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Message from the Industry Track Chairs

Language technologies and their applications are an integral and critical part of our daily lives. The
development of many of these technologies trace their roots to academic and industrial research
laboratories where researchers invented a plethora of algorithms, benchmarked them against shared
datasets and perfected the performance of these algorithms to provide plausible solutions to real-
world applications. While a controlled laboratory setting is vital for a deeper scientific understanding
of the language problem and the impact of algorithmic design choices on the performance of a
technology, transitioning the technology to real-world industrial strength applications raises a different,
yet challenging, set of technical issues.

The Industry Track at NAACL HLT 2021 represents innovations and implementations in speech and
natural language processing technologies and systems that are relevant to industrial applications. The
primary focus of this track is on papers that advance the understanding of, and demonstrate the effective
handling of, practical issues related to the deployment of language processing technologies in non-trivial
real-world systems. By “non-trivial real-world system” we mean an application that is deployed for
real-world use, i.e. outside controlled environments such as a laboratories, classrooms or experimental
crowd-sourced setups, and that uses natural language processing (including speech technology), even if
not state of the art in terms of research. There is no requirement that the system be made by a for-profit
company, but the users of the system must be outside of the NLP research community.

We received 132 papers, and accepted 39, or 29.5%. This year, nearly half the papers in the
Industry Track are about dialog processing, reflecting the importance of interactive systems in industrial
applications today. Additional topics include semantics, machine translation, information retrieval, and
sentiment analysis.

We hope that these papers will provide an interesting complement to the Main Track papers.

Young-bum Kim, Yunyao Li, Owen Rambow
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When does text prediction benefit from additional context?
An exploration of contextual signals for chat and email messages

Stojan Trajanovski Chad Atalla Kunho Kim
Microsoft Microsoft Microsoft

Vipul Agarwal Milad Shokouhi Chris Quirk
Microsoft Microsoft Microsoft

{sttrajan,chatalla, kuki,vipulag,milads, chrisqg}@microsoft.com

Abstract

Email and chat communication tools are in-
creasingly important for completing daily
tasks. Accurate real-time phrase completion
can save time and bolster productivity. Mod-
ern text prediction algorithms are based on
large language models which typically rely
on the prior words in a message to predict a
completion. We examine how additional con-
textual signals (from previous messages, time,
and subject) affect the performance of a com-
mercial text prediction model. We compare
contextual text prediction in chat and email
messages from two of the largest commercial
platforms Microsoft Teams and Outlook, find-
ing that contextual signals contribute to per-
formance differently between these scenarios.
On emails, time context is most beneficial
with small relative gains of 2% over baseline.
Whereas, in chat scenarios, using a tailored
set of previous messages as context yields rel-
ative improvements over the baseline between
9.3% and 18.6% across various critical service-
oriented text prediction metrics.

1 Introduction

Email and chat communication tools are increas-
ingly important for completing daily professional
and personal tasks. Given the recent pandemic
and shift to remote work, this usage has surged.
The number of daily active users in Microsoft
Teams, the largest business communication and
chat platform, has increased from 20 million (2019,
pre-pandemic) to more than 115 million in Octo-
ber (2020). On the other hand, email continues
to be the crucial driver for formal communication
showing ever increasing usage. Providing real-time
suggestions for word or phrase auto-completions is
known as text prediction. The efficiency of these
communications is enhanced by suggesting highly
accurate text predictions with low latency. Text
prediction services have been deployed across pop-
ular communication tools and platforms such as

1

(Microsoft Text Predictions, 2020) or GMail Smart
Compose (Chen et al., 2019).

Modern text prediction algorithms are based on
large language models and generally rely on the
prefix of a message (characters typed until cursor
position) to create predictions. We study to what
extent additional contextual signals improve text
predictions in chat and email messages in two of
the largest commercial communication platforms:
Microsoft Teams and Outlook. Our contributions
are summarized as:

* We demonstrate that prior-message context
provides the greatest lift in the Teams (chat)
scenario. A 5 minute window of prior mes-
sages from both senders works the best, with
relative gains from 9.3% up to 18.6% across
key metrics (total match and estimated charac-
ters accepted). This 5 minute window of prior
messages from both senders outperforms the
corresponding 2 and 10 minute scenarios.

* We find that context about message composi-
tion time provides the largest gains for the Out-
look (email) scenario, while adding the sub-
ject as context only marginally helps. These
relative gains are moderate (2-3% across vari-
ous metrics).

We conclude that the different characteristics
of chat and email messages impede domain
transfer. The best contextual text prediction
models are custom trained for each scenario,
using the most impactful subset of contextual
signals.

The remainder of the paper is organized as follows.
We give an overview of state-of-the-art related re-
search in Section 2. More details on the signals
used for contextualization are provided in Section 3.
Section 4 provides information on the language
model, performance metrics, and statistical details

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 1-9
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about the data. Experiment results and compar-
isons are presented in Section 5. We conclude in
Section 6. Ethical considerations on the data and
processes are discussed in Section 7.

2 Related work

Text prediction services have been applied for var-
ious applications, including text editor (Darragh
et al., 1990), query autocompletion on search en-
gine (Bast and Weber, 2006; Bar-Yossef and Kraus,
2011), mobile virtual keyboard (Hard et al., 2018).
Recently prediction service is applied on communi-
cation tools for composing email and chat messages
to improve user writing productivity (Kannan et al.,
2016; Deb et al., 2019; Chen et al., 2019; Microsoft
Text Predictions, 2020).

To predict correct text continuation, such ap-
plications leverage efficient lookups with pre-
generated candidates, using most popular candi-
dates (MPC) (Bar-Yossef and Kraus, 2011), or
using large-scale language models (Bengio et al.,
2003). State-of-the-art language models (Jozefow-
icz et al., 2016; Mnih and Hinton, 2009; Melis
et al., 2018) rely on the most recent deep learning
architectures, including large LSTMs (Hochreiter
and Schmidhuber, 1997) or transformers (Vaswani
etal., 2017), while prior approaches involve n-gram
modeling (Kneser and Ney, 1995; James, 2000;
Bickel et al., 2005).

In this work, we focus on the application of text
prediction on production-level online communica-
tion tools, to help users compose emails (Chen
et al., 2019; Microsoft Text Predictions, 2020), and
in addition chat messages. In particular, we fo-
cus on examining useful contextual signals to give
more accurate predicted text, using time, subject,
and prior messages. Various contextualization tech-
niques (e.g., hierarchical RNNs) have been applied
to add useful additional signals such as preced-
ing web interaction, linking pages, similar search
queries or visitor interests of a page (White et al.,
2009); previous sequence of utterances (Park et al.,
2018; Zhang et al., 2018; Yoo et al., 2020) or re-
lated text snippets (Ke et al., 2018).

3 Contextualization concepts

We examine several signals accompanying the main
message text: message compose time, subject,
and previous messages. We combine these sig-
nals with the message body into a single "contex-
tualized" string, using special tokens to separate
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signals, as shown in Figure 1a. This approach is
inspired by (Chen et al., 2019), as they showed
that concatenating contextual signals into a single
input string gave a comparable result to more com-
plex methods encoding these signals separately’.
The remainder of this section explains details about
each contextual signal we use.

Time Composition time is a contextual signal
which can provide added value for text prediction,
enabling suggestions with relevant date-time words,
like "weekend", "tonight". We encode local date
and time, as shown in Figure 1a, and use <BOT>
and <EOT> to separate from other signals.

Subject Message subjects often contain the pur-
pose or summarized information of a message. In
the email scenario, we use subject as context. In
the chat scenario, subject is not available, so we
use the chat window name as a proxy for subject
(can be auto-generated or manually set by users).
In both cases, the subject context is wrapped with
<BOU> and <EOU> special tokens.

Previous email messages Previous messages
can provide valuable background information
which influences the text of the current message be-
ing composed. In the email case, we create pairs of
messages and replies. These pairs are concatenated
with a <COT> special token to create a single con-
textual string. In cases where the email was the first
in a thread, the prior email context is left blank.

Previous chat messages Prior message contex-
tualization for chat scenario is much more complex.
Chat conversations typically consist of many small
messages sent in quick succession. Given the email
and chat message length statistics in Section 4, we
expect chat messages to be about 10x smaller than
emails. So, we limit chat histories to 20 messages,
which is roughly equivalent to an email-reply pair
in length. Among these prior messages, any num-
ber and any order could be from the current sender,
or the other participant.

We segment chat histories by message blocks
and time windows. A series of uninterrupted mes-
sages sent by one sender is considered as a single
message block. Messages sent within the past NV
minutes are within a time window, which enforces
recency as a proxy for relevance.

We define three prior message context aggre-
gation modes in the chat scenario (visualized in

I'They also use subject and previous email as contexts.



Additional Contextual Information Text prefix for prediction

Subject
Weekly Sync

Time
2020-06-23 14:30:22

Previous Message(s)
Hey Jack
and Jill,

Message Body
Good a

Input Data Representation
<BOT> 2020 06 23 14 30 22 Tue <EOT> <BOU> Weekly Sync <EOU>
<BOS> Hey Jack and Jill, Good a <EOS>

Hi User1!

Inferencing
text continuation
with LM

Ignore-Blocks (single sender)

User1 1:01 PM
How are

User2 1:02 PM

User1 1:03 PM
You doing?

User2 1:05 PM
Doing well, thanks.

Respect-Blocks (single sender) Both-Senders

User1 1:00 PM
Hi User2

Userl 1:00 PM
Hi User2

User1 1:00 PM
Hi User2

User1 1,01 PM
How are

Userl 1:01 PM
How are

User2 1:02 PM
Hi User1!

User2 1:02 PM
Hi User1!

User1 1:03 PM
You doing?

User1 1:03 PM
You doing?
User2 1.05 PM

Doing well, thanks.

User2 1:05 PM
Doing well, thanks.

Message Body + Prediction
Good afternoon

Got time for a question?

Userl 1:06 PM Userl 1:06 PM

Got time for a question?

Userl 1:06 PM
Got time for a question?

(a) Context extraction and encoding.

(b) Aggregating a 5 min prior chat window in various context modes.

Figure 1: Examples of (a) context encoding pipeline and (b) chat prior message aggregation modes.

Figure 1b), mimicking prior email context:

(i) Ignore-Blocks: chat messages from the cur-
rent sender, in the past N minutes, ignoring
any message block boundaries.

(i1) Respect-Blocks: chat messages from the cur-
rent sender, in the past /N minutes, confined
to the most recent message block.

(iii) Both-Senders: chat messages from both
senders, in the past N minutes. When the
sender turn changes, strings are separated by
a space or a special token <COT>.

For each mode, we consider time windows of N =
{2,5, 10} minutes.

4001 mmm Baseline chat messages chat |email
%350 Il Respect-Blocks chat messages
© 300, MM Ignore-Blocks chat messages
é 250 Both-Senders chat messages
= 200 Il Baseline email messages
(] . q A
o B With previous email as context
n 150
C
2 100 .
® s i ]
*
° . —
J I S e e N
2 5 10 2 5 10 2 5 10
minutes

Figure 2: Box-plot statistics: number of tokens in a
context-aggregated message from Microsoft Teams and
Outlook. Green diamond markers represent the mean,
bold red lines are the medians, margins of the boxes are
lower and upper quartiles while whiskers end-points
are the minimums and maximums.

4 Data and Language Model
4.1 Data

Our model training depends on real messages from
two of the largest commercial communication plat-
forms Microsoft Teams and Outlook; this involves
a multi-pronged system for ensuring our customers’

privacy. We work within rigorous privacy rules,
using tools with privacy features built in, and pre-
processing all data through multiple privacy pre-
cautions before it is digested by our models. User
data from our communication platforms is never
visible to humans for analysis, in any raw or pre-
processed format. We run this data through our
pipelines and are only able to view resulting text
prediction metrics. Section 7 contains more details
about these privacy precautions.

Chat messages We sample Teams data from
more than 3.8 billion curated one-on-one chat mes-
sages that span 6 months (say May - October 2020),
followed by privacy precautions and noise filters.
The data is sorted by time and split into train, vali-
dation, and test sets in non-overlapping time peri-
ods. We use over 90% of the data for training, hold-
ing out 75,000 samples for validation and 25,000
samples for testing. Each message is recorded in
its respective dataset along with all associated con-
text. In a statistical analysis of the chat message
lengths (see Figure 2, blue box) we find that mean
tokens number is 9.15 (length in characters is 48),
while median tokens number is 6 (with character
length 31). Therefore, when iterating character-
by-character through the messages, as done in in-
ference for text predictions, the test set has over
1M evaluation points (resampled periodically, see
Section 7.1).

Email messages In email experiments, we use
approximately 150 million Outlook commercial
emails from a period of 6 months, which go through
the same privacy precautions mentioned above and
in Section 7. The emails are then sorted, filtered
for noise, and cut into train, validation, and test
sets by their date ranges. A statistical analysis of
email lengths (see Figure 2, green box) reveals that
mean number of tokens is 94 (with length in char-



acters being 561), while the median is 53 tokens
(and 316 characters). This is roughly 10x larger
than chat messages. When splitting train, test, and
validation sets, over 90% of the data is allocated to
the training set. The test set is subsampled to 3,000
emails (unlike the 25,000 messages for the chat test
set) since this roughly leads to final contextualized
datasets of the same size. Each resulting test set
contains just over 1 million evaluation points, as in
the chat setting.

Additionally, we use the Avocado dataset as a
publicly available dataset, which consists of emails
from 279 accounts of a defunct IT company re-
ferred to as "Avocado" see details in (Oard et al.,
2015), for debugging and validation, allowing us
to directly view data and outputs. This dataset is
split into validation and test sets, each with roughly
3,000 emails for evaluation.

4.2 Prior-message aggregation statistics

When applying the chat-specific prior-message
grouping modes defined in Section 3, the number
of prior messages fetched as context varies. Ta-
ble 1 presents details on how many messages the
different aggregation modes end up grouping. Both
single-sender modes introduce smaller volumes of
context than the Both-Senders mode. For example,
the amount of prior messages grouped in the 5 min-
utes Ignore-Blocks mode is similar to the 2 minutes
Both-Senders mode; where 2.5 chat messages are
combined on average, and 56-59% of chat mes-
sages have at least one message as context. For
emails, only around 50% have prior email context.

The number of tokens per contextualized mes-
sage (including current and aggregated prior mes-
sages) varies between the email scenario and var-
ious aggregation modes in the chat scenario. Fig-
ure 2 provides statistics on these aggregated mes-
sage lengths. In the chat case, the Both-Senders
mode with a 10 minute time window results in the
largest aggregate length, with a median around 27
tokens, and mean above 40 tokens. The Respect-
Blocks mode does not show significant length in-
creases as the time window grows, due to the mes-
sage block boundary limits. For emails, the median
total tokens remains similar regardless of includ-
ing the previous message. This is because half of
emails are not part of an email-reply pair.

4.3 Language model

Once the message data is preprocessed and jointly
encoded with contextual signals, it is passed as an

Configuration % msgs fean msgs
with context  as context

2 min Respect-Blocks 30.76% 1.44

5 min Respect-Blocks 34.19% 1.54

10 min Respect-Blocks 35.54% 1.59

2 min Ignore-Blocks 43.31% 1.76

5 min Ignore-Blocks 55.94% 2.51

10 min Ignore-Blocks 63.24% 3.23

2 min Both-Senders 58.90% 2.51

5 min Both-Senders 70.20% 3.99

10 min Both-Senders 76.10% 5.40

Table 1: Microsoft Teams chat message statistics -
amount of aggregated context per message.

input to the Language Model. The production sys-
tem uses a two-layer (550, 550) LSTM (with 6000
sampled softmax size loss) which is optimized to
maximize the Estimated Characters Accepted met-
ric (described in Section 5.1). All contextualization
experiments use the production model architecture
as the baseline. Both baseline and contextual mod-
els are trained on 16 GPUs.

We have conducted experiments with more com-
plex language models (e.g., transformers, deeper
LSTMs), but we use the production model in this
paper as (i) its simpler architecture enables large-
scale low-latency text prediction serving and (ii)
the goal of this work is to explore how different
contextual signals add to the baseline performance.

5 Experiments and results

We conduct experiments for both email and chat
messages with individual contextual signals (time,
subject, prior messages) and combinations of those.

5.1 Performance Metrics

In all experiments, we level the Suggestion Rate
(SR) (number of suggestions per message), then
evaluate model variant performance against the fol-
lowing text prediction metrics:

* MR: Match Rate is the ratio of the number of
matched suggestions and the total number of

generated suggestions.
* ChM / sugg: Characters Matched per

suggestion is the average number of matched

characters per given suggestion
* Est. ChS / sugg: Estimated Characters

Saved per suggestion is the estimated num-
ber of characters that the user is saved from
typing, per suggestion. (Based on observed
acceptance probabilities from real users.)



