expres-
sive.

We demonstrated a new NLG based method

to generate headlines for multiple products. Our
method achieves highest score in overlap metrics,
quality audits and grammar audits compared to the
baselines and human-submitted headlines.

Masked Language Models were relatively un-
explored for ad headline generation and we were
able to demonstrate their utility. We further ex-
tended the performance of the model by using Re-
inforcement Learning. The method only changes
the training procedure without impacting inference
latency. Thus, our work contributes to both SOTA
and practical business applications.

The approach can also be used for any other
NLG task.

6

269

References

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,
Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. 2017. An
Actor-Critic Algorithm for Sequence Prediction.
arXiv:1607.07086 [cs]. ArXiv: 1607.07086.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of Deep Bidirectional Transformers for Language
Understanding. arXiv:1810.04805 [cs]. ArXiv:
1810.04805.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified Language
Model Pre-training for Natural Language Under-
standing and Generation. arXiv:1905.03197 [cs].
ArXiv: 1905.03197.

Using MTurk with Ground Truth. 2021. [link].

J. Weston Hughes, Keng-hao Chang, and Ruofei Zhang.
2019. Generating Better Search Engine Text Adver-
tisements with Deep Reinforcement Learning. In
Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, KDD ’19, pages 2269–2277, Anchorage,
AK, USA. Association for Computing Machinery.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Ground Truth Labeling. 2021. Create a labeling job.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer.
2019. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Transla-
tion, and Comprehension. arXiv:1910.13461 [cs,
stat]. ArXiv: 1910.13461.

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Sponsored Advertising policies. [link].

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Prajit Ramachandran, Peter J. Liu, and Quoc V. Le.
2016. Unsupervised pretraining for sequence to se-
quence learning. arXiv preprint arXiv:1611.02683.

Marc’Aurelio Ranzato, Sumit Chopra, Michael
Auli, and Wojciech Zaremba. 2016. Sequence
Level Training with Recurrent Neural Networks.
arXiv:1511.06732 [cs]. ArXiv: 1511.06732.

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh,
Jarret Ross, and Vaibhava Goel. 2017. Self-
critical Sequence Training for Image Captioning.
arXiv:1612.00563 [cs]. ArXiv: 1612.00563.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2019. Leveraging Pre-trained Checkpoints for Se-
quence Generation Tasks. arXiv:1907.12461 [cs].
ArXiv: 1907.12461.

Abigail See, Peter J. Liu, and Christopher D. Man-
ning. 2017. Get To The Point: Summarization
with Pointer-Generator Networks. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1073–1083, Vancouver, Canada. Association
for Computational Linguistics.

Shikhar Sharma, Layla El Asri, Hannes Schulz, and
Jeremie Zumer. 2017. Relevance of Unsupervised
Metrics in Task-Oriented Dialogue for Evaluating
Natural Language Generation. arXiv:1706.09799
[cs]. ArXiv: 1706.09799.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3):229–256.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2020. HuggingFace’s Trans-
formers: State-of-the-art Natural Language Process-
ing. arXiv:1910.03771 [cs]. ArXiv: 1910.03771.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s Neural Machine
Translation System: Bridging the Gap between Hu-
man and Machine Translation. arXiv:1609.08144
[cs]. ArXiv: 1609.08144.

270

Peng Xu, Chien-Sheng Wu, Andrea Madotto, and Pas-
cale Fung. 2019. Clickbait? Sensational Headline
Generation with Auto-tuned Reinforcement Learn-
ing. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3065–3075, Hong Kong, China. Association for
Computational Linguistics.

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao
Qin, Wengang Zhou, Houqiang Li, and Tie-Yan
Liu. 2020. Incorporating BERT into Neural Ma-
chine Translation. arXiv:2002.06823 [cs]. ArXiv:
2002.06823.

271

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 272–279
June 6–11, 2021. ©2021 Association for Computational Linguistics

LaTeX-Numeric: Language-agnostic Text attribute eXtraction for
E-commerce Numeric Attributes

Kartik Mehta
India Machine Learning

Amazon
kartim@amazon.com

Ioana Oprea
Retail Business Services

Amazon
ioanao@amazon.com

Nikhil Rasiwasia
India Machine Learning

Amazon
rasiwasi@amazon.com

Abstract

In this paper, we present LaTeX-Numeric - a
high-precision fully-automated scalable frame-
work for extracting E-commerce numeric at-
tributes from product text like product descrip-
tion. Most of the past work on attribute ex-
traction is not scalable as they rely on manu-
ally curated training data, either with or with-
out the use of active learning. We rely on dis-
tant supervision for training data generation,
removing dependency on manual labels. One
issue with distant supervision is that it leads
to incomplete training annotation due to miss-
ing attribute values while matching. We pro-
pose a multi-task learning architecture to deal
with missing labels in the training data, lead-
ing to F1 improvement of 9.2% for numeric
attributes over single-task architecture. While
multi-task architecture benefits both numeric
and non-numeric attributes, we present auto-
mated techniques to further improve the nu-
meric attributes extraction models. Numeric
attributes require a list of units (or aliases) for
better matching with distant supervision. We
propose an automated algorithm for alias cre-
ation using product text and attribute values,
leading to a 20.2% F1 improvement. Exten-
sive experiments on real world dataset for 20
numeric attributes across 5 product categories
and 3 English marketplaces show that LaTeX-
numeric achieves a high F1-score, without any
manual intervention, making it suitable for
practical applications. Finally, we show that
the improvements are language-agnostic and
LaTeX-Numeric achieves 13.9% F1 improve-
ment for 3 Romance languages1.

1 Introduction

E-commerce websites often sell billions of prod-
ucts. These websites provide information in form
of product images, product text (such as title and
product description) and structured information,

1https://www.britannica.com/topic/Romance-languages

henceforth, termed as product attributes2. These
attributes often act as a concise summary of prod-
uct information and are useful in product discov-
ery, comparison and purchase decisions. They are
usually provided by selling partners at the time
of product listing and can be missing or invalid,
even though they might be present in product text
sources. Extracting attribute values from these
product text sources can be used to populate the
missing attribute values and is the focus of this
work.

Attribute Extraction from free form text can be
posed as a Named Entity Recognition (NER) prob-
lem (Zheng et al., 2018). Recently, deep learning
models (Lample et al., 2016; Ma and Hovy, 2016;
Huang et al., 2015) have shown remarkable perfor-
mance on NER tasks, eliminating the need of man-
ually curated features. However, these approaches
still require large amount of labelled data. While
active learning can be used to efficiently curate
training data (Zheng et al., 2018), however gath-
ering data for hundreds of product categories and
attributes is a resource extensive task. One solution
is to use distant supervision to create training data.
Distant supervision has been extensively used to
curate training set without manual effort for rela-
tion extraction (Mintz et al., 2009). In context of
attribute extraction for E-commerce, we can curate
training data by using attribute values and match-
ing them with tokens in product text. However,
if attribute values are missing, distant supervision
leads to missing annotations, a phenomenon not
studied in literature.

In this work, we present an automated frame-
work for building high-precision attribute extrac-
tion models for numeric attributes using distant
supervision. Multiple works in literature (Madaan
et al., 2016; Ibrahim et al., 2016) argue that distant

2E.g. RAM, weight and front_camera are some of the
product attributes for mobile phone. We use the terminologies
‘product attributes’ and ‘attributes’ interchangeably in this
paper.

272

supervision for numeric attributes poses unique
challenges and have given separate treatment to
numeric attributes. Highlighted below are some in-
teresting challenges that distant supervision poses
for numeric attribute extraction models:
Partial Annotations: Distant supervision leads to
incorrect annotations when attribute is present in
the text field but structured attribute value is miss-
ing.
Diverse surface forms: There are multiple ways
that attributes are mentioned in product text (e.g.
resolution of ‘2’ can be mentioned as ‘2 mp’, ‘2
mpix’ or ‘2 megapixels’). We term these different
surface forms as alias.
Confusing attributes: Many attributes have com-
mon units and may have confusing mention in the
text (e.g. ‘16 GB memory’ refers to RAM while
‘128 GB memory storage’ refers to ‘Hard Disk’)
Use of different units: Seller may use diverse
units for numeric attributes (e.g. ‘1.5 kg’ as at-
tribute value and ‘3.3 pounds’ in product text).
Addressing these challenges in automated manner
is the primary focus of this work. Our paper has the
following contributions: (1) We propose a multi-
task architecture to deal with partial annotations
introduced due to missing attributes. This multi-
task architecture leads to F1 improvement of 9.2%
for numeric and 7.4% for non-numeric attributes
over single task architecture. (2) We propose a
fully automated algorithm for alias creation using
product text and attribute values. These alias im-
prove the quality of training annotation in distant
supervision, leading to models with 20.2% F1 im-
provement for numeric attributes. We demonstrate
the effectiveness of our proposed approach using a
real-world dataset of 20 numeric attributes across
5 categories and 3 English marketplaces. Mod-
els trained using our proposed framework achieve
a high F1-score without any manual intervention,
making them suitable for practical applications. We
show that our proposed approach is language ag-
nostic. Experiments of using our framework on 3
Romance languages show 13.9% F1 improvement.
To the best of our knowledge, this is first successful
attempt at building automated attribute extraction
for numeric attributes at E-commerce scale. Rest
of the paper is organized as follows. We describe
our proposed framework and its components in
Section 3. We describe the ‘Multi Task’ architec-
ture in Section 3.1 and ‘automated alias creation’
component in Section 3.2. We describe datasets,

experimental setup and results in Section 4. Lastly,
we summarize our work in Section 5.

2 Related Work

2.1 Attribute Extraction for E-commerce

Early works on information extraction focused on
extracting facts from generic web pages (Oren
et al., 2005; Yates et al., 2007; Etzioni et al., 2008).
With rise of E-commerce, multiple works focused
on extracting attributes from product pages. Ghani
et al. (2006) proposed use of supervised learning
to extract attributes from E-commerce product de-
scriptions. Putthividhya and Hu (2011) formulated
attribute extraction from short titles as NER prob-
lem, using multiple base classifiers and a CRF layer.
The training data was created by matching entries
from a seed dictionary. More (2016) proposed
use of distant supervision for attribute extraction.
They used token-wise string matching (henceforth
referred as exact match) based on attribute values
to annotate title tokens and train an NER model
with manually defined features. They used manual
intervention to improve the training annotations
e.g. dealing with spelling mistakes and different
surface forms of brand. Majumder et al. (2018)
extended this work with use of recurrent neural
networks, excluding use of manually defined fea-
tures. Zheng et al. (2018) proposed OpenTag using
bidirectional LSTM, Conditional Random Fields
(CRF) and attention mechanism. But the training
data for OpenTag is manually created with use of
active learning, making it challenging to use at
E-commerce scale.

2.2 Distant supervision of numeric attributes

Getting manual training data has always been a
resource intensive and expensive task and distant
supervision has been explored as an alternative.
Distant supervision for numeric attributes has been
used for relation extraction (Hoffmann et al., 2010;
Madaan et al., 2016), question answering (Davi-
dov and Rappoport, 2010), entity linking (Ibrahim
et al., 2016). Madaan et al. (2016) argued that dis-
tant supervision for numerical attributes presents
peculiar challenges not found for non-numeric at-
tributes, such as high noise due to matching out of
context, low recall due to different rounding level,
and importance of units. Ibrahim et al. (2016) con-
structed a KB from freebase.com, keeping a list
of units and conversion rules for numeric quanti-
ties. While these works have established the im-

273

Figure 1: Illustration of E-commerce attribute extrac-
tion problem.

Figure 2: LaTeX-Numeric framework for extraction of
E-commerce numeric attributes.

portance of units for distant supervision of numeric
attributes, but the list of units is manually curated.

2.3 NER with partial annotation
Distant supervision may lead to noisy training data
due to partial annotations. Tsuboi et al. (2008)
argued that partial annotations may happen due to
ambiguous annotation and proposed CRF-PA to
alleviate the issue of partial annotations. Yang
et al. (2018) studied partial annotations introduced
due to incomplete dictionary and extended CRF-PA
to NER models. Jie et al. (2019) proposed learn-
ing the probability distribution of all possible label
sequences compatible with given incomplete an-
notation, and using this probability to clean the
training annotations. For E-commerce attribute
extraction, partial annotations may happen due to
missing attribute value. Our paper is the first work
to establish this phenomenon for attribute extrac-
tion and provide a systematic way to alleviate this
problem. We compare our proposed approach with
Jie et al. (2019) in Section 4.2.

3 LaTeX-Numeric Framework

We pose the attribute extraction problem (refer Fig-
ure 1) as a NER problem, where product attributes
are treated as named entities. Formally, we are
given a text X with a particular tokenization (x1,
x2,.....xm) and a set of attributesA: (α1, α2..... αn).
The task is to extract vi = αk for i ∈ [1, m] where
k ∈ [0, n] and α0 represents ‘Other’ entity.

Figure 2 gives an overview of our proposed
LaTeX-Numeric framework. We are given a list
of pre-defined numeric attributes, dump of prod-

ucts consisting of product text and existing attribute
values. The attribute values are decimals (e.g. 16)
and have an underlying unit (e.g. GB). We term this
underlying unit as the canonical unit. For creating
distant supervision-based training annotations, we
use these canonical units and combine them with at-
tribute values for matching with product text. This
serves as the ‘canonical aliasing’ baseline for our
comparisons. We use BIO tagging scheme for our
experiments as it is a popular format. For training,
we use the recently proposed BiLSTM-CNN-CRF
model (Ma and Hovy, 2016). This model consists
of CNN architecture to encode character informa-
tion, LSTM-based encoder to model contextual
information of each token and a CRF based tag
decoder, which exploits the labels of neighboring
tokens for improved classification. Unlike Open-
Tag (Zheng et al., 2018), we don’t use attention as
we didn’t observe any improvements with use of
attention in our initial experiments.

Creating training annotations using distant super-
vision may lead to partial annotations due to miss-
ing attribute values. In Section 3.1, we describe
our proposed multi-task learning architecture to
deal with such partial annotations. Additionally,
we have observed that sellers use multiple surface
forms to mention attributes in product text (e.g.
‘3mp’, ‘3mpix’, ‘3 megapixels’ for resolution) and
hence, distant supervision with just canonical units
(e.g. ‘mp’) may lead to suboptimal training an-
notations. Curating a list of these diverse surface
forms will help improve the quality of training an-
notations. We describe an automated approach for
curating such diverse units and improving training
annotations of numeric attributes in Section 3.2.

3.1 Multi Attribute Joint Extraction
To jointly extract multiple attributes, the tagging
strategy can be modified to consider an output la-
bel with tags for all attributes. With ‘BIO’ tag-
ging, each attribute has its own (‘B’ and ‘I’) tags
with ‘O’ common for all attributes, leading to total
2K + 1 tags for K attributes. Based on this mod-
ified tagging, a single NER model can be trained
for multi-attributes extraction. We term this setting
of training ‘Multi Attribute Single Task’ model
as MAST-NER (refer Figure 3). MAST-NER is
the commonly used strategy for attributes extrac-
tion (Zheng et al., 2018; Sawant et al., 2017; Shen
et al., 2017; Joshi et al., 2015).

Under distant supervision, attribute value is used
to find matches in product text tokens. However,

274

if the attribute value is missing, no match will be
found even when attribute value is mentioned in
text and hence, the corresponding tokens are in-
correctly tagged as ‘O’. We term this partial an-
notation due to missing attribute as Missing-PA
problem. Table 1 shows an illustration of this prob-
lem. Missing-PA is generic to distant supervision
for multi-attributes and exists for non-numeric at-
tributes as well. To the best of our knowledge, this
problem has not received attention in literature.

Display RAM Weight BatteryLife
Attribute

Value 12.3 16 missing 10

Canonical
Unit inches gb kg hours

The high performance Chromebook. Features 7th Gen Intel
Core i7 processor, 16 GB RAM and 512 GB for storage.

The long lasting battery provides up to 10 hours of use and
its fast charging so you can get 2 hours of use in 15 minutes
Pixelbook’s super thin and lightweight design measures

10.3 mm and weighs 1.2 kg Features a 12.3 inches 360
touchscreen display

Table 1: Illustration of Missing-PA for distant supervi-
sion. 1.2kg will be incorrectly tagged as ‘O’ as value
for weight attribute is missing.

To alleviate Missing-PA problem, one can train
separate models for each attribute, by excluding
samples where the corresponding attribute value
is missing. However, such an approach requires
training and managing a large number of models
and separate computation for each attribute at eval-
uation time. Due to these practical challenges,
this strategy is not suitable for practical applica-
tions. Another way to alleviate missing-PA is to
use MAST-NER setting, and to exclude all samples
where atleast one attribute has missing value. How-
ever, this approach may significantly reduce the
size of training data as some attributes may have
high missing rate, leading to a suboptimal model.
To alleviate this problem, we propose a multi-task
learning architecture with separate output layers
for each attribute as separate tasks. We term this
architecture of training ‘Multi Attribute Multi Task’
model as MAMT-NER (Refer Figure 3). MAMT-
NER consists of shared character encoder, word
encoder and BiLSTM layers. For each training sam-
ple, loss is deactivated (using masking) for tasks
where corresponding attribute value is missing and
activated only for remaining tasks where corre-
sponding attribute values are non-missing. Loss
for all activated tasks are weighted uniformly and
weights of those tasks (including shared weights)

are updated for the given sample. Note that the pro-
posed MAMT-NER architecture is generic and can
be used for non-numeric attributes as well as any
underlying NER architecture, including recently
proposed BERT (Devlin et al., 2019).

3.2 Automated Alias Creation
As argued earlier, the canonical unit is often not
sufficient to capture diverse surface forms that sell-
ers use to mention attributes in product text. E.g.
‘13 inch’, ‘13 inches’, ‘13 in’, are multiple ways to
mention display_size. One can analyze the mention
of attribute values in product text and leverage that
to create a list of commonly used surface forms.
While, such an algorithm will detect common sur-
face forms, it will miss out on units which require
a multiplicative factor (e.g. ‘pounds’, ‘lbs’ and
‘ounces’ for weight where attribute values are in
‘kg’). To detect such units, we can analyze all nu-
meric mentions in product texts (in isolation from
attribute value) and filter out noisy candidates by
using similarity with canonical units in embedding
space. Additionally, we have observed that some
numeric attributes have units which are specific
to those attributes (e.g. ‘mah’ for battery_power
and ‘hertz’ for refresh_rate). One can detect such
attributes and use this information while creat-
ing training annotations using distant supervision.
Based on these learnings, we propose an approach
for generating a more exhaustive list of aliases, in
an automated fashion (Figure 4).

3.2.1 Creation of alias_dw
We create attribute-specific alias_dw using product
text and attribute values. We use a regex matching
function,M3, to find candidate alias which are pre-
ceded by numeric attribute value in text. Though
this matching function may lead to instances of
collision (e.g. 5 for RAM attribute may match
with 5 ghz in text), we ignore cases where more
than one match is found in text, to prevent impact
of collisions. Alias_dw leads to common surface
form of attribute units (e.g. ‘in’, ‘inches’, ‘inch’ for
display_size and ‘gb’, ‘gigabyte’ for hard_disk).

3.2.2 Creation of alias_bp
We create a single alias_bp (common across at-
tributes) using product text data. We use a regex
function F4 to find candidate alias, which are to-

3M = re.findall(“ ” + <value> + r“[−]∗ [a−zA−
Z] + ′′, <text>), where <value> is attribute value (e.g. 8
for RAM) and <text> is product text.

4F = re.findall(“ ” + r“[\d\.]∗ [\d][−]∗ [a−zA−
Z] + ′′, <text>), where <text> is product text.

275

Figure 3: Figure showing different architectures for Multi Attributes Extraction models. We assume BIO-tagging
of attributes with only 3 tags possible - B, I and O. For MAST-NER, we have two possible tags for each attribute
and one others tag. For MAMT-NER, each attribute extraction is considered a separate task with weights shared
for character embeddings, word embeddings and BiLSTM layer

Figure 4: Flow-diagram for Automated alias creation.

kens preceeded by any numeric mention in product
text. Alias_bp may contain noisy candidates which
are not units for any attribute. We use word embed-
dings to match alias_bp candidates with attributes
and exclude noisy candidates.

3.2.3 Embedding based filtering
To remove noisy candidates and match alias_bp
candidates to attributes, we leverage canonical
units and Glove embeddings. For each attribute, we
calculate similarity of each alias_bp candidate with
its canonical unit in embedding space and keep
only those candidates where similarity is greater
than a pre-determined threshold. Thus, we obtain
alias_bp_filter, which is attribute specific. E.g. we
filter out ‘inches’ and select ‘pounds’ and ‘lbs’ for
weight attribute having ‘kg’ as canonical unit.

Alias_dw and alias_bp_filter complement each
other. Alias_bp_filter misses out on units which

have low similarity using embeddings (e.g. ‘in’
for display_size as ‘in’ has a low similarity with
‘inch’). Alternately, alias_dw misses out on cases
where the unit mentioned in product text may re-
quire a multiplicative factor (e.g. alias_dw for
item_weight misses out on ‘pounds’ and ‘lbs’). We
concatenate alias_dw and alias_bp_filter to obtain
alias_combined for each attribute (shown for four
attributes in Table 2).

With small manual effort, one can get the multi-
plicative factor for converting values in canonical
units to units in alias_combined and vice versa,
which can further improve training annotations. As
focus of current work is to build a fully automated
attribute extraction system, we leave this as future
work to be explored.

Category Attribute Alias_combined

Laptop Hard_Disk [gb, mb, gigabyte, tb, x]

Laptop Display [inches, inch, mm, cm,
ft, centimeter, feet, in]

Tablet Weight [kilograms, kgs, kg, grams,
lbs, pounds, ounces, g]

TV Refresh_Rate [hertz, hz]

Table 2: Alias values shown for few attributes

3.2.4 Exclusive Alias Flag
We use a small manually labelled dev set (created
for hyper-parameters tuning) to create a flag indi-
cating which attributes have exclusive alias. We
evaluate precision of extracting any mention of
alias for a given attribute and if this precision is
above a threshold, we consider that attribute to have

276

exclusive alias. For attributes having an exclusive
alias, we use regex-based matching for training an-
notations, tagging any numeric value followed by
the corresponding unit, irrespective of the attribute
value.

We refer our proposed approach of using
‘alias_combined’ and ‘exclusive alias flag’ for cre-
ating training data of numeric attributes as ‘auto-
aliasing’ henceforth. We discuss experiments of
using ‘auto-aliasing’ as compared to other distant
supervision techniques for numeric attributes in
Section 4.1.

4 Experimental Setup and Results

We picked five product categories and their 20
numeric attributes for three English marketplaces
(IN, US and UK). We extracted product data (prod-
uct description and attribute values) for these cate-
gories and split this data into two parts (80% train
and 20% test). The train part is used for automated
alias creation and creation of training annotations
with distant supervision. From the test part, we ran-
domly picked products for each category and label
the mention of category-specific numeric attributes
in text. Out of the total labelled attribute-product
pairs, we observed mention of 6.9K attributes in
product text. We term training data for English
as ‘Train-EN’ and audited test dataset as ‘Test-EN’
(details in Table 3). To evaluate applicability of
our proposed LaTeX-Numeric framework for non-
English languages, we did a similar analysis with
one product category for three Romance languages
of French (FR), Spanish (SP) and Italian (IT). We
term this training data as ‘Train-Romance’ and
audited test dataset as ‘Test-Romance’. Similar
to (Zheng et al., 2018), we use F1-score for eval-
uation. Predictions are given full credit if correct
value is extracted, but extracting more values than
actual is considered incorrect (e.g. for a mobile
phone with ‘4 gb’ RAM, extracting either ‘4’ or
‘4 gb’ is considered correct prediction, but extract-
ing two values of ‘4 gb’ and ‘16 gb’ is considered
incorrect prediction).

4.1 Evaluation of Matching Techniques
In this section, we study improvements with our
proposed alias creation. For comparison, we use
two baselines of creating training annotation a) us-
ing lexical matching of numeric attribute value and
product text (‘exact match’), and b) matching based
on canonical units (‘canonical aliasing’). For each
strategy, we use CNN-BiLSTM-CRF with MAST-

Product
Category IN US UK

A (6) 14K (854) 241K (966) 70K (468)
B (4) 11K (396) 57K (493) 171K (320)
C (6) 43K (1027) 112K (623) 76K (559)
D (2) 3K (201) 14K (146) 32K (90)
E (2) 11K (246) 89K (266) 41K (244)

Total (20) 83K (2724) 514K (2494) 391K (1681)

Product
Category FR IT ES

A (6) 93K (727) 70K (508) 74K (559)

Table 3: Stats for training and test data. Number of
training products are shown with unit ‘K’ (K=1000)
and number of labelled attributes mention in test data
is shown in adjacent parenthesis. Number of attributes
is shown in parenthesis adjacent to each category.

Matching
Technique IN US UK Avg

exact match 78.0 86.5 93.3 85.5

canonical aliasing 100.0 100.0 100.0 100.0

auto aliasing (our) 113.1 120.3 128.5 120.2

Table 4: Comparison of various matching techniques
for training data generation using distant supervision
(all numbers are relative to using canonical units).

NER architecture. Table 4 shows F1 score for using
different matching techniques. ‘Canonical aliasing’
approach shows better F1 score than ‘exact match’,
but it still suffers from low recall due to missing
out on different surface forms mentioned in product
text. With our proposed auto-aliasing, we address
this limitation of ‘canonical aliasing’ and observe
an average F1 improvement of 20.2%, establishing
‘auto-aliasing’ as best technique for distant super-
vision of numeric attributes. We use the training
data created using ‘auto-aliasing’ for all subsequent
experiments (unless otherwise specified).

4.2 Evaluation of MAMT Architecture

In this section, we perform a quantitative evalua-
tion of our proposed MAMT architectures. Table 5
shows results of using MAST and MAMT archi-
tecture with CNN-BiLSTM-CRF. As compared to
MAST-NER architecture, we observe 9.2% F1 im-
provement with our proposed MAMT architecture.
Additionally, we observe that Jie et al. (2019) 5

shows better F1 score than MAST due to higher
recall. However, Jie et al. (2019) leads to drop in
precision due to confusion between close attributes

5We use implementation of
https://github.com/allanj/ner_incomplete_annotation.
We show results only for IN as we get memory error when
training for US and UK datasets which have larger training
size.

277

Model +
Architecture IN US UK Avg

BiLSTM-MAST 113.1 120.3 128.5 120.2
BiLSTM (Jie et al.

(2019)) 114.4 NA NA NA

BiLSTM-MAMT 124.4 131.4 139.0 131.2

BERT-MAST 117.7 122.9 128.8 122.8
BERT-MAMT 120.4 127.8 134.3 127.1

Table 5: Study of multi-task architecture for numeric
attributes. BERT uses softmax as output layer, while,
BiLSTM refers to CNN-BiLSTM model with crf as out-
put layer. All numbers are relative to using canonical
units in Table 4.

Model Archi-
tecture Precision Recall F1

BiLSTM MAST 100.0 100.0 100.0
BiLSTM MAMT 93.6 117.8 107.4

Table 6: Study of multi-task architectures for textual
attributes (all numbers are relative). BiLSTM refers to
CNN-BiLSTM model with crf as output layer.

(e.g. front-camera and back-camera for mobile.)
Our proposed MAMT shows 8.7% better F1 score
than Jie et al. (2019) for IN.

Further, we do comparison of MAST and
MAMT architectures with BERT6 as underlying
model and observed 3.5% F1 improvement with
MAMT, demonstrating its applicability to multiple
underlying models. To establish the effectiveness
of MAMT architecture for non-numeric attributes,
we curated a test dataset of 600 samples per at-
tribute for 8 textual attributes across 4 product cat-
egories. As shown in Table 6, we observe 7.4%
F1 improvement on this dataset with our proposed
MAMT-NER architecture, showing its effective-
ness on textual attributes as well.

4.3 Evaluation on non-English Languages

Architecture
+ Matching FR IT ES Avg

MAST +
canonical-aliasing 100 100 100 100

MAST +
auto-aliasing 103.0 107.1 108.4 106.0

MAMT +
auto-aliasing 104.0 118.4 121.6 113.9

Table 7: Comparison of auto-aliasing and multi-task ar-
chitecture on Romance languages (numbers are relative
to using canonical-aliasing).

In this section, we study the applicability of LaTeX-
Numeric for three Romance languages. We train

6We use implementation of https://github.com/namisan/mt-
dnn, which uses bert-base and softmax as output layer.

a separate (Category-A) model for each Romance
language replacing English word embeddings with
language specific fastText (Lample et al., 2018) em-
beddings. Table 7 shows results on Test-Romance
dataset. We observe 6.0% F1 improvement with
our proposed auto-aliasing and additional 7.9% im-
provement with use of MAMT-NER architecture,
showing effectiveness of our proposed approaches
across languages.

5 Conclusion

In this paper, we described ‘LaTeX-Numeric’,
a high-precision fully-automated framework for
training attribute extraction models for E-
commerce numeric attributes. We characterized
the problem of Missing-PA that arises with dis-
tant supervision due to missing attribute values and
proposed a multi-task learning architecture to al-
leviate the Missing-PA problem, leading to 9.2%
F1 improvement for numeric attributes. We estab-
lished the applicability of our proposed multi-task
architecture for textual attributes and BERT as un-
derlying model as well. Additionally, we proposed
an automated algorithm for alias creation, to deal
with variations of numeric attribute mentions, lead-
ing to models with 20.2% F1 improvement. Our
evaluation on three Romance languages establishes
that these improvements are applicable across non-
English languages as well. Models trained using
our proposed LaTeX-Numeric framework achieve
high F1 score, making them suitable for practical
applications.

References
Dmitry Davidov and Ari Rappoport. 2010. Extraction

and approximation of numerical attributes from the
web. In 48th Annual Meeting of ACL, pages 1308–
1317.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT (1).

Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S Weld. 2008. Open information extrac-
tion from the web. Communications of the ACM,
51(12):68–74.

Rayid Ghani, Katharina Probst, Yan Liu, Marko Krema,
and Andrew Fano. 2006. Text mining for product
attribute extraction. ACM SIGKDD Explorations
Newsletter, 8(1):41–48.

278

Raphael Hoffmann, Congle Zhang, and Daniel S Weld.
2010. Learning 5000 relational extractors. In 48th
Annual Meeting of the ACL, pages 286–295.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv.

Yusra Ibrahim, Mirek Riedewald, and Gerhard
Weikum. 2016. Making sense of entities and quanti-
ties in web tables. In 25th CIKM, pages 1703–1712.
ACM.

Zhanming Jie, Pengjun Xie, Wei Lu, Ruixue Ding, and
Linlin Li. 2019. Better modeling of incomplete an-
notations for named entity recognition. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 729–734, Minneapo-
lis, Minnesota. Association for Computational Lin-
guistics.

Mahesh Joshi, Ethan Hart, Mirko Vogel, and Jean-
David Ruvini. 2015. Distributed word representa-
tions improve ner for e-commerce. In 1st Workshop
on Vector Space Modeling for Natural Language
Processing, pages 160–167.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the
NAACL-HLT, pages 260–270, San Diego, California.
Association for Computational Linguistics.

Guillaume Lample, Alexis Conneau, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In Interna-
tional Conference on Learning Representations.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4487–4496.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074, Berlin, Ger-
many. Association for Computational Linguistics.

Aman Madaan, Ashish Mittal, Ganesh Ramakrishnan,
Sunita Sarawagi, et al. 2016. Numerical relation
extraction with minimal supervision. In Thirtienth
AAAI.

Bodhisattwa Prasad Majumder, Aditya Subramanian,
Abhinandan Krishnan, Shreyansh Gandhi, and
Ajinkya More. 2018. Deep recurrent neural net-
works for product attribute extraction in ecommerce.
arXiv.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Joint Conference of the
47th Annual Meeting of the ACL and the 4th IJCNLP
of the AFNLP, pages 1003–1011.

Ajinkya More. 2016. Attribute extraction from product
titles in ecommerce. CoRR, abs/1608.04670.

Etzioni Oren, Cafarella Michael, Downey Doug,
Popescu Ana-Maria, Shaked Tal, Soderland Stephen,
Weld Daniel S, and Yates Alexander. 2005. Unsuper-
vised named-entity extraction from web: An experi-
mental study. Artificial intelligence, 165(1):91–134.

Duangmanee Pew Putthividhya and Junling Hu. 2011.
Bootstrapped named entity recognition for product
attribute extraction. In EMNLP, pages 1557–1567.
ACl.

Nils Reimers and Iryna Gurevych. 2017. Optimal hy-
perparameters for deep lstm-networks for sequence
labeling tasks. arXiv.

Uma Sawant, Vijay Gabale, and Anand Subramanian.
2017. E-fashion product discovery via deep text
parsing. In 26th International Conference on WWW,
pages 837–838.

Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2017.
Deep active learning for named entity recognition.
In Proceedings of the 2nd Workshop on Representa-
tion Learning for NLP, pages 252–256, Vancouver,
Canada. Association for Computational Linguistics.

Anders Søgaard and Yoav Goldberg. 2016. Deep multi-
task learning with low level tasks supervised at lower
layers. In 54th Annual Meeting of the ACL (Volume
2: Short Papers), pages 231–235.

Yuta Tsuboi, Hisashi Kashima, Hiroki Oda, Shinsuke
Mori, and Yuji Matsumoto. 2008. Training condi-
tional random fields using incomplete annotations.
In 22nd COLING, pages 897–904. ACL.

Yaosheng Yang, Wenliang Chen, Zhenghua Li,
Zhengqiu He, and Min Zhang. 2018. Distantly su-
pervised ner with partial annotation learning and re-
inforcement learning. In 27th COLING.

Alexander Yates, Michael Cafarella, Michele Banko,
Oren Etzioni, Matthew Broadhead, and Stephen
Soderland. 2007. Textrunner: open information ex-
traction on the web. In Human Language Technolo-
gies: The Annual Conference of the NAACL: Demon-
strations, pages 25–26. ACL.

Guineng Zheng, Subhabrata Mukherjee, Xin Luna
Dong, and Feifei Li. 2018. Opentag: Open attribute
value extraction from product profiles. In 24th ACM
SIGKDD, pages 1049–1058. ACM.

279

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 280–287
June 6–11, 2021. ©2021 Association for Computational Linguistics

Training Language Models under Resource Constraints for Adversarial
Advertisement Detection

Eshwar Shamanna Girishekar Shiv Surya Nishant Nikhil∗ Dyut Kumar Sil
Sumit Negi Aruna Rajan

Amazon
{geshwar, shisurya, dyut, suminegi, rajarna}@amazon.com *i.nishantnikhil@gmail.com

Abstract

Advertising on e-commerce and social media
sites deliver ad impressions at web scale on a
daily basis driving value to both shoppers and
advertisers. This scale necessitates program-
matic ways of detecting unsuitable content in
ads to safeguard customer experience and trust.
This paper focusses on techniques for train-
ing text classification models under resource
constraints, built as part of automated solu-
tions for advertising content moderation. We
show how weak supervision, curriculum learn-
ing and multi-lingual training can be applied
effectively to fine-tune BERT and its variants
for text classification tasks in conjunction with
different data augmentation strategies. Our
extensive experiments on multiple languages
show that these techniques detect adversarial
ad categories with a substantial gain in preci-
sion at high recall threshold over the baseline.

1 Introduction

All advertisements on e-commerce and social me-
dia platforms must be moderated to ensure regula-
tory and ethical standards in countries where they
are being served. A tiered moderation workflow
with automated components like cached lookup,
ML models, rule based annotators complement hu-
man experts to ensure reliable content moderation
for ads created by advertisers while scaling to e-
commerce advertising volumes. The advertising
platform currently enables ads to be created in var-
ious media formats like text, images and videos. In
this work, we focus on detecting adversarial ads
in one broad class of ads, where engagement is
driven primarily through text and images. Such
ads on e-commerce site serve as a casing for the
product being advertised. The casing includes prod-
uct text and image attributes along with optional
custom captions provided by the advertiser. It is
under the purview of moderation to check whether

∗Work done when at Amazon

an ad contains prohibited content. Any ad contain-
ing prohibited content can have an adverse impact
on the shopper experience and hence needs to be
prevented from showing up. See Section 2.1 for a
broad overview of the adversarial ad categories.

In this paper, we focus on techniques we use
to train NLP models built as a part of this system.
Training any ML model requires a good quality
dataset that is representative of the policy being en-
forced. The quality of data available to train mod-
els targeting a defect, say detection of “adult and
objectionable content“ depends on several factors.
Typically occurrences of such products are rare but
the impact of such an ad on shopper experience is
adverse. The uncommonness of these violations
makes curating large in-domain monolingual cor-
pora difficult. This problem is compounded in low
resource languages where there are limited linguis-
tic resources and the rarity of these violations are
even more skewed. Further, it is expensive and
time consuming to gather more labeled data.

Through this paper, we show different ways to
train generalised language models when we have
limited labeled data. We suggest various ways
for data augmentation and empirically provide ev-
idence suggesting when each of the approaches
works best. We explore how we can leverage the
product catalogue and user behaviour in weak and
semi-weak supervision, curriculum learning and
multilingual training strategies to train generalised
language models like BERT (Devlin et al., 2019)
and its variants. Our experiments show :

• Weak supervision for unlabelled data in the
target domain provides an average gain of
10.88% in precision across languages.

• Curriculum strategies to augment labeled data
from resource rich language by translation
improves average true negative rate(TNR) by
24.25% in low resource setting.

• Multilingual training using labeled data in any
280

available languages provides average gain of
24.32% in TNR over the baselines.

2 Background: Content moderation

2.1 Scope of content moderation

Online advertising platforms typically enable ad-
vertisers to create ads in various media formats
like text, images and videos. Here we provide an
overview of the broad categories which are gener-
ally restricted from advertising across these plat-
forms.

Sculley et al. (2011) describe some of the adver-
sarial categories which can compromise the user
safety. These include ads which promote unsafe
and illegal content or products. In addition to these
categories, promotion of adult, profane, hate in-
citing and tobacco related products/content are re-
stricted as well. All of these adversarial categories
are under the purview for content moderation.

We primarily featurise the text attributes of the
product in catalogue such as product title, descrip-
tion and optional custom text provided by the adver-
tiser to detect aforementioned unsuitable content.

2.2 Dataset

A very small fraction of ads belong to the restricted
categories referenced in Section 2.1. We perform
all experiments on 5 such semantic categories
shown in Table 1. For the positive class(defective
ad), we consider all ads labelled by human experts.
We split this data into train and validation set us-
ing multi-label stratification (Sechidis et al. (2011);
Szymański and Kajdanowicz (2017)) on catalogue
categorisation of the product. To enable training,
we restrict the size of negative class by restricting
the sample size to utmost 100 times the size of the
positive class and augment it with 10% of hard neg-
ative samples that were caught by existing signals
but approved by human experts. The validation set
is used to tune model hyperparameters and deter-
mine the stopping criterion. We maintain a separate
temporally distinct test set replicating production
setting. A similar approach is taken when creating
train and test set for low resource languages.

2.3 Baselines

BERT and M-BERT For all the experiments we
make use of BERT (Bidirectional Encoder Repre-
sentations from Transformers)(Devlin et al., 2019),
a transformer based attention model that encodes
an entire sequence at once using multiple attention

based encoder layers. We use a linear classification
layer applied on max-pooled version of last four
attention layer outputs of BERT and finetune the
model on limited labeled data. Because of the skew
in the labels, we weight the binary cross entropy
loss inversely based on label frequency and clip
the scaling factor to improve stability of training.
The model is trained using textual attributes of the
products. Adam (Kingma and Ba, 2014) optimiser
is used and the maximum sequence length is re-
stricted to 512 during training and inference. For
low resource languages we make use of M-BERT.
We decide the hyper-parameters of the models by
their performance on the validation set and main-
tain these hyper parameters across ablative experi-
ments.
Word embedding based text classifier In the
multi-lingual setting, we use another baseline. This
is a linear classifier based on word embeddings
similar to the setup in (Shen et al., 2018). We use
fastext (Bojanowski et al., 2017) embeddings for
German to get the word embeddings and combine
them by taking a weighted average of the embed-
dings as described in Arora et al. (2017). This
removes the special direction to generate the sen-
tence embedding. We also obtain max-pooled em-
beddings that extracts salient features along vector
dimensions. This is later stacked to the reference
weighted average embedding and used to train a lo-
gistic regression classifier with the limited labeled
data. We refer to this model as BOE_LIN.

3 Finetuning BERT under low resource
constraints

We explore various techniques that can be used
to train generalised language models(GLM) like
BERT and multilingual variants with significant
performance gains over baseline models described
in Section 2.3. We look at resource constraints
during training of machine learning models in a
supervised setting attributed to the following cases:

• Lack of labeled data.
• Lack of large in-domain monolingual corpora.
• Linguistic resources insufficient for building

reliable statistical NLP applications.

We leverage product catalog to source data for
weak and semi-weak supervision training in mono-
lingual setting. We also explore how curriculum
strategies and multilingual training can benefit
training text classifiers for low resource languages.

281

Our experiment show that generalised language
models like BERT or multilingual variants like M-
BERT can be trained using these techniques with
significant performance gains over baseline model
described in Section 2.3.

3.1 Semi-Supervision and
Semi-Weak-Supervision

We employ two approaches as described in
Yalniz et al. (2019) One is the conventional
semi-supervised approach using teacher-student
paradigm. The teacher model is trained using the
limited labelled data (or strong data) and then used
to get predictions for the unlabelled data. Top k%
of the predicted samples for each of the class are
used to pre-train the new student model. The stu-
dent model is further fine-tuned using the limited
labelled data. The second approach is semi-weakly-
supervised approach. Here, the sourced data asso-
ciated with weak labels is used to pre-train the
teacher model before fine-tuning on the limited la-
belled data. Again top k% predicted samples by the
this teacher model is used to pre-train student net-
work prior to fine-tuning on the strong data. Yalniz
et al. (2019) apply these two techniques for image
and video classification tasks and achieve SOTA
results using semi-weak-supervision. We explore
these approaches applied to text classification task
using a GLM like BERT.

3.1.1 Semi-Supervised(SS) Methodology
In this section we describe how we augment un-
labelled/weakly labeled data. We leverage user
behavioural data by using internal search engine
to source products relevant to different categories
from huge product catalog. We can query search
using generic text phrases and pre-existing cata-
logue categorisation (CC). So we design relevant
text phrases and pre-existing catalogue categorisa-
tion for a defect of interest. These attributes are
filtered by a keyword list which is a combination
of a curated list and word list sourced from models
that use BoW as a feature. Table 1 provides the
statistics of the proportion of number of products
sourced using different approaches.

We use the augmentation for only defective class
since the class skew is several orders larger. Once
we have the augmented data for the defective cate-
gory we treat it as unlabelled for semi-supervised
setup. The teacher model which is BERT is trained
only on the strong data. In case of very limited
data like CAT4–5 we make use of fasttext classifier

Table 1: Statistics of deny list keywords, catalogue cat-
egorisation labels (CC) and relative scale of data for
each label category

DEFECT CATEGORY CAT1 CAT2 CAT3 CAT4 CAT5

COUNT OF KEYWORDS 315 240 36 45 50
COUNT OF CC 26 111 27 1 20

SCALE OF DATA 10 100 5 2 1

Table 2: Precision over Baseline, BERT(B) trained
with limited labeled data, at our high Recall threshold
for all models across defects.

PRECISION IMPROVEMENT AT HIGH RECALL THRESHOLD
OVER BASELINE

METHOD CAT1 CAT2 CAT3 CAT4 CAT5

B_SS +40.46 +11.6 + 2.12 +4.85 +2.93
B_SWS +40.48 +10.99 +6.44 +8.02 +7.09

as teacher. The teacher model is used to score the
augmented samples. Top k% of the augmented data
based on model scores are picked to pre-train the
new student BERT model. Later the student BERT
model is fine-tuned using the strong labelled data.
When training both teacher and student models we
validate the model after each epoch on the same
validation set and use the validation score as the
stopping criteria.

3.1.2 Semi-Weak-Supervised(SWS)
Methodology

Here we treat the augmented data as weakly labeled
data and use it to pre-train teacher model before
fine-tuning it with strong labeled data. This teacher
model is used to score the top k% samples of the
weakly labeled data which is used to pre-train new
student model which is later fine-tuned using strong
data. Here again while pre-training and fine-tuning
teacher and student models we validate the model
after each epoch on the same validation set and use
the validation score as the stopping criteria.

3.1.3 Extension to low resource languages
We take the exact same approach of augmenting
data for low resource languages and train the M-
BERT model. With low resource languages we face
two challenges. First, labelled data available here is
less compared to English(EN). In German(DE) and
French(FR), the scale of the positive class is of or-
der 0.02-0.15 compared to scale of different defect
categories for EN reported in Table 1. Second, key-
words available for sourcing weakly labeled data
is less which affects quality of sourcing weak data.
To address these challenges we explore curriculum
learning and multilingual training for low resource
setting.

282

3.2 Curriculum for leveraging resource rich
domains

In the above section we discussed augmenting data
using weak signals. Here we explore how we can
utilise large amounts of labeled data available in
resource rich languages such as EN. We translate
the ad creatives available in EN to the target lan-
guage. Hence forth, this data is referred to as trans-
lated data. A trivial approach to utilise this data
for tuning the model is to combine the strong and
translated data and randomly sample mini-batches
(B_TLRS) from the unified set while training. An-
other possibility is to use the translated data to pre-
train the classifier and fine-tune it with the strong
data in target domain (B_TLFT). Here, during
every epoch, we initially train the model with the
mini-batches sampled from the translated data fol-
lowed by sampling mini-batches from strong data.
This clearly has an advantage over the earlier ap-
proach as it helps model adapt to the target domain
and avoid domain shift arising from the translation
engine employed.