Configuration / context mode MR ChM /sugg Est. ChS/sugg ™ ChM Est. ChA
Chat name +5.38%1 +6.05%1 +7.83%1 +5.22%1 +5.99%1 +7.86%1
Time -3.49%] -4.28% -6.33%] -3.48%] -4.25%)] -6.36%
Time+Chat name -13.98% -14.72%) -16.57%.. -13.96% -14.67% -16.57%
2 min Respect-Blocks +5.91%1 +7.65%7T +12.65%1 +5.95%1 +7.72%1 +12.62%1
2 min Ignore-Blocks +5.91%1 +7.68%1 +12.95%1 +5.78%1 +7.62%1 +12.84%1
2 min Both-Senders +5.91%71 +8.77%1 +16.87%1 +6.01%71 +8.77%1 +17.01%1
5 min Respect-Blocks +5.65%T +7.79%1 +13.86%1 +5.56%T +7.74%1 +13.72%%
5 min Ignore-Blocks +6.72%1 +9.01%71 +15.66%1 +6.59% 1 +8.96%1 +15.48%1
5 min Both-Senders +9.41%7 +11.76%1 +18.67%1 +9.30%1  +11.72%71 +18.67%1
10 min Respect-Blocks +5.65%T +7.79%1 +13.55%1 +5.63%1 +7.67%1 +13.53%1
10 min Ignore-Blocks +6.99%1 +9.32%1 +15.66%1 +6.92%1 +9.24%71 +15.56%1
10 min Both-Senders +8.06%7T +10.57%71 +17.77%1 +7.86%1T  +10.51%7 +17.55%71
Time+ 5 min Respect-Blocks +3.76%7T +5.51%7T +10.24%71 +3.84%7T +5.51%7T +10.22%7
Chat name+5 min Respect-Blocks +5.11%7 +6.36%1 +9.34%1 +5.13%71 +6.35%1 +9.40%1
Time+Chat name+5 min Respect-Blocks ~ +5.38%1 +7.79%1 +14.16%1 +5.43%1 +7.82%1 +14.26%1
Time+Chat name+5 min Ignore-Blocks +5.11%7T +6.97%7T +12.05%1 +5.15%7T +6.99%7T +12.00%71
Time+Chat name+5 min Both-Senders +8.87%1 +11.53%1 +18.37%1 +8.91%1T  +11.52%7 +18.36%1

Table 2: Microsoft Teams chat messages experiment results with various contextualization modes. First column
is the experiment configuration, other columns are relative gains, over the noncontextual baseline, of the perfor-
mance metrics (Section 5.1) with a leveled suggestion rate of 0.5.

e TM: Total Matches is the number of sugges-

tions which match the upcoming text.
¢ ChM: Characters Matched is the number of

matched characters from all suggestions.
e Est. ChA: Estimated Characters Accepted

is the estimated® total number of suggested
characters accepted by users.

5.2 Experiments with chat messages

The performance results for chat messages from
Microsoft Teams compared to the non-contextual
baseline model are shown in Table 2. For compa-
rability, we train the model’s confidence threshold
to level each model’s suggestion rate (SR) at 0.5
suggestions / message.

Contextualization with just the chat window
name (subject) yields moderate gains, possibly
because the typically short chat messages are so
sparse on context that a chat topic name, or partici-
pant names from a chat header, provides a starting
foothold for relevance. In contrast, from the last
table rows, we see that the benefits from subject
context diminish once prior messages are used as a
context, suggesting that the subject proxy is much
weaker than prior message context. Table 2 also
shows that compose-time can act as a confound-
ing context signal for chat messages, especially in
experiments with no prior messages as a context.
This is possibly due to the numerically-heavy time
encoding confusing the model in contrast to the
short text of chat messages. The experiments also

ZBased on observed acceptance probabilities on large-scale
production traffic, users tend to accept longer suggestions.

show that the benefits of these contextual signals
are not additive.

All three prior message aggregation modes
(Ignore-Blocks, Respect-Blocks, and Both-Senders)
show gains across all performance metrics, with all
time window sizes. Both-Senders mode achieves
the most significant relative gains: above 9.3%
for Match Rate and the Total Matches; more than
11.7% for the character match and character match
per suggestion; and more than 18.6% for the charac-
ters saved per suggestion and character acceptance.
This indicates that messages from the other sender
provide significant value, when used with a well-
tuned time window. It provides relevant conversa-
tion context from all senders, eliminating confusing
gaps between messages, and enables suggestions
in response to questions posed by the other sender.
In particular, the Ignore-Blocks mode does worse
than Both-Senders, since Ignore-Blocks can vio-
late conversation continuity, including messages
[k, k + 2] from the current sender, and skipping
message k + 1 from the other sender.

For the single-sender modes, Respect-Blocks
generally performs slightly worse as it utilizes only
part of the messages taken by the Ignore-Blocks
mode. This indicates that seeing a longer prefix of
the current message block (more similar to writing
a long email) makes an impact on text prediction in
chat messages. Lastly, we observe that a 5 minute
time window works better than 2 and 10 minute
time windows. Shorter time windows seem to miss
important prior context while a larger windows lead



Configuration / context mode MR ChM /sugg Est. ChS/sugg ™ ChM Est. ChA
Subject -0.81%.. -0.36% +0.76%T -0.74%.. -0.35% +0.76% 1
Time +2.02%7 +2.25%7 +2.88% 1 +2.01%1T  +2.22%71 +2.83%7
Previous Email 9.72%) -10.56% -13.05% 9.65%)  -10.56%. -13.12%
Time+Subject +0.20%1 +0.47%1 +1.06%1 +0.23%1T  +0.49%7T +1.11%1

Table 3: Microsoft Outlook email messages experiment results with various contextualization modes. First column
is experiment configuration, other columns are relative gains, over the noncontextual baseline, of the performance

metrics (Section 5.1) with a leveled suggestion rate of 3.8.

Configuration / context mode MR ChM /sugg Est. ChS/sugg ™ ChM Est. ChA
Subject -1.46% -0.21%]. +1.77%1 -1.58% -0.22%). +1.80%1
Time +0.24%1 +1.59%1 +4.87%1 +0.20%T  +1.55%71 +4.75%1
Previous Email -3.89% -3.50%.. 2.43%)] -3.85% -3.42%) -2.43%]
Time+Subject +1.70%1 +2.32%7 +3.32%1 +1.75%1  +2.34%71 +3.41%1

Table 4: Avocado test set (Oard et al., 2015) messages experiment results for various contextualization modes.
First column is experiment configuration, other columns are relative gains, over the noncontextual baseline, of
performance metrics (Section 5.1) with a leveled suggestion rate of 2.5.

to over-saturation of irrelevant information.
5.3 Experiments with email messages

The gains from the contextualization in email mes-
sages are more moderate compared to those from
chat messages. The comparison of the contextu-
alized models with the baseline on commercial
Microsoft Outlook emails and Avocado dataset
are given in Table 3 and 4 respectively. For
emails, the results suggest that time as a context (or
time+subject in the Avocado dataset) offers most
promising relative gains of 2-3%. This contrasts the
observed trend from chat messages. Time is more
important for emails since emails are often longer,
contain greetings, farewells, and meeting requests
with time-related keywords (e.g., "tomorrow", "last
night", "after the weekend"). Additionally, numer-
ical tokens from the time context are less likely
to outnumber the message content tokens, since
emails are about 10xlonger than chat messages.
With the chosen architecture, neither subject nor
prior message context signals provide value in the
email scenario. Subjects may introduce keywords,
but the implemented method of encoding context
and body into a single string did not demonstrate an
ability to pull out those key words for suggestions.
Likewise, prior message context did not benefit the
email scenario. As Figure 2 shows, emails with
prior messages are significantly longer than any of
the chat context aggregations. Prior emails may
have critical information steering the direction of
an email thread, but our production-oriented metric
are not significantly affected. The implemented
architecture may not be strong enough to isolate
and make use of those cues, instead becoming con-
founded by the vast influx of tokens from another

sender. This emphasizes that the email and chat
scenarios require different context signals, and may
benefit from different underlying architectures.

Qualitative analysis with the Avocado set
Given our commercial data-visibility constraints
due to the privacy considerations, we perform
a qualitative analysis on the public Avocado
dataset (Oard et al., 2015). Using this public data,
we evaluate text predictions from one of the promis-
ing email context modes: time context. As shown
in Table 5, we use diff tools to identify when the
time context model and baseline model create (i)
correct suggestions, (ii) wrong suggestions, and
(ii1)) no suggestions. We see that the time con-
text model improves on all three columns. When
directly examining cases where the time-context
model renders a new correct suggestion, com-
pared to the baseline, we observe a trend of time-
related n-grams. Words like "tomorrow", "avail-
able", "September" are seen more frequently in
correct suggestions (see Figure 3). The same trend
is also observed in the Time+Subject model.

Time as context / Baseline in Avocado test set

cases correct/ wrong  correct/nosugg  no sugg/wrong
context win 256 1494 2825
context loss 239 1400 2553

Table 5: Comparing text predictions of time-context
model vs baselines. "Context win" row holds counts
of cases where contextual model suggestions beat base-
line suggestions.

6 Conclusions

We study the role of context in text prediction for
chat and email platforms. Testing with previous
messages, subject, time as additional contextual
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Figure 3: The 20 most common new suggestions trig-
gered by the time-context model, on data points from
the Avocado test set (Oard et al., 2015) where the base-
line renders zero suggestions.

signals, we find that the different characteristics
of emails and chat messages influence the selec-
tion of contextual signals to use. Previous message
contextualization leads to significant gains for chat
messages from Microsoft Teams, when using an
appropriate message aggregation strategy. By us-
ing a 5 minute time window and messages from
both senders, we see a 9.4% relative increase in
the match rate, and an 18.6% relative gain on es-
timated characters accepted. Chat messages are
often short and can lack context about a train of
thought; previous messages can bring necessary
semantics to the model to provide a correct predic-
tion. Benefits are comparatively insignificant for
subject and compose time as contextual signals in
chat messages.

In the email scenario based on Microsoft Out-
look, we find that time as a contextual signal yields
the largest boost with a 2.02% relative increase on
the match rate, while subject only helps in conjunc-
tion with time, and prior messages yields no im-
provement. More complex models may be needed
to reap subject and prior message gains for emails,
but the current architecture was chosen for large-
scale serving latency.

Future work involves exploring different encod-
ings for contextual signals, such as utilizing hier-
archical RNNs (Park et al., 2018; Yoo et al., 2020)
to better capture context, or using more advanced
architectures such as transformers or GPT-3.

7 Ethical Considerations

When working with sensitive data and running a
service which generates text predictions for the gen-
eral public, we are responsible for preserving user
privacy and serving fair and inclusive suggestions.

Contextual blocklist trigger rates
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Figure 4: Initial blocklist trigger rates for various con-
textualization merging modes in Microsoft Teams chat
messages.

7.1 Privacy considerations on user data

Our service framework follows the regulatory
requirements of internal company-wise stan-
dards and General Data Protection Regulation
(GDPR) (2018) to meet the user privacy regula-
tions and customer premises. All customer chat
and email data, from Teams and Outlook, used in
this work are classified as customer content, which
is not visible to humans for any purpose. Only
system byproduct data, which is not linkable to
specific users or groups, is obtained and viewed
for quantitative evaluation. This includes internal
service logs or numerical metrics (shown in Sec-
tion 5.1). We also regularly re-sample training and
test data due to our privacy and data retention poli-
cies, preserving similar data set sizes. We strictly
use only publicly available data, such as the Avo-
cado dataset (Oard et al., 2015), for debugging and
visible qualitative evaluation.

7.2 Blocklisting

In pursuit of fair, respectful, and responsible sug-
gestions, we employ a blocklist. This blocklist step
in our text prediction system consists of a large
dictionary containing denigrative, offensive, con-
troversial, sensitive, and stereotype-prone words
and phrases. Text from the message body and con-
textual signals serves as input to the blocklist. Then,
if any word or phrase from the blocklist is found in
the input, all further suggestions are suppressed for
the message.

In the email scenario, the full body and context
is used for blocklist checks, resulting in a blocklist
trigger rate of 47.42%. This means that 47.42%
of our data points contain a blocklisted term in
their input text, and we avoid triggering suggestions
on those points. Naturally, this rate of blocklist



triggering increases as more context is added to the
pool of text being checked.

This phenomenon introduces an added complex-
ity to the chat scenario. A noncontextual baseline
chat model would fail to trigger the blocklist on a
response to an offensive statement from two mes-
sages ago. Figure 4 shows how the blocklist trigger
rate varies as larger windows of chat history are
used as context. We ensure that all chat models
check the past 5 messages against the blocklist, no
matter how many prior messages are used for text
prediction inference. With 5 prior messages fed
to the blocklist in chat conversations, the blocklist
trigger rate is 25.08%, instead of 5.89% with no
added prior messages.

Acknowledgements

We would like to thank the members of Microsoft
Search, Assistant and Intelligence (MSAI) group
for their useful comments and suggestions.

References

Ziv Bar-Yossef and Naama Kraus. 2011. Context-
sensitive query auto-completion. In Proc. of the 20th
Intl. Conf. on World Wide Web (WWW), pages 107—
116.

Holger Bast and Ingmar Weber. 2006. Type less, find
more: fast autocompletion search with a succinct in-
dex. In Proc. of the 29th Annual Intl. ACM Conf. on
Research and Development in Information Retrieval
(SIGIR), pages 364-371.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-

guage model. Jour. of Machine Learning Research,
3:1137-1155.

Steffen Bickel, Peter Haider, and Tobias Scheffer.
2005. Learning to complete sentences. In Euro-
pean Conf. on Machine Learning (ECML), pages
497-504. Springer.

Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan
Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yinan
Wang, Andrew M Dai, Zhifeng Chen, et al. 2019.
Gmail Smart Compose: Real-time Assisted Writing.
In Proc. of the 25th ACM SIGKDD Intl. Conf. on
Knowledge Discovery & Data Mining, pages 2287—
2295.

John J. Darragh, Ian H. Witten, and Mark L. James.
1990. The reactive keyboard: A predictive typing
aid. Computer, 23(11):41-49.

Budhaditya Deb, Peter Bailey, and Milad Shokoubhi.
2019.  Diversifying reply suggestions using a
matching-conditional variational autoencoder. In

Proc. of Conf. of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT), pages
40-47. Association for Computational Linguistics.

European Commission. 2018. EU data protection rules.
https://ec.europa.eu/info/law/law-topi
c/data-protection/eu-data-protection-r
ules_en. Online; accessed 6 January 2021.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop
Ramaswamy, Francoise Beaufays, Sean Augenstein,
Hubert Eichner, Chloé Kiddon, and Daniel Ramage.
2018. Federated learning for mobile keyboard pre-
diction. arXiv:1811.03604.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735-1780.

Frankie James. 2000. Modified kneser-ney smoothing
of n-gram models. Technical report, RIACS.

Jared Spataro. 2019. 5 attributes of successful teams.
https://www.microsoft.com/en-us/micros
oft-365/blog/2019/11/19/5-attributes—-s
uccessful-teams/. Online; accessed 6 January
2021.

Jared Spataro. 2020. Microsoft Teams reaches 115 mil-
lion DAU—plus, a new daily collaboration minutes
metric for Microsoft 365. https://www.micros
oft.com/en-us/microsoft-365/blog/2020/
10/28/microsoft-teams-reaches—-115-mill
ion-dau-plus—-a-new-daily-collaborati
on-minutes-metric-for-microsoft-365/.
Online; accessed 6 January 2021.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the lim-
its of language modeling. arXiv:1602.02410.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias
Kaufman, Balint Miklos, Greg Corrado, Andrew
Tomkins, Laszlo Lukacs, Marina Ganea, Peter
Young, and Vivek Ramavajjala. 2016. Smart reply:
Automated response suggestion for email. In Proc.
of the ACM SIGKDD Conf. on Knowledge Discovery
and Data Mining (KDD), page 955-964.

Nan Rosemary Ke, Konrad Zotna, Alessandro Sor-
doni, Zhouhan Lin, Adam Trischler, Yoshua Ben-
gio, Joelle Pineau, Laurent Charlin, and Christopher
Pal. 2018. Focused hierarchical RNNs for condi-
tional sequence processing. In Proc. of the 35th
Intl. Conf. on Machine Learning (ICML), volume 80,
pages 2554-2563, Stockholm, Sweden.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Intl.
Conf. on Acoustics, Speech, and Signal Processing
(ICASSP), volume 1, pages 181-184.

Gabor Melis, Chris Dyer, and Phil Blunsom. 2018. On
the state of the art of evaluation in neural language
models. In 6th Intl. Conf. on Learning Representa-
tions (ICLR), Vancouver, BC, Canada.



Microsoft Text Predictions. 2020. Write faster using
text predictions in Word, Outlook. https://insi
der.office.com/en-us/blog/text-predi
ctions-in-word-outlook. Online; accessed 7

April 2021.

Andriy Mnih and Geoffrey E Hinton. 2009. A scal-
able hierarchical distributed language model. In Ad-
vances in Neural Information Processing Systems

(NeurIPS), pages 1081-1088.

Douglas Oard, William Webber, David A. Kirsch, and
Sergey Golitsynskiy. 2015. Avocado research email
collection LDC2015T03. Philadelphia: Linguistic
Data Consortium.