We also explore an approach leveraging curricu-
lum learning that is agnostic of the distinction be-
tween translated and strong data for training the M-
BERT model. Curriculum learning(Hacohen and
Weinshall, 2019) involves using the prior knowl-
edge of the difficulty of the training samples to
sample training mini-batch. To rank the difficulty
of the training sample (xi, yi) we need a scoring
function. Scoring function f : X → R is any func-
tion which scores the difficulty of a given training
sample. If f(xi, yi) > f(xj , yj) then (xi, yi) is
more difficult than (xj , yj). We also use a pacing
function (Hacohen and Weinshall, 2019) which de-
termines the sequence of subsets X1, .., Xm ⊆ X
of size gi from which mini-batches {Bi}Mi=1 are
sampled. These are generally monotonically in-
creasing functions so the likelihood of the easier
samples decrease over time.

In our case, we use BOE_LIN (See Section 2.3)
as our scoring function- a proxy for hardness of
the sample. Samples with confident predictions
by BOE_LIN for positive and negative classes are
considered easy while hardness increases as the
samples are closer to boundary of separation. We
initially pick the easier samples for the first x it-
erations. We augment the training samples with
difficult samples progressively for every x itera-
tions till all the data is seen by the model. In our
case, we consider x = 2 and split the data into

5 sets of increasing difficulty. Iterations 1–2 are
trained using the set having the most easy samples
defined by the scoring function f . In iterations 3–4,
we take the initial two sets of easy samples. In such
a progression, the model sees the entire dataset in
iterations 9–10. We use early stopping to choose
the model at iteration i.

3.3 Multi-Lingual training of M-BERT

In Section 3.1 - 3.2, we explored methods of aug-
menting data from external sources for the same
language i.e they were trained on monolingual data.
However, in weak supervision, the quality of weak
data is contingent on sourcing technique used. Us-
ing translated data from source domains risks intro-
ducing semantic drift due to inaccuracies in the
translation engine used. Advertisers create ads
for different markets and we have limited data in
French(FR), Spanish(ES), Italian(IT) apart from
English(EN) and German(DE). To mitigate these
challenges, we explore multilingual training of M-
BERT leveraging data from different languages to
train a classifier for the target DE language thus
avoiding sourcing technique to augment data.

Pires et al. (2019) show that M-BERT is good
at zero shot cross lingual transfer where task spe-
cific text in one language is used for fine-tuning the
model for a different target language. They further
show that the transfer is more pronounced when
there is more lexical overlap between the languages.
They also show that transfer works with zero lexical
overlap when the two languages are typologically
similar i.e the ordering of subject, object and verbs
among other parts of speech in a sentence. In our
experiments we mainly rely on the lexical similar-
ity between languages for training M-BERT. Table
4 (Wikipedia contributors, 2004) provides the lex-
ical similarity between the languages for which
we have labeled data. Lexical similarity score of 1
would mean total overlap between vocabularies and
0 would mean no overlap between vocabularies.

From entries for lexical similarity in Table 4,
we observe that DE is lexically most similar to
EN followed by FR. In case of missing values, we
consider the corresponding languages as lexically
farthest to the target language. Since M-BERT
is trained on monolingual corpora and the above-
mentioned 5 languages are among them, the vo-
cabulary of M-BERT would have all the alphabets
from these languages. On the basis of results evi-
denced in Pires et al. (2019), we hypothesise that

283

4

Table 3: Precision and TNR improvements at our high recall threshold for all the explored models for DE and FR
languages using different training strategies and for ablation studies in Section 4.1 over BOE_LIN. Here B refers
to M-BERT finetuned with limited labeled data.

B B_SS B_SW S
MODEL TYPE

B_T LRS B_T LF T B_T LCL B_M LLEX B_T LACL

ABLATION TYPE

B_T LRCL B_M LREV
LEX _M LRAND B LEX

DE

FR

TNR
PREC.
TNR
PREC.

+14.35
+0.76

+15.29
+0.77

+23.15
+1.69

+19.16
+1.10

+24.79
+1.95

+20.05
+1.19

+13.84 +23.76
+0.72 +1.78

+15.10 +20.41
+0.75 +1.23

+26.40
+2.24
+22.11
+1.43

+29.08
+2.83

+19.57
+1.14

+25.7
+2.11

+21.02
+1.30

+21.0 +14.17
+1.4 +0.75

+20.68 +12.71
+1.26 +0.59

+26.90
+2.34

+18.80
+1.07

Table 4: Lexical Similarity scores between languages
of interest taken from Wikipedia.

LANGUAGE EN DE FR ES IT

EN 1 0.6 0.27 - -
DE 0.6 1 0.29 - -
FR 0.27 0.29 1 0.75 0.89
ES - - 0.75 1 0.82
IT - - 0.89 0.82 1

the zero shot transfer is more likely among similar
lexical languages and devise our multi-language
training of M-BERT in the following manner. We
take the labeled data available in 5 languages and
sort them based on increasing lexical similarity
with the target language. For target language DE,
the ordering would be ES, IT, FR, EN, DE. We
feed all the data in the aforementioned ordering
and progressively drop the lexically farthest lan-
guage every x iterations until we are only left with
the target language. In our case we set x = 2 and
train the M-BERT. We generally stop training the
model after 10 iterations since we do not observe
significant gains beyond this.

Results

In all experiments, we track model performance
using precision and recall. Precision indicates the
fraction of ads correctly rejected by model. Recall
indicates the fraction of true defective products
rejected by the model for a particular category.
SS and SWS for EN Table 2 shows the improve-
ment in precision for all the models built using
the semi-supervision and semi-weak-supervised
approaches. We see semi-supervision(B_SS) con-
sistently perform better than the baseline, BERT
finetuned with strong data, across all categories.
For CAT1–2, we observe a substantial lift in pre-
cision over baseline compared to other categories.
This is attributed to strong sourcing characteristics
for these categories observed in Table 1. We ob-
serve significant gains by SWS(B_SWS) models
especially in low resource categories like CAT3–5.
For CAT3, CAT4 and CAT5 we see 6–8% better
precision respectively.
Results for low resource languages In case of low

resource languages the amount of defective ads is
much lesser and is of order 0.02-0.15 as called
out earlier. Since the quantity of positive class is
drastically low, precision does not always indicate
the true gains seen by our models. Hence we also
report true negative rate(TNR) which is the % of
non-defective ads rightly approved by our models.

Table 3 provides the relative improvements in
metrics of all the models in comparison to base-
line BOE_LIN. The complex and heavily param-
eterised M-BERT(B) model achieves a signifi-
cant increase in TNR despite dearth of training
data. From performance numbers in Table 3,
we see that fine-tuning(B_TLFT) the model with
target domain after pre-training with translated
data is better than random sampling(B_TLRS)
of mini-batches across strong and translated data.
Plain augmentation of data through translation
without any curriculum during training the model
might not always show gains as indicated by M-
BERT’s performance. However, introducing a
curriculum(B_TLCL) based on the difficulty of
the training samples outperforms the initial two
approaches.

Table 3 also shows performance of weak supervi-
sion techniques (see Section 4.1). Models trained
using both SS(B_SS) and SWS(B_SW S) ap-
proaches outperform the model which was trained
only using the strong data.

We observe the best performance for the model
(B_MLLEX) leveraging data from multiple lan-
guages and trained in lexical order fashion. Since
DE is lexically similar to EN, the larger training
data in EN aided the model performance in this
setting. We also rerun the experiments with FR
with same setting and results are provided in Table
3. If we observe the lexical similarity in Table 4,
FR is most similar to IT and ES and farther away
from EN which has the most amount of labeled
data. Hence, we do not see the similar kind of
gains for FR as seen in DE which is lexically closer
to EN. For FR the model trained using curriculum
(B_TLCL) based on the hardness of the sample

284

performs the best. We observe a similar trend in
FR for rest of the approaches.

4.1 Ablations

We ablate the effects of curriculum learning based
on increasing difficulty using models trained in
two control conditions. (a) Anti-curriculum learn-
ing (_) using scoring function 0 B TLACL f = −f
where harder samples are fed first and (b) random
curriculum (B_TLRCL) where scoring function
randomly scores the training samples. As seen
from the Table 3 anti-curriculum and random cur-
riculum are not as effective as the curriculum of
increasing hardness. Further, random scoring func-
tion results in significant degradation of perfor-
mance when compared to approaches employing a
curriculum. Similar trends are observed for respec-
tive models trained in FR as well.

We further conduct ablations to rule out any
other factors contributing to the gain in recall from
curriculum based on lexical similarity. We per-
form two other experiments where we train the
model in similar manner but feed the languages in
reverse lexical similarity order(B_MLREV

LEX) and
random order (B _MLRAND

LEX). However, in both
the experiments we feed the target language at the
end to minimise domain shift. We see that the
model trained in the lexical similarity order beats
the performance of the other two models in Table
3. We validate statistical significance of gains from
both lexical and hardness curricula using the Mc-
Nemar’s Test (Dietterich, 1998; McNemar, 1947)
(Raschka, 2018). The gains through both curricu-
lum are statistically significant as p-value is < 0.05
for both DE and FR.

5 Conclusion

We have explored multiple ways of training a GLM
and it’s multilingual variant in low resource set-
tings. When large in-domain monolingual corpora
is present but labeled data is limited, sourcing weak
data applied in semi and semi-weak supervision
training improves model performance consistently.
Curricula are useful in resource constrained set-
tings. Multilingual training on a lexical similarity
based curriculum is useful when target language is
lexically closer to resource rich languages. Alter-
nate curriculum like sample hardness is useful in
low resource languages which are lexically distant
to resource rich language such as EN.

6 Related Work

Lately, there has been exponential progress in gen-
erating efficient embeddings for various natural lan-
guage processing(NLP) tasks using language mod-
els (Radford et al. (2019); Liu et al. (2019)). BERT
(Devlin et al., 2019) based embeddings achieved
SOTA results in eleven NLP tasks at the time of
its release. Devlin et al. (2019) also release a mul-
tilingual version of BERT(M-BERT), pre-trained
using monolingual corpora of 104 different lan-
guages. M-BERT is also surprisingly good at zero
shot transfer between languages as shown by Pires
et al. (2019). Prior to and in parallel to M-BERT
multiple works have been done for multilingual
NLP tasks (Ruder et al., 2019). LASER described
in Artetxe and Schwenk (2019) achieve language
independent representation by having a single en-
coder and decoder which are shared by all language
pairs for the translation task. Conneau and Lample
(2019) propose using parallel data to train transla-
tion language model as an extension to M-BERT.
Conneau et al. (2019) release XLM-R which is
pretrained using 100 languages using much larger
corpus compared to M-BERT.

Most of the recently launched language models
have millions of parameters which demands huge
amount of labelled data for training robust mod-
els. However, obtaining large amount of labeled
data is a laborious and expensive process. Semi-
supervised approaches involve efficiently incorpo-
rating huge quantity of unlabelled data along with
limited labelled data. There has been a lot of work
in this area in image and text domain. Yalniz et al.
(2019) propose a teacher-student paradigm for in-
corporating both unlabelled and weakly labelled
data for training a image classifier. Karamanolakis
et al. (2019) also make use of teacher-student ap-
proach for leveraging weak signals for aspect de-
tection in text. Variational auto encoders (Yang
et al. (2017); Gururangan et al. (2019)) and virtual
adversarial training(Miyato et al., 2016) have been
extensively used in semi-supervised setting. Re-
cently interpolations in textual hidden space(Chen
et al., 2020) have been used for semi-supervised
learning as well.

Multiple prior works (Sculley et al. (2011); Sanz-
giri et al. (2018)) detect adversarial ads in online
advertising platforms. While Sculley et al. (2011)
provide a holistic view of creating an adversarial
ad detection system, Sanzgiri et al. (2018) look at
techniques for detecting sensitive content in images.

285

Our work focuses on techniques we leverage to
train state of the art language models for detecting
adversarial advertising content in text. However,
the uncommon nature of these violations pose a
challenge, often compounded in low resource lan-
guages. We leverage related work in semi-weak
supervision and curriculum learning to overcome
these challenges. We also show how data avail-
able in multiple languages can be used for training
classifiers for a given target language.

References
Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.

A simple but tough-to-beat baseline for sentence em-
beddings.

Mikel Artetxe and Holger Schwenk. 2019. Mas-
sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transac-
tions of the Association for Computational Linguis-
tics, 7:597–610.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. Mix-
text: Linguistically-informed interpolation of hid-
den space for semi-supervised text classification.
arXiv preprint arXiv:2004.12239.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems, pages
7059–7069.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Thomas G. Dietterich. 1998. Approximate statistical
tests for comparing supervised classification learn-
ing algorithms. Neural Comput., 10(7):1895–1923.

Suchin Gururangan, Tam Dang, Dallas Card, and
Noah A Smith. 2019. Variational pretraining for
semi-supervised text classification. arXiv preprint
arXiv:1906.02242.

Guy Hacohen and Daphna Weinshall. 2019. On the
power of curriculum learning in training deep net-
works. CoRR, abs/1904.03626.

Giannis Karamanolakis, Daniel Hsu, and Luis Gravano.
2019. Leveraging just a few keywords for fine-
grained aspect detection through weakly supervised
co-training. arXiv preprint arXiv:1909.00415.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Quinn McNemar. 1947. Note on the sampling error
of the difference between correlated proportions or
percentages. Psychometrika, 12(2):153–157.

Takeru Miyato, Andrew M Dai, and Ian Good-
fellow. 2016. Adversarial training methods for
semi-supervised text classification. arXiv preprint
arXiv:1605.07725.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996–
5001, Florence, Italy. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Sebastian Raschka. 2018. Mlxtend: Providing ma-
chine learning and data science utilities and exten-
sions to python’s scientific computing stack. Jour-
nal of Open Source Software, 3(24):638.

Sebastian Ruder, Ivan Vulic,´ and Anders Søgaard.
2019. A survey of cross-lingual word embedding
models. Journal of Artificial Intelligence Research,
65:569–631.

Ashutosh Sanzgiri, Daniel Austin, Kannan Sankaran,
Ryan Woodard, Amit Lissack, and Sam Seljan. 2018.
Classifying sensitive content in online advertise-
ments with deep learning. In 2018 IEEE 5th Inter-
national Conference on Data Science and Advanced
Analytics (DSAA), pages 434–441. IEEE.

D Sculley, Matthew Eric Otey, Michael Pohl, Brid-
get Spitznagel, John Hainsworth, and Yunkai Zhou.
2011. Detecting adversarial advertisements in the
wild. In Proceedings of the 17th ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining, pages 274–282.

286

Konstantinos Sechidis, Grigorios Tsoumakas, and Ioan-
nis Vlahavas. 2011. On the stratification of multi-
label data. Machine Learning and Knowledge Dis-
covery in Databases, pages 145–158.

Dinghan Shen, Guoyin Wang, Wenlin Wang, Mar-
tin Renqiang Min, Qinliang Su, Yizhe Zhang, Chun-
yuan Li, Ricardo Henao, and Lawrence Carin.
2018. Baseline needs more love: On simple
word-embedding-based models and associated pool-
ing mechanisms. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 440–
450, Melbourne, Australia. Association for Compu-
tational Linguistics.

Piotr Szyma´ Anski and Tomasz Kajdanowicz. 2017.
network perspective on stratification of multi-label
data. In Proceedings of the First International Work-
shop on Learning with Imbalanced Domains: The-
ory and Applications, volume 74 of Proceedings of
Machine Learning Research, pages 22–35, ECML-
PKDD, Skopje, Macedonia. PMLR.

Wikipedia contributors. 2004. Plagiarism —
Wikipedia, the free encyclopedia. [Online; ac-
cessed Feb-2020].

I. Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar
Paluri, and Dhruv Mahajan. 2019. Billion-scale
semi-supervised learning for image classification.
CoRR, abs/1905.00546.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and
Taylor Berg-Kirkpatrick. 2017. Improved varia-
tional autoencoders for text modeling using dilated
convolutions. arXiv preprint arXiv:1702.08139.

287

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 288–295
June 6–11, 2021. ©2021 Association for Computational Linguistics

Combining Weakly Supervised ML Techniques for Low-Resource NLU

Victor Soto and Konstantine Arkoudas
Amazon Alexa AI

New York, NY, USA
{nvmartin, arkoudk}@amazon.com

Abstract

Recent advances in transfer learning have im-
proved the performance of virtual assistants
considerably. Nevertheless, creating sophisti-
cated voice-enabled applications for new do-
mains remains a challenge, and meager train-
ing data is often a key bottleneck. Accord-
ingly, unsupervised learning and SSL (semi-
supervised learning) techniques continue to be
of vital importance. While a number of such
methods have been explored previously in iso-
lation, in this paper we investigate the synergis-
tic use of a number of weakly supervised tech-
niques with a view to improving NLU (Natu-
ral Language Understanding) accuracy in low-
resource settings. We explore three different
approaches incorporating anonymized, unla-
beled and automatically transcribed user utter-
ances into the training process, two focused on
data augmentation via SSL and another one fo-
cused on unsupervised and transfer learning.
We show promising results, obtaining gains
that range from 4.73% to 7.65% relative im-
provements on semantic error rate for each in-
dividual approach. Moreover, the combination
of all three methods together yields a relative
improvement of 11.77% over our current base-
line model. Our methods are applicable to any
new domain with minimal training data, and
can be deployed over time into a cycle of con-
tinual learning.

1 Introduction

Virtual assistants are becoming ubiquitous, their ex-
pansion fueled by third-party developers who build
voice-enabled applications for an increasingly di-
verse array of domains. However, oftentimes these
independent developers don’t have the wherewithal
to produce sufficient amounts of labeled data, and
consequently their applications suffer from poor
NLU performance. Large pre-trained language
models have mitigated but not eliminated the need
for domain-specific training data, and therefore un-
supervised and SSL techniques continue to form

an important direction of work in the field. While
a number of such methods have been previously
tried in isolation, in this paper we explore the syn-
ergistic use of a number of SSL techniques with a
view to improving NLU accuracy in low resource
settings, specifically for third-party (3P) applica-
tions. NLU in our setting is understood as the joint
task of Intent Classification (IC) and Named Entity
Recognition (NER).

Alexa is an AI virtual assistant developed by
Amazon. By default, Alexa is enabled to work
across many Amazon-built domains, including
news, music, calendar, weather, etc. But Alexa
also includes a third-party skill toolkit, which en-
ables external developers to implement new voice-
enabled functionality in the form of external skills,
such as quiz and trivia games, food-ordering skills,
voice interfaces to a host of devices ranging from
vacuum cleaners to automobiles, and so on. Devel-
opers can build skills by creating skill definitions,
consisting of carrier phrases annotated with intent
labels and slot labels (a.k.a named entities). For
example, for a pizza ordering skill, a developer
could provide the following carrier phrase: I would
like a Size pizza with Topping and Topping, with
an intent such as OrderPizza. The values of the
Size and Topping slots are specified in the form of
catalogs:

Catalog(Size) = {large,medium, . . .}
Catalog(Topping) = {bacon, peppers, . . .}

A full utterance can be realized from the carrier
phrase and the slot catalogs, e.g., I would like a
medium pizza with peppers and bacon. Every token
in this utterance would be labeled with an Other
slot, except for the tokens corresponding to the
slots in the carrier phrase, which would be labeled
as Size, Topping and Topping respectively.

In most cases, skill definitions only contain a few
carrier phrases per intent, resulting in very small
training datasets that lack linguistic diversity and

288

do not always resemble user queries. The main goal
of this paper is to improve NLU model performance
by incorporating unlabeled, anonymized and auto-
matically transcribed user utterances from skills
into the training pipeline, without human interven-
tion or annotators. We explored three different
methods: 1) Data augmentation via maximal FST-
matching; 2) Data augmentation via tri-training
ensembles; and 3) Injecting auto-encoder sentence
embeddings into our baseline DNN (Deep Neural
Network) model architecture.

The first two techniques automatically obtain
labels for live user utterances, which are then used
to augment the baseline training data. The third
technique performs unsupervised pre-training of an
auto-encoder (AE) on user traffic, and this AE is
then used to inject sentence embeddings into our
models as additional signals. The NLU task we
focus on in this paper is the joint task of Intent
Classification (IC) and Named Entity Recognition
(NER), also referred to as Slot Labeling.

The rest of this paper is organized as follows:
Section 2 gives an overview of data augmenta-
tion for NLU skills; Section 3 introduces the three
methods; Section 4 details our experimental design;
Section 5 summarizes the results for all skills, in-
cluding cumulative results for the three methods.
Finally, Section 6 presents our conclusions.

2 Related Work

Learning strategies focused on addressing the
scarcity of labeled data within a specific domain
can be grouped into two approaches: one focused
on leveraging models and resources from other do-
mains for which there is a wealth of resources; and
approaches that aim to leverage unannotated data
for the target domain.

In the first group, Transfer Learning strategies
(McCann et al., 2017; Peters et al., 2018) focus on
pre-training unsupervised models on large amounts
of unlabeled data and then fine-tuning that model
on a small quantity of labeled data. The most re-
cent successful example of transfer learning are
BERT models (Devlin et al., 2019), where a large
transformer language model is pre-trained on either
the task of masked language modeling or next sen-
tence prediction, and whose encoder can be later
fine-tuned as a feature extractor on other NLU tasks
(Peshterliev et al., 2019).

In the second group, Active Learning algo-
rithms use individual classifiers or ensembles of

classifiers to select data points for human annota-
tion based on different criteria: Least-confidence
for examples that are assigned low confidence
scores by the classifiers (Lewis and Catlett, 1994),
query-by-committee for examples that are assigned
a diverse set of labels by the individual classi-
fiers in the ensemble (Freund et al., 1997), or,
more recently, a Majority-CRF that relies on ma-
jority voting from an ensemble of binary classi-
fiers (Peshterliev et al., 2019) to select data for
new NLU domains. Similarly, Semi-Supervised
Learning (SSL) (Chapelle et al., 2009) algorithms
aim to use models trained on small amounts of
annotated data to assign soft labels to unseen exam-
ples which can later be incorporated into the train-
ing set. Self-training (Scudder, 1965; Yarowsky,
1995; Lee, 2013) does this by using the same classi-
fier or a teacher-student pair of classifiers to select
and annotate data, whereas tri-training (Zhou and
Li, 2005) creates an ensemble of three diverse clas-
sifiers that augments unlabeled datasets during an
iterative process based on classifier agreement.

In this paper, we use (a) transfer learning to
pre-train an auto-encoder that is later used to in-
ject sentence embeddings into our IC-NER models
(Section 3.2) and (b) SSL to augment data with
IC-NER annotations obtained by maximal FST-
matching and tri-training ensembles (Sections 3.1
and 3.3 respectively). On the topic of data augmen-
tation via partial parses, similar to our maximal
FST-matching approach, (Kim et al., 2015) pro-
poses to extract slot tagging annotations from web
logs using a weakly supervised approach based on
Conditional Random Fields; and in (Augenstein
et al., 2016) the authors use regular expressions to
augment training data for the task of Stance Detec-
tion. More recently, (Karamanolakis et al., 2021)
has proposed a semi-supervised framework to lever-
age unlabelled data and weak classification rules
for improved text classification.

3 Methods

3.1 Maximal FST-Matching

The carrier phrases given by a developer are ar-
ranged into a finite-state transducer (FST), which
can take an arbitrary utterance u and either (a) ac-
cept it, if u is an instance of a carrier phrase, while
emitting the corresponding slot labeling and intent
as its output; or (b) reject it, if u is not an exact
match for any of the given carrier phrases. This
FST is then sampled to generate the training data

289

for the DNN. Depending on the number and lin-
guistic diversity of the carrier phrases, the resulting
training set can range from complete enough for a
good NLU model (given smart use of transfer learn-
ing and model adaptation techniques) to severely
underspecified.

With the SSL method described in this section,
which we call maximal FST matching, we aim to
augment the training set with automatically tran-
scribed user utterances that are close in form and
meaning to the ones provided by the skill devel-
opers, and which inject greater language diversity
into the training. Specifically, while only a mi-
nority of user utterances are perfect FST matches
(i.e., completely match developer-provided carrier
phrases), many more of them are partial or imper-
fect matches. The intuition here is to compute the
maximal part of a user utterance that matches a
carrier phrase and then superimpose the semantics
(intent and NER labeling) of that matched carrier
phrase to the entire utterance. To take a simple
example, the utterance Hi, I would like a large
pizza with peppers and mushrooms please does not
match the earlier carrier phrase I would like a Size
pizza with Topping and Topping, due to the initial
Hi and the trailing please. However, it is a partial
match, since there is an internal segment of the
utterance that is a perfect instance of the carrier
phrase. Thus, the entire utterance can receive the
intent and NER labeling of the internal segment
(with tokens outside of the matching segment re-
ceiving the label Other) and become part of the
training data.

We use a greedy approach to extract maximal
internal FST matches from a user utterance: we
first run the full span of the utterance through the
FST, then every sub-utterance of length n− 1, and
so on down to length 1. The FST matching is
stopped as soon as a match is found, at which point
the intent and slot labels output from the FST are
transferred to the full utterance as described above.

For each extracted match, we compute its span
ratio, which is the fraction of the length of the FST-
matched sub-utterance over the length of the full
utterance. We treat this ratio as a tunable hyper-
parameter. In Section 5.1 we perform data augmen-
tation by only keeping maximally FST-matched ut-
terances whose span ratio exceeds a certain thresh-
old, both globally and on a skill-specific basis.

Maximal FST-matching can introduce misla-
beled utterances in several ways: a) it can ignore

important semantic information if this is outside of
the scope of the FST match (e.g. "(Do not) include
pepperoni in the pizza."), which can potentially
change the intent of the utterance (in our example,
from ExcludeTopping to AddTopping); and b) it
can miss slot entities that fall out of the scope of
the match (e.g. "Add pepperoni (and green pep-
pers)"). Both risks can be mitigated by filtering out
utterances with low match span ratios.

This method has important advantages. It is easy
to productize, since changes made to the NLU skill
and its carrier phrases can be accommodated by re-
running the new FST on the already matched FST
utterances, which is relatively inexpensive; and the
resulting augmented training set will better reflect
the true distribution of live user traffic.

3.2 Sentence Embeddings via Seq2Seq
Auto-Encoder

Our baseline NLU model consists of a shared com-
ponent that is pre-trained on the MLM task on
Alexa traffic and other large NLP corpora, and
a specific component that jointly models IC and
NER, trained from scratch for every skill sepa-
rately. We add to this architecture a component that
is pre-trained on large amounts of automatically-
transcribed traffic and optionally fine-tuned.

In particular, we experiment with seq-2-seq auto-
encoder (s2s-AE) architectures. We pre-train sev-
eral s2s-AE models with different features and data
sources to obtain an encoder, and we plug the en-
coder’s output into the baseline NLU model as a
new component. The impact of this new feature
on NLU performance (measured on a test set of 86
skills) is detailed in Section 5.2.

3.3 Tri-training
In an effort to obtain more realistic training data,
we use SSL to compute high-quality labels for
automatically-transcribed live user traffic. Specif-
ically, we build a series of tri-training ensembles
that we use to annotate live utterances. We show
that by adding this newly annotated data to our
regular training data, our baseline NLU models
attain very significant improvements on SemER
(Semantic Error Rate).

Tri-training (Zhou and Li, 2005) is a SSL tech-
nique that relies on three independently trained
classifiers. It fine-tunes the three models by pulling
examples from a pool of unlabeled data. On each
iteration of the algorithm, if a pair of classifiers
agree on an unlabeled example, that example is

290

Algorithm 1 Generalized Tri-Training
1: L = grammar utterances
2: U = live utterances
3: Train M1, M2 on L
4: while not criterion do
5: U12 = Utts in U that M1 & M2 agree on
6: M3 = Train(L + U12)
7: U13 = Utts in U that M1 & M3 agree on.
8: M2 = Train(L + U13)
9: U23 = Utts in U that M2 & M3 agree on.

10: M1 = Train(L + U23)
11: end while
12: Obtain labelled examples from U for examples

that M1, M2 and M3 agree on.

then labeled and added to the training set of the
third classifier. Algorithm 1 shows an implemen-
tation of the Generalized Tri-Training algorithm
(Søgaard and Rishøj, 2010), that we also expanded
to an arbitrary number of a classifiers.

Section 5.3 discusses our tri-training experi-
ments.

4 Experiment Design

We compare our methods against our production
3P DNN model, which is depicted in Figure 1. It
consists of a pre-trained shared component and a
skill-specific component. The shared component
is pre-trained on Alexa unsupervised traffic and
external NLP corpora and computes BPE embed-
dings. The specific component consists of a large
Bi-LSTM encoder whose input is the shared embed-
dings and a small BPE embedding followed by a
short Bi-LSTM encoder. The IC layer output takes
the summary vectors from both encoders and out-
puts an IC prediction. The NER layer takes as input
a sequence of vectors, where each vector is com-
posed of the concatenation of the two encoder rep-
resentations and the gazetteer feature of each token.
Gazetteer features are mappings from sequences of
strings to Named Entities, e.g., the sequence The
Beatles would be mapped to Artist_Name. This
model is referred to as Base in what follows.

This study was carried out on 86 English skills
from the top 100 Alexa skills with the highest
amount of user traffic. Baseline training datasets
for 3P skills consist of ten thousand carrier phrases
sampled with repetition. For the 26 skills that in-
clude an out-of-domain (OOD) intent in their skill
definition, we sample the training sets to contain

Figure 1: The Baseline NLU model.

50% of OOD intent examples. For the 86 skills in-
cluded in this study, the average number of unique
carrier phrases in a baseline dataset for a skill is
3,302. Our test sets for every skill are comprised of
live user traffic annotated in-house with Intent and
Slot labels. On average, the number of utterances
in a skill test set is 816, with 425 of those being
unique.

5 Results

We use two different metrics, SemER (Semantic
Error Rate) and IRER (Interpretation Recognition
Error Rate) (Su et al., 2018). SemER combines
intent and slot classification accuracy into a single
score. It computes a modified edit distance that
takes into account the number of substitutions (S),
incorrect predictions (I), and deletions (D) in the
sequence of slots, and the intent prediction. For a
sequence of L tokens, SemER is defined as (S + I +
D) / (L + 1). The IRER of a single utterance is 1 if
all the slots and intent are correctly recognized, and
0 otherwise. The IRER of a dataset is the fraction
of utterances whose IRER is 1.

5.1 Data Augmentation via Maximal
FST-Matching

We collected a dataset of live automatically-
transcribed user traffic spanning four months across
86 skills, and split it in two: we use one set for se-
lecting a Maximal Span Ratio (MSR) threshold,
and the second one for testing the MSR threshold
selection (and vice versa). All live user traffic used
in this study was de-identified. When using a global
threshold across all 86 skills, the best global thresh-

291

old is 0.8. Under this scheme, a newly labeled
live utterance is retained only if its maximal FST
match spans at least 80% of the utterance. Using
this policy, the relative improvement on SEMER
with respect to our baseline DNN model (i.e., the
SEMER improvement that we obtain by adding
those utterances to our training data) is 1.14%.

When performing skill-specific thresholding (by
using part of the skill’s test data as a dev set for
selecting a threshold, and the rest of the test set
to compute metrics), we obtained a 10.14% rela-
tive improvement on SEMER and 6.2% improve-
ment on IRER with respect to our baseline DNN.
Another set of experiments where MSR threshold
selection was performed on two months of data
and tested on five months of data obtained relative
improvements on SEMER and IRER of 5.01% and
1.44% respectively.

5.2 Sentence Embedding Injection

We collected automatically transcribed live traffic
from the last six months of 2019. After deduping
the utterances, we split them into an unsupervised
training set of 60K hours of speech, and validation
and test sets of 1.6K hours each.

We trained and evaluated s2s-AE models with
different architectural features, as in LSTM and
Transformer layers for their encoder or decoder,
encoder and decoder depth (2 or 3 hidden layers),
number of hidden units per layer (256, 512, or
1,024 units per layer), number of epochs for train-
ing, vocabulary token types (words or BPE), vo-
cabulary size (20k or 50K) and size of training set
(16.6K, 33K and 60K hours of transcribed speech).
The best performing model, measured both on vali-
dation perplexity and on SEMER on an annotated
test set that spanned September to December 2019,
was a s2s-AE model with two transformer layers
on both encoder and decoder, 512 units per layer,
trained on 60K hours of automatically transcribed
speech using a BPE vocabulary of 50k tokens.

The s2s-AE is hooked into our baseline NLU
model by discarding the decoder and passing the la-
tent code (sentence embedding) into the Intent Clas-
sification (IC) block; and by passing the sequence
of hidden states into the Named Entity Recognition
(NER) block. A block diagram for the resulting
NLU model can be seen in Figure 2. Injecting
the s2s-AE into the baseline model without any
skill-specific fine-tuning yields SEMER relative
improvements of 1.53% on our seven month anno-

Figure 2: A Baseline 3P NLU model with a Sentence
Embedding from the s2q-AE.

tated test set. Using an additional annotated test
set that spanned September to December 2019, and
by trying several learning rate multipliers (LRMs)
for our seq2seq encoder, we found the overall best
LRM was 0.0 (no fine-tuning), followed by 0.1
(which caused a -0.31% relative regression on SE-
MER). This indicates that for fine-tuning to work,
it needs to be done in a skill-specific fashion.

Following the same steps for skill-specific fine-
tuning as for maximal FST-matching and for the
MSR threshold parameter, we use one annotated
dataset from September to December 2019 for
LRM selection and an annotated test set that spans
January to July 2020 for evaluation. We choose
the best LRM for each of the 86 skills on the first
dataset, obtain SEMER values on the second one,
and average them, observing a 4.73% relative im-
provement.

5.3 Data Augmentation via Tri-training
Ensembles

We start by training a tri-training ensemble of three
identical NLU models with different seeds to di-
versify the initial training/validation sets and the
training algorithm. The tri-training stopping crite-
rion was set to either reaching an average SEMER
on the validation sets of 0.0 or run for a maximum
of three iterations. Upon finishing, we obtained
live utterances labeled with high-precision labels.
These are utterances that all three models had com-
plete agreement on IC and NER annotations (not
majority vote agreement). On average, each skill
had their training set size increased by 138.54%,
ranging from 7.11% to 1089.57%.

292

We trained NLU models on new training sets
formed by the baseline 10k training utterances and
up to another 10k utterances from the live utter-
ances with high-precision labels. The average train-
ing set went up to 16K utterances per skill and the
average SEMER was improved with a 2.56% rel-
ative improvement. Without capping the amount
of live data added to the training set, the SEMER
is further improved with a 2.91% relative improve-
ment on SEMER, and a 4.45% relative improve-
ment on IRER. Despite the good initial results, 28
skills suffered SEMER degradation.

The second ensemble we tried consists of a base-
line NLU model, the NLU model with an additional
encoder pre-trained as an auto-encoder model on
live utterances from Section 5.2, and an NLU
BERT-based model. We use the same stopping
criterion. By the end of tri-training, we obtained
high-quality labels that increased the domain train-
ing sets for an average of 99.15% per skill.

Again, we trained NLU models without a maxi-
mum training size, with a validation set of 10% of
these utterances. This time we obtained a relative
improvement of 7.65% on SEMER. The IRER rel-
ative improvement is 9.67%. A total of 18 skills
suffered SEMER degradation with this ensemble.

We used our trained tri-ensemble to infer high-
precision labels on the test set and measure how
accurate the high-precision labels really are. Using
a setting where an utterance is only retrieved with
complete agreement in the ensemble, the average
coverage was 63.88%.

Tri-training theory assumes that the ensemble
classifiers are independently trained. Here we ex-
plore the addition of an altogether different type
of classifier to our collections of neural classifiers,
namely SVMs for IC and NER. Both use BPE word
embeddings as features. For IC, we extract the BPE
embeddings and concatenate the max, min, sum
and mean vector of the embedding sequence for a
total of 1024 dimensions. For NER, we map ev-
ery word to the sum of its BPE embeddings. Both
models use linear kernels, since the size of our
datasets and the need to perform grid search make
non-linear kernels impractical.

We built a 4-classifier ensemble by adding the
SVM classifiers to the previous ensemble com-
posed of a NLU model, a NLU model with an
additional encoder pre-trained as an auto-encoder
model on live utterances, and an NLU BERT-based
model. In this occasion the addition of the SVM

Model SEMER ∆% IRER ∆%
+M-FST 5.01 1.44
+Tri 7.65 9.67
+M-FST&Tri 10.54 11.49

Table 1: NLU Performance for Base Model with three
Data Augmentation options. Relative improvement val-
ues are computed with respect to the Base Model with-
out data augmentation.

model causes the test coverage ratio to be greatly re-
duced to 55%.Furthermore, the NLU DNN model
trained on the additional data labeled by this ensem-
ble achieves 7.27% and 8.32% relative improve-
ments on SEMER and IRER, which is small reduc-
tion from the previous best ensemble.

5.4 Cumulative Experiments
In this section we present some cumulative re-
sults obtained by applying combinations of the
three techniques. We start by analyzing the per-
formance of our baseline NLU model (Base) by
itself; b) after adding fine-tuned maximally FST-
matched data (FT-FST); c) after adding SSL data
from tri-training (Tri); and d) after adding both
FST-matched data and tri-training data (Table 1).
Fine-tuned FST-matched data yields relative im-
provements of 5.01% and 1.44% on SEMER and
IRER respectively, tri-training data yields 7.65%
and 9.67% relative improvements on SEMER and
IRER, and both combined deliver 10.54% and
11.49% relative improvements.

Next, we analyze the performance of the NLU
model that incorporates a sentence embedding from
an auto-encoder fine-tuned specifically for every
skill (Base+SE). By adding fine-tuned maximally
FST-matched data, SEMER and IRER improve by
8.23% and 7.73%, respectively. Adding tri-training
data yields 8.33% and 10.81% relative improve-
ments on SEMER and IRER, respectively, while
both combined deliver relative improvements of
11.77% and 12.94% on SEMER and IRER. All
these relative improvements are with respect to the
baseline NLU model (without data augmentation).
See Table 2.

6 Conclusions

We presented three different approaches to improv-
ing NLU performance for skills that have limited
amounts of annotated data. The two data augmen-
tation approaches, based on maximal fst-matching
and tri-training ensembles, yield considerable rel-
ative improvements of 5.01 and 7.65%. A third

293

Model SEMER ∆% IRER ∆%
Base+SE 4.73 4.51
+M-FST 8.23 7.73
+Tri 8.33 10.81
+M-FST&Tri 11.77 12.94

Table 2: NLU Performance for Base+SE Model with
three Data Augmentation options. Relative improve-
ment values are computed with respect to the Base
Model performance.

approach, based on injecting sentence embeddings
obtained from an auto-encoder pre-trained on live
traffic, gave 4.73%. The combination of the three
techniques attained a total relative improvement of
11.77%. Overall, adding these three methods into
our pipeline improves NLU performance, lever-
ages automatically transcribed user traffic for all
skills, lessens the need for developers to provide
annotated data, and eliminates the need for internal
human-based annotations for training better mod-
els.

Acknowledgments

The authors are thankful to Saleh Soltan and the
rest of the DeepNLU team for some of the pre-
trained models and components that have been used
in this study, and to Lisheng Fu, Matthew Trager
and Sandesh Swamy for their assistance.

References
Isabelle Augenstein, Tim Rocktäschel, Andreas Vla-

chos, and Kalina Bontcheva. 2016. Stance detection
with bidirectional conditional encoding. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 876–885,
Austin, Texas. Association for Computational Lin-
guistics.

Olivier Chapelle, Bernhard Scholkopf, and Alexander
Zien. 2009. Semi-supervised learning. IEEE Trans-
actions on Neural Networks, 20(3):542–542.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Yoav Freund, H Sebastian Seung, Eli Shamir, and Naf-
tali Tishby. 1997. Selective sampling using the
query by committee algorithm. Machine learning,
28(2-3):133–168.

Giannis Karamanolakis, Subhabrata (Subho) Mukher-
jee, Guoqing Zheng, and Ahmed H. Awadallah.
2021. Self-training with weak supervision. In
NAACL 2021. NAACL 2021.

Young-Bum Kim, Minwoo Jeong, Karl Stratos, and
Ruhi Sarikaya. 2015. Weakly supervised slot tag-
ging with partially labeled sequences from web
search click logs. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 84–92.

Dong-Hyun Lee. 2013. Pseudo-label: The simple and
efficient semi-supervised learning method for deep
neural networks. In Workshop on challenges in rep-
resentation learning, ICML.

David D Lewis and Jason Catlett. 1994. Heteroge-
neous uncertainty sampling for supervised learning.
In Machine learning proceedings 1994, pages 148–
156. Elsevier.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in neural in-
formation processing systems, pages 6294–6305.

Stanislav Peshterliev, John Kearney, Abhyuday Jagan-
natha, Imre Kiss, and Spyros Matsoukas. 2019. Ac-
tive learning for new domains in natural language un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Industry Papers), pages 90–
96, Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

H Scudder. 1965. Probability of error of some adap-
tive pattern-recognition machines. IEEE Transac-
tions on Information Theory, 11(3):363–371.

Anders Søgaard and Christian Rishøj. 2010. Semi-
supervised dependency parsing using generalized tri-
training. In Proceedings of the 23rd International
Conference on Computational Linguistics (Coling
2010), pages 1065–1073, Beijing, China. Coling
2010 Organizing Committee.

C. Su, R. Gupta, S. Ananthakrishnan, and S. Mat-
soukas. 2018. A re-ranker scheme for integrating
large scale nlu models. In 2018 IEEE Spoken Lan-
guage Technology Workshop (SLT), pages 670–676.

294

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In 33rd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 189–196, Cambridge, Mas-
sachusetts, USA. Association for Computational
Linguistics.

Zhi-Hua Zhou and Ming Li. 2005. Tri-training: Ex-
ploiting unlabeled data using three classifiers. IEEE
Trans. on Knowl. and Data Eng., 17(11):1529–1541.

295

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 296–303
June 6–11, 2021. ©2021 Association for Computational Linguistics

Label-Guided Learning for Item Categorization in E-commerce

Lei Chen
Rakuten Institute of Technology

Boston, MA
lei.a.chen@rakuten.com

Hirokazu Miyake
Rakuten Institute of Technology

Boston, MA
hirokazu.miyake@rakuten.com

Abstract

Item categorization is an important application
of text classification in e-commerce due to its
impact on the online shopping experience of
users. One class of text classification tech-
niques that has gained attention recently is us-
ing the semantic information of the labels to
guide the classification task. We have con-
ducted a systematic investigation of the poten-
tial benefits of these methods on a real data
set from Rakuten, a major e-commerce com-
pany in Japan. We found that using pre-trained
word embeddings specialized to specific cate-
gories of items performed better than one ob-
tained from all available categories despite the
reduction in data set size. Furthermore, using a
hyperbolic space to embed product labels that
are organized in a hierarchical structure led to
better performance compared to using a con-
ventional Euclidean space embedding. These
findings demonstrate how label-guided learn-
ing can improve item categorization systems
in the e-commerce domain.

1 Introduction

Natural language processing (NLP) techniques
have been applied extensively to solve modern e-
commerce challenges (Malmasi et al., 2020; Zhao
et al., 2020). One major NLP challenge in e-
commerce is item categorization (IC) which refers
to classifying a product based on textual informa-
tion, typically the product title, into one of numer-
ous categories in the product category taxonomy
tree of online stores. Although significant progress
has been made in the area of text classification,
many standard open-source data sets have limited
numbers of classes which are not representative of
data in industry where there can be hundreds or
even thousands of classes (Li and Roth, 2002; Pang
and Lee, 2004; Socher et al., 2013)To cope with
the large number of products and the complexity of
the category taxonomy, an automated IC system is
needed and its prediction quality needs to be high

Category Taxonomy

ApplianceGift Men's fashionBeverageOther... ...

CoffeeTea Soft drink

Chinese
tea

Japanese
tea Fruit tea

Root level genre

Leaf level genrecoffee
beans

Instant
coffee

伊藤園 お薄抹茶 華の宴（はなのえん）

Figure 1: Subset of the product taxonomy tree for item
categorization.

enough to provide positive shopping experiences
for customers and consequently drive sales. Fig-
ure 1 shows an example diagram of the product
category taxonomy tree for the IC task. In this ex-
ample, a tin of Japanese tea 1 needs to be classified
into the leaf level category label “Japanese tea.”

As reviewed in Section 2, significant progress
has been made on IC as a deep learning text classifi-
cation task. However, much of the progress in text
classification does not make use of the semantic
information contained in the labels. Recently there
have been increasing interest in taking advantage
of the semantic information in the labels to im-
prove text classification performance (Wang et al.,
2018; Liu et al., 2020; Du et al., 2019; Xiao et al.,
2019; Chai et al., 2020). For the IC task, labels in a
product taxonomy tree are actively maintained by
human experts and these labels bring rich semantic
information. For example, descriptive genre infor-
mation like “clothes” and “electronics” are used
rather than just using a numeric index for the class
labels. It is reasonable to surmise that leveraging
the semantics of these category labels will improve
the IC models.

Although label-guided learning has been shown

1Image from https://item.rakuten.co.jp/
kusurinokiyoshi/10016272/

296

to improve classification performance on several
standard text classification data sets, its application
to IC on real industry data has been missing thus
far. Compared to standard data sets, e-commerce
data typically contain more complicated label tax-
onomy tree structures, and product titles tend to be
short and do not use standard grammar. Therefore,
whether label-guided learning can help IC in indus-
try or not is an open question worth investigating.