Yookoon Park, Jaemin Cho, and Gunhee Kim. 2018. A
hierarchical latent structure for variational conversa-
tion modeling. In Proc. of the Conf. of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 1792—1801, New Orleans, LA,
USA. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pages 5998-6008.

Ryen W. White, P. Bailey, and Liwei Chen. 2009. Pre-
dicting user interests from contextual information.
In Proc. of the 32nd Intl. ACM Conf. on Research
and development in information retrieval (SIGIR).

Kang Min Yoo, Hanbit Lee, Franck Dernoncourt,
Trung Bui, W. Chang, and Sang-goo Lee. 2020.
Variational hierarchical dialog autoencoder for di-
alogue state tracking data augmentation. In Proc.
of the Conf. on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Zhuosheng Zhang, Jiangtong Li, Pengfei Zhu, Hai
Zhao, and Gongshen Liu. 2018. Modeling multi-
turn conversation with deep utterance aggregation.
In Proc. of the 27th Intl. Conf. on Computational
Linguistics (COLING), pages 3740-3752, Santa Fe,
New Mexico, USA. Association for Computational
Linguistics.



Identifying and Resolving Annotation Changes
for Natural Language Understanding

Jose Garrido Ramas
Amazon Alexa Al, Germany
jrramas@amazon.de

Abdalghani Abujabal
Amazon Alexa Al, Germany
abujabaal@amazon.de

Abstract

Annotation conflict resolution is crucial to-
wards building machine learning models with
acceptable performance. Past work on annota-
tion conflict resolution had assumed that data
is collected at once, with a fixed set of anno-
tators and fixed annotation guidelines. More-
over, previous work dealt with atomic label-
ing tasks. In this paper, we address annota-
tion conflict resolution for Natural Language
Understanding (NLU), a structured prediction
task, in a real-world setting of commercial
voice-controlled personal assistants, where (1)
regular data collections are needed to support
new and existing functionalities, (2) annota-
tion guidelines evolve over time, and (3) the
pool of annotators changes across data col-
lections. We devise an approach combining
information-theoretic measures and a super-
vised neural model to resolve conflicts in data
annotation. We evaluate our approach both
intrinsically and extrinsically on a real-world
dataset with 3.5M utterances of a commercial
dialog system in German. Our approach leads
to dramatic improvements over a majority
baseline especially in contentious cases. On
the NLU task, our approach achieves 2.75% er-
ror reduction over a no-resolution baseline.

1 Introduction

Supervised learning is ubiquitous as a form of learn-
ing in NLP (Abujabal et al., 2019; Finkel et al.,
2005; Rajpurkar et al., 2016), but supervised mod-
els require access to high-quality and manually
annotated data so that they perform reasonably. It
is often assumed that (1) such annotated data is
collected once and then used to train and test vari-
ous models, (2) the pool of annotators is fixed, and
(3) annotation guidelines are fixed (Benikova et al.,
2014; Manning, 2011; Poesio and Artstein, 2005;
Versley, 2006). In real-world NLP applications e.g.,
voice-controlled assistants such as Google Home
or Amazon Alexa, such assumptions are unrealistic.
The assistant is continuously evolving and extended
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with new functionalities, and hence, changes to an-
notation guidelines are frequent. The assistant also
needs to adapt to language variations over time,
both lexical and semantic. Therefore, annotated
data needs to be collected regularly i.e., new col-
lections of data at different time points, where the
same utterance text can be re-annotated over time.
Additionally, the set of annotators might change
across collections. In this work, we tackle the prob-
lem of resolving annotation conflicts in a real-world
scenario of a commercial personal assistant.

To minimize annotation conflicts, the same data
point is often labeled by multiple annotators and the
annotation with unanimous agreement, or the one
with majority votes is deemed correct (Benikova
et al., 2014; Bobicev and Sokolova, 2017; Brants,
2000). While such measures ensure the quality
of annotations within the same batch, they cannot
ensure it across batches at different time points,
particularly when the same data point is present
in different batches with inevitable changes to an-
notation guidelines. For detecting and resolving
conflicts, two main methodologies have been ex-
plored; Bayesian modeling and training a super-
vised classification model (Hovy et al., 2013; Plank
et al., 2014; Snow et al., 2008; Versley and Steen,
2016; Volokh and Neumann, 2011). Both method-
ologies make certain assumptions about the setting,
for example, annotation guidelines and the pool of
annotators are fixed, which is not the case for our
use case. Additionally, while Bayesian modeling
is reasonably efficient for small datasets, it is pro-
hibitively expensive for large-scale datasets with
millions of utterances. We adopt a combination of
information-theoretic measures and a classification
neural model to detect and resolve conflicts.

NLU is a key component in language-based ap-
plications, and is defined as the combination of: (1)
An Intent Classifier (IC), which classifies an utter-
ance into one of N intent labels (e.g. P1ayMusic),
and (2) A slot labeling (SL) model, which classifies

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 1018
June 6-11, 2021. ©2021 Association for Computational Linguistics



Utterance: turn on light in the living room

Intent: ApplianceOn a
Slots: O O Device O O Location Location !
Intent: ApplianceOn a
Slots: AT AT Device O O Location Location 2

Figure 1: An example utterance with two conflicting
annotations, a; and as. The phrase turn on has two
conflicting slot labels. AT stands for ActionTrigger.
Non-entities are labeled with O (i.e., Other).

tokens into slot types, out of a predefined set (e.g.
SongName) (Goo et al., 2018; Jolly et al., 2020).
An example utterance is shown in Figure 1, with
two conflicting annotations. In this paper, we con-
sider the task of NLU for personal assistants and
assume that utterances arrive at different points in
time, and that the annotation guideline evolves over
time. The same utterance text, e.g., the one shown
in Figure 1, often occurs multiple times across col-
lections, which gives the opportunity to conflicting
annotations. Moreover, changes to the annotation
guidelines over time lead to more conflicts.

Given an NLU dataset with utterances having
multiple, possibly conflicting annotations (IC and
SL), our goal is to find the right annotation for
each such utterance. To this end, we first detect
guideline changes using a maximum information
gain cut (Section 3.3). Then we compute the nor-
malized entropy of the remaining annotations after
dropping the ones before a guideline change. In
case this entropy is low, we simply use majority
voting, otherwise, we rely on a classifier neural-
based model to resolve the conflict (Section 3.4).
Our approach is depicted in Figure 2.

We evaluate our approach both intrinsically and
extrinsically, and show improved performance over
baselines including random resolution or no resolu-
tion in six domains, as detailed in Section 4.

2 Related Work

Annotation conflicts could emerge due to differ-
ent reasons, be it imprecision in the annotation
guideline (Manning, 2011; van Deemter and Kib-
ble, 2000), vagueness in the meaning of the un-
derlying text (Poesio and Artstein, 2005; Recasens
et al., 2011, 2010; Versley, 2006), or annotators
being careless or inexperienced (Manning, 2011;
Hovy et al., 2013). Manning et al. (2011) report, on
the WSJ Part-of-Speech (POS) corpus, that 28.0%
of POS tagging errors stem from imprecise annota-
tion guideline that caused inconsistent annotations,
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while 15.5% of the errors are due to wrong gold
standard, which could be attributed to careless or
inexperienced annotators. In our case, conflicts
could occur due to changes to the annotation guide-
lines and having different, possibly inexperienced,
annotators within and across data collections.

Past work on conflict resolution has assumed
that data is collected once and then used for model
training and testing. Consequently, the proposed
methods to detect and resolve conflicts are geared
towards this setting (Benikova et al., 2014; Man-
ning, 2011; Poesio and Artstein, 2005; Recasens
et al., 2011, 2010; van Deemter and Kibble, 2000;
Versley, 2006). In our scenario, we deal with an
ever-growing data which is collected across differ-
ent data collections at different time points. This
increases the likelihood of conflicts especially with
frequent changes to the annotation guideline. In
Dickinson and Meurers (2003), an approach is pro-
posed to automatically detect annotation errors in
gold standard annotations for POS tagging using
n-gram tag variation i.e., looking at n-grams occur-
ring in the corpus with multiple tagging.

Bayesian modeling is often used to model how
reliable each annotator is and to correct/resolve
wrong annotations (Hovy et al., 2013; Snow et al.,
2008). In Hovy et al. (2013), they propose MACE,
an item-response based model, to identify spam-
mer annotators and to predict the correct underly-
ing labels. Applying such models is prohibitively
expensive in our case due to the large amount of
utterances we deal with. Additionally, our anno-
tator pool changes over time. A different line of
work has explored resolving conflicts in a super-
vised classification setting, similar to our approach
for resolving high normalized entropy conflicts.
Volokh and Neumann (2011) use an ensemble of
two off-the-shelf parsers that re-annotate the train-
ing set to detect and resolve conflicts in dependency
treebanks. Versley et al. (2016) use a similar ap-
proach on out-of-domain treebanks. Finally, Plank
et al. (2014) introduce the inter-annotator agree-
ment loss to ensure consistent annotations for POS
tagging.

Intent classification and slot labeling are two
fundamental tasks in spoken language understand-
ing, dating back to early 90’s (Price, 1990). With
the rise of task-oriented personal assistants, the
two tasks got more attention and progress has been
made by applying various deep learning techniques
(Abujabal and Gaspers, 2019; Goo et al., 2018;



Conflicting
annotations

Max IG Cut NH Majority Voting

Low

High

LSTM-based
model

Figure 2: Our approach for conflict resolution. Given
conflicting annotations, we first use the Max Informa-
tion Gain (IG) Cut to detect changes in annotation
guidelines. Then, low entropy conflicts are resolved
using majority voting. High entropy conflicts are re-
solved using a classifier LSTM-based model.

Jolly et al., 2020; Mesnil et al., 2013; Zhang and
Wang, 2016). While we focus on resolving anno-
tation conflicts for NLU with linear labeling i.e.,
intent and slot labels, our approach can be still used
for other more complex tree-based labeling e.g., la-
beling dependency parses or ontology trees (Chen
and Manning, 2014), with the minor change of re-
placing the task-specific neural LSTM-based clas-
sification model. We plan to investigate this in the
future.

3 Annotation Conflict Resolution

3.1 Overview

Given multiple conflicting annotations of an utter-
ance, our goal is to find the right annotation. We
assume that annotations arrive at different points
in time and that the same utterance can be re-
annotated over time. Moreover, we assume that
annotators might differ both within and across data
collections, that each annotation is time stamped,
and that there is always one correct annotation.
Our pipeline for conflict resolution is depicted in
Figure 2. Given an utterance with conflicting an-
notations, we first detect guideline changes using a
maximum information gain cut. Then we compute
the normalized entropy of the remaining annota-
tions i.e., without the annotations before a guideline
change. In case this entropy is low, we simply use
majority voting, otherwise, we rely on a classifier
model to resolve the conflict.

A natural choice to easily resolving annotation
conflicts is to use majority voting. However, we
argue that this is not sufficient for our use case,
where (1) regular data collection and annotation are
required at different time points, and (2) changes
to annotation guideline are frequent. We use the
normalized entropy to detect whether there is high

or low disagreement among annotations. In the
extreme case where the normalized entropy is 1,
majority voting gives a random output and any
model that performs better than random will be
better than majority voting in resolving conflicts. In
our experiments we show that, for high normalized
entropy values, the classifier model significantly
outperforms majority voting.

Note that our conflict resolution pipeline does
not drop utterances with wrong annotations, but
rather replaces the wrong annotations with the cor-
rect ones. We do so to avoid changing the data
distribution.

We apply our pipeline to training data only. The
test set is of higher quality compared to the train
set as each collection of test set data is annotated
multiple times and we use the most recent test set
collection.

3.2 Normalized Entropy

Entropy measures the uncertainty of a probability
distribution (Yang and Qiu, 2014). Given an utter-
ance present NV times in the dataset and annotated
in K distinct ways, each occurring n; times such
that Zfi 1 ni = N, we define the normalized em-
pirical entropy of the list of conflicting annotations
A, NH(A) as:

K ) )
— iz v *log (§)

NH(A) = log K

, for K >1

For example, assume an utterance u with three
distinct annotations; a1, as and as. Then, the list A
corresponds to {a1, as, az}, K = 3, and p; of each
annotation corresponds to its relative frequency in
the dataset (5f) (Mahendra et al., 2014).

In this work, we harness normalized entropy
(NH) to determine whether majority voting should
be used. NH is a value between 0 and 1, where the
higher it is, the harder the conflict. In the edge case
of a uniform distribution, where NH is 1, majority
voting gives a random output. Therefore, in such
cases, we do not rely on majority voting for con-
flict resolution but rather on a classification model.
We use the normalized entropy over entropy as the
latter increases as K increases when the distribu-
tion is uniform. For example, assume K = 3 and
distribution is uniform, then entropy is H = log 3,
and NH = 1. If K = 2 and distribution is uni-
form, then H = log2 and NH = 1, and so on.
When the distribution is uniform (and thus majority
voting will be outperformed by a model regardless



of K), NH takes its maximum value of 1, while H
increases as K increases (Kvalseth, 2017).

3.3 Changes in Annotation Guideline: Max
Information Gain Cut

We rely on max information gain cut to find out if
there was a change in the annotation scheme that
caused a conflict, and to identify the exact date d of
the change. Let us assume the relatively common
case that there is exactly one relevant change in the
guideline. Then, we aim to split the annotations
of an utterance to two lists; one list containing
annotations prior to the change, and the other one
containing annotations after the change.

Inspired by methods used for splitting on a fea-
ture in decision trees (Mahendra et al., 2014), we
harness information gain (IG) to determine the
date to split at. Concretely, given a list B of chrono-
logically ordered annotations for the same utter-
ance, and their corresponding annotation dates, we
choose the date d that maximizes I G. If the value
of IG is larger than a threshold /Gy, we deem the
annotations prior to d incorrect. The higher the
1@ is, the more probable the annotations prior to
d to be incorrect. We define a boolean variable D
which is true if the date of an annotation comes
after d, and false otherwise. It divides the list of
annotations B to two sublists, B of size N, of
annotations before date d, and B,, of size N, of an-
notations after date d. We compute /G as follows:

IG(B,D) = NH(B) — NH(B|D),where

Ny« NH(By) + Ny * NH(B,)
N

We use the normalized entropy (/N H) for /G com-
putation, as shown in the equation above. As a
result, /G is no longer strictly positive.

In the case of changes in the annotation
guideline, there will be high disagreement among
annotations before and after the change, and thus,
NH(B) will be high. Moreover, annotations
before the change will agree among each other, and
similarly, for annotations after the change. There-
fore, NH(B|D) will be low. Then IG(B, D)
takes its maximum value at the date of the guide-
line change, and annotations after this date, which
belong to the latest guideline, are correct. For ex-
ample, for the following date-ordered annotations;
{a1(03-2019), a1(07-2019), a1(08-2019),
az(10-2019), az(11-2019), a3(12-2019),
a2(01-2020), a2(02-2020)}, spliting at d

NH(B|D) =
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Figure 3: 1G values at each date. The split at d =08-
2019 has the highest IG value. We cannot split at the
first and last dates.

(08-2019) yields the highest IG value, as shown in
Figure 3. This indicates that there was a change in
the annotation of this utterance on 08-2019. Hence,
a1 annotation is deemed wrong. In Section 4.2, we
empirically prove that for high /G values, a large
percentage of annotations occurring in the first
half of the Max IG Cut split is incorrect, whereas a
large percentage of annotations in the second half
is correct.

After the split, N H is computed for the remain-
ing annotations i.e., annotations after d. If NH
is less than a threshold IV Hj, we assign the utter-
ance the annotation with maximum frequency (i.e.,
majority voting). In the example above, N H is
low after the split, and the conflict is resolved by
changing all annotations (i.e., a; and a3) to az. Our
reasoning is that, when N H is high, majority vot-
ing will likely be outperformed by an alternative
model (LSTM-based method, explained next) as
there is high disagreement between the annotators.
Note that we do not drop any utterances, we replace
wrong annotations with the correct ones.

3.4 High Entropy Conflicts: LSTM

To make classification in the ambiguous high NH
cases, we use a supervised classifier trained on
the unambiguous examples from our data, in this
case an LSTM-based neural model (Hochreiter and
Schmidhuber, 1997). For the following list of an-
notations, {a1, as, as, az, a1, as}, no split with IG
greater than a threshold can be found, and NH = 1.
For such utterances, we rely on a neural model to
estimate the probability of each annotation i.e., ay,
agz, and az. Then we assign the annotation with
highest probability to the utterance. Concretely, we
use the model of Chiu et al. (2016), a bidirectional
word-level LSTM model with a character-based
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Figure 4: Histogram of conflicts in the training data.
Most conflicts have high entropy.

CNN layer. A softmax layer is used on top of the
output of the bidirectional LSTM, which computes
a probability distribution over the output slot la-
bels for a given input token. We extend the model
to a multi-task setting to support IC by concate-
nating the last hidden states of the Bi-LSTM, and
passing them to a softmax layer, similar to Yang
et al. (2016). We harness the probabilities of the
output of the softmax layer and compute the final
probability of the annotation by multiplying the
probability of each of its slots and of the intent.