In this paper, we describe our investigation of
applying label-guided learning to the IC task. Us-
ing real data from Rakuten2, we tested two models:
Label Embedding Attentive Model (LEAM) (Wang
et al., 2018) and Label-Specific Attention Network
(LSAN) (Xiao et al., 2019). In addition, to cope
with the challenge that labels in an IC task tend to
be similar to each other within one product genre,
we utilized label embedding methods that can bet-
ter distinguish labels which led to performance
gains. This included testing the use of hyperbolic
embeddings which can take into account the hier-
archical nature of the taxonomy tree (Nickel and
Kiela, 2017).

The paper is organized as follows: Section 2
reviews related research on IC using deep learning-
based NLP and the emerging techniques of label-
guided learning. Section 3 introduces the two
label-guided learning models we examined, namely
LEAM and LSAN, as well as hyperbolic embed-
ding. Section 4 describes experimental results on a
large-scale data set from a major e-commerce com-
pany in Japan. Section 5 summarizes our findings
and discusses future research directions.

2 Related works

Deep learning-based methods have been widely
used for the IC task. This includes the use of deep
neural network models for item categorization in
a hierarchical classifier structure which showed
improved performance over conventional machine
learning models (Cevahir and Murakami, 2016),
as well as the use of an attention mechanism to
identify words that are semantically highly corre-
lated with the predicted categories and therefore
can provide improved feature representations for a
higher classification performance (Xia et al., 2017).

Recently, using semantic information carried by
label names has received increasing attention in
text classification research, and LEAM (Wang et al.,
2018) is one of the earliest efforts in this direction

2https://www.rakuten.co.jp

that we are aware of. It uses a joint embedding of
both words and class labels to obtain label-specific
attention weights to modify the input features. On
a set of benchmark text classification data sets,
LEAM showed superior performance over models
that did not use label semantics. An extension of
LEAM called LguidedLearn (Liu et al., 2020) made
further modifications by (a) encoding word inputs
first and then using the encoded outputs to com-
pute label attention weights, and (b) using a multi-
head attention mechanism (Vaswani et al., 2017)
to make the attention-weighting mechanism have
more representational power. In a related model,
LSAN (Xiao et al., 2019) added a label-specific at-
tention branch in addition to a self-attention branch
and showed superior performance over models that
did not use label semantics on a set of multi-label
text classification tasks.

Alternatively, label names by themselves may
not provide sufficient semantic information for ac-
curate text classification. To address this potential
shortcoming, longer text can be generated based
on class labels to augment the original text input.
Text generation methods such as using templates
and reinforcement learning were compared, and
their effectiveness were evaluated using the BERT
model (Devlin et al., 2019) with both text sen-
tence and label description as the input (Chai et al.,
2020).

Finally, word embeddings such as word2vec
(Mikolov et al., 2013) and GloVe (Pennington
et al., 2014) are generated in Euclidean space. How-
ever, embeddings in non-Euclidean space called hy-
perbolic embeddings have been developed (Nickel
and Kiela, 2017; Chen et al., 2020a,b) and have
been shown to better represent the hierarchical re-
lationship among labels.

3 Model

For a product title X consisting of L words X =
[w1, . . . , wL], our goal is to predict one out of a set
of K labels, y ∈ C = {c1, . . . , cK}. In a neural
network-based model, the mapping X → y gener-
ally consists of the following steps: (a) encoding
step (f0), converting X into a numeric tensor rep-
resenting the input, (b) representation step (f1),
processing the input tensor to be a fixed-dimension
feature vector z, and (c) classification step (f2),
mapping z to y using a feed-forward layer.

Among label-guided learning models, we chose
both LEAM (Wang et al., 2018) and LSAN (Xiao

297

Step LEAM LSAN
f0 Word embedding Word embedding + Bi-LSTM encoding
f1 Only label-specific attention Both self- and label-specific attentions + adaptive interpolation
f2 Softmax with CE loss Softmax with CE loss

Table 1: Comparison of LEAM (Wang et al., 2018) and LSAN (Xiao et al., 2019) with respect to the three modeling
steps.

Cosine score
between V,C

1D
 C

on
v

max-
pool softmax

la
be

l-g
ui

de
d

at
te

nt
io

n

feature z

V_1

V_2

V_L

tit
le

 {w
_1

,..
. w

_L
}

C
-1

C
_K

word embedding

label embedding
label-specific attention

K labels

Figure 2: Architecture of LEAM (Wang et al., 2018).

et al., 2019) for our experiments. Table 1 shows a
comparison between these models.

3.1 LEAM
The LEAM architecture is shown in Figure 2 (Wang
et al., 2018). First a product title of length L is en-
coded as V = [v1, . . . , vL] where vl ∈ RD is deter-
mined through word embedding and V ∈ RD×L.
The class labels are also encoded via label em-
bedding as C = [c1, ..., cK] where K is the total
number of labels, ck ∈ RD and C ∈ RD×K . The
label embeddings are title-independent and is the
same across all titles for a given set of labels. We
can then compute the compatibility of each word-
label pair based on their cosine similarity to obtain
a compatibility tensor G ∈ RL×K .

The compatibility tensor is transformed into an
attention vector through the following steps, (a)
apply a 1D convolution to refine the compatibility
scores by considering its context, (b) apply max
pooling to keep the maximum score, and (c) ap-
ply a softmax operation to obtain the label-guided
attention weights β. These attention weights con-
taining the label semantic information are used in
the f1 step to compute a new representation,

z =
∑

l

βlvl. (1)

After obtaining z, we use a fully-connected layer

with softmax to predict y ∈ C. The entire pro-
cess f2(f1(f0(X))) is optimized by minimizing
the cross-entropy loss between y and f2(z).

3.2 LSAN
The LSAN architecture is shown in Figure 3 (Xiao
et al., 2019). As shown in Table 1, LSAN has
a few modifications compared to LEAM. First, a
bi-directional long short-term memory (Bi-LSTM)
encoder is used to better capture context seman-
tic cues in the representation. The resulting con-
catenated tensor is H = [

−→
H,
←−
H] where

−→
H and

←−
H

represent LSTM encoding outputs from forward
and backward directions and H ∈ RL×2P where
P is the dimension of the LSTM hidden state. For
model consistency we typically set P = D.

Additional features of LSAN which extend
LEAM include (a) using self-attention on the en-
coding H , (b) creating a label-attention component
from H and C, and (c) adaptively merging the self-
and label-attention components.

More specifically, the self-attention score A(s) is
determined as

A(s) = softmax(W2 tanh(W1H
T)), (2)

where W1 ∈ Rda×2P and W2 ∈ RK×da are self-
attention tensors to be trained, da is a hyperparam-
eter, A(s) ∈ RK×L and each row A

(s)
j· is an L-

dimensional vector representing the contributions
298

Dot product
between H,C

la
be

l-g
ui

de
d

at
te

nt
io

n

feature z

V_1

V_2

V_L

tit
le

 {w
_1

,..
. w

_L
}

C
-1

C
_K

word embedding

label embedding

K labels

H_1

H_2

H_L

Bi-LSTM

se
lf

at
te

nt
io

n

ad
ap

tiv
e

co
m

bi
na

tio
n

Figure 3: Architecture of LSAN (Xiao et al., 2019).

of all L words to label j. Therefore,

M (s) = A(s)H (3)

is a representation of the input text weighted by
self-attention where M (s) ∈ RK×2P .

From the title encoding H and the label embed-
ding C, compatibility scores between class labels
and title words can be computed as the product

←−−
A(l) = CT

←−
HT (4)

−−→
A(l) = CT

−→
HT , (5)

where A(l) ∈ RK×L and each row A
(l)
j· is a L-

dimensional vector representing the contributions
of all L words to label j. The product title can be
represented using label attention as

M (l) = [
←−−
A(l)←−H,

−−→
A(l)−→H] (6)

where M (l) ∈ RK×2P .
The last procedure in the f1 step of LSAN is

to adaptively combine the self- and label-attention
representations M (s) and M (l) as

Mj. = αjM
(s)
j. + βjM

(l)
j. , (7)

where the two interpolation weight factors (α, β ∈
RK) are computed as

α = σ(M (s)W3) (8)

β = σ(M (l)W4), (9)

with the constraint αj + βj = 1, W3,W4 ∈ R2P

are trainable parameters, σ(x) ≡ 1/(1+e−x) is the
element-wise sigmoid function, and M ∈ RK×2P .

Although the original LSAN model proposed
multiple additional layers in its f2 step, in our im-
plementation we performed average pooling along
the label dimension and then to a fully-connected
layer with softmax output, similar to LEAM. Fi-
nally, the cross entropy loss is minimized.

3.3 Hyperbolic Embedding

In e-commerce item categorization we tend to use a
more complicated label structure with a large num-
ber of labels organized as a taxonomy tree com-
pared to standard text classification data sets. One
immediate issue is that hundreds of labels can exist
at the leaf level, some with very similar labels like
“Japanese tea” and “Chinese tea,” and the difference
in label embedding vectors in Euclidean space can
be too small to be distinguished by machine learn-
ing models. Such issues become more severe with
increasing taxonomy tree depth as well. Hyper-
bolic embedding is one technique that has been
developed which can address these issues (Nickel
and Kiela, 2017; Chen et al., 2020a,b).

Hyperbolic space is different from Euclidean
space by having a negative curvature. Conse-
quently, given a circle, its circumference and disc
area grow exponentially with radius. In contrast,
in Euclidean space the circumference and area
grow only linearly and quadratically, respectively.
For representing hierarchical structures like trees,
this property can ensure that all leaf nodes which
are closer to the edge of the circle maintain large
enough distances from each other.

As a specific application, Poincaré embedding
uses the Poincaré ball model which consists of
points within the unit ball Bd where the distance

299

Figure 4: (a) Tree with a branching factor of 2 in Eu-
clidean space. (b) Embedding a hierarchical tree with
a branching factor of 2 in a Poincaré disk. Figure from
Figure 1(b) in (Nickel and Kiela, 2017).

between two points, u,v ∈ Bd is defined as

d(u,v) = cosh−1

(
1+2

‖u− v‖2
(1− ‖u‖2)(1− ‖v‖2)

)
.

(10)
The Poincaré embedding is obtained by minimiz-
ing a loss function depending only on d(u,v) for
all pairs of labels (u,v) using Riemannian opti-
mization methods.

Figure 4 illustrates the differences between using
an Euclidean space and a Poincaré ball model when
representing nodes organized in a tree. Using a
hyperbolic embedding has the potential to maintain
large enough distances when our models aim to
distinguish subtle differences among these labels.

4 Experiments and Results

4.1 Experimental Setup
Data set: Our data set consisted of more than one
million products in aggregate from Rakuten, a large
e-commerce platform in Japan, focusing on four
major product categories which we call root-level
genres. Our task, a multi-class classification prob-
lem, was to predict the leaf-level product categories
from their Japanese titles. Further details of our
data set are shown in Table 2.

Evaluation metric: We used the macro-averaged
F-score F to evaluate model performance. This is
defined in terms of the per-class F-score Fk as

F =
1

K

K∑

k=1

Fk, (11)

Fk =
2PkRk
Pk +Rk

, (12)

where K is the total number of classes, and Pk and
Rk are the precision and recall for class k.

Pre-trained embedding methods: We tested the
following three methods:

• All genre: Word embedding pre-trained on all
of the data across different root-level genres;
for the label embedding, the average of the
word embedding from all word tokens in a
label is used to initialize the label embedding
C and this is further updated in the model
training process.

• Genre specific: Word embedding pre-trained
from data specific to each root-level genre;
label embeddings were obtained similarly to
the all-genre method.

• Poincaré: Label embedding pre-trained on
the Poincaré ball taking into account the full
hierarchical taxonomy tree.

Models: We compared a number of variants of
LEAM and LSAN as described below.

• LEAM: Described in Section 3 (Wang et al.,
2018), using all-genre pre-trained word em-
beddings.

• LEAMbase: LEAM without the label embed-
ding attention component (effectively fixing
βl = 1/L in Eq. 1), using all-genre pre-
trained word embeddings.

• LSAN: Described in Section 3 (Xiao et al.,
2019), using all-genre pre-trained word em-
beddings.

• LSANbase: LSAN without the label-specific
attention component (effectively fixing β =
0 in Eq. 7) which is similar to Atten-
tionXML (You et al., 2019), and using all-
genre pre-trained word embeddings.

• LSANgenre: LSAN using genre-specific pre-
trained word embeddings.

• LSANPoincaré: LSAN using genre-specific
pre-trained word embeddings for the titles and
pre-trained Poincaré embeddings for the la-
bels.

Experimental parameters: Our models were im-
plemented in TensorFlow 2.3 using a GPU for train-
ing and evaluation. Since Japanese text does not
have spaces to indicate individual words, tokeniza-
tion was performed with MeCab, an open source

300

Root genre Class size Train size Dev size Test size Mean words/title
Catalog Gifts & Tickets 29 11,369 1,281 559 31
Beverages 32 205,107 22,805 10,315 21
Appliances 286 399,584 44,529 18,478 20
Men’s Fashion 71 593,126 65,939 43,243 23

Table 2: Summary of our data set obtained from a large e-commerce platform in Japan.

Root genre LEAMbase LEAM LSANbase LSAN
Catalog Gifts & Tickets 0.341 0.289↓ 0.241 0.338
Beverages 0.719 0.755 0.759 0.773
Appliances 0.682 0.654↓ 0.667 0.686
Men’s Fashion 0.696 0.657↓ 0.685 0.686

Table 3: Macro F-score of LEAM and LSAN without and with label attention.

Japanese part-of-speech and morphological ana-
lyzer using conditional random fields (CRF).3 Once
the text was tokenized, we fixed our input length
to L = 60 words by truncating the title if it was
longer than L and zero-padding the title if it was
shorter than L. If a word appeared less than three
times, it was discarded and replaced with an out-of-
vocabulary token.

Pre-trained word embeddings of dimensionD =
100 using just product titles were obtained with
fastText, which uses a skipgram model with bag-of-
character n-grams (Bojanowski et al., 2016). No
external pre-trained embeddings were used. After
initialization of word and label embeddings with
pre-trained values, they were jointly trained with
the remaining parameters of the model.

For Poincaré embedding of labels, we used an
embedding dimension of 300. Pre-trained Poincaré
embeddings of labels were obtained by represent-
ing the genre taxonomy tree as (child, parent)
pairs and minimizing a loss function which de-
pends only on inter-genre distances as defined in
Eq. 10 (Nickel and Kiela, 2017). These pre-trained
Poincaré label embeddings were used to initialize
the label embeddings in LSAN but during training
were allowed to vary according to the standard loss
optimization process in Euclidean space.

For LEAM, we used a 1D convolution window
size of 5. For LSAN, we set da = 50, and when
we experimented with the Poincaré embedding we
set the LSTM hidden state dimension P = 300 to
match the Poincaré embedding dimension.

The models were trained by minimizing the
cross-entropy loss function using the Adam opti-

3https://taku910.github.io/mecab/

mizer with an initial learning rate of 0.001 (Kingma
and Ba, 2015). We used early stopping with a pa-
tience of 10 to obtain the final models.

4.2 Results and Discussions

Impact of label attention: We examined the im-
pact of label attention by comparing performance
without and with label attention for LEAM and
LSAN for each of the four root-level genres us-
ing all-genre pre-trained word embeddings. The
result is shown in Table 3. For LEAM, we do not
observe consistent improvements by including the
label attention component, contrary to what was
previously reported on standard text classification
data sets (Wang et al., 2018). On the other hand
for LSAN we do observe consistent improvements
over all root-level genres by including the label
attention component of the model. Since we did
not observe a consistent improvement for LEAM
in using label attention, for the remainder of this
section we focus on variations of LSAN.

Impact of different pre-trained embeddings: We
next evaluated the impact of using different pre-
trained embeddings for the title embeddings as
well as the label embeddings for each of the four
root-level genres. This is shown in Table 4. We
observed that different pre-trained embeddings can
consistently have a significant effect on model per-
formance. In particular, using genre-specific em-
beddings outperformed all-genre embeddings for
all genres. This is particularly notable for the small-
est genre where we used more than 10 times the
data to obtain the all-genre embeddings.

We believe this is because words that occur in
the same root-level genre will tend to be embedded
closer to each other in the full embedding space,

301

Root genre LSAN LSANgenre LSANPoincaré

Catalog Gifts & Tickets 0.338 0.403 0.438
Beverages 0.773 0.784 0.789
Appliances 0.686 0.697 0.701
Men’s Fashion 0.686 0.701 0.722

Table 4: Macro F-score of LSAN with various pre-trained title and label embeddings.

which then makes it more difficult for the label at-
tention to distinguish between different but similar
labels such as “Japanese tea” and “Chinese tea.”
By using pre-trained embeddings obtained from
specific genres, the embeddings become spaced far-
ther apart and therefore the label attention is able
to better distinguish labels with similar names.

Poincaré embeddings take this further by requir-
ing the embedding space distance between all leaf-
genre labels to be far apart from each other, and
our results show that this leads to the best model
performance. This supports our hypothesis that
the distance between labels in the label embedding
space is an important factor in ensuring that label
attention improves model performance.

Compared to models using only the product ti-
tles, we see that models using label-guided learning
can significantly improve the F-score. In particular,
LSAN using a Poincaré label embedding shows the
following F-score increases compared to LSAN
base: 19.7% for “Catalog Gifts & Tickets,” 3.0%
for “Beverages,” 3.4% for “Appliances,” and 3.7%
for “Men’s Fashion.” Note that the largest increase
was achieved on the genre with the fewest training
instances.

5 Conclusions

Since 2018, there have been increasing interest in
the field of NLP to use the semantic information
of class labels to further improve text classification
performance. On the item categorization task in e-
commerce, a taxonomy organized in a hierarchical
structure already contains rich meaning and pro-
vides an ideal opportunity to evaluate the impact of
label-guided learning. In this paper, we used real
industry data from Rakuten, a leading Japanese
e-commerce platform, to evaluate the benefits of
label-guided learning.

Our experiments showed that LSAN is superior
to LEAM because of its usage of context encoding
and adaptive combination of both self- and label-
attention. We also found that using genre-specific
pre-trained embeddings led to better model per-

formance than pre-trained embeddings obtained
from all product genres. This is likely because pre-
training on specific genres allows the embedding
to focus on differences between similar genres and
the label embeddings are able to take advantage
of this. Finally, we showed that using hyperbolic
embedding, more specifically Poincaré embedding,
can improve model performance further by ensur-
ing that all class labels are sufficiently separated to
allow label-guided learning to work well.

One possible limitation of our current work is
that although the label embedding is initialized us-
ing a hyperbolic embedding, the rest of the training
process proceeds in Euclidean space. Future work
could explore the possibility of training the entire
model in hyperbolic space. Another direction is
to incorporate the label-attention mechanism into
the BERT model (Devlin et al., 2019), which has
proven to be a powerful approach to text encoding.
In addition, more advanced approaches to obtain-
ing better representations of labels on top of our
existing approach of using word tokens in labels
could be explored.

Acknowledgements

The authors would like to thank Yandi Xia for in-
troducing hyperbolic embeddings to us and pre-
training the Poincaré embeddings.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin,

and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Ali Cevahir and Koji Murakami. 2016. Large-scale
multi-class and hierarchical product categorization
for an E-commerce giant. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
525–535, Osaka, Japan. The COLING 2016 Orga-
nizing Committee.

Duo Chai, Wei Wu, Qinghong Han, Fei Wu, and Jiwei
Li. 2020. Description based text classification with
reinforcement learning. In Proceedings of the 37th

302

International Conference on Machine Learning, vol-
ume 119 of Proceedings of Machine Learning Re-
search, pages 1371–1382. PMLR.

Boli Chen, Xin Huang, Lin Xiao, Zixin Cai, and Lip-
ing Jing. 2020a. Hyperbolic interaction model for
hierarchical multi-label classification. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):7496–7503.

Boli Chen, Xin Huang, Lin Xiao, and Liping Jing.
2020b. Hyperbolic capsule networks for multi-label
classification. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3115–3124, Online. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of Deep Bidirectional Transformers for Language
Understanding. arXiv:1810.04805 [cs]. ArXiv:
1810.04805.

Cunxiao Du, Zhaozheng Chen, Fuli Feng, Lei Zhu,
Tian Gan, and Liqiang Nie. 2019. Explicit interac-
tion model towards text classification. Proceedings
of the AAAI Conference on Artificial Intelligence,
33(01):6359–6366.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Xien Liu, Song Wang, Xiao Zhang, Xinxin You,
Ji Wu, and Dejing Dou. 2020. Label-guided
Learning for Text Classification. arXiv preprint
arXiv:2002.10772.

Shervin Malmasi, Surya Kallumadi, Nicola Ueffing,
Oleg Rokhlenko, Eugene Agichtein, and Ido Guy,
editors. 2020. Proceedings of The 3rd Workshop
on e-Commerce and NLP. Association for Compu-
tational Linguistics, Seattle, WA, USA.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Maximillian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representa-
tions. In Advances in Neural Information Process-
ing Systems, volume 30. Curran Associates, Inc.

Bo Pang and Lillian Lee. 2004. A sentimental edu-
cation: Sentiment analysis using subjectivity sum-
marization based on minimum cuts. In Proceed-
ings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL-04), pages 271–
278, Barcelona, Spain.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe
Zhang, Dinghan Shen, Xinyuan Zhang, Ricardo
Henao, and Lawrence Carin. 2018. Joint embed-
ding of words and labels for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2321–2331, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Yandi Xia, Aaron Levine, Pradipto Das, Giuseppe
Di Fabbrizio, Keiji Shinzato, and Ankur Datta. 2017.
Large-scale categorization of Japanese product titles
using neural attention models. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 2,
Short Papers, pages 663–668, Valencia, Spain. As-
sociation for Computational Linguistics.

Lin Xiao, Xin Huang, Boli Chen, and Liping Jing.
2019. Label-specific document representation for
multi-label text classification. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 466–475, Hong Kong,
China. Association for Computational Linguistics.

Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai,
Hiroshi Mamitsuka, and Shanfeng Zhu. 2019. At-
tentionxml: Label tree-based attention-aware deep
model for high-performance extreme multi-label
text classification. In Advances in Neural Informa-
tion Processing Systems, volume 32, pages 5820–
5830. Curran Associates, Inc.

Huasha Zhao, Parikshit Sondhi, Nguyen Bach, Sanjika
Hewavitharana, Yifan He, Luo Si, and Heng Ji, ed-
itors. 2020. Proceedings of Workshop on Natural
Language Processing in E-Commerce. Association
for Computational Linguistics, Barcelona, Spain.