4 Experiments

In this section we evaluate our method both intrin-
sically and extrinsically.

4.1 Setup

Data. We use a real-world dataset of a commercial
dialog system in German, belonging to six different
domains covering different, macro-purposes like,
for instance, musical or movies requests. For the
purpose of IC and SL, domains are treated as sepa-
rate datasets. Utterances were manually transcribed
and annotated with domain, intent and slot labels
across many different batches at different points of
time. In total we have 3.5M and 560K training and
testing utterances, respectively. The percentage of
conflicts in the training data varies across domains,
ranging from 4.9% to 10.9%. Most conflicts are of
high entropy, as shown in Figure 4. The test set is
of higher quality compared to the train set as each
collection of test set data is annotated twice. Gen-
erally, the test set has lower number of conflicts
compared to the train set. We do not resolve the
conflicts in the test data to avoid artificial inflation
of results.

LSTM model. For high entropy conflicts, we use
a single layer network for the forward and the back-
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Figure 5: Accuracy of the rule change detection
method described in Section 3.3. For high IG values,
the accuracy of annotations after a date d, at which
there is a guideline change, is 90%, while the accuracy
of annotations before d is over 80%.

ward LSTMs whose dimensions are set to 256.
We use Glove pretrained German word embed-
dings (Pennington et al., 2014) with 300 dimen-
sions. For the CNN layer, character embeddings
were initialized randomly with 25 dimensions. We
used a mini-batch Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 0.001. We tried
different optimizers with different learning rates
(e.g., stochastic gradient descent), however, they
performed worse than Adam. We also applied
Dropout of 0.5 to each LSTM output (Hinton et al.,
2012). For training, we use the data described
above (i.e., 3.5M utterances) after applying the
Max IG Cut and majority voting to resolve low en-
tropy conflicts, as described in Section 3.3. High-
entropy conflicts are left unresolved. After 10
epochs, training is terminated. After training is
done, the model is used for conflict resolution for
high entropy cases.

4.2 Intrinsic Evaluation

To asses the quality of our method, an expert lin-
guist is asked to resolve 490 conflicts in two dif-
ferent domains e.g., Music. The linguist is asked
to use the latest annotation guideline. On average,
we have 12.6 utterances per conflict, with a total
number of 6173 utterances for the 490 conflicts.
The maximum number of utterances of a conflict is
181. On the annotation side, the maximum number
of unique annotations of a conflict is 8, while the
average number is 2.35 (Table 1).

We used our pipeline to resolve the 490 conflicts
that were resolved by the linguist, where 229 con-
flicts out of the 490 were resolved with the LSTM
model, which means that 46.7% of the conflicts
were of high normalized entropy (> N Hg = 0.75).



#Utterances | #Unique Annotations

‘ per Conflict per Conflict
Min | 2 | 2
Average | 12.6 | 2.35
Max | 181 | 8
Total | 6173 | 1151

Table 1: Statistics on the 490 conflicts used for our eval-
uation.

Guideline change detected | 120
Resolved with LSTM model | 229
Resolved with majority voting | 261

Table 2: Out of the 490 conflicts, 229 were resolved
with the LSTM model, while 261 conflicts were re-
solved with majority voting.

The remaining 261 conflicts were resolved with
majority voting. 120 out of the 490 conflicts had at
least one guideline change (Table 2).

Max IG cut. For those conflicts with guideline
changes we evaluate, after splitting the list of an-
notations at date d, whether the annotations after
d are correct (afl ft ) and whether the annotations
before d are incorrect (af)6 fore)' To this end, for
each conflict with /G > 0.2, we compare each
annotation after and before d with the ground-truth
annotation (ag;) provided by the linguist. afl Fter
annotations should be correct, therefore, accuracy
is 1if afl fter Agrees with ag;, and 0 otherwise. On
the other hand, a;, fore annotations should be incor-
rect, and hence, accuracy is 1 if a;, fore does not
agree with ay, and 0 otherwise. We compute the
average accuracy over az fter annotations and the
average accuracy over aie fore annotations for each
conflict. We also compute the average across those
conflicts with the same IG value.

We depicted the results in Figure 5. For high IG
values, high accuracies are achieved for annotations
after and before a split at a date d. For example, at
IG = 0.9, the accuracy of annotations before d is
almost 0.83, while the accuracy of annotations after
d is 0.90. This shows that our max IG cut method
was able to identify the right date d to split the list
of annotations at for the majority of conflicts with
guideline changes. We set 1Gg to 0.4.

Majority Voting vs. LSTM. We evaluate the res-
olution of the 490 conflicts with the LSTM-based
model and majority voting at different levels of NH.
For each conflict, we apply the max IG cut and then
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Figure 6: Accuracy with majority voting (orange) and
with the LSTM-based method (blue) on the 490 con-
flicts with respect to ground-truth resolution provided
by the linguist. For high values of NH, the LSTM-
based model performs better than majority voting.

resolve it using both methods of majority voting
and LSTM. We then compare the final annotation
each method delivers as correct with that delivered
by the linguist. If both agree, then accuracy is 1,
and O otherwise. For each NV H value, we compute
the average accuracy of the set of 50 conflicts with
closest NH.

As expected, the accuracy with majority voting
significantly drops with high entropy conflicts, as
shown in Figure 6. The LSTM-based model be-
comes more accurate as NH increases, reaching
the highest accuracy in the case where NH =
1. In the training data, 29.3% of conflicts have
NH = 1. As seen in the figure, accuracy diverges
at NH = 0.75, which we use as N Hy. That is, if
NH > 0.75, we use the LSTM-based model, and
majority voting otherwise. For N H below 0.75,
both majority voting and the LSTM-based model
behave similarly, however, we use majority voting
for low entropies as it is more intuitive.

4.3 Effect on NLU

To evaluate our method extrinsically on the down-
stream task of NLU, we trained a multi-task LSTM-
based neural model for intent classification and slot
labeling on the 3.5M utterances after resolving an-
notation conflicts using our proposed method (Fig-
ure 2). Architecture-wise, the model is similar to
the one we use for conflict resolution, described
in Section 3.4. We compared this model with two
baseline models trained as follows:

1. NoResolution: this model was trained on the
full training data without conflict resolution
(i.e., 3.5M utterances).



Method [ Error Rate (Rel. Change)
Random Resolution | 0.55%
Our Pipeline | 2.75%

Table 3: Results on the NLU task. Our pipeline
achieved 2.75% relative change in error rate with re-
spect to the NoResolution baseline.

2. Rand: We trained this model with conflicts re-
solved by choosing one annotation randomly.

The three models were tested on the same test set
described above (560K utterances). We report the
relative change in error rate with respect to the
NoResolution model. The error rate is defined as
the fraction of utterances in which there is at least
an error either in IC or in SL.

Results are shown in Table 3. Overall, random
conflict resolution slightly reduced the error rate
with 0.55% relative change on average across do-
mains, while our method achieved 2.75% error re-
duction. For each of the six domains, resolving
conflicts with our method improves performance
over random resolution and over no resolution. In
one domain, a reduction in error rate of 4.7% is ob-
served. For five domains, the difference in perfor-
mance passes a two-sided paired t-test for statistical
significance at 95% confidence level.

5 Conclusion

In this paper, we tackled the problem of annotation
conflicts for the task of NLU for voice-controlled
personal assistants. We presented a novel approach
that combines information-theoretic measures and
an LSTM-based neural model. We evaluated our
method on a real-world large-scale dataset, both
intrinsically and extrinsically.

Although we focused on the task of NLU, our
conflict resolution pipeline could be applied to any
manual annotation task. In the future, we plan on in-
vestigating how the choice of the task-specific clas-
sification model affects performance. Moreover,
we plan to study annotation conflict resolution for
other NLP tasks e.g., PoS tagging and dependency
parsing.
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Abstract

In dialog systems, the Natural Language
Understanding (NLU) component typically
makes the interpretation decision (including
domain, intent and slots) for an utterance be-
fore the mentioned entities are resolved. This
may result in intent classification and slot tag-
ging errors. In this work, we propose to
leverage Entity Resolution (ER) features in
NLU reranking and introduce a novel loss term
based on ER signals to better learn model
weights in the reranking framework. In addi-
tion, for a multi-domain dialog scenario, we
propose a score distribution matching method
to ensure scores generated by the NLU rerank-
ing models for different domains are properly
calibrated. In offline experiments, we demon-
strate our proposed approach significantly out-
performs the baseline model on both single-
domain and cross-domain evaluations.

1 Introduction

In spoken dialog systems, natural language under-
standing (NLU) typically includes domain classifi-
cation (DC), intent classification (IC), and named
entity recognition (NER) models. After NER ex-
tracts entity mentions, an Entity Resolution (ER)
component is used to resolve the ambiguous en-
tities. For example, NLU interprets an utterance
to Alexa (or Siri) "play hello by adele" as in the
‘Music’ domain, ‘play music’ intent, and labels
"hello" as a song name, "adele" as an artist name.
ER queries are then formulated based on such a
hypothesis to retrieve entities in music catalogs.
Often times NLU can generate a list of hypotheses
for DC, IC, and NER, and then a reranking model
uses various confidence scores to rerank these can-
didates (Su et al., 2018).

Since ER is performed after NLU models, the
current NLU interpretation of the utterance is lim-
ited to the raw text rather than its underlying enti-
ties. Even in NLU reranking (Su et al., 2018), only

The first two authors have equal contribution
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DC, IC, and NER confidence scores were used,
and as a result, the top hypothesis picked by NLU
reranking might not be the best interpretation of the
utterance. For example, in the absence of entity in-
formation, "the beatles" in the utterance "play with
the beatles" is interpreted as an artist name. If the
reranker could search the ER catalog, it would pro-
mote the hypothesis that has "with the beatles" as
an album name. Such NLU errors may propagate
to ER and downstream components and potentially
lead to end-customer friction.

In this work, we thus propose to incorporate
ER features in the NLU reranking model, called
NLU-ER reranking. For a domain, we use its corre-
sponding catalogs to extract entity related features
for NLU reranking for this domain. To enhance ER
feature learning, we add a novel loss term when
an NER hypothesis cannot be found in the catalog.
One additional challenge arises in the multi-domain
systems. In large-scale NLU systems, one design
approach is to modularize the system as per the
concept of domains (such as Music, Video, Smart
Home), and each domain has its own NLU (DC,
IC, NER) and reranking models that are trained
independently. Under this scheme, each domain’s
NLU reranking plays an important role in both in-
domain and cross-domain reranking, since it not
only ranks hypotheses within a domain to promote
the correct hypothesis, but also produces ranking
scores that need to be comparable across all differ-
ent domains. In (Su et al., 2018), the scores for the
hypotheses from different domains are calibrated
through training on the same utterance data with
similar models . However, we may only use NLU-
ER reranking for some domains (due to reasons
such as lack of entity catalog, different production
launch schedule, etc.), and the scores from such
rerankers may no longer be comparable with other
domains using the original reranker model. To mit-
igate this issue, we introduce a score distribution
matching method to adjust the score distributions.

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 19-25
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We evaluate our NLU-ER reranking model on
multiple data sets, including synthetic and real di-
alog data, and for both single domain and cross-
domain setups. Our results show improved NLU
performance compared to the baseline, and the im-
provement is contributed to our proposed ER fea-
tures, loss term, and score matching method.

2 Related Work

Early reranking approaches in NLU systems use a
single reranker for all the domains. Robichaud et
al. (Robichaud et al., 2014) proposed a system for
multi-domain hypothesis ranking (HR) that uses
LambdaMART algorithm (Burges et al., 2007) to
train a ranking system. The features in the ranking
system include confidence scores for intents and
slots, relevant database hits and contextual features
that embed relationship to previous utterances. The
authors showed improved accuracy in top domains
using both non-contextual and contextual features.
Crook et al. adapted a similar reranking scheme for
multi-language hypothesis ranking (Crook et al.,
2015). The set of features in the reranker include
binary presence variables, for example presence
of an intent, coverage of tagged entities and con-
textual features. They adapted the LambdaMART
algorithm to train a Gradient Boosted Decision
Trees model (Friedman, 2001) for cross language
hypothesis ranking, and demonstrated compara-
ble performance of the cross language reranker to
the language-specific reranker. These models did
not explicitly use ER signals for reranking. In ad-
dition, reranking is done across domains. Such
single reranker approach is not practical in NLU
systems with a large set of independent domains.
In contrast, our approach emphasizes domain inde-
pendence, allowing reranking to be performed for
each domain independently. Furthermore, we rely
on ER signal as a means to improve reranking.

To the best of our knowledge, the most related
work to ours is Su et al. (Su et al., 2018), which
proposed a re-ranking scheme to maximize the ac-
curacy of the top hypothesis while maintaining the
independence of different domains through implicit
calibration. Each domain has its NLU reranker, and
the scores for the hypotheses from reranking are
compared across all the domains to pick the best
hypothesis. The feature vector for each reranker is
composed of intent, domain and slot tagging scores
from the corresponding domain. Additionally, a
cross entropy loss term is used to ensure calibra-
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tion across domains. In a series of experiments,
they demonstrated improvement of semantic under-
standing. Our work is an extension of that work
as we utilize ER signals, in addition to the DC, IC,
and NER scores, and introduce a new loss term to
improve the reranking accuracy.

To resolve the score non-comparable problem
in a multi-domain system, traditional calibration
methods utilize Platt Scaling or Isotonic Regres-
sion to calibrate the prediction distribution into a
uniform distribution (Zadrozny and Elkan, 2001,
2002; Platt et al., 1999; Niculescu-Mizil and Caru-
ana, 2005; Wilks, 1990). However, this does not
work in our scenario since the data in different do-
mains are imbalanced, which causes domains with
big traffic to have lower confidence scores. Instead
of using probability calibration methods, we pro-
pose a solution based on power transformation to
match the prediction score distribution back to the
original score distribution, thus making the scores
comparable even after ER information is added to
NLU reranking.

3 Reranking Model

The baseline NLU reranking model is implemented
as a linear function that predicts the ranking score
from DC, IC, and NER confidence scores. We
augment its feature vector using ER signals and
introduce a novel loss term that penalizes the hy-
potheses that do not have a matched entity in the
catalog. Similar to (Su et al., 2018), we tested using
a neural network model for reranking, but observed
no improvements, therefore we focus on the linear
model.

3.1 ER Features in Reranking

The features used in the baseline NLU reranker
include scores for DC (d), IC (i), NER (n) hy-
potheses, and ASR scores that are obtained from
upstream components and used for all the do-
mains. The additional ER features used in NLU-ER
reranker are extracted and computed from the ER
system, and can be designed differently for indi-
vidual domains. For example, in this work, for
the Music domain, ER features we use are aggre-
gated from NER slot types such as: SongName,
ArtistName, and the ER features are defined as:
ER success e, : if a hypothesis contains a slot
s; that is successfully matched by any of the ER
catalogs, this feature is set to 1, otherwise 0. ER
success feature serves as a positive signal to pro-



mote the corresponding hypothesis score.

ER no match m,: if a slot s; in a hypothesis
does not have any matched entities in the ER cat-
alogs, this feature value is 1, otherwise 0. ER no
match feature serves as a negative signal to penalize
the hypothesis score. We find ‘ER no match’ is a
stronger signal than ‘ER success’ because over 90%
of the time, ER no match implies the corresponding
hypothesis does not agree with the ground truth.

Similarity feature [, : this feature is nonzero
only if the ER success feature e, is 1. In each
catalog, a lexical or semantic similarity score be-
tween the slot value and every resolved entity is
computed, and the maximum score among them
is selected as the feature value. This indicates the
confidence of the ER success signal.

Not in Gazetteer: this feature is set to 1 when
ER features are not in the gazetteer (neither ER
success nor no match), otherwise 0. We will discuss
the gazetteer in the next section.

3.2 ER Gazetteer Selection

Since NLU and reranking happen before ER, in
runtime retrieving ER features from large catalogs
for NLU reranking is not trivial. Therefore we
propose to cache the ER signals offline and make
it accessible in NLU reranking in the form of a
gazetteer. To make the best use of the allocated
amount of runtime memory, we design a gazetteer
selection algorithm to include the most relevant
and effective ER features in the gazetteer.

We define Frequent Utterance Database (FUD)
as the live traffic data where the same utterance has
been spoken by more than 10 unique customers. To
formalize the selection procedure, we define outper-
forming and underperforming utterances by friction
(e.g., request cannot be handled) rate fr and 30s
playback queue (playback > 30s) rate gr. For all
FUD utterances in a given period, an utterance u is
defined as outperforming if fr(u) < pp, —A1*xoy,
and gr(u) > pgr + A2 * 04, where p1 and o are
the mean and standard deviation, A\; and Ay are
hyperparameters. Underperforming utterances are
defined likewise.

The detailed gazetteer selection algorithm is de-
scribed in Algorithm 1. up,,, ..., up, denote n-best
NLU hypotheses of the utterance u. The idea is
to encourage the successful hypotheses and avoid
the friction hypotheses based on the historical data.
For instance, if u is an underperforming utterance
and uy, is ER_NO_MATCH, we want to penalize
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Algorithm 1: Gazetteer Data Selection
Obtain outperforming and underperforming
utterances from FUD;
for u € outperforming utterances do

if up, is ER_SUCCESS then
select ER features in uy, to the

gazetteer,

end
end
or u € underperforming utterances do

if up, is ER_NO_MATCH then
select ER features in uy, to the

gazetteer;

)

end
if up, is ER_SUCCESS, and h; # hy

then
select ER features in uy, to the

gazetteer,

end
end

up, to down-rank it, and promote other hypotheses
up, (i # 1) that receive the ER_SUCCESS signal.
For the utterance hypotheses that are not selected
in the gazetteer, we will use the Not_in_gazetteer
(NG) feature.

3.3 NLU-ER Reranker

For an utterance, the hypothesis score y is defined
as the following:

y=WaG+ > Lot—s,(Ws,ERs,) + Lncwy
$; €S

ey

The first part in (1) is the baseline NLU reranker
model:
(2)

where G = [g1,92,...,9p) is the NLU general
feature vector, Wg = [w1, ws, ..., wy] is the cor-
responding weight vector. The rest of the fea-
tures are ER related. 1 is the indicator func-

y=WaeG

tion. S is the set of all slot types, ER,, =
ler1,ers, ... ery]T is the ER feature vector and
Ws, = [ws;1,Ws,q, .- ., Ws,,] is the correspond-

ing weight vector. If an utterance in Music only
contains SongName slot s1, then y = WG +
Ws, ERg,, the rest of the terms are all Os. If an ut-
terance does not have any ER features from all the
defined slot types, y = WgG + wg. wg serves
as the default ER feature value to the reranker



when no corresponding ER features are found in
the gazetteer described above. Its value is also
learned during the model training.

3.4 Loss Function

We use SemER (Semantic Error Rate) (Su et al.,
2018) to evaluate NLU performance. For a hy-
pothesis, SemER is defined as F /T, where E is
the total number of substitution, insertion, deletion
errors of the slots, 7" is the total number of slots.

One choice of the loss function is the combina-
tion of expected SemER loss and expected cross
entropy loss (Su et al., 2018). The loss function L,,
of an utterance is defined as:

where S, is the expected SemER loss: S, =
va pi X SemFER;, and C,, is the expected cross
entropy loss: C,, = vapz X [—tilogr; — (1 —
t;)log(1 — r;)], where r; =

1 pi = eYi
—y; 0 v — 5 Y5
14+e Y Zje J

t; = (SemER; == 0), N is the number of hy-
potheses in utterance wu.

Since our analysis showed that ER_NO_MATCH
is a stronger signal and we expect the top hypothe-
sis to get ER hits, we add a penalty term N, to the
loss function to penalize the loss when the 1-best
hypothesis gets ER_NO_MATCH.

Let r; = max;(r;) be the best score in the cur-
rent training step, and j the index for the current
best hypothesis. Then no match loss term is defined
as:

N, = “4)

where ¢; = #(SlOt;’G';g;)m““h) . It is the ratio of the
slots with ER_ NO_MATCH to all the slots in the
it" hypothesis, and if no slot gets ER_NO_MATCH,
the loss term is zero. Then the overall loss function

is updated as:

—e; x log(1 —rj)

Ly = k1Sy + k2Cy + k3N, 5)

N, will penalize more the hypothesis that has a
high score but gets no ER hits. k1 2 3 are the hyper-
parameters, L,, is the final loss term for NLU-ER
Reranker.

In our experiments, we observed that the weights
are higher for the ER no match feature, and the
model with the new loss term had a better perfor-
mance under in-domain setup, which is as expected.
Also, giving higher weight to ‘ER no match’ de-
creases the confidence scores generated by a do-
main NLU-ER reranker, which can help with the
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cross domain calibration problem. We will dis-
cuss how to ensure comparable scores in the next
section.

4 Score Distribution Matching

Before adding the ER features, the reranking scores
are calibrated through training on the same utter-
ance data with similar models. However, adding
the ER features in NLU reranking for a single do-
main may lead to incomparable scores with other
domains. Using the loss function in Eq (3), we
have the following theorem:

Theorem 4.1. Under the loss function in Eq (3),
assuming hypothesis 1 is the ground truth, and
0 = SemER; < SemERy; < SemER3 <
SemERy < SemER5, with a uniform score as-
sumption Z? eY¥i = ¢; Eq (1) will obtain a higher
positive label hypothesis score and a lower nega-
tive label score than Eq (2).

Proof. For the expected SemER loss .Sy, since it is
the linear combination of Sem E R;, the solution of
the minimization problem will be: p; — 1,ps =
p3 = pg = ps — 0. This leads to:y; — oo, ys =
Y3 = y4 = y5 — —oo. Then for the expected cross
entropy loss Cy,, let x; = e¥, the minimization of
C,, becomes:

€1
1+

1
min —z1 log - =

xjlog
jz#:l J 14z
The first part (/1) is monotonically increasing,
while the second part (/2) is monotonically de-
creasing when x; > 0. This also leads to: y; —
00, Y2 = Y3 = Y4 = Y5 — —oo. Thus, solving
the minimization problem minL,, is equivalent to
solving the linear system:

{

when y — oo associated with the given loss in Eq
(3), where F'; is the feature matrix for the positive
labels, F_ is the feature vector for the negative la-
bels, w is the weight vector we need to solve, and
1,,1_ are the unit vectors with the same dimen-
sion as the number of positive samples and negative
samples respectively.

We can rewrite Eq (6) into: Fw = ¢, and
its solution will be the projection associated with
the loss in Eq (3) of ¢ onto the solution space
spanned by the column vectors of matrix F'. Now

F+'U7 = y1+

6
F_w=—-yl_ ©

min —11—12.



define this projection as Pp(%). For the fea-
ture matrix of the NLU model in Eq (2), we
have Fy = G, and for the feature matrix of
NLU-ER model in Eq (1) we have Fggr
[G, ERSl,ERSQ, cee ,ERSq, ]ldefault]- Since FN
is the submatrix of Fggr, we have spanFy C
spanFgR, thus:

PFN(:J) < PFER(g)

O]

In Theorem 4.1, we show that the candidate hy-
pothesis from a more complicated model will be
more likely to have a higher score than the do-
mains using the original reranker model. Thus
the domains using the NLU-ER reranker are no
longer comparable to the domains using the origi-
nal model. We observed this scenario in our experi-
ments empirically. When we only experiment with
Music domain, it will generate higher confidence
scores and have more false positives.

To solve this problem, since we would like the
confidence scores for each domain to have stabi-
lized variance and minimized skewness, we pro-
pose to use power transformation, which is able
to map data from any distribution to an approxi-
mately standard Gaussian distribution. In our case,
the confidence scores from Eq (1) might be zero or
negative, thus we consider the Yeo-Johnson trans-
formation with A # 0 and A # 2:

\) [(:L‘Z + 1)>‘ —)\ 1]/)\ if x; > 0, 7
S N
' ACe )2 gy < 0,
We have the inverse function:
o _ [Oait > —1 if2i 20, o
; — 1
’ 1—[1—(2-XNz]z~> ifax; <0,

where parameter A is determined through maxi-
mum likelihood estimation. The idea is to first map
both the NLU reranker model scores and the NLU-
ER reranker scores to a standard Gaussian distri-
bution and obtain Ay and Ay y—gr. Then to
calculate a new score from the NLU-ER reranker,
we first use Eq (7) to transform the score into a
standard Gaussian score with A\ = Ay ry_gg, fol-
lowed by Eq (8) to transform the standard Gaussian
score back into the original NLU reranker scores
with A\ = Ay rp. Notice that when A > 0, both Eq
(7) and (8) are monotonic functions, thus the map-
ping method can only change the score distribution
while maintaining the in-domain ranking order.
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S Experiment

5.1 Experimental Setup

We use the following data sets for training and
evaluation:

Annotation Data (AD): It contains around 1
million annotated utterances from internal traffic.
Training and testing split is 50:50. For testing, we
further evaluate two different conditions: (i) ‘AD
All’ using utterances from all domains for cross-
domain evaluation. (ii) ‘AD Music’, ‘AD Video’,
‘AD LS’ using utterances from the Music domain,
Video Domain and Local Search domain, respec-
tively, for in-domain evaluation.

Synthetic Data (SD): These are synthetically
generated ambiguous utterances used for in-domain
evaluation. For Music and Video domains, utter-
ances are in the form of "play X". Slot type of
X could be ArtistName, SongName, AlbumName,
VideoName, etc. X is an actual entity sampled
from the corresponding ER song, video, artist, or
album catalogs, and it is not in the training data,
such that the model cannot infer the slot by sim-
ply "memorizing" it from the training data. We
only report SongName (10K data) results in Music
domain, and VideoName results in Video domain,
due to the space limitation. For Local Search do-
main, utterances are in the form of "give me the
direction to X", slot type of X could be PlaceName,
DestinationName, etc. Note this data set is more
ambiguous than the above one from real traffic in
that "X" has multiple interpretations, whereas in
real traffic users often add other words to help dis-
ambiguate, for example ‘play music ...".

We initialize the general feature weights to the
same weights used in the baseline model. ER fea-
ture weights are set to smaller values (3 times less
than the general feature weights). We find the ex-
pected SemER loss is less effective, so we set k;
=0.01, k2 =0.9, k3 = 0.1. Besides, we use Adam
optimizer (Kingma and Ba, 2014) with a learning
rate of 0.0001 and train the model for 10 epochs.

5.2 Results

Table 1 presents the NLU-ER reranker results for
cross-domain (AD All) and in-domain (AD Mu-
sic, SD) settings. All the results are the SemER
metric relative improvements compared to the base-
line reranker. We have DC, IC, NER scores as the
general NLU features. NLU-ER reranker uses ad-
ditional ER features: ER success, no match, and
lexical similarity of different slot types, and the



Table 1: NLU-ER reranking results on different data
sets. The reported numbers show relative improve-
ments compared with the baseline model using SemER
evaluation metric. Baseline: NLU reranker with gen-
eral features; ER: NLU-ER reranker with gazetteer se-
lection; +N: with loss term for No Match feature; +R:
with regression score matching; +P: with power trans-
formation score matching. All the results in the table
are statistically significant with p-value < 0.01.

ER ER+N ER+N+R  ER+N+P
AD All -0.22% +0.19% +0.26% +0.32%
AD Music  +0.87% +0.99% +0.99% +0.99%
AD Video  +0.95% +1.01% +1.01% +1.01%
ADLS +0.08% +0.09% +0.09% +0.09%
SD Music  +20.74%  +28.58%  +28.58%  +28.58%
SD Video  +14.21% +18.69% +18.69%  +18.69%
SDLS +12.53% +1737% +1737% +17.37%

gazetteer selection algorithm is applied to retrieve
the ER features. For the in-domain results, NLU-
ER reranker has statistically significant improve-
ment on both AD and SD. The improvement is
more substantial on SD data, over 20%, which
indicates ER features are more helpful when the ut-
terances have ambiguity. Note there is some degra-
dation in cross domain results on AD All when
NLU-ER is used, due to the non-comparable score
issue. After adding the loss term for ER no match
feature, we observed additional improvements on
both the in-domain and cross-domain settings.

As discussed earlier, because the scores from
the baseline model are already well calibrated
across domains, we use Yeo-Johnson transforma-
tion to match the domain score distribution back
into the baseline score distribution. For Music do-
main, we use maximum likelihood estimation to get
Anvry = 1.088 and Ayrygr = 1.104. With these
two estimations, we map NLU-ER reranker scores
back to obtain a score in the baseline reranker score
distribution. Using this updated score, we can
see the cross-domain SemER score is improved
by 0.32% relatively. Among the improved cases,
we found that the number of False Positive utter-
ances is decreased by 7.37% relatively. For com-
parison, we also trained a univariate neural network
regression model to predict the original reranker
score given the NLU-ER reranker score. Although
this method also yields improvements, we can see
that power transformation has a better performance
and is also easy to implement. Note again that
the in-domain performance remains the same since
these score mapping approaches do not affect the
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in-domain ranking order. We perform the same
experiments for Video domain and Local Search
domain as well, and have the similar observations.

To illustrate the effectiveness of our proposed
NLU-ER reranker and analyze the reasons for per-
formance improvement, we compare the generated
1-best hypothesis from the baseline model with our
new reranker. For utterance "play hot chocolate by
polar express", the correct type for "polar express"
is album. The baseline model predicts "polar ex-
press” as an artist because it is not in the training
set, and "Song by Artist" appears more frequently
than "Song by Album". However, our model suc-
cessfully selected this hypothesis ("polar express"
is an album), since ER_SUCCESS signal is found
from the ER album catalog but ER_NO_MATCH is
found from ER artist catalog. Similarly, in another
example "play a sixteen z" where "a sixteen z" is
ambiguous and not in the training set, the baseline
model predicts it as a song since utterances with
SongName slot have higher frequency in the train-
ing data, whereas our model can correctly select
ProgramName as the 1-best hypothesis using ER
signals.

6 Conclusion

In this work, we proposed a framework to incorpo-
rate ER information in NLU reranking. We devel-
oped a new feature vector for the domain reranker
by utilizing entity resolution features such as hits
or no hits. To provide the ER features to the NLU
reranker, we proposed an offline solution that dis-
tills the ER signals into a gazetteer. We also in-
troduced a novel loss term based on ER signals to
discourage the domain reranker from promoting
hypotheses with ER no match and showed that it
leads to better model performance. Finally, since
domain rerankers predict the ranking scores inde-
pendently, we introduced a score matching method
to transform the NLU-ER model score distribu-
tion to make the final scores comparable across do-
mains. Our experiments demonstrated that the Mu-
sic domain reranker performance is significantly
improved when ER information is incorporated in
the feature vector. Also with score calibration, we
achieve moderate gain for the cross-domain sce-
nario.
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Abstract

In recent years, incorporating external knowl-
edge for response generation in open-domain
conversation systems has attracted great inter-
est. To improve the relevance of retrieved
knowledge, we propose a neural entity linking
(NEL) approach. Different from formal docu-
ments such as news, conversational utterances
are informal and multi-turn, which makes it
more challenging to disambiguate the entities.
Therefore, we present a context-aware named
entity recognition model (NER) and entity res-
olution (ER) model to utilize dialogue context
information. We conduct NEL experiments
on three open-domain conversation datasets
and validate that incorporating context infor-
mation improves the performance of NER and
ER models. Furthermore, we verify that using
knowledge sentences identified based on NEL
benefits the neural response generation model.

1 Introduction

Building an informative open-domain conversa-
tional agent that can naturally interact with hu-
mans has been one of recent scientific research
topics. Inspired by the development of neural net-
works, neural generation based conversation sys-
tems have made great progress (Sutskever et al.,
2014; Vinyals and Le, 2015; Li et al., 2017; Wolf
et al., 2019a; Zhou et al., 2020). However, one
issue in such approaches is that the neural mod-
els often produce universal and less informative
responses (Huang et al., 2020). To address this
issue, previous work proposed to incorporate exter-
nal information into the response generation mod-
els, such as topics (Xing et al., 2017) and emo-
tions (Zhou et al., 2018a). One line of research
investigates the use of external knowledge to enrich
the information of the responses (Ghazvininejad
et al., 2018; Young et al., 2018; Dinan et al., 2018;
Gopalakrishnan et al., 2019; Meng et al., 2020).

The first two authors have equal contribution

26

Most existing studies retrieve relevant knowledge
from a knowledge base using the entities and noun
phrases in the input text. Thus, correctly identi-
fying these entities is crucial to find the relevant
knowledge for a given dialog context. This typi-
cally involves two subtasks: given a user utterance,
the system first identifies any named entities it con-
tains (NER task) and then performs entity resolu-
tion (ER) to disambiguate the mentioned entities
using a knowledge base. Both NER and ER (or
NEL) have been well explored in previous stud-
ies and demonstrated to perform highly for news
or well written text. However, for open domain
spoken conversations and human-bot dialog, per-
formance suffers due to ASR errors, incomplete or
ungrammatical sentences from users, difference of
spoken and written style, and less training data for
such tasks.

In this paper, we propose to use neural en-
tity linking (NEL) technologies that leverage both
utterance-level and dialog-level context to retrieve
relevant knowledge. As shown in the example in
Figure 1, dialogues often contain multiple turns
and information is dispersed throughout each turn.
Thus, a single turn of interaction may be insuf-
ficient for entity disambiguation. Therefore, we
leverage previous utterances in the dialogue as
the context information and propose context-aware
models to better solve the NER and ER tasks in
open-domain conversation systems. When recog-
nizing and disambiguating entities in a given utter-
ance, we encode dialog context, and adopt the atten-
tion mechanism to extract the information related
to the current utterance. To verify the effectiveness
of context-aware models, in addition to the intrinsic
evaluations, i.e., NER and ER standalone perfor-
mance, we conduct an extrinsic evaluation where
NER and ER results are integrated in a knowledge
grounded neural response generation model in an
open domain conversation system and response
quality is evaluated. Our major contributions can

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 26-33
June 6-11, 2021. ©2021 Association for Computational Linguistics



@ Let's talk about movies.