303

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 304–310
June 6–11, 2021. ©2021 Association for Computational Linguistics

Benchmarking Commercial Intent Detection Services with
Practice-Driven Evaluations

Haode Qi†∗, Lin Pan†∗, Atin Sood†, Abhishek Shah†
Ladislav Kunc†, Mo Yu‡, Saloni Potdar†

†IBM Watson
‡MIT-IBM Watson AI Lab

{Haode.Qi,Abhishek.Shah1,lada}@ibm.com

{panl,asood,yum,potdars}@us.ibm.com

Abstract
Intent detection is a key component of mod-
ern goal-oriented dialog systems that accom-
plish a user task by predicting the intent of
users’ text input. There are three primary
challenges in designing robust and accurate
intent detection models. First, typical intent
detection models require a large amount of
labeled data to achieve high accuracy. Un-
fortunately, in practical scenarios it is more
common to find small, unbalanced, and noisy
datasets. Secondly, even with large training
data, the intent detection models can see a
different distribution of test data when being
deployed in the real world, leading to poor
accuracy. Finally, a practical intent detec-
tion model must be computationally efficient
in both training and single query inference
so that it can be used continuously and re-
trained frequently. We benchmark intent de-
tection methods on a variety of datasets. Our
results show that Watson Assistant’s intent de-
tection model outperforms other commercial
solutions and is comparable to large pretrained
language models while requiring only a frac-
tion of computational resources and training
data. Watson Assistant demonstrates a higher
degree of robustness when the training and test
distributions differ.

1 Introduction

Intent detection and entity recognition form the ba-
sis of the Natural Language Understanding (NLU)
components of a task-oriented dialog system. The
intents and entities identified in a given user ut-
terance help trigger the appropriate conditions de-
fined in a dialog tree which guides the user through
a predetermined dialog-flow. These task-oriented
dialog systems have gained popularity for design-
ing applications around customer support, personal
assistants, and opinion mining, etc.

The Conversational AI market is expected to
grow to an estimated USD 13.9 billion by 2025 as

∗∗Equal contribution

Average accuracy on HINT3 collection
50

55

60

65

70

Ac
cu

ra
cy

Watson Assistant
Dialogflow
RASA
LUIS
Haptik

Figure 1: Accuracy of commercial solutions on the
HINT3 collection of datasets. Results are averaged
across the Full versions of the three datasets and their
Subset versions. The in-scope accuracy is reported on
a threshold of 0.1. Watson Assistant achieves the best
results on average. Results for all methods except Wat-
son Assistant are obtained from Arora et al. (2020).

reported by Markets & Markets 1. There are several
solutions in the market that help enterprises build
and deploy chatbots quickly to automate large por-
tions of their customer service interactions. Hence,
a commercial conversational AI solution needs to
adapt to a variety of use cases, accurately identify
users’ intents and resolve their queries.

There are three primary challenges in designing
intent detection models that power real-world di-
alog systems: (1) Limitations in training data:
while typical machine learning models are trained
on large, balanced, labeled datasets, practical intent
detection systems rely on customer provided data.
These datasets are usually small, probably noisy,
unbalanced, and contain classes with overlapping
semantics, etc. The relatively poor quality of train-
ing data makes it hard to train accurate models. (2)
Robustness to non-standard user inputs: when
the intent detection models are deployed in real-
world settings, they often operate on test data that
differs significantly from the training data. The
mismatch in train and test data distributions mainly

1https://customerthink.com/conversational-ai-in-2021-3-
top-trends-to-look-out-for

304

comes from the free-form of input user queries.
These real world queries express the same intents
with their non-standard paraphrases, which are diffi-
cult to fully cover during training. The lack of large
and clean training data makes this problem worse.
(3) Computational efficiency: the intent detection
models should be computationally efficient for both
training and inference. On one hand, efficient in-
ference is crucial since it allows for faster query
resolution times for the users.2 On the other hand,
a real-world dialog system is frequently updated
according to customer needs, so faster training time
becomes an important consideration for real-world
conversational AI solutions.

In this work, taking the aforementioned three
realistic challenges into consideration, we eval-
uate multiple intent detection models and focus
on their accuracy, data efficiency, robustness, and
computational efficiency. We compare the per-
formance of various commercial intent detection
models on three datasets in the HINT3 collection
(Arora et al., 2020). We also evaluate pretrained
Language Models (LM) on three commonly used
public datasets for benchmarking intent detection
- CLINC150 (Larson et al., 2019), BANKING77
(Casanueva et al., 2020), and HUW64 (Liu et al.,
2019b). In addition, we create few-shot learning
settings from these datasets, to better match real
world low-resource scenarios. Furthermore, we
measure the "in the wild" robustness of the systems
via creating difficult test subsets from existing test
sets. Finally, we evaluate the classification accu-
racy and training time of these models because it
directly affects the usability and development life-
cycle of an conversational AI solution.

We build upon the existing study in Arora et al.
(2020) which benchmarked commercial solutions
aside from IBM Watson Assistant (i.e., Dialogflow,
LUIS, and RASA). We extend this study by adding
Watson Assistant and recent large-scale pretrained
LMs. We also explore few-shot and robustness
settings, and compare the resource efficiency and
training times of different commercial solutions as
well as pretrained LMs. Among these solutions,
Watson Assistant’s new intent detection algorithm
performs better than other commercial solutions
(Figure 1), and achieves comparable accuracy when

2Inference time is usually dependent on service-level agree-
ments between the provider and the user which determine the
response time upper bounds of the APIs. This is hard to mea-
sure and compare across services in a reliable way for the
purpose of this study.

compared to large-scale pretrained LMs (Figure 2)
while being much more efficient.

2 Related Work

Several datasets have been released to test the per-
formance of intent detection for task-oriented dia-
log systems such as Web Apps, Ask Ubuntu and
Chatbot corpus from Braun et al. (2017); ATIS
dataset (Price, 1990) and SNIPS (Coucke et al.,
2018). The ATIS and SNIPS datasets have been
created with focus on voice interactive chatbots.
Voice modality has some specific characters, i.e.,
it does not contain typos and it is less noisy than
text-based communication. Thus, these datasets
are oversimplified version of the text-based intent
detection task "in the wild" due to well-constructed
dataset and limited number of classes.

Recently, CLINC150 (Larson et al., 2019),
BANKING77 (Casanueva et al., 2020), and
HWU64 (Liu et al., 2019b) have been used to
benchmark the performance of intent detection
systems. These datasets cover a large number of
intents across a wider range of domains, which
captures more real-world complexity of doing fine-
grained classification. Arora et al. (2020) proposed
a new collection of datasets called HINT3, contain-
ing a noisy and diverse set of intents and examples
across three domains sourced from domain experts
and real users.

Prior work from Arora et al. (2020), Braun et al.
(2017), and Liu et al. (2019a) study the perfor-
mance of different conversational AI services us-
ing the datasets mentioned above. Casanueva et al.
(2020), Larson et al. (2019), Arora et al. (2020),
Bunk et al. (2020) and others have benchmarked
several state-of-the-art (SOTA) pretrained LMs
such as BERT (Devlin et al., 2019) on the afore-
mentioned datasets.

We aim to standardize the benchmarking tests
that need to be run while developing an industry
scale intent detection system. The tests should
cover a variety of real-world datasets, settings such
as few-shot scenarios and testing on semantically
dissimilar test examples. Additionally, the tests
should also cover resource efficiency and training
time - since they affect the overall deployment costs
of a virtual assistant cloud service. A carefully cho-
sen trade-off between accuracy and efficiency is the
decision making factor in choosing the algorithm
for the real-world intent detection system.

305

3 Evaluation Settings

3.1 Datasets

We create our proposed evaluation settings based
on the following public intent detection datasets:

CLINC150 consists of 22, 500 in-scope exam-
ples that cover 150 intents in 10 domains, such as
banking, work, travel, etc. The dataset also comes
with 1, 200 out-of-scope examples. In this work,
we only focus on the in-scope examples.

HWU64 contains 25, 716 examples, covering 64
intents in 21 domains. The data creation process
aims to reflect human-home robot interaction. We
are using one fold train-test split with 9, 960 train-
ing examples and 1, 076 testing examples.

BANKING77 is a single domain dataset created
for fine-grained intent detection. It focuses on the
banking domain, and has 13, 083 examples cover-
ing 77 intents.

3.2 Practice-Driven Benchmark Settings

Full-set setting This corresponds to the standard
evaluation setting that uses the full training and
testing sets.

Few-shot setting In the real-world setting, users
may not provide a large number of labelled exam-
ples to train a conversational AI system. Labeling
data is extremely time consuming and difficult, so
we need to make our intent detection systems ro-
bust enough to handle the few-shot scenarios and
improve time to value for the user. We create a
few shot setup for all the datasets by sampling 5
examples per intent and 30 examples per intent on
CLINC150, HWU64 and BANKING77 datasets.

Difficult test setting Most of the current SOTA
classification models can achieve 90%+ test accu-
racy on the aforementioned public datasets. How-
ever this is due to the presence of a large number of
similar and standard queries in the training and test
set. To reflect the performance in realistic settings,
where users can input non-standard paraphrases
of the queries, we propose to create more difficult
subsets of the provided test sets to mimic the real-
world setting.

Following Arora et al. (2020), we create a sub-
set of each test set with semantically dissimilar
sentences from the training set. Instead of using
ELMo (Peters et al., 2018) and entailment scores,
we use TF/IDF cosine distance to pick the most

difficult examples from the original test sets. Each
intent is treated separately during the selection
process. First, all training utterances in a spe-
cific intent are tokenized (using simple white-space
based tokenizer, ignoring punctuation). These to-
kenized training utterances are concatenated and
transformed to TF/IDF vector space. Then, each
testing example of the intent is transformed us-
ing the initialized TF/IDF transformer and cosine
similarities with the transformed training set are
calculated. Finally, 5 least similar examples per
intent are selected for inclusion to the difficult test
set. For example, the CLINC150 dataset has 150
intents, so our algorithm creates a test set of 750
examples. Analogous process is used for the other
two datasets. 3

4 Experiment I: Comparison with
Pretrained LMs

Pretrained LMs finetuned for intent detection have
been shown to perform very well in recent litera-
ture, such as (Casanueva et al., 2020). Users can
modify and adapt pretrained LMs to serve them
as part of a scalable solution. However, this of-
ten requires a complex solution design, an exam-
ple of which can be found in Yu et al. (2020). In
this work we evaluate and compare the commer-
cial services with the following pretrained LMs:
USEbase, i.e., Universal Sentence Encoder (Cer
et al., 2018); Distilbertbase (Sanh et al., 2020);
BERTbase, BERTlarge (Devlin et al., 2019); and
RoBERTabase (Liu et al., 2019b).

We compare Watson Assistant, RASA, and the
aforementioned pretrained-LMs on the datasets and
settings described in Section 3, and measure the
training time as well as accuracy.

Watson Assistant We evaluate both the classic
version of IBM Watson Assistant (WA) 4 and the
enhanced version with improved intent detection
algorithm. Public API is used to train and evalu-
ate the model. For training time, we measure the
round-trip latency from sending the training request
until we receive the status that the model is trained
and available for serving. 5

3We release the difficult subsets at https://github.
com/haodeqi/BenchmarkingIntentDetection
to facilitate repeatability and future research.

4https://www.ibm.com/cloud/
watson-assistant

5Note that the training times may vary depending on the
load on the web API.

306

CLINC150 HWU64 BANKING77 Average

WA classic 93.9 88.8 90.6 91.1
WA enhanced 95.7 90.5 92.6 92.9

RASA 89.4 84.9 89.9 88.1
Distilbert-base 96.3 91.7 92.1 93.4

BERT-base 96.8 91.6 93.3 93.9
BERT-large 97.1 91.9 93.7 94.2
USE-base 94.7 88.9 89.9 91.2

RoBERTa-base 97.0 92.1 94.1 94.4

Table 1: Accuracy on CLINC150, HWU64 and
BANKING77 for Watson Assistant (WA), RASA
and pretrained LMs. Training is performed on the
full train sets and evaluation on full test sets.

RASA6 The tool offers the flexibility to incorpo-
rate other open-source models such as Transformer-
based (Vaswani et al., 2017) models into the
pipeline. For our experiments, we use the default
training setting that trains a count-based feature en-
semble with the DIETClassifier (Bunk et al., 2020).

Pretrained LMs For BERT-based models, we add
a softmax classifier on top of the [CLS] token and
finetune all layers. We use AdamW (Loshchilov
and Hutter, 2018) with 0.01 weight decay and a
linear learning rate scheduler. We choose a batch
size of 32, max sequence length 128 and learning
rate warmup for the first 10% of the total iterations,
peaking at 0.00004. For training set variants of
5/30/all examples per intent, we train for 50/18/5
epochs, respectively. For USEbase model, we train a
softmax layer on top of the sentence representation
and finetune all layers for 100 epochs. A learning
rate of 0.05 and batch size of 32 are used for all
training set variants. All models are trained with a
single CPU core and a single K80 GPU.

4.1 Results and Analysis

Results in the full-set setting Table 1 shows re-
sults of Watson Assistant, RASA and pretrained
LMs on CLINC150, HWU64, and BANKING77.
We train on the full training sets and report result on
the full test sets, measured by accuracy. The over-
all best finetuned LM RoBERTabase achieves 1.5%
higher accuracy than Watson Assistant enhanced.
However, the improvement from finetuning large
pretrained LMs requires more computational re-
sources.

Results in the few-shot setting Table 2 shows
results on few-shot setting for 5/30/all examples per

6https://rasa.com

CLINC150

5 ex/class 30 ex/class full
Training time Accuracy Training time Accuracy Training time Accuracy

WA classic 0.58 78.1 0.78 90.3 1.04 93.9
WA enhanced 0.66 83.6 0.63 92.5 1.81 95.7

RASA 1.25 53.2 5.6 79.4 13.93 89.4
Distilbert-base 15.23 82.2 31.65 93.2 35.98 96.3

BERT-base 29.67 83.8 61.43 94.7 71.08 96.8
BERT-large 125 87 280 95.8 270 97.1
USE-base 1.63 83.9 6.5 92.9 14.73 94.7

RoBERTa-base 33 86.3 85 95.4 90 97.0

HWU64

5 ex/class 30 ex/class full
Training time Accuracy Training time Accuracy Training time Accuracy

WA classic 0.39 64.1 0.59 81.4 0.85 88.8
WA enhanced 0.75 71.0 0.54 86.2 0.82 90.5

RASA 0.67 43.7 2.17 72.4 9.43 84.9
Distilbert-base 6.32 71.1 13.92 86.3 20.35 91.7

BERT-base 12.73 70.1 27.18 87.5 39.48 91.6
BERT-large 52 77.3 120 89.3 175 91.9
USE-base 1.2 72.5 2.46 86.3 8.92 88.9

RoBERTa-base 13 71.7 40 88.8 60 92.1

BANKING77

5 ex/class 30 ex/class full
Training time Accuracy Training time Accuracy Training time Accuracy

WA classic 0.38 64.2 0.49 84.7 0.64 90.6
WA enhanced 0.65 69.9 0.52 87.0 1.22 92.6

RASA 0.89 45.1 3.67 81.6 15.45 89.9
Distilbert-base 7.87 69.8 16.83 87.8 20.35 92.1

BERT-base 15.23 68.3 32.72 88.9 38.75 93.3
BERT-large 92 71.2 210 89.9 175 93.7
USE-base 1.33 65.3 2.95 86.8 9.47 89.9

RoBERTa-base 17 75.9 42 90.4 57 94.1

Table 2: Accuracy and training time (in minutes)
comparing Watson Assistant (WA) with RASA and
pretrained LMs. We use 5/30/all examples per intent
on CLINC150, HWU64 and BANKING77 datasets.
Results are the on the respective full test sets.

CLINC150 HWU64 BANKING77
WA classic 79.3 83.4 75.2

WA enhanced 86.0 85.8 80.6

RASA 68.3 78.9 76.9
Distilbert-base 85.7 87.4 79.2

BERT-base 87.6 87.6 81.7
BERT-large 89.5 89.2 83.9
USE-base 81.6 83.4 74.5

RoBERTa-base 88.4 88.5 83.8

Table 3: Accuracy on CLINC150, HWU64 and
BANKING77 for Watson Assistant (WA), RASA
and pretrained LMs. Models are trained on full train
sets and evaluated on Tfidf-difficult test sets.

intent on CLINC150, HWU64 and BANKING77
datasets on the full test sets. For experimental set-
tings and dataset details, refer to Section 4.

Results in the difficult test setting Table 3
shows results on our difficult test sets. We ob-
serve that there is a significant drop in accuracy
compared to the full test set, going from 90%+ to
80%s. This shows that these test sets are indeed
more difficult for all algorithms, and they provide
a better testbed for identifying the robustness of a

307

CLINC150

5 ex/class 30 ex/class full
Training time Accuracy Training time Accuracy Training time Accuracy

WA classic 0.58 54.0 0.78 69.9 1.04 79.3
WA enhanced 0.66 65.1 0.63 76.7 1.81 86.0

RASA 1.25 29.6 5.6 52.5 13.93 68.3
Distilbert-base 15.23 63.4 31.65 76.8 35.98 85.7

BERT-base 29.67 64.6 61.43 81.1 71.08 87.6
BERT-large 125 72.0 280 85.6 270 89.5
USE-base 1.63 66.6 6.5 77.5 14.73 81.6

RoBERTa-base 33 70.8 85 83.7 90 88.4

HWU64

5 ex/class 30 ex/class full
Training time Accuracy Training time Accuracy Training time Accuracy

WA classic 0.39 53.9 0.59 72.3 0.85 83.4
WA enhanced 0.75 62.7 0.54 80.0 0.82 85.8

RASA 0.67 34.5 2.17 63.5 9.43 78.9
Distilbert-base 6.32 63.4 13.92 79.7 20.35 87.4

BERT-base 12.73 61.6 27.18 82.1 39.48 87.6
BERT-large 52 71.1 120 85.3 175 89.2
USE-base 1.2 66.3 2.46 79.8 8.92 83.4

RoBERTa-base 13 64.5 40 83.9 60 88.5

BANKING77

5 ex/class 30 ex/class full
Training time Accuracy Training time Accuracy Training time Accuracy

WA classic 0.38 43.2 0.49 64.5 0.64 75.2
WA enhanced 0.65 49.1 0.52 69.7 1.22 80.6

RASA 0.89 26.9 3.67 57.9 15.45 76.9
Distilbert-base 7.87 50.0 16.83 69.0 20.35 79.2

BERT-base 15.23 48.3 32.72 73.4 38.75 81.7
BERT-large 92 52.6 210 75.8 175 83.9
USE-base 1.33 44.5 2.95 68.6 9.47 74.5

RoBERTa-base 17 57.1 42 75.7 57 83.8

Table 4: Accuracy and training time (in minutes)
comparing Watson Assistant (WA) with RASA and
pretrained LMs. We use 5/30/all examples per intent
on CLINC150, HWU64 and BANKING77 datasets.
Results are the on the respective Tfidf-difficult test sets.

intent detection system. In addition, we conduct
the comparison in few-shot settings, where we use
5 examples per intent for training, and increase to
30 and full training sets. The complete set of re-
sults of few-shot setting on the difficult test sets can
be found in Table 4. Results show that BERTlarge
performs the best in terms of accuracy. However,
Watson Assistant still stands on top considering the
trade-off between training time and accuracy.

Training time vs accuracy trade-off We report
the training times and resources used for all models
across the three datasets in Table 5. We observe
that the pretrained LMs require significantly more
training time compared to Watson Assistant. For
example, RoBERTabase achieves comparable per-
formance to Watson Assistant but requires 90 min-
utes training time on CLINC150. Figure 2 shows a
visualization of accuracy and training time for each
model. Watson Assistant offers the best trade-off
in terms of accuracy vs. training time.

We report results on HINT3 datasets for com-
pleteness and are discussed in Section 5 Table 8.

0 50 100 150 200 250
Training time (minutes)

85.0

90.0

95.0

Ac
cu

ra
cy

 o
n

CL
IN

C1
50

WA classic

WA enhanced

RASA

Distilbert-base
BERT-base BERT-large

USE-base
RoBERTa-base

Figure 2: Training time vs. accuracy on CLINC150
for Watson Assistant (WA), RASA and pretrained LMs.
Full training set and test set are used. All methods ex-
cept Watson Assistant are trained using GPU. Watson
Assistant offers the best trade-off between training time
and accuracy.

Algorithm Resources CLINC150 HWU BANKING77
Training time Training time Training time

WA classic - 1.04 0.85 0.64
WA enhanced - 1.81 0.82 1.22

RASA GPU 13.93 9.43 15.45
Distilbert-base GPU 35.98 20.35 20.35

BERT-base GPU 71.08 39.48 38.75
BERT-large GPU 270 175 175
USE-base GPU 14.73 8.92 9.47

RoBERTa-base GPU 90 60 57

Table 5: Training time (in minutes) and resource
requirements for Watson Assistant (WA), RASA and
pretrained LMs. Training is performed on full train-
ing sets. All methods except for Watson Assistant are
trained using a single NVIDIA K80 GPU.

5 Experimental II: Comparison among
Commercial Solutions

Finally, we conduct comparison studies among
commercial services. Commercial solutions are
more suitable for enterprise customers and are de-
signed for users who have limited knowledge of
machine learning and natural language process-
ing. One of the challenges in comparing the perfor-
mance of commercial services and designing exper-
iments lies in the fact that most service providers
have terms of use prohibiting any type of bench-
marking on their services. To overcome this chal-
lenge, we use the prior benchmarking study from
Arora et al. (2020) to obtain the performance of
existing commercial solutions. In this benchmark,
HINT3 dataset collection is used which contains
three tasks with small amounts of training data. We
extended the study by including the results on the
Watson Assistant service.

In this section, we evaluate the perfor-
308

SOFMattress Curekart Powerplay11
Train Test (in-scope /

out-of-scope)
Train Test (in-scope /

out-of-scope)
Train Test (in-scope /

out-of-scope)

Full 328 231/166 600 452/539 471 275/708
Subset 180 231/166 413 452/539 261 275/708

Table 6: HINT3 training and test set statistics.
HINT3 consists of three datasets - SOFMattress,
Curekart and Powerplay11. Each training set contains
two versions - Full and Subset. The test set is also
broken down into in-scope queries and out-of-scope
queries.

mance of the following commercial solutions:
IBM Watson Assistant7, Google Dialogflow8,
Microsoft LUIS9, and the open-source solution
RASA10. We use the prior benchmarking study
from Arora et al. (2020) to obtain the performance
of these commercial solutions, except for Watson
Assistant.

5.1 Datasets

HINT3 is a collection of three datasets: SOFMat-
tress, Curekart, and Powerplay11. The statistics of
the datasets are shown in Table 6. Each dataset has
two training set variants referred to as full and sub-
set. The subset variant was created by discarding
semantically similar sentences using ELMo (Pe-
ters et al., 2018) and entailment score > 0.6 (Arora
et al., 2020). We used both variants of the training
data in our experiments. The test sets contain both
in-scope and out-of-scope examples.