I love watching movies, especially
adventure films! What about you?

@

NER
o]

B-movie I-movie
[e] (o] (o] na;ne nax:e C;—P @Seaﬂ:h

botohy
That would definitely be  Harry  Potter

I'm a huge fan of fantasy films.
‘Wow. What's your favoriate

That would definitely be Harry Potter.

____________ l____________,/

Harry Potter, novel series, ...
Harry Potter, film series, ...

Hurry Potter, character, ...

Utterances

®
®

movie in that type?

. - '
Harry Potter, film series, Harry 1 Response Generation
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] 5 ' '
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jae eﬁony mous noveis by J. £ ! movies! LK. Rowling is amazing. |
owling.... 1 )

Figure 1: An example dialog illustrating the pipeline of NER, ER, and response generation. The bold sentence in
the utterances is the current utterance and the previous utterances are the context. The current utterance and its
context are fed to the NER module to identify the entity mentions. Then the ER module takes the entity mentions
and all the sentences as input to resolve the entity. The response generation module produces an output based on

the knowledge entity information and the dialog input.

be summarized as follows:

* We propose neural network based context-
aware models for NER and ER respectively in
open domain conversations.

Experimental results on different conversation
datasets show that our proposed context-aware
NER and ER models outperform other state-
of-the-art models that do not use context in-
formation.

In an end2end evaluation, we demonstrate that
incorporating ER information improves qual-
ity of neural response generation models in
open domain conversations.

2 Related Work

2.1 Open-domain Conversation System

Inspired by the availability of conversational data
and the prosperity of neural networks, building
open-domain conversation systems by data-driven
approaches has achieved great progress. Previous
methods can be roughly divided into two categories,
retrieval-based (Zhang et al., 2018; Wu et al., 2019;
Tao et al., 2019) and generation-based (Vinyals and
Le, 2015; Li et al., 2017; Asghar et al., 2018; Tao
et al., 2018). Chen et al. (2017) point out that con-
ventional sequence-to-sequence methods tend to
generate trivial responses that lack information and
diversity. To address this issue, a line of research
proposes to incorporate external knowledge into the
generation process. Most of the work in this line
retrieves knowledge based on a search or retrieval
step first, and followed by further reranking of re-
trieved relevant knowledge snippets (Ghazvinine-
jad et al., 2018; Young et al., 2018; Zhou et al.,
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2018b; Gopalakrishnan et al., 2019; Zhao et al.,
2020). In our work, we propose neural entity recog-
nition and linking to identify and resolve entities
more accurately in order to obtain more relevant
knowledge for knowledge grounded response gen-
eration.

2.2 Neural Entity Linking

NEL typically involves two tasks: recognizing
named entities in a given text and then disamgibu-
ating the entity mentions according to the knowl-
edge base (KB). Researchers have shown great suc-
cess in NER with the help of Convolutional Neural
Networks (CNNSs), Bidirectional Recurrent Neural
Networks (Bi-RNNs), and attention mechanisms
along with a CRF decoder (Chiu and Nichols, 2016;
Akbik et al., 2018; Ghaddar and Langlais, 2018;
Jiang et al., 2019; Baevski et al., 2019; Yamada
et al., 2020). Deep neural networks (DNNs) are
also dominant in entity resolution tasks. They are
used to calculate the semantic similarity between
the recognized entity mentions and the entities in
the KB (Yamada et al., 2016; Ganea and Hofmann,
2017, Sil et al., 2018; Raiman and Raiman, 2018).
However, previous NEL work has mainly focused
on news or formal documents, which is different
from open-domain dialogues in many aspects. Sen-
tences in open-domain dialogues are more informal,
making it more difficult to recognize and disam-
biguate entities. In addition, since conversations
are multi-turn, the semantic information in the cur-
rent utterance is ambiguous and context needs to
be considered. In this paper, we investigate NEL
in open-domain conversational data and propose
context-aware NER and ER models.
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3 Methodology

3.1 Problem Formulation

Our problem can be formulated as follows. Given
an open-domain dialogue until a time point D =
¢;, x;, where x; is the current utterance, we define
the utterance context ¢; = {uq, ..., ux} as the list
of utterances prior to z;, and k is the size of the con-
text. For each z; given c;, an NER model is applied
to detect entity mentions in the form of BIO labels.
Then for each predicted entity mention, ;, a query
is formulated to search a knowledge base to get a
list of candidate entities, {e1, ..., e}, where m is
the size of the returned entities from the search. An
ER model is then used to rank the entities and iden-
tify the most relevant entity, e;. Finally, a response,
74, is generated based on c¢;, x;, and knowledge sen-
tences obtained from the linked entities e;. Note a
knowledge ranking algorithm is applied when there
are multiple knowledge sentences corresponding
to e; or there are multiple entity mentions in z;.
Figure 1 overviews the pipeline of generating re-
sponses with NER and ER modules.

3.2 Context-Aware Named Entity
Recognition Model

Figure 2 gives the overall architecture of the
context-aware NER model. Following the frame-
work presented by Chiu and Nichols (2016), we em-
ploy a bi-directional, long short-term memory (Bi-
LSTM) model to extract word features and a condi-
tional random field (CRF) to predict the NER labels.

These labels are widely used for NER and indicate a token
is Begin, Inside, or Outside an entity mention, respectively.
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Suppose we have an utterance z; = {w}, ..., wh},
where T is the length of x; and wy is the ¢-th to-
ken. After converting each token in z; to its vector
representation through a word embedding table?,
the Bi-LSTM layer encodes the sentence into 151—
den states hi, which are the concatenatlon of h}

from the forward LSTM and h from the back-
ward LSTM. The CREF layer then takes the hidden
states as input to predict the label probability.

As discussed earlier, as opposed to news or docu-
ments, recognizing and disambiguating the named
entities in conversational utterances requires con-
sideration of the context information. Therefore,
we employ another Bi-LSTM layer to encode the
context utterances from the previous turns,

s =34 57]

ey
where s _U is the forward hidden state of the ¢-th
token in the context utterance u; and ?i is the
backward hidden state.

We use an attention mechanism to model the
different impact of the previous utterances in the
context:

T

QK
Vi

where ), K, V refer to the query, key, and value, re-
spectively. Here, the key and value are the context
sentences, and the query is the current utterance. To
aggregate the context information, a max-pooling
operation is performed on the dimension of sen-
tences. Then, the context vector is concatenated
with the sentence vector, and then is supplied as
the input of the CRF layer.

Attention = softmax ( ) %4 2)

3.3 Context-aware Entity Resolution Model

Our entity resolution model contains two steps:
coarse-grained candidate selection and fine-grained
candidate ranking.

Candidate selection At this stage we retrieve rel-
evant entities from the KB. We create an Elastic-
search (Gormley and Tong, 2015) index with the
entity labels and apply both an exact and a Leven-
shtein distance based fuzzy match to obtain candi-
date entities. For each entity mention, we take the
top 10 search results, ranked by Elasticsearch, as
the candidates for the subsequent reranking step.

"Here we adopt the stacked embedding released by
Flair (Akbik et al., 2018).



—» BERT —»

Candidate
Paragraph
Utterance; —T
s
Candidate
Title

Entity
Mention

BERT —»

MLP — Score

A
NER

Utterance;

NER

Mention
Type

Candidate
Type

Figure 3: Context-aware ER reranking.

BERT —| |

( )
Popularity /

Reranking At this stage the candidate entities
are re-ranked based on the match scores from our
context-aware model. We propose to compute the
relevance score from the entity, utterance and ses-
sion levels. The structure of the multi-level re-
ranking model is shown in Figure 3.

Entity-Level Matching: This considers the
candidate entity’s label and type attributes, and
matches with the entity mention and the predicted
type, respectively.

Utterance-Level Matching: This measures the
matching degree between the candidate entity’s
description and the current utterance based on
sentence-level semantic information.

Session-Level Matching: This treats the con-
text and current utterance as a conversation session,
and computes its match score with the candidate
entity’s description.

For each matching level, we first concatenate
the representations from the entity candidate in the
KB and the dialog side, and then employ BERT
(Devlin et al., 2018) to get their representations.
Ulabel> Vtypes Vutterance> Usession TEPresent the out-
put of BERT corresponding to the mention label
and type (entity-level), utterance-level, and session-
level, respectively. We also define the popularity
of an entity based on the number of views in the
last 60 days, represented as v,. All these features
are concatenated and then fed into an MLP layer to
predict the ranking score:

v = [’Wabel? Utypes Vutterance; Usession s Up]

s = MLP(v) ©)

To train this model, we minimize the pair-wise
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hinge-loss, defined as:

) 4

l, =mazx(0,0+s —s

where s is the ranking score of the ground-truth
entity and s is the ranking score of a negative en-
tity sampled from candidates other than the ground-
truth. o is a constant margin and is set to 0.5.

3.4 Response Generation Model

Given the linked entities, we employ a transformer-
based response generation model that is trained to
leverage the context of a dialogue along with the
knowledge relevant at a given turn. More specif-
ically, we first fine-tune a GPT2-medium model
using the Wizard of Wikipedia (WOW) dataset (Di-
nan et al., 2018). WOW is a suitable dataset for
fine-tuning as it involves knowledge-grounded con-
versations dealing with Wikipedia articles, a data
source we are using for entity linking in this work.

The GPT2 generation model is fine-tuned in
a matter consistent with (Wolf et al.,, 2019b;
Gopalakrishnan et al., 2020). During genera-
tion, we are provided a dialogue context, C' =
{c1,¢2,...,ci—1} containing utterances before ¢;.
We use our linked entities to query the relevant
Wikipedia articles, and use the first paragraph of the
returned articles, giving us a collection of knowl-
edge sentences, K = {k1, ko, ..., kn}.

Next, we truncate each knowledge sentence with
more than 64 tokens and provide a concatenated
input consisting of the dialogue context and the
knowledge sentences. We then sample from the
language model, one token at a time, using nucleus
sampling to form our generated system response.

4 Experiment Setup

4.1 Datasets

We rely on Wikipedia and Wiki data® to build the
knowledge base for this task. We built a Knowledge
Graph (KG) containing over 6M entities including
attributes such as Wiki ID, title, type, and introduc-
tion. To perform NEL on conversational data, we
collect a Multi-turn Open-domain Conversation
Dataset (MOC) and ask crowd worker annotators
to first annotate NER labels (entity mention and
type), and then give ER labels — the ground truth
Wikidata ID. Different from the entity labels in reg-
ular NER tasks, we define 50 entity types across
8 popular domains in open-domain conversations

3https://www.wikidata.org/wiki/,https://www.wikipedia.org/



including Fashion, Politics, Books, Sports, Music,
Science/Technology, Game, Video/Movies. In ad-
dition, we created a synthetic dataset that contains
ambiguous entities that can only be understood
through dialog context. For example, in the ut-
terance "I like Harry Potter", the model needs to
understand the context of the utterance to figure out
if the user is referring to the movie or the book. We
also randomly selected some conversations from
Wizard of Wikipedia (WoW), which is a collection
of open-domain dialogues grounded on Wikipedia
knowledge (Dinan et al., 2018). The statistics of
the datasets we used are shown in Table 1.

Dataset Train | Validation Test
MOC 5,962 662 1,111
Synthetic | 8,150 905 2,896
WoW 1,948 216 540

Table 1: Number of utterances of the open-domain con-
versation data sets used in this study.

4.2 Model Setup

All models are implemented in Pytorch (Paszke
et al., 2017). For the NER model, we initialize
the word embedding with stacked embeddings, in-
cluding Flair embeddings (Akbik et al., 2018) and
FastText embeddings (Bojanowski et al., 2017).
The sizes of the word embeddings and hidden state
are 300 and 256, respectively. We adopt the SGD
optimizer with an initial learning rate of 0.1 and
decay rate of 0.5. The batch size is set to 16 and the
maximum training epoch is set to 15 with an early
stopping strategy. For the ER model, we use Adam
as the optimizer and set the learning rate to 0.0005.
The hidden size is 762 and the batch size is 8. The
maximum sentence length in all the experiments is
set to 128.

5 Results and Analysis

5.1 NER Results

The performance of the NER models is evaluated
using precision, recall and F-1. We consider both
the span of an entity and its type. Table 2 shows
the results of NER models on three datasets. To
compare with our context-aware NER model, we
use Flair as the baseline, which is a state-of-the-art
NER model on benchmarks in several domains (Ak-
bik et al., 2018). It shows that our context-aware
model achieves the best performance on most met-
rics. In particular, we observe the largest gain of
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our model using contextual information on the syn-
thetic dataset. This is because that data was created
to contain more ambiguous entities and thus re-
quires dialog context to determine entity types.

_ Model Dataset P R F-1
IE}ZE w/ context MOC - (;.1 2j7 1?2
Fair wl context | Y0 | 150 | 177 | 169
Eiiii w/ context Wow Oj7 1j8 1j2

Table 2: Results of NER models (relative gains com-
pared to Flair in %).

5.2 ER Results

For the ER task, we evaluate the recall@n values
(n =1, 3, 5), which measures the ranking ability
of the models. We compare our model with the
following two baselines:

Search. After performing entity retrieval through
Elasticsearch, we rank the candidate entities based
on their popularity, i.e., the number of views in last
60 days.

Ranking. Similar to our method, here we only use
entity and utterance-level matching scores, without
dialog context in the ranking model.

Table 3 shows the ER results when ground-truth
NER is provided as input. We can see that a rank-
ing model can significantly improve the top entity
relevance over the search baseline on all the three
datasets. Compared to the non-context ranking
model, our proposed context-aware model could
further improve the results, especially for R@1.

Model Dataset R@1 | R@3 | R@5
Search - - -
Rank MOC 64.5 29.4 2.8
Rank w/ context 65.0 29.7 2.9
Search - - -
Rank Synthetic | 82.9 | 22.2 9.4
Rank w/ context 91.0 21.9 10.0
Search - - -
Rank WoW 82.1 28.8 11.2
Rank w/ context 89.1 29.2 11.2

Table 3: Results of ER models (relative gains compared
to baseline search in %) using ground-truth NER infor-
mation.

5.3 End-to-end NEL Results

In Section 5.2, the input of the ER task is the
ground-truth NER results. In the practical sce-
nario, the input is the prediction of the NER models.



Context Utterance Model NER ER Entity Description
w/o context led Zeppelin, led Zeppelin, English rock band
Search person band
w/o context led Zeppelin, Jason Bonham, | English hard rock
In the 1968 three of I love led Zeppelin! Rank person. human_ drummer (born 1966)
w/ context led Zeppelin, led Zeppelin, .
the genre most famous | they have really - English rock band
. . Rank person band
acts Led Zeppelin, influenced many Ted Zeooelin Ted Zeooelin
Black Sabbath bands. Groundtruth ppetin, pPpetin, English rock band
person band
W/o context Nintendo, Nmten(.iO Sw1tch, hybrid video game
. hybrid video console developed
Search device -
game console by Nintendo
Japanese multinational
w/o context Nintendo, Nintendo, video game and
Rank device business consumer electronics
company
oo | Nmengowt | W ot s
Well, So what gaming | Uh I don’t know Rank device &

. game console console by Nintendo
platform do you prefer | what a Nintendo Wi n -
console or computer? Wil is . t seventh-generation

’ Groundtruth | Nintendo WII, home video home video game
device game console console by Nintendo

Table 4: Examples of NEL in open-domain conversations.

Therefore, we also evaluate the performance of end-
to-end NEL, where the predictions of NER models
are used for ER. For performance metrics, we com-
pare the predicted entity with the ground-truth one,
and compute precision, recall and F-1. The results
are shown in Table 5. Here we observe again that
a ranking model can significantly improve results,
and the context model yields further gain.

NER ER Dataset P R F-1
Flair Search - - -
Flair Rank MOC 62.1 | 59.7 | 60.6
w/ context | w/ context 629 | 634 | 62.8
Flair Search - - -
Flair Rank Synthetic | 68.2 | 68.9 | 68.4
w/ context | w/ context 71.0 | 71.0 | 71.0
Flair Search - - -
Flair Rank WoW 62.0 | 62.0 | 62.1
w/ context | w/ context 754 | 72.8 | 73.9

Table 5: End-to-end experimental results (relative gains
in % compared to the end-to-end model of Flair NER
and baseline ER search).

5.4 Case Study

Table 4 shows NER and ER results for two exam-
ple utterances along with their context. We can
see when there is an ambiguity in the current ut-
terance, our context-aware model can use context
information to correctly recognize the entities and
link them to the right entities in KB. In the first
example, the named entity is correctly recognized
by all the models, however, the model without con-
text failed in the ER task because of insufficient
information. In the second case, models without

31

using context information recognize a wrong entity
and then link it to a seemingly reasonable but not
the most appropriate entity.