5.2 Experimental Setup

We use the same experimental setup as described in
Arora et al. (2020). Following their methodology,
we use a confidence threshold of 0.1. For the BERT
model reported in their paper, they used BERTbase
and finetuned all layers upto 50 epochs, learning
rate of 4 × 10−5 with warmup period of 0.1 and
early stopping.

5.3 Results

Table 7 shows full results on the in-scope test
examples of each dataset measured by accuracy
using a confidence threshold of 0.1.

On average across the datasets (Table 8), Watson
Assistant enhanced achieves 73.8% accuracy when
trained on the full training sets and evaluated on

7https://www.ibm.com/cloud/
watson-assistant

8https://cloud.google.com/dialogflow
9https://www.luis.ai

10https://rasa.com

SOFMattress Curekart Powerplay11
full subset full subset full subset

WA classic 73.6 66.2 83.2 79.9 63.3 57.1
WA enhanced 74.0 68.4 86.7 85.4 60.7 57.8
Dialogflow 73.1 65.3 75.0 71.2 59.6 55.6
RASA 69.2 56.2 84.0 80.5 49.0 38.5
LUIS 59.3 49.3 72.5 71.6 48.0 44.0
Haptik 72.2 64.0 80.3 79.8 66.5 59.2
BERT 73.5 57.1 83.6 82.3 58.5 53.0

Table 7: In-scope Accuracy on HINT3 using com-
mercial solutions. We report the in-scope accuracy
with a threshold of 0.1 for various intent detection meth-
ods. Results for all methods except Watson Assistant
(WA) are obtained from (Arora et al., 2020).

Full Subset Average

WA classic 73.4 67.7 70.6
WA enhanced 73.8 70.5 72.2
Dialogflow 69.2 64.0 66.6
RASA 67.4 58.4 62.9
LUIS 59.9 54.6 57.5
Haptik 73.0 67.6 70.3
BERT 71.9 64.1 68.0

Table 8: Average In-scope Accuracy on HINT3 using
commercial solutions. We report the average in-scope
accuracy across the three datasets with a threshold of
0.1 on Full and Subset versions of the HINT3 collec-
tion. Results for all methods except Watson Assistant
(WA) are obtained from (Arora et al., 2020).

the in-scope examples, outperforming DialogFlow
by 4.57%, and LUIS by 13.87%. Training on the
subset variant of the datasets, Watson Assistant
also consistently outperforms the other commercial
solutions. It is worth noting that Watson Assistant
also does better than BERT by 4.4% on average.

6 Conclusion

We proposed a new methodology to assess the
performance of intent detection "in the wild" in
task-oriented dialog systems. In practice, the plat-
forms developed for building and deploying virtual
assistants have to consider several scenarios and
trade-offs. These systems have to train the best
performing models in few-shot settings, strike a
compromise between training time and accuracy,
and adapt seamlessly to a wide range of domains.

We compare the performance of leading com-
mercial services which are designed to develop
task-oriented dialog systems on the publicly avail-
able datasets and also compared their performance
against popular pretrained LMs. Our results demon-
strate that Watson Assistant outperforms mar-

309

ket competitors on the HINT3 dataset collection,
which comprises real-world queries. Our results
also show that Watson Assistant is competitive with
pretrained LMs across a wide range of datasets and
settings but trains much faster - which is a key fac-
tor in usability of a commercial conversational AI
solution.

References
Gaurav Arora, Chirag Jain, Manas Chaturvedi, and

Krupal Modi. 2020. HINT3: Raising the bar for in-
tent detection in the wild. In Proceedings of the First
Workshop on Insights from Negative Results in NLP,
Online. Association for Computational Linguistics.

Daniel Braun, Adrian Hernandez Mendez, Florian
Matthes, and Manfred Langen. 2017. Evaluating
natural language understanding services for conver-
sational question answering systems. In Proceed-
ings of the 18th Annual SIGdial Meeting on Dis-
course and Dialogue, pages 174–185, Saarbrücken,
Germany. Association for Computational Linguis-
tics.

Tanja Bunk, Daksh Varshneya, Vladimir Vlasov, and
Alan Nichol. 2020. Diet: Lightweight language un-
derstanding for dialogue systems.

Iñigo Casanueva, Tadas Temcinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulic. 2020. Effi-
cient intent detection with dual sentence encoders.
In Proceedings of the 2nd Workshop on Natural Lan-
guage Processing for Conversational AI, pages 38–
45, Seattle.

Daniel Cer, Yinfei Yang, Sheng yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.
2018. Universal sentence encoder.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 20th Annual Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pages 4171–
4186, Minneapolis. The Association for Computa-
tional Linguistics.

Stefan Larson, Anish Mahendran, Joseph Peper,
Christopher Clarke, Andrew Lee, P. Hill, Jonathan K.
Kummerfeld, Kevin Leach, M. Laurenzano, L. Tang,

and J. Mars. 2019. An evaluation dataset for in-
tent classification and out-of-scope prediction. In
EMNLP/IJCNLP.

X. Liu, A. Eshghi, P. Swietojanski, and Verena Rieser.
2019a. Benchmarking natural language under-
standing services for building conversational agents.
ArXiv, abs/1903.05566.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692, pages
1–13.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 19th Annual
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (HLT-NAACL), pages 2227–
2237, New Orleans. The Association for Computa-
tional Linguistics.

Patti Price. 1990. Evaluation of spoken language sys-
tems: The atis domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27, 1990.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in Neural Information
Processing Systems (NIPS), pages 5998–6008, Long
Beach, CA.

Shi Yu, Yuxin Chen, and Hussain Zaidi. 2020. A fi-
nancial service chatbot based on deep bidirectional
transformers.

310

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 311–318
June 6–11, 2021. ©2021 Association for Computational Linguistics

Industry Scale Semi-Supervised Learning for Natural Language
Understanding

Luoxin Chen∗
Alexa AI

luoxchen@amazon.com

Francisco Garcia∗
Alexa AI

fgmz@amazon.com

Varun Kumar∗
Alexa AI

kuvrun@amazon.com

He Xie∗
Alexa AI

hexie@amazon.com

Jianhua Lu
Alexa AI

jianhual@amazon.com

Abstract
This paper presents a production Semi-
Supervised Learning (SSL) pipeline based on
the student-teacher framework, which lever-
ages millions of unlabeled examples to im-
prove Natural Language Understanding (NLU)
tasks. We investigate two questions related
to the use of unlabeled data in the produc-
tion SSL context: 1) how to select samples
from a huge unlabeled data pool that are ben-
eficial for SSL training, and 2) how do the
selected data affect the performance of differ-
ent state-of-the-art SSL techniques. We com-
pare four widely used SSL techniques, Pseudo-
Label (PL), Knowledge Distillation (KD), Vir-
tual Adversarial Training (VAT), and Cross-
View Training (CVT) in conjunction with two
data selection methods including committee-
based selection and submodular optimization-
based selection. We further examine the ben-
efits and drawbacks of these techniques when
applied to intent classification (IC) and named
entity recognition (NER) tasks in the English
language using a public dataset (SNIPS) and
real-world data from Amazon Alexa. To con-
clude we provide guidelines specifying when
each of these methods might be beneficial to
improve large-scale NLU systems.

1 Introduction

Voice-assistants with speech and natural language
understanding (NLU) are becoming increasingly
prevalent in every day life. These systems, such as
Google Now, Alexa, or Siri, are able to respond to
queries pertaining multiple domains (e.g., music,
weather). An NLU system commonly consists of
an intent classifier (IC) and named entity recog-
nizer (NER). It takes text input from an automatic
speech recognizer and predicts intent and entities.
For example, if a user asks “play lady gaga”, the
IC classifies the query to intent of PlayMusic, and
the NER classifies “lady gaga” as Artist. An impor-
tant requirement for voice-assistants is the ability

∗?Equal contribution

to continuously add support for new functionali-
ties, i.e., new intents, or new entity types, while
improving recognition accuracy for the existing
ones. Having high quality labeled data is the key
to achieve this goal. However, obtaining human
annotation is an expensive and time-consuming
process.

Semi-Supervised Learning (SSL) provides a
framework for utilizing large amount of unlabeled
data when obtaining labels is expensive (Chapelle
et al., 2006; Blum and Mitchell, 1998; Zhou and
Li, 2005). SSL techniques have been shown to
improve deep models performance across different
machine learning tasks, including text classifica-
tion, sequence labeling, machine translation and
image classification (Clark et al., 2018; Miyato
et al., 2019, 2017; Yalniz et al., 2019; Berthelot
et al., 2019; Chen et al., 2020). A common practice
to evaluate SSL algorithms is to take an existing
labeled dataset and only use a small fraction of
training data as labeled data, while treating the
rest of the data as unlabeled dataset. Such evalua-
tion, often constrained to the cases when labeled
data is scarce, raises questions about the useful-
ness of different SSL algorithms in a real-world
setting (Oliver et al., 2018).

In voice assistants, we face additional challenges
while applying SSL techniques at scale including
(1) how much unlabeled data should we use for
SSL and how to select unlabeled data from a large
pool of unlabeled data? (2) Most SSL benchmarks
make the assumption that unlabeled datasets come
from the same distribution as the labeled datasets.
This assumption is often violated as, by design,
the labeled training datasets also contain synthetic
data, crowd-sourced data to represent anticipated
usages of a functionality, and unlabeled data often
contain a lot of out of domain data. (3) Unlike
widely used NLU datasets such as SNIPS (Coucke
et al., 2018), ATIS (Price, 1990), real-world voice
assistant datasets are much larger and have a lot

311

of redundancy because some queries such as “turn
on lights” might be much more frequent than oth-
ers. Due to such evaluation concerns, performance
of different SSL techniques in “real-world” NLU
applications is still in question.

To address these issues, we study three data se-
lection methods to select unlabeled data and eval-
uate how the selected data affect the performance
of different SSL methods on a real-world NLU
dataset in the English language. This paper pro-
vides three contributions: (1) Design of a produc-
tion SSL pipeline which can be used to intelligently
select unlabeled data to train SSL models (2) Exper-
imental comparison of four SSL techniques includ-
ing, Pseudo-Label, Knowledge Distillation, Cross-
View Training, and Virtual Adversarial Training
in a real-world setting using data from Amazon
Alexa (3) Operational recommendations for NLP
practitioners who would like to employ SSL in
production setting.

2 Background

Semi-Supervised Learning techniques are capable
of providing large improvements in model perfor-
mance with little effort, which could play a crucial
role in large scale systems in industry. In super-
vised learning, given a labeled datasetDl composed
of input-label pairs (x, y), the goal is to learn a
prediction model fθ(x), with parameters θ, that is
able to predict the correct label y′ corresponding
to a new unseen input instance x′. SSL techniques
aim to leverage an unlabeled dataset, Du, to create
better performing models than those that could be
obtained by only using Dl.

The two widely used SSL methods are: Pseudo-
Label (PL), and Knowledge Distillation (KD). In
PL, a teacher model trained on labeled data is used
to produce pseudo-labels for the unlabeled data set.
A student model trained on the union of the labeled
and pseudo-labeled data sets, often outperforms the
teacher model. (Yarowsky, 1995; McClosky et al.,
2006). On the other hand, KD SSL methods do not
assign a particular label to an unlabeled instance,
but instead consider the whole distribution over the
label space (Parthasarathi and Strom, 2019; Liu
et al., 2019b; Aguilar et al., 2020). In KD, it is
hypothesized that leveraging the probability distri-
bution over all labels provides more information
than assuming a definitive label belonging to one
particular class (Hinton et al., 2015).

In addition to PL and KD, Virtual Adversarial

Training (VAT) and Cross-View Training (CVT)
have achieved state-of-the-art SSL performance on
various tasks including text classification, named
entity recognition, and dependency parsing (Miy-
ato et al., 2019; Clark et al., 2018; Miyato et al.,
2017; Chen et al., 2020). In this paper, we conduct
comprehensive experiments and analysis related to
these commonly used SSL techniques, and discuss
their pros and cons in the industry setting.

Data selection for SSL has been explored for dif-
ferent tasks including image classification (Ding
et al., 2018), NER (Ji and Grishman, 2006; Ruder
and Plank, 2018). Model confidence based data se-
lection is a widely used technique for SSL data se-
lection where unlabeled data is selected on the basis
of a classifier’s confidence. Due to the abundance
of unlabeled data in production voice-assistants,
model confidence based filtering leads to a very
large data pool. To overcome this issue, we study
different data selection algorithm which can further
reduce the size of unlabeled data.

3 Methods

We are interested in studying two different ques-
tions relevant to the use of unlabeled data in pro-
duction environments: 1) how to effectively select
SSL data from a large pool of unlabeled data, and
2) how do SSL techniques perform in realistic sce-
narios? To do so, we focus on the tasks of intent
classification (IC) and named entity recognition
(NER), two important components in NLU sys-
tems.

The model architecture we study is an LSTM-
based multi-task model for IC and NER tasks,
where we use 300-dimension fastText word embed-
dings (Bojanowski et al., 2016), trained on a large
voice assistant corpus.1 A shared 256-dimension
Bi-LSTM encoder and two separate task-specific
Bi-LSTM encoders (256-dimension) are applied
to encode the sentences. A softmax layer and a
conditional random field (CRF) layer are used to
produce predictions for IC and NER, respectively.

Below we describe our implementation of the
SSL techniques and the data selection methods
studied.

3.1 Data Selection Approaches

In the industry setting, we often encounter the sit-
uation where we have extremely large pool of un-

1The text corpus contains data transcribed by an automatic
speech recognition system.

312

Massive Unlabeled
Data pool

Domain Specific
Unlabeled Dataset

Labeled Dataset

Stage 1
Select domain specific
data using a classifier

SSL Unlabeled
Data Pool

Stage 2
SSL pool creation using
Intelligent data selection

Stage 3
SSL model training

VAT, CVT

Unlabeled Data Selection pipeline SSL Training

NLU IC + NER SSL
Model

Domain
Classifier

Figure 1: SSL pipeline. Domain specific unlabeled data are first selected using a domain classifer. We then select a
subset of the unlabeled data using submodular optimization or committee based selection. Finally we train different
SSL models using selected data combined with the labeled data.

labeled data, intractable to have SSL methods run
on the entire dataset. Given this challenge, we pro-
pose a two stage data selection pipeline to create an
unlabeled SSL pool, Du, of a practical size, from
the much larger pool of available data.

Data selection pipeline, shown in Figure 1, first
uses a classifier’s confidence score to filter domain
specific unlabeled data from a very large pool of
unlabeled data, which might contain data from mul-
tiple domains. For a production system, first stage
filtering might result in millions of examples, so
we further filter data using different selection algo-
rithms to find an SSL data pool, which facilitates
effective SSL training. While the first stage filter-
ing tries to find domain specific examples from a
large pool, the goal of the second stage filtering is
to find a subset of data which could result in better
performance in SSL training.

For first stage filtering, we train a binary clas-
sifier on the labelled data, and use it to select
the in-domain unlabelled data. In our experi-
ments, switching between different binary classi-
fiers (linear, CNN, LSTM, etc) does not signif-
icantly change the selected data. Consequently,
in this study, we simply use a single-layer 256-
dimension Bi-LSTM for the first stage of filtering.
Based on our initial experiments, we use confi-
dence score 0.5 as the threshold for data selection2.
For second stage filtering, we explore data selection
using a committee of models and using submod-
ular optimization. While this paper explores only
two data selection methods, it’s worth mentioning
that any data selection algorithm can be used in the

2We tried confidence larger than 0.5 but found that a high
confidence score degrades the performance. Our hypothesis is
that a high confidence score leads to selecting data similar to
labeled data hence a less diverse SSL pool.

second stage filtering to further optimize the size
of SSL pool.

Selection by Submodular Optimization: Sub-
modular data selection is used to select a diverse
representative subset of samples from given dataset.
This method has been applied in speech recogni-
tion (Wei et al., 2015), machine translation (Kirch-
hoff and Bilmes, 2014) and natural language un-
derstanding tasks (Cho et al., 2019). For SSL data
selection, we use feature-based submodular selec-
tion (Kirchhoff and Bilmes, 2014), where submod-
ular functions are given by weighted sums of non-
decreasing concave functions applied to modular
functions. For SSL data selection, we use 1-4 n-
gram as features and logarithm as the concave func-
tion. We filter out any n-gram features which ap-
pear less than 30 times inDl∪Du. The lazy greedy
algorithm is used to optimize submodular functions.
The algorithm starts with Dl as the selected data
and chooses the utterance from the candidate pool
Du which provides maximum marginal gain.

Selection by Committee: SSL techniques work
well when the model is able to provide an accurate
prediction on unlabeled data. However, when this
is not the case, SSL can have a detrimental effect to
the overall system, since the model could be creat-
ing SSL data that is annotated incorrectly. Ideally,
we would like to have a way of detecting when
this might be the case. Typically, for a given input
x, neural networks provide a point estimate that
is interpreted as a probability distribution over la-
bels. If the point x is easy to learn, neural networks
trained from different initial conditions will learn a
similar probability distribution for x. On the other
hand, if x is difficult to learn, their predictions are

313

likely to disagree or converge to low confidence
predictions. This phenomenon has been observed
in several works addressing uncertainty estimation
(Liu et al., 2019a; Ashukha et al., 2020). As a
consequence, data points with high uncertainty are
more likely to be incorrectly predicted than those
with low uncertainty.

To detect data points on which the model is
not reliable, we train a committee of n teacher
models (we use n = 4 in this paper), and compute
the average entropy of the probability distribution
for every data point. Specifically, let P (y;x, θi)
denote the probability of label y for input x ac-
cording to the ith teacher, we compute the average
entropy of the predicted label distribution of x as:
H(x) = − 1

n

∑
y∈Y

∑n
i=1 P (y;x, θi) logP (y;x, θi).

We then identify an entropy threshold with an
acceptable error rate for mis-annotations (e.g.,
20%) based on a held-out dataset. Any committee
annotated data whose entropy level is higher
than the identified threshold, is deemed “not
trustworthy” and filtered out.

3.2 Semi-Supervised Learning Approaches

We explore the following four Semi-Supervised
Learning techniques:

PL based self-training is a simple and straightfor-
ward method of SSL (Yarowsky, 1995; McClosky
et al., 2006). Using a labeled data set Dl, we first
train a “teacher” model, fθ. We then generate a
dataset of pseudo-labeled data from Du, by assign-
ing for each input instance xu, the label ŷ, predicted
by the teacher. A new model, to which we refer
as a “student”, is then trained on the union of both
pseudo-labeled and labeled datasets.

In KD, for a given input, a teacher model pro-
duces a probability distribution over all possible
labels. The predicted probability distribution is of-
ten referred to as “soft label”. The student model
is then trained alternating between two objectives:
minimizing the loss on the labeled data, defined
respectively for different tasks, and minimizing the
cross-entropy loss between the student and teacher
predicted “soft label” on the unlabeled data (Hin-
ton et al., 2015). The soft labels on intents are
generated by the IC’s softmax layer, while the soft
labels on label sequences are generated per token,
by running softmax on the logits for each token
before the CRF layer.

VAT is an efficient SSL approach based on ad-
versarial learning. It has been shown to be highly

effective in both image (Miyato et al., 2019) and
text classification (Miyato et al., 2017) tasks. Given
an unlabeled instance, VAT generates a small per-
turbation that would lead to the largest shift on the
label distribution predicted by the model. After get-
ting the adversarial perturbation, the objective is to
minimize the KL divergence between the label dis-
tribution on the original instance and the instance
with perturbation.

CVT is another SSL approach proved to be effi-
cient on text classification, sequence labeling and
machine translation (Clark et al., 2018). Using
an Bi-LSTM, CVT uses the the bi-directional out-
put from current state as an auxiliary prediction,
takes the single-directional output from current and
neighboring LSTM neurons, and forces them to
predict the same label as the auxiliary prediction.

4 Data Sets

The main motivation of our study is to evaluate
different data selection and SSL techniques in a
production scale setting where we have a large
amount of unlabeled data. To understand impact of
data selection, we create two benchmark datasets
for our experiments. In both experiments, using
the pipeline shown in Figure 1, we first select M
utterances from a very large pool of unlabeled data,
and then apply intelligent data selection to further
select N unlabeled utterances.

Commercial Dataset: Our commercial dataset
provides an experimental setup to compare SSL
techniques where labeled training data and unla-
beled data come from a similar distribution. We
choose four representative domains (i.e., categories
for which the user can make requests) from a com-
mercially available voice-assistant system for En-
glish language. The four selected categories are 1)
Communication: queries related to call, messages,
2) Music: queries related to playing music, 3) No-
tifications: queries related to alarms, timers, and
4) ToDos: queries related to task organization. For
each domain, NLU task is to identify the intent
(IC), and the entities (NER) in the utterance.
For each domain, our dataset contains 50k unique
training, 50k unique testing utterances, and hun-
dreds of millions of utterances of unlabeled data.
Since, we do not know in advance to which domain
each unlabeled utterance belongs, we first select
500K unlabeled utterance per domain to form their
respective unlabeled data pool, using a domain clas-
sifier, as shown in Figure 1. The choice of 500K

314

Table 1: Relative error rate reduction using KD, over
baseline trained with only labeled data, for Music do-
main. Unlabeled data SSL pool size varies from 50K
to 1M utterances. 50K labeled examples are used for
all experiments. The metric for IC is classification er-
ror rate, and for NER is entity recognition F1 error rate.

Task 50K 100K 300K 500K 1M
IC -3.81% -3.37% -4.40% -4.49% -4.09%

NER -6.05% -7.49% -6.96% -8.07% -7.20%

size is based on a series of KD based SSL exper-
iments in Music domain, with the SSL data pool
size varying from 50K to 1M. It is observed that
increasing SSL pool size beyond 500k starts to re-
duce the performance gain from SSL (Table 1). To
evaluate the effect of intelligent data selection, out
of 500k, we further select 300k utterances via dif-
ferent data selection approaches and use them as
unlabeled data in SSL experiments.

SNIPS Dataset: We also create a benchmark
setup where labeled and unlabeled data come from
different distributions. We use SNIPS (Coucke
et al., 2018) dataset as labeled data, and use un-
labeled data from our commercial dataset as SSL
pool data. Similar to our commercial dataset, we
train a binary classifier for each intent on SNIPS
and use it to select 300, 000 utterances as the unla-
beled data pool for each intent. Then, we apply data
selection approaches to filter for 20, 000 utterances
per intent for SSL experiments.

5 Results

This section presents evaluations of different SSL
techniques using different data selection regimes.
For all experiments, hyperparameters are optimized
on development set. The SSL techniques evaluated
are: PL, KD, VAT, CVT. The data selection meth-
ods evaluated are: random selection (Random),
submodular optimization based selection (Submod-
ular), and committee-based selection (Committee).

5.1 Results on Commercial Dataset
Due to confidentiality, we could not disclose ab-
solute performance numbers on the commercial
dataset. Only relative changes over baseline are
reported. A summary of the results for the various
data selection and SSL techniques is given in Table
2. “Baseline” refers to model trained with only
labeled data. The metric for IC task is intent classi-
fication error rate. The metric for NER task is entity
recognition F1 error rate. The table shows the rel-

ative error reduction compared to baseline. The
bold font shows the best performing SSL method
for each data selection approach.