5.5 Response Generation Results

We generate outputs for 100 distinct conversational
contexts in the WoW data set using using config-
urations: Baseline GPT2 and GPT2 with NEL.
Here, we provide crowd-worker annotators the con-
versational context along with the generated re-
sponse, without the associated knowledge extracted
through linking. We then ask the workers to evalu-
ate according to two metrics, appropriateness and
informativeness, on an ordinal scale from 0-2.

Our results show that in the generated responses,
GPT?2 with NEL module is superior over baseline
GPT2 on both the appropriateness and informa-
tiveness metrics, suggesting that our solution can
better understand conversation context and is able
to generate informative and appropriate responses.

Model Appropr. | Inform.
GPT2 - -
GPT2 w/ NEL 25.5 53.8

Table 6: Human evaluation of generated responses. (%,
relative gains compared to GPT2)

6 Conclusion

In this paper, we investigate NEL in multi-turn
open-domain conversations. Considering the char-
acteristic of dialogs, where the meaning of the cur-



rent utterance often varies depending on the con-
text, we design a context-aware NER model and an
ER model. Experimental results on three datasets
prove that using context information improves the
entity recognition and resolution performance. Ex-
trinsic evaluation on response generation also vali-
dates the effectiveness of the entity information.
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Abstract

One main challenge in building task-oriented
dialogue systems is the limited amount of su-
pervised training data available. In this work,
we present a method for training retrieval-
based dialogue systems using a small amount
of high-quality, annotated data and a larger,
unlabeled dataset. We show that pretraining
using unlabeled data can bring better model
performance with a 31% boost in Recall@1
compared with no pretraining. The proposed
finetuning technique based on a small amount
of high-quality, annotated data resulted in
26% offline and 33% online performance im-
provement in Recall@1 over the pretrained
model. The model is deployed in an agent-
support application and evaluated on live cus-
tomer service contacts, providing additional
insights into the real-world implications com-
pared with most other publications in the do-
main often using asynchronous transcripts (e.g.
Reddit data). The high performance of 74%
Recall@1 shown in the customer service ex-
ample demonstrates the effectiveness of this
pretrain-finetune approach in dealing with the
limited supervised data challenge.

1 Introduction

Retrieval-based dialogue systems are popular in
task-oriented domains. A typical retrieval-based
system encodes the dialogue context and a large set
of candidate responses (templates) in a joint seman-
tic space, and then scores how appropriate each can-
didate is given the dialogue context; the template
with the highest score is selected as the response.
These systems can use a sequence-to-sequence
model (Kannan et al., 2016) or a dual-encoder style
architecture (Lu et al., 2017; Lowe et al., 2015) to
encode and score the context-response pair.

One major challenge for any task-oriented dia-
logue system is the scarcity of training data. High-
quality data with all the required annotations are
needed to train an accurate model. Such datasets
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are not readily available, and collecting them is a
costly and labor-intensive process. A few synthetic
datasets (Weston et al., 2015; Asri et al., 2017;
Budzianowski et al., 2018) have been proposed
but they do not capture the real-world variations
and subtleties of the task-oriented dialogues. The
limited amount of supervised training data avail-
able makes it difficult to train these models from
scratch.

To overcome the issue of limited training data,
the idea of finetuning a pretrained model has be-
come a popular approach in other domains like
computer vision and is recently gaining popularity
in the natural language processing (NLP) domain.
Pretrained models in NLP such as ELMo (Peters
et al., 2018), OpenAl GPT (Radford et al., 2018),
and BERT (Devlin et al., 2018) have attracted a lot
of attention and achieved state-of-the-art accuracy
in multiple natural language understanding tasks.
In this paper, we present a methodology for train-
ing retrieval-based dialogue systems using a small
amount of supervised data and a large, low-quality,
unannotated dataset.

1. We demonstrate that finetuning a model (Lu
et al., 2019) pretrained using the unannotated
dataset performs better than directly finetun-
ing on the clean, annotated data.

We experiment with different finetuning loss
functions and show that a ranking based loss
function performs better than classification
loss for template-retrieval based dialogue sys-
tems.

We deploy the finetuned model in an agent
assistance application for customer service,
and present real-world results on live customer
contacts.

In the sections that follow, we describe the data
from the customer service domain that is used for
pretraining and finetuning the model in section 2.
In section 3, we explain how we pretrain the model
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Raw text:

Customer: I want to cancel the shoes I ordered yesterday.
Agent: Welcome to Customer Service.

Agent: I am here to help you.

Agent: Give me a moment to look into this.

Training Sample:

Context: CUSTOMERSTART I want to cancel the
shoes I ordered yesterday. AGENTSTART Welcome to
Customer Service. AGENTSTART I am here to help
you. PROFILESTART cancellable, carrier, membership-
status. Response: Give me a moment to look into this.
Label: Positive

Figure 1: Training sample creation process. Given a
chat transcript and profile features, a training sample
is created by appending the dialogue turns and profile
features. True agent response is used to create positive
samples and random agent responses are used to create
negative samples.

using the next-turn prediction task along with the
results. Next, we present the proposed finetuning
strategy, and the associated experimental setup and
the results. In section 5, we present the real-world
results of the deployed model. Section 6 describes
the conclusion and direction for future work.

2 Data

In this work, we use data from the customer ser-
vice domain —customer service chats handled in
English. When customers contact customer service
regarding their issue (e.g., order tracking, payment
questions), the routing system connects the cus-
tomer to an agent based on the specific issue type.
Agents resolving customer issues have access to a
wide variety of profile information (e.g. customer
details, order status, and internal APIs) to execute
actions such as canceling or refunding an order.
For our experiments, we select a delivery-related
customer issue. In the following subsection, we ex-
plain how we collect the pretraining and finetuning
data.

2.1 Pretraining Data

The pretraining data include historical customer
service chat transcripts for a delivery-related issue.
It is important to note these transcripts only con-
tain the dialogue turns. Contextual information
(e.g. customer profile, order details, actions exe-
cuted by the agents) is either missing or inaccurate.
The pretraining dataset consists of a few hundred
thousand chats (see Table 1). The conversation in
these chat transcripts can exhibit high variability,
despite following the same customer issue, due to
policy changes, unconstrained conversations like
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Table 1: Training data statistics.

DATASETS PRETRAIN FINETUNE
TRAINING TEST TRAINING TEST

NUMBER OF

CHATS 382,688 2000 6366 400

NUMBER OF

AGENTS TURNS 8045059 4498 65908 3188

side talks, and agent locale variability.

Figure 1 shows part of a chat transcript and how
it is processed to create the training data. Each
agent turn in the transcript is converted into a train-
ing sample. To create the dialogue context, previ-
ous turns in the conversation history, prior to the
current agent turn, are prepended by a special to-
ken to indicate whether it is an agent or customer
turn. A separate token is used to distinguish pro-
file features (e.g. customer’s profile, order details)
from the dialogue turns. As explained in section 3,
pretraining is done using next sentence prediction
task and so it requires positive and negative context
response pairs. To create the pretraining dataset,
true agent responses create a positive pair, while
random agent responses create negative pairs. We
also use the incomplete and noisy profile informa-
tion that is available without any human annotation.
We call this pretrain training dataset.

2.2 Finetuning Data

The large pretraining dataset is not collected in a
standardized manner. As a result, said dataset is
noisy —there are inconsistencies in chat dialogues
and profile information (e.g. order details, cus-
tomer profile, and actions) is missing and inaccu-
rate. The finetuning dataset, in contrast, is collected
in a controlled manner using specialist agents to
ensure accurate and complete annotations.

The finetuning data consists of a few thousand
chats for the selected delivery issue, collected over
a period of 2 months, handled by a group of 20 spe-
cialist agents. These chats have all relevant annota-
tions (customer profile and order details) for each
dialogue turn. Agents are instructed to choose the
response from a template pool as much as possible,
free-typing only if the response does not exist in
the template pool. The pool consists of 85 template
responses. These responses are extracted from his-
torical chat transcripts and cover the most common
delivery-related use cases. The specialist agents
are trained to handle contacts in a constrained and
consistent manner without sacrificing the customer
experience. For example, they are trained to drive
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Figure 2: Pretraining model architecture. Separate

transformer encoders are used to encode the dialogue
history (last turn, other turns), profile features, and re-
sponse. The encoded dialogue turns and profile are
passed through MLP to get the encoded context. The
encoded response and context are passed through bilin-
ear layer to get the final score of the pair.

the conversation towards the solution and avoid
side conversations. To ensure consistency, we insti-
tuted general rules to the agents on how and when
to greet, apologize, make policy exceptions, pro-
vide reassurance, etc. The agent training ensured
customers are not adversely affected in the process
of this constrained data collection.

The collected chats are processed in the same
way as shown in Figure 1 and explained in the
last section. The dataset, referred to as finetune
training dataset, is generated in the same way as
pretraining data with one caveat: for each conver-
sation context, negative samples are generated us-
ing templates scored high by the pretrained model,
as opposed to random sampling unrelated agent
responses. The number of negative samples is se-
lected using cross-validation.

2.3 Evaluation Data

We have two evaluation datasets — pretrain test
and finetune test. To create the pretrain test
dataset, we use historical chat transcripts from a
period that does not overlap with the pretrain train-
ing dataset. Each test sample includes conversation
context (previous turns and extracted profile fea-
tures) and random responses (including the true
agent’s response). During evaluation, the trained
model is used to rank the responses for each di-
alogue context. Similarly, to create the finetune
test dataset, we use the dataset collected from the
specialized agents. For each dialogue context, we
store the template response selected by the agent
as positive and all other template responses as neg-
ative.

Table 1 shows the statistics for each of the pre-
train and finetune datasets. During the evaluation,
the model ranks all responses for a given dialogue
context. We use Recall@1 as our evaluation met-
ric, which measures how many times the correct
response was ranked at the top by the model. We
also report MRR (mean reciprocal rank), which
is the harmonic mean of the rank of the correct
response.

3 Pretraining

In this section, we introduce the next sentence
prediction based pretraining used to pretrain the
model.

3.1 Model

Our binarized next sentence prediction pretrain-
ing is effectively a classification task, classifying a
pair of conversation context and agent response as
positive (appropriate) or negative (not appropriate).
The input to the pretraining model is the context (C)
response (R) pair where the conversation context
includes dialogue turns (last turn, other turns) and
profile features. The pretraining model is similar to
(Luetal., 2019) as the response ranking model uses
multiple transformer-based (Vaswani et al., 2017)
encoders to encode different parts of the context
and the response.

The context is encoded using three transformer
encoders (Figure 2) that separately encode the pro-
file features, last-turn, and all other turns in the con-
text; see equation 1, 2, 3. Dot Product Attention
(Luong et al., 2015) is applied to the transformer
outputs. The transformer outputs are the key and
value, while separate query vectors are learned for
each output. Each query vector is randomly ini-
tialized and trained like other model parameters.
The encoded last turn, profile features, and other
turns are passed through a Multi-Layer Perceptron
to get the encoded context (Encc). The response
encoding (E'mbg) is also obtained using equation
2 and 3.

Encc =M LP(Embother turns

(D

‘Emblast_turn ‘ Embprofile)
Emb, = Attention(T}, q.) 2)
T, = Transformer(emb,) 3)

where | is the concatenation, emb,, is a vector of
size e X n : e is the embedding dimension, n is the
number of words; T, is a vector of size h X n : h is



Table 2: We present MRR and Recall@1 of the fine-
tuned models on the finetune test dataset. The base-
line ‘No pretraining’is a model without any pretrain-
ing, ‘Pretrained mode’is pretrained on pretrain training
dataset.

MODELS MRR (%) RECALL@ 1 (%)
NO PRETRAINING(Mpgsetine) 32.8 23.2
PRETRAINED MODEL(Myneq) 60.6 54.6

the hidden size; g, is a query vector of dimension
h which is initialized randomly and trained along
with other parameters. Emb, and Encc are both
vectors of dimension h. Encc and Embpg are then
passed through a bilinear layer that outputs a prob-
ability score grading how appropriate the candidate
response is given the context; see 4 and 5.
Pl(y: = +1)|(C. R)] = Sigmoid(S)
S = Encc - Embg

“4)
&)

where y; € {0, 1} is the label of context response
pair; P[(y: = +1)|(C, R)] is the probability that
the context response pair is positive; - is the dot
product operator. Since we treat this as a classifica-
tion problem, we use binary cross-entropy loss for
training.

3.2 Training Setup

We train the pretrained model (M) using the pre-
train training dataset as described in Section 2. We
use the transformer implementation provided by
MXNet Gluon NLP !. We use 4 encoder layers,
4 heads in multi-head attention, hidden size of
512 and vocabulary size of 10K. The maximum
sequence length of the context is 180 tokens, last
turn is 35 tokens, profile feature is 6 tokens, and
response is 35 tokens. We train the model using
binary cross-entropy loss and stop when the valida-
tion MRR and Recall@1 start dropping.

We finetune the pretrained model on the finetune
training dataset and evaluate it on the finetune test
dataset. To finetune the model, we initialize the
model M with the pretrained model parameters and
run a few epochs on the finetune training dataset,
stopping when the validation performance begins
dropping. Let’s call this finetuned model M;,cq.
We also train a baseline model (Mpqserine) that is
another model like M but trained directly on the
small finetune training dataset.

"https://gluon-nlp.mxnet.io/
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3.3 Results

Table 2 shows the MRR and Recall@1 on the fine-
tune test dataset. M;,,,.q demonstrates an average
improvement of 31.4% on Recall@1 and 28% on
MRR compared to Mpgseiine- These results show
that pretraining on a large, unannotated dataset can
give significant performance boost over a model
with no pretraining.

4 Finetuning

Simple finetuning using the small finetune training
dataset can lead to overfitting. In this section, we
describe our finetuning approach, which incorpo-
rates regularization to avoid overfitting and the loss
function that better caters to the task of template
ranking.

4.1 Model

Due to the limited amount of finetune training data
available, simple finetuning M can lead to overfit-
ting —forgetting knowledge acquired during pre-
training. As shown in Table 3, simple finetuning
M on the finetune training dataset degrades the per-
formance of the model on the pretrain test data
significantly. In order to prevent the model from
forgetting, both M and M}y neq should have similar
performance on the pretrain test data.

4.1.1 Regularization

To prevent the forgetting issue, a fraction of the
pretrain training dataset is mixed with every batch
of the finetuning training dataset (He et al., 2019).
During each gradient descent step of finetuning,
one gradient step is taken on the finetune data
batch, with another gradient step on the pretrain
data batch.

4.1.2 Training loss

During pretraining, we use binary cross-entropy
loss (L pcE), classifying each context response pair
as positive or negative. Given context response
pairs and the corresponding labels, cross-entropy
loss can be calcu}Lated as follows:

Lpop =— Yy +log(S(C,R))
=1
+ (1 —ye) xlog(1 = S(C, R))

(6)

where y; € 0,1 is the label of the context response
pair (C, R); S(C, R) is calculated using equation
5. Lpcg is limited by its inability to capture the
relative score of the templates —essentially the



Table 3: The performance of model M finetuned on the finetune training dataset with and without regularization.
We show that data-mix regularization is effective in maintaining the performance of the model on the pretrain test

dataset.
DATASETS PRETRAIN TEST DATASET FINETUNE TEST DATASET
MRR(%) RECALL@1(%) MRR (%) RECALL@1 (%)
M(NO FINETUNING) 80.3 76.9 41.3 32.8
Miyneq WITH NO REGULARIZATION 33.7 22.5 60.6 54.6
Miyneq USING DATA-MIXING REGULARIZATION 78.7 75.1 60.7 54.5

base logic for ranking of templates. This is critical
for retrieval-based dialogue systems because, for
each context, all templates receive a ranking and
the top-ranked template from the pool is selected.

Hence, for finetuning, we chose a new loss func-
tion to incorporate relative scores of templates sim-
ilar to (Henderson et al., 2017). We directly min-
imize the negative log probability of the true re-
sponse given the context as shown below:

oS(C.R)
S(C.R;

Lranking = _ZOQ(P(R/C)) X Zn
=1
(7

where C' is the context; R is the true agent re-
sponse; P(R|C) is the probability of the true re-
sponse given the context; R; is i'h response; n is all
possible responses; S(C, R) is the score of a pair
of context and response calculated using equation
5. Instead of normalizing over all R;, we sample
10 responses from the template pool (including the
correct response). This new loss function better
represents the ranking problem.

4.2 Experimental Setup

For finetuning the model, we initialize the model
with the pretrained model parameters and finetune
all layers using the finetune training dataset.

4.3 Results

In this section, we study the effect of regularization
and the different loss functions on finetuning.

4.3.1 Regularization

The effect of regularization during finetuning is
summarized in Table 3. We show the MRR and
Recall@1 metrics on both the pretrain test and fine-
tune test datasets. As a baseline, we don’t finetune
the model (M) at all, but directly evaluate the pre-
trained model on both the test datasets. From the
results, we see that data-mix regularization main-
tains the performance of the model on the pretrain
test dataset.
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Table 4: The performance of the finetuned model on the
finetune test dataset, the model trained using ranking
loss outperforms the cross-entropy loss based finetuned
model.

MRR (%) RECALL@1(%)
CROSS-ENTROPY LOSS 60.7 54.5
RANKING LOSS 63.9 58.3

4.3.2 Ranking Loss

Table 4 shows the result of changing the loss func-
tion from Lgcog to Lranking. The result shows the
effect of different loss functions on M finetuned
using mix data regularization; the same effect is
seen with other regularization strategies. Changing
the loss function to L,.4,king improves the perfor-
mance of the model by 3% on MRR and 4% on
Recall@1 on the finetune test dataset.

5 Online Evaluation

5.1 Setup

We deployed the proposed model in a customer
service agent-support application that agents use
to resolve live customer contacts. The model is
deployed as a service using Amazon Sagemaker
2. The agent-support application calls the Sage-
maker endpoint with the current context (previous
dialogue turns and profile information), and the
model returns the highest scored response from the
template pool. The proposed model is able to rec-
ommend responses without any significant latency
impact on the overall application.

The agent-support application presents the
agents with the standard chat interface, except it
replaces the text box with the top-suggested re-
sponse from the model. Every time the customer
or the agent enters text into their chat window, the
model refreshes the response recommendations for
the next agent utterance. The agents can accept or
reject the model’s response recommendation. If
they reject the model’s recommendation, they can
type on their own. Since the model is deployed in
a human-in-the-loop setup, we use it to evaluate
the performance of the pretrained and finetuned

Zhttps://docs.aws.amazon.com/sagemaker/



Table 5: The Recall@1 and % contacts resolved of pretrained and two finetuned models using cross-entropy and
ranking loss respectively on live customers. M is the pretrained model; M;,, 4 is finetuned model.

M Mtuned WITH LBCE Mtuned WITH Lranking

NUMBER OF CONTACTS 3094 3636 2212
RECALL@1 (%) 40.8 62.7 74.0
PERCENTAGE OF CONTACTS RESOLVED (%) 0.9 5.3 13.6

models on live customer contacts. We present the  missing and/or incomplete context data available
results of the model on delivery related issue. to the model. To contrast, this means agents had
access to a richer profile information than what was
5.2 Results available to the model. As a result, the model did
Table 5 shows the online results for the three mod-  not have the relevant context to recommend the
els on live customer contacts: pretrained model — right response. In 28% of the cases, there were
(M) as explained in section 3, finetuned model  extra profile features available to the agents, such
(Mpcg) with BCE loss and data regularization;  as being able to check the carrier’s website, that
and finetuned model (M, gy king) With ranking loss ~ were not available to the model.
and data regularization. For each model, we cal- In dialogues, usually there is more than one cor-
culate Recall@1 as the fraction of total responses  rect response, giving room to agent’s subjectivity in
that were accepted by the agents. We also report  accepting/rejecting a model’s response. We found
the percentage of contacts resolved, which repre-  that 15% of rejected turns occurred because the
sents the percentage of contacts when the model’s  agent decided to reject the model’s suggestion in
recommendations were accepted at every turn. favor of a stylistically different but semantically
After finetuning using BCE, the Recall@1 of  similar message. For example, some agents pre-
the model showed an absolute increase of 22%  ferred closing the contact with “Thank you for con-
over the pretrained model. Finetuning using the  tacting "while others preferred to directly say ‘Take
ranking loss outperformed the pretrained model ~ care and have a nice day .
by 33%, and BCE finetuned model by 11%. For
the ranking loss based finetuning, the percentage
of contacts resolved completely using the model’s  In this paper, we study a less explored approach of
recommendations went up by 13% compared to the  finetuning a retrieval-based dialogue system based
pretrained model. on a small amount of high-quality, annotated data
that resulted in 26% offline and 33% online perfor-
mance improvement in Recall@1 over a pretrained
To better understand the model’s failure cases, we ~ model.We deployed the model in an agent-support
manually read 100 turns where the agents rejected  application, and demonstarte that the proposed
the model’s recommended response and typed on  model achieves 74% Recall@1, suggesting these
their own. For this study, we focus on the best  models are effective in assisting agents by recom-
model - finetuned using ranking loss and data regu-  mending text responses. The results demonstrate
larization. the effectiveness of pretrain-finetune approach in
We found that 17% of the model’s errors were  dealing with the limited supervised data challenge.
caused because the conversation had gone off the  In this paper, we focus on a customer service deliv-
common path. The model is not able to recommend  ery issue, but since this technique can scale to other
the correct response in these cases because it has  task-oriented dialog systems with a wide range of
not seen these types of conversations during the  applications.
training, leading to the template pool being unable We believe that additional investment in contex-
to cover many of said cases. Examples of why con-  tual and profile features would help improve the
versations may go long or off-track include, but are  model performance. As discussed in the error anal-
not limited to, a customer being unhappy with the  ysis section, 28% of the model’s error is caused
solution, experiencing multiple issues within the  due to missing context information. In addition,
same chat, and/or participating in side conversa- manual study of the rejection reasons highlights
tions. the issue of subjective evaluation. More investment
Another major reason for rejection was due to  is needed in agent training and standardization of
39

6 Conclusion and Future Work

5.3 Error Analysis



annotation. We believe the model can significantly
benefit from better annotation and evaluation.
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Contextual Domain Classification with Temporal Representations
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Amazon Alexa Al

Abstract

In commercial dialogue systems, the Spoken
Language Understanding (SLU) component
tends to have numerous domains thus context
is needed to help resolve ambiguities. Previ-
ous works that incorporate context for SLU
have mostly focused on domains where con-
text is limited to a few minutes. However,
there are domains that have related context that
could span up to hours and days. In this pa-
per, we propose temporal representations that
combine wall-clock second difference and turn
order offset information to utilize both recent
and distant context in a novel large-scale setup.
Experiments on the Contextual Domain Clas-
sification (CDC) task with various encoder ar-
chitectures show that temporal representations
combining both information outperforms only
one of the two. We further demonstrate that
our contextual Transformer is able to reduce
13.04% of classification errors compared to a
non-contextual baseline. We also conduct em-
pirical analyses to study recent versus distant
context and opportunities to lower deployment
costs.

1 Introduction

Voice assistants such as Amazon Alexa, Apple Siri,
Google Assistant and Microsoft Cortana provide
a wide range of functionalities, including listening
to music, inquiring about the weather, controlling
home appliances and question answering. To under-
stand user requests, the Spoken Language Under-
standing (SLU) component needs to first classify
an utterance into a domain, followed by identifying
the domain-specific intent and entities (Tur, 2011;
Su et al., 2018a), where each domain is defined for
a specific application such as music or weather. In
commercial systems, the number of domains tend
to be large, resulting in multiple possible domain in-
terpretations for user requests (Kim et al., 2018; Li
et al., 2019). For example, "play american pie" can
be interpreted as either playing a song or a movie.
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Also, "what does your light color mean?" can be
classified as Question Answering, or as a complaint
which does not necessarily require a meaningful
response.

Multiple prior works have attempted to incor-
porate context in SLU to help resolve such am-
biguities. However, these works often report re-
sults on datasets with limited amount of training
data (Bhargava et al., 2013; Xu and Sarikaya, 2014;
Shi et al., 2015; Liu et al., 2015), or resort to synthe-
size contextual datasets (Gupta et al., 2018, 2019)
that may not reflect natural human interaction. Fur-
thermore, the majority of these works focus on do-
mains where session context is recent and collected
within a few minutes. Though this setup works well
for domains that bias towards immediate preceding
context such as Communication (Chen et al., 2016)
and Restaurant Booking (Henderson et al., 2014;
Bapna et al., 2017), there are also domains that
have useful context spanning over hours or even up
to days. In the SmartHome domain, it is natural for
users to turn on T.V., watch for a couple of hours
and then ask to turn it off. In the Notifications
domain, users setup alarms or timers which occur
hours and days away. We hypothesize that distant
context, if properly utilized, can improve perfor-
mance in instances where recent context cannot.

In this paper, we propose temporal representa-
tions to effectively leverage both recent and distant
context on the Contextual Domain Classification
(CDC) task. We introduce a novel setup that con-
tains both recent and distant context by including
previous 9 turns of context within a few days, so
that context not just come from minutes but can
also come from hours or days ago. We then pro-
pose temporal representations to indicate the close-
ness of each previous turn. The key idea of our
approach is to combine both wall-clock second dif-
ference (Conway and Mathias, 2019) and turn order
offset (Su et al., 2018b) so that a distant previous
turn can still be considered as important.

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 41-48
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We conduct experiments on a large-scale dataset
with utterances spoken by users to a commercial
voice assistant. Results with various encoder ar-
chitectures show that combining both wall-clock
second difference and turn order offset outperforms
using only one of them. Our best result is achieved
with Transformer of 13.04% error reduction, which
is a 0.35% improvement over using only wall-clock
second difference and 2.26% over using only turn
order offset. To understand the role of context in
CDC, we conduct multiple empirical analyses that
reveal the improvements from context and discuss
trade-offs between efficiency and accuracy.

To summarize, this paper makes the following
contributions:

* A novel large-scale setup for CDC that show-
cases the usefulness of distant context, com-
paring to previous works whose datasets are
limited to thousands and context within min-
utes.

Temporal representations combining wall-
clock second and turn-order offset informa-
tion that can be extended and applied to other
tasks.

Empirical analyses that study context from 4
different aspects to guide future development
of commercial SLU.

2 Related Work
2.1 Contextual SLU

Context in commercial voice assistants may be-
long to widely different domains, as users expect
them to understand their requests in a single ut-
terance, which is different from the conventional
dialogue state tracking task (Williams et al., 2016).
Earlier works seek better representations of con-
text, such as using recurrent neural networks (Xu
and Sarikaya, 2014; Liu et al., 2015), or memory
networks to store past utterances, intents, and slot
values (Chen et al., 2016). Recently, Gupta et al.
(2019) proposes a self-attention architecture that
fuses multiple signals including intents and dia-
log act with a variable context window. On other
aspects of contextual SLU, Naik et al. (2018) pro-
poses a scalable slot carry over paradigm where
the model decides whether a previous slot value is
referred in the current utterance. For rephrased user
requests, Rastogi et al. (2019) formulates rephras-
ing as the Query Rewriting (QR) task and uses
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sequence-to-sequence pointer generator networks
to perform both anaphora resolution and DST. In
contrast, our work proposes temporal representa-
tions to utilize both recent and distant context for
domain classification.

2.2 Temporal Information

Most previous works use recurrent neural networks
to model natural turn order (Shi et al., 2015; Gupta
et al., 2018). Assuming context follows a decay-
ing relationship, Su et al. (2018b) presents several
hand-crafted turn-decaying functions to help the
model focus on the most recent context. Kim and
Lee (2019) further expands upon this idea by learn-
ing latent turn-decaying functions with deep neural
networks. On the other hand, wall-clock informa-
tion has not been exploited until the recent Time
Mask module proposed in Conway and Mathias
(2019). From the lens of wall-clock, they show
that context importance does not strictly follow a
decaying relationship, but rather occurs in certain
time spans. Our work combines both wall-clock
and turn order information and models their rela-
tionship.

3 Methodology

In this section, we describe our model architecture
in Section 3.1 and our proposed temporal represen-
tations in Section 3.2.
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Our model is depicted in Figure 1 and consists of
3 components: (1) utterance encoder, (2) context
encoder, and (3) output network. We next describe
each component in detail.

Model Architecture

Utterance Encoder We use a bi-directional
LSTM (Hochreiter and Schmidhuber, 1997) and
pre-trained word embeddings to encode the cur-
rent utterance into an utterance embedding. For
pre-trained word embeddings, we use FastText (Bo-
janowski et al., 2017) concatenated with Elmo (Pe-
ters et al., 2018) trained on an internal SLU dataset.

Context Encoder Context encoder is a hierar-
chical model that consists of a turn encoder and
a sequence encoder. For each previous turn, turn
encoder encodes 3 types of features: (1) utterance
text, (2) hypothesized domain, and (3) hypothe-
sized domain-specific intent, which are also used
in Naik et al. (2018). Utterance text is encoded
using the same model architecture as in utterance
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Figure 1: Overview of our model and proposed temporal representations.

encoder. Hypothesized domain and intent are first
represented using one-hot encoding then projected
into embeddings. We stack the 3 representations,
perform max-pooling then feed into a 2 layer fully
connected neural network to produce a turn repre-
sentation. Temporal representations (Section 3.2)
are then applied to indicate their closeness. Fi-
nally, sequence encoder encodes the sequence of
temporal encoded turn representations into a sin-
gle context embedding that is fed to the output
network.

Output Network Output network concatenates
utterance embedding and context embedding as in-
put and feeds into a 2 layer fully-connected network
to produce classification logits.

Response Time Considerations State-of-the-
art contextual models encode the entire context and
utterance to learn coarse and fine relationships with
attention mechanisms (Gupta et al., 2019; Heck
et al., 2020). Since commercial voice assistants
need to provide immediate responses to users, en-
coding context and utterance is computationally
expensive such that the system would not respond
in-time at industrial-scale (Kleppmann, 2017). We
separate context encoder from utterance encoder
so that we can encode context when user is idle
or when the voice assistant is responding. More-
over, the hierarchical design allows us to cache
previously encoded turn representations to avoid
re-computation.
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3.2 Temporal Representations

In this section, we present the temporal represen-
tations used in our experiments. For the following,
given previous turn ¢ and its turn features h'(c)
from turn encoder, we denote its wall-clock second
difference and turn order offset as dasec, AAturn.-
For operators, we denote © and @ as element-wise
multiplication and summation.

Time Mask (TM) (Conway and Mathias, 2019)
feeds dasec into a 2 layer network and sigmoid
function to produce a masking vector ma se. that
is multiplied with the context feature h., and show
that important features occur in certain time spans.
The equations are given as follows.

ensec = Wsa - gb(Wsl “dAsec + bsl) + bso,
(D
MAsec = U(eAsec)> 2)
o (€) = Masee © B (c), 3)

Here W1, Wa, bs1, bso are weight matrices and
bias vectors, ¢ and o are ReLU activation and
sigmoid functions, and h%.,,(c) denotes the time
masked features. We also considered binning sec-
ond differences instead of working with dagec.
However, we find that binning significantly under-
performs compared to the latter.

Turn Embedding (TE) We first represent
dAturn as a one-hot encoding then project it into a
fixed-size embedding ey, We then sum the turn
embedding with context features as in positional



Temporal Representations

Max-pooling LSTM Transformer

Time Mask

Turn Embedding

Turn Embedding over Time Mask
Time Mask over Turn Embedding
Time and Turn Embedding

4.41 11.02 10.18
7.62 11.91 12.69
7.09 11.44 10.78
4.59 12.51 13.04
7.56 12.21 12.75
10.13 11.31 11.79

Table 1: ARER % (1) results computed against an utterance-only baseline with different temporal representations

"non

and sequence encoders.

encoding in Transformer (Vaswani et al., 2017).
h%“E(C) = eAturn D ht(c)a “4)

It is natural and intuitive to assume that a closer
context is more likely to correlate with the cur-
rent user request. Assuming we are given user
requests “Where is Cambridge?" and “How is the
weather there?". It is more likely that the user is in-
quiring about weather in Cambridge if the second
request immediately follows the first, compared
to the case where these two requests are hours or
multiple turns apart. For a proper comprehension
of closeness, both wall-clock and turn order infor-
mation are needed, as having the same wall-clock
difference would require us to know the turn or-
der difference, and vice versa. Here we propose 3
representations that combines the two information
based on different hypotheses.

Turn Embedding over Time Mask (TEoTM)
provides turn order information on top of seconds.
We do so by first masking the context features us-
ing Time Mask then mark the relative order with
Turn Embedding. This variant assumes that the past
context is important despite the fact that they might
be distant in seconds.

h%“EoTM(C) = eAturn D (mAsec © ht (C))a (5)

Time Mask over Turn Embedding (TMoTE)
applies wall-clock second and turn offset informa-
tion in reverse order of TEoTM by first summing
Turn Embedding and then multiplying it with Time
Mask. This assumes that second is more important
than turn order as it can overrule by masking when
needed.

htTMoTE(C) = MAsec © (6Aturn @ ht (C))a (6)

Time and Turn Embedding (TaTE) Our third
variant assumes wall-clock second and turn offset
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indicates that no temporal representation is applied. Best results are boldfaced.

have equal importance by removing the masking
sigmoid of Time Mask in Equation (1) and sum
with Turn Embedding.

(7

h%aTE(C) = €Asec D €Aturn D ht(C)’

4 Results

In this section, we first describe our experimen-
tal setup in Section 4.1, present our main results
in Section 4.2, followed by our analyses in Sec-
tion 4.3.

4.1 Experimental Setup

Dataset We use an internal SLU dataset that is
privatized so that users are not identifiable. Our
training, validation and test set contains on the
order of several million, several hundred thousand,
and one million utterances, respectively. For each
utterance, we collect the previous 9 turns within a
few days as context. Our dataset has a total of 24
domains that includes common voice assistant use
cases (Liu et al., 2019).

Metric For evaluation, we report Accuracy