Comparison of Data Selection Methods: We
observe that both Submodular and Committee
based selection outperforms random selection
across all domains and SSL techniques. This shows
the effectiveness of Stage 2 data filtering. While on
Notifications and ToDos domain, submodular selec-
tion performs better than other methods, on Com-
munication and Music domain, committee based
selection performs the best.

Comparison of SSL Techniques: Table 2
shows that KD improves performances over PL in
virtually all scenarios (except for NER in ToDos).
This supports the hypothesis that using the full dis-
tribution predicted by the teacher model, instead
of using solely the predicted label, allows for the
transfer of extra information when training a stu-
dent model. In addition, though both VAT and CVT
consistently outperform KD and PL, their benefits
are task dependent. VAT shows stronger benefits on
all NER experiments, while CVT performs better
in most IC experiments. From an accuracy perspec-
tive, VAT is more beneficial in NER tasks while
CVT is more beneficial in classification tasks.

SSL Techniques Computation Comparison:
We time each SSL technique on the data selected
for Music domain. While PL and KD took approx-
imately 30 minutes to train each epoch on a Tesla
V100 GPU, VAT and CVT took 62 minutes and 75
minutes, respectively. Given that PL and KD have
similar compute requirement and KD consistently
outperforms PL, KD should be preferred over PL
for SSL. The decision between CVT and VAT relies
on the trade-off between accuracy and cost.

5.2 Results on SNIPS Dataset

Test results on SNIPS dataset are summarized in
Table 3. The test results on SNIPS aligns with our
observations on commercial dataset in that VAT and
CVT are the superior SSL techniques; except for
the IC task with submodular data selection, these
techniques outperformed PL and KD in every other
situation. Moreover, the results show that VAT and
CVT provide good generalization even when the la-
beled and unlabeled data are from different sources
and of different distributions. In contrast to the
commercial dataset where intelligent data selection
leads to better performance, on SNIPS dataset, we
found that submodular optimization or committee

315

Table 2: Error reduction of SSL methods, relative to baseline. Bold represents the best SSL method for a given data
selection technique. Bold† represents the best performance across all SSL methods and data selection techniques.

SSL Selection Communication Music Notifications ToDos
Algorithm Approach IC NER IC NER IC NER IC NER
Baseline 0 0 0 0 0 0 0 0

PL -3.61% -2.86% -4.86% -3.70% -2.79% -4.06% -2.94% -3.33%
KD Random -6.35% -2.97% -6.96% -4.40% -3.48% -4.84% -4.18% -1.59%
VAT -8.14% -8.18% -11.15% -9.26% -6.90% -8.55% -4.07% -4.59%
CVT -9.61% -5.26% -7.21% -8.13% -7.39% -7.19% -4.75% -2.38%

Baseline 0 0 0 0 0 0 0 0
PL -4.90% -3.11% -4.61% -3.35% -1.48% -4.62% -1.70% -4.32%
KD Submodular -6.69% -3.40% -8.19% -3.63% -2.91% -4.32% -5.01% -2.59%
VAT -11.56% -8.39% -14.72%† -11.03%† -8.70% -11.86%† -6.24% -5.77%
CVT -14.72% -5.91% -9.84% -9.94% -8.72%† -10.61% -6.30% -3.13%

Baseline 0 0 0 0 0 0 0 0
PL -10.54% -3.91% -9.02% -3.93% -6.90% -4.47% -4.55% -3.67%
KD Committee -11.13% -4.46% -11.98% -4.09% -7.76% -5.06% -6.10% -2.61%
VAT -13.16% -9.40%† -13.63% -10.10% -8.50% -11.82% -5.75% -5.99%†

CVT -15.25%† -6.53% -8.72% -8.27% -8.72%† -10.40% -7.34%† -3.58%

Table 3: Model performance by different SSL methods
and data selection methods, for SNIPS data set. The
metric for IC task is classification error rate, and for
NER task is entity recognition F1 error rate.

SSL Selection SNIPS
Algorithm Approach IC NER
Baseline 0.9744 0.9367

PL 0.9743 0.9326
KD Random 0.9743 0.9424
VAT 0.9814 0.9604
CVT 0.9871 0.9565

Baseline 0.9744 0.9367
PL 0.9743 0.9342
KD Submodular 0.9786 0.9403
VAT 0.9728 0.9579
CVT 0.9785 0.9524

Baseline 0.9744 0.9367
PL 0.9700 0.9272
KD Committee 0.9729 0.9353
VAT 0.9772 0.9501
CVT 0.9780 0.9518

based selection do not provide any gain over ran-
dom selection. This difference in performance is
likely a result of the difference in data distribution
between our commercial dataset and SNIPS. The
unlabeled data from SNIPS differs significantly
from the training data, which makes the data se-
lection algorithms susceptible to noisy unlabeled
data selection. For example, submodular optimiza-
tion primarily optimizes for data diversity which
makes it more likely to select diverse, out of do-
main examples than random selection. In contrast,
the unlabeled data from our commercial dataset is
highly related to the training data, containing many

paraphrases or similar entities. Following the previ-
ous example, the inherent diversity of submodular
selection is likely to capture diverse paraphrases of
known intents, which in turn expands the space of
possible utterances that the underlying IC models
can correctly classify.

5.3 Diversity of Selected Data

In supervised machine learning, a diverse training
set often correlates with good generalizability. To
understand the correlation between the diversity of
SSL training data set and model performance, we
measure the diversity of the selected data by com-
puting the unique n-gram ratio present in Dl ∪ Du
and Dl data. This provides a sense of how different
the selected data is from the data used for training.
The higher the ratio, the more diverse the n-grams
of unlabeled data are compared to the labeled data.
Table 4 shows the unigram and 1-4 gram ratios for
the different selection algorithms. A unigram ratio
of 2 means that a selection algorithm has expanded
the vocabulary size by two. Similarly, 1-4 gram ra-
tio represents the ratio by which n-gram vocabulary
has expanded. We observe that a diverse SSL pool
does not necessarily lead to better performance.
For example, in the Todos domain, while randomly
selected data is more diverse, committee-based se-
lection consistently outperforms random on both
IC and NER tasks. This result highlights that sim-
ply optimizing for token diversity is not enough for
improving SSL performance.

316

Table 4: Unique unigram and 1-4 grams ratio present in Dl ∪ Du and Dl

Domains Random Committee Submod
Unigram 1-4 gram Unigram 1-4 gram Unigram 1-4 gram

Communication 3.21 9.29 3.29 10.21 1.41 6.17
Todos 2.88 6.04 1.4 3.51 1.51 3.19
Music 3.19 6.42 3.24 6.39 3.43 7.18

Notifications 3.04 6.01 3.08 5.9 1.77 3.97

6 Recommendations

Based on our empirical results, we make the fol-
lowing recommendations for industry scale NLU
SSL systems.

Prefer VAT and CVT SSL techniques over
PL and KL: When selecting SSL techniques, CVT
usually performs better for classification task while
VAT is preferable for NER task. In general, we
would recommend VAT since its performance in
classification task is comparable to CVT and also
because VAT excels in NER task which is usually
harder to achieve performance gain.

Use data selection to select a subset of unla-
beled data: For industry setting where the volume
of unlabeled data is impractically large, we intro-
duce a data filtering pipeline to first reduce the size
of unlabeled data pool to a manageable size. Our
experiments show that both submodular as well
as committee based data selection could further
improve SSL performance. We recommend Sub-
modular Optimization based data selection in light
of its lower cost and similar performance to com-
mittee based method.

From experiments on SNIPS data sets, we ob-
serve that further data selection does not bring extra
improvement comparing to random selection. Op-
timizing data selection, when unlabeled data pool
is of a drastically different distribution from the
labeled data, remains a challenge and could benefit
from further research.

7 Conclusion

In this paper, we conduct extensive experiments
and in-depth analysis of different SSL techniques
applied to industry scale NLU tasks. Industrial set-
tings come with some unique challenges such as
massive unlabeled data with a mixture of in domain
and out of domain data. In order to overcome these
challenges, we also investigate different data selec-
tion approaches including submodular optimization
and committee based filtering.

Our paper provides insights on how to build an

efficient and accurate NLU system, utilizing SSL,
from different perspectives (e.g. model accuracy,
amount of data, training time and cost, etc). By
sharing these insights with larger NLP community,
we hope that these guideline will be useful for
researchers and practitioner who aim to improve
NLU systems while minimizing human annotation
effort.

8 Ethical Considerations

Our paper proposes a two stage data selection
pipeline to efficiently utilize large amount of unla-
beled data. While the focus of this work is to im-
prove NLU models, selected unlabeled data might
introduce biases in the trained models. We suggest
carefully examining the potential bias exhibited due
to the selected data before deploying SSL models
in any real-world applications.

References
Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin Yao,

Xing Fan, and Chenlei Guo. 2020. Knowledge distil-
lation from internal representations. In AAAI, pages
7350–7357.

Arsenii Ashukha, Alexander Lyzhov, Dmitry
Molchanov, and Dmitry Vetrov. 2020. Pitfalls
of in-domain uncertainty estimation and ensembling
in deep learning.

David Berthelot, Nicholas Carlini, Ian Goodfellow,
Nicolas Papernot, Avital Oliver, and Colin A Raf-
fel. 2019. Mixmatch: A holistic approach to semi-
supervised learning. In Advances in Neural Infor-
mation Processing Systems, pages 5049–5059.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In Pro-
ceedings of the eleventh annual conference on Com-
putational learning theory, pages 92–100.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information.

Olivier Chapelle, Bernhard Schölkopf, and Alexander
Zien. 2006. Introduction to semi-supervised learn-
ing. In Semi-Supervised Learning.

317

Luoxin Chen, Weitong Ruan, Xinyue Liu, and Jianhua
Lu. 2020. SeqVAT: Virtual adversarial training for
semi-supervised sequence labeling. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8801–8811, On-
line. Association for Computational Linguistics.

Eunah Cho, He Xie, John P. Lalor, Varun Kumar,
and William M. Campbell. 2019. Efficient semi-
supervised learning for natural language understand-
ing by optimizing diversity. 2019 IEEE Automatic
Speech Recognition and Understanding Workshop
(ASRU).

Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc V. Le. 2018. Semi-supervised se-
quence modeling with cross-view training. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, Brussels, Bel-
gium, October 31 - November 4, 2018, pages 1914–
1925. Association for Computational Linguistics.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maël Primet, and Joseph
Dureau. 2018. Snips voice platform: an embedded
spoken language understanding system for private-
by-design voice interfaces. ArXiv, abs/1805.10190.

Yifan Ding, Liqiang Wang, Deliang Fan, and Boqing
Gong. 2018. A semi-supervised two-stage approach
to learning from noisy labels. 2018 IEEE Win-
ter Conference on Applications of Computer Vision
(WACV).

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Heng Ji and Ralph Grishman. 2006. Data selection in
semi-supervised learning for name tagging. In Pro-
ceedings of the Workshop on Information Extraction
Beyond The Document, pages 48–55, Sydney, Aus-
tralia. Association for Computational Linguistics.

Katrin Kirchhoff and Jeff Bilmes. 2014. Submodu-
larity for data selection in machine translation. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 131–141.

Jeremiah Liu, John W. Paisley, M. Kioumourtzoglou,
and B. Coull. 2019a. Accurate uncertainty estima-
tion and decomposition in ensemble learning. In
NeurIPS.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and
Jianfeng Gao. 2019b. Improving multi-task deep
neural networks via knowledge distillation for
natural language understanding. arXiv preprint
arXiv:1904.09482.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Pro-
ceedings of the main conference on human language

technology conference of the North American Chap-
ter of the Association of Computational Linguistics,
pages 152–159. Association for Computational Lin-
guistics.

Takeru Miyato, Andrew M. Dai, and Ian J. Good-
fellow. 2017. Adversarial training methods for
semi-supervised text classification. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii. 2019. Virtual adversarial training:
A regularization method for supervised and semi-
supervised learning. IEEE Trans. Pattern Anal.
Mach. Intell., 41(8):1979–1993.

Avital Oliver, Augustus Odena, Colin Raffel, Ekin D.
Cubuk, and Ian J. Goodfellow. 2018. Realistic eval-
uation of deep semi-supervised learning algorithms.

Sree Hari Krishnan Parthasarathi and Nikko Strom.
2019. Lessons from building acoustic models
with a million hours of speech. In ICASSP 2019-
2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
6670–6674. IEEE.

P. J. Price. 1990. Evaluation of spoken language sys-
tems: the atis domain. In HLT.

Sebastian Ruder and Barbara Plank. 2018. Strong base-
lines for neural semi-supervised learning under do-
main shift. Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers).

Kai Wei, Rishabh Iyer, and Jeff Bilmes. 2015. Submod-
ularity in data subset selection and active learning.
In International Conference on Machine Learning,
pages 1954–1963.

I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri,
and Dhruv Mahajan. 2019. Billion-scale semi-
supervised learning for image classification. arXiv
preprint arXiv:1905.00546.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In 33rd
annual meeting of the association for computational
linguistics, pages 189–196.

Zhi-Hua Zhou and Ming Li. 2005. Tri-training: Ex-
ploiting unlabeled data using three classifiers. IEEE
Transactions on knowledge and Data Engineering,
17(11):1529–1541.

318

Author Index

Abujabal, Abdalghani, 10, 56
Agarwal, Arvind, 222
Agarwal, Vipul, 1
Arkoudas, Konstantine, 288
Atalla, Chad, 1
Auvray, Vincent, 238
Aw, Ai Ti, 80, 246

Bai, Hongxiao, 89
Bajaj, Payal, 138
Bangalore, Srinivas, 63, 214
Banko, Michele, 121
Barut, Emre, 41
Benešová, Katarína, 187
Bianchi, Federico, 154
Bonafonte, Antonio, 72

Chapin, Colton, 163
Chen, Haiqing, 130
Chen, Huan, 130
Chen, Jiangning, 19, 26
Chen, Lei, 296
Chen, Luoxin, 311
Chen, Minhua, 63
Chen, Nancy F, 246
Chiticariu, Laura, 222
Chitkara, Pooja, 196
Chozhiyath Raman, Poornima, 222

Danilevsky, Marina, 222
De Andrade, Anderson, 163
Deb, Budhaditya, 138
Delli Bovi, Claudio, 56
Deng, Tiantong, 26
Deng, Yu, 178
Ding, Yang, 80
Dong, Shuyan, 19
Dun, Nan, 196

Eo, Sugyeong, 97
Eric, Mihail, 26

Fan, Yang, 41

Ganiev, Amir, 163

Gao, Sida, 196
Garcia, Francisco, 311
Garrido Ramas, Jose, 10
Ghazi, Diman, 222
Goel, Karan, 205
Gojayev, Turan, 56
Gouyon, Fabien, 49
Goyal, Anuj, 238
Grasch, Peter, 196
Grewal, Akshay, 26
Guo, Yufan, 170
Gupta, Ankush, 222
Gupta, Narendra, 63
Guttula, Shanmukha, 222
Guven, Sinem, 178

Hakkani-Tur, Dilek, 26
Hamza, Wael, 41
He, Xin, 19
Hu, Youna, 146

J Kurisinkel, Litton, 246
Jalalvand, Shahab, 63
Jiang, Daxin, 138
Jiang, Meng, 178
Joty, Shafiq, 80

Kamigaito, Hidetaka, 255
Kanungo, Yashal Shakti, 263
Kao, Justine, 196
Katsis, Yannis, 222
Kaul, Vivek, 196
Kim, Kunho, 1
Kim, Yeon-Jun, 63
Kothari, Atish, 196
Krishnamurthy, Rajasekar, 222
Kumar, Varun, 311
Kunc, Ladislav, 304

Latorre, Javier, 72
Lester, Brian, 214
Li, Chenyang, 34
Li, Lei, 89, 105, 113
Li, Lin, 196
Li, Yunyao, 222

319

Lim, Heuiseok, 97
Lin, Bojia, 138
Lin, Tzu-Hsiang, 41
Liu, Chen, 163
Liu, Yang, 19, 26
Liu, Yue, 19, 26
Liu, Zhe, 170
Lorenzo-Trueba, Jaime, 72
Lu, Hanqing, 146
Lu, Jianhua, 311
Lu, Yichao, 34

Mahindru, Ruchi, 178
Mahmud, Jalal, 170
Malmir, Mohsen, 19
Marek, Petr, 238
Mehrabani, Mahnoosh, 63
Mehta, Kartik, 272
Miyake, Hirokazu, 296
Moniz, Joel Ruben Antony, 196
Moon, Hyeonseok, 97
Mudgal, Shubham, 222
Munigala, Vitobha, 222
Muralidharan, Deepak, 196

Naik, Vishal Ishwar, 238
Negi, Sumit, 263, 280
Ni, Yuan, 230
Nikhil, Nishant, 280

O, Andy, 196
Okumura, Manabu, 255
Oprea, Ioana, 272
Oramas, Sergio, 49
Orr, Laurel, 205

Pan, Lin, 304
Pan, Yinying, 196
park, chanjun, 97
Patel, Alkesh, 196
Peschon, Riley, 34
Pessot, Giorgio, 10
Phan, Nicholas, 222
Potdar, Saloni, 304
Prasad, Rashmi, 214
Price, Ryan, 63
Pulman, Stephen, 196

Qi, Haode, 304
Quadrana, Massimo, 49
Quirk, Chris, 1

Rajan, Aruna, 263, 280

Rajani, Nazneen Fatema, 205
Rajman, Martin, 10
Rasiwasia, Nikhil, 272
Ray Choudhury, Sagnik, 214
Ré, Christopher, 205
Ruan, Weitong, 41
Ryu, Sungho, 56

Seyed Ibrahim, Mubarak, 196
Shah, Abhishek, 304
Shamanna Girishekar, Eshwar, 280
Shang, Mingyue, 26
Shen, Ray, 196
Shi, Yipeng, 41
Shokouhi, Milad, 1, 138
Sil, Dyut Kumar, 280
Sonawane, Dhaval, 222
Song, Shuangyong, 130
Song, Xia, 138
Song, Yiwei, 146
Sood, Atin, 304
Soto, Victor, 288
Srinivasan, Sneha, 222
Srivastava, Manisha, 34
Su, Chengwei, 19, 41
Suppa, Marek, 187
Surya, Shiv, 280
Švec, Andrej, 187

Tagliabue, Jacopo, 154
Takamura, Hiroya, 255
Tayal, Kushal, 196
Thitte, Sudarshan R., 222
Trajanovski, Stojan, 1
Triefenbach, Fabian, 56
Tyagi, Shubhi, 72

Vasa, Mitesh, 222
Venkatachalam, Ramiya, 222
Versley, Yannick, 56
Vig, Jesse, 205

Wang, Chao, 130
Wang, Cindy, 121
Wang, Han, 19, 26
Wang, Jiyang, 26
Wang, Mingxuan, 89, 105, 113
Wang, Tao, 105
Wang, Tong, 19, 26
Wang, Wei, 138
Wang, Xiaohui, 113
Wang, Xiaoling, 230
Wang, Xuan, 196

Wei, Yang, 113
Welch, Matthew, 26
Williams, Jason D, 196
Wu, Kui, 80
Wu, Lingfei, 178
Wu, Tony, 146

Xiang, Gang, 196
Xie, Guotong, 230
Xie, He, 311
Xiong, Deyi, 105
Xiong, Ying, 113
Xu, Weiwen, 80

Yang, Xiao, 196
Yang, Yang, 138
Yang, Yu, 138
Yaski, Vinitha, 222
Ye, Chentao, 41
Yin, Bing, 146
Ying, Qianlan, 138
Yu, Bingqing, 154
Yu, Mo, 304
Yu, Wenhao, 178

Zeng, Qingkai, 178
Zhang, Peinan, 255
Zhang, Yuan, 196
Zhao, Chengqi, 105
Zhao, Hai, 89
Zhao, Tong, 146
Zhao, Yanjie, 63
Zheng, Roger, 196
Zhou, Yidan, 196
Zhu, Huaiyu, 222
Zhu, Wei, 230

	Program
	When does text prediction benefit from additional context? An exploration of contextual signals for chat and email messages
	Identifying and Resolving Annotation Changes for Natural Language Understanding
	Optimizing NLU Reranking Using Entity Resolution Signals in Multi-domain Dialog Systems
	Entity Resolution in Open-domain Conversations
	Pretrain-Finetune Based Training of Task-Oriented Dialogue Systems in a Real-World Setting
	Contextual Domain Classification with Temporal Representations
	Bootstrapping a Music Voice Assistant with Weak Supervision
	Continuous Model Improvement for Language Understanding with Machine Translation
	A Hybrid Approach to Scalable and Robust Spoken Language Understanding in Enterprise Virtual Agents
	Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems
	Addressing the Vulnerability of NMT in Input Perturbations
	Cross-lingual Supervision Improves Unsupervised Neural Machine Translation
	Should we find another model?: Improving Neural Machine Translation Performance with ONE-Piece Tokenization Method without Model Modification
	Autocorrect in the Process of Translation — Multi-task Learning Improves Dialogue Machine Translation
	LightSeq: A High Performance Inference Library for Transformers
	Practical Transformer-based Multilingual Text Classification
	An Emotional Comfort Framework for Improving User Satisfaction in E-Commerce Customer Service Chatbots
	Language Scaling for Universal Suggested Replies Model
	Graph-based Multilingual Product Retrieval in E-Commerce Search
	Query2Prod2Vec: Grounded Word Embeddings for eCommerce
	An Architecture for Accelerated Large-Scale Inference of Transformer-Based Language Models
	When and Why a Model Fails? A Human-in-the-loop Error Detection Framework for Sentiment Analysis
	Technical Question Answering across Tasks and Domains
	Cost-effective Deployment of BERT Models in Serverless Environment
	Noise Robust Named Entity Understanding for Voice Assistants
	Goodwill Hunting: Analyzing and Repurposing Off-the-Shelf Named Entity Linking Systems
	Intent Features for Rich Natural Language Understanding
	Development of an Enterprise-Grade Contract Understanding System
	Discovering Better Model Architectures for Medical Query Understanding
	OodGAN: Generative Adversarial Network for Out-of-Domain Data Generation
	Coherent and Concise Radiology Report Generation via Context Specific Image Representations and Orthogonal Sentence States
	An Empirical Study of Generating Texts for Search Engine Advertising
	Ad Headline Generation using Self-Critical Masked Language Model
	LATEX-Numeric: Language Agnostic Text Attribute Extraction for Numeric Attributes
	Training Language Models under Resource Constraints for Adversarial Advertisement Detection
	Combining Weakly Supervised ML Techniques for Low-Resource NLU
	Label-Guided Learning for Item Categorization in e-Commerce
	Benchmarking Commercial Intent Detection Services with Practice-Driven Evaluations
	Industry Scale Semi-Supervised Learning for Natural Language Understanding

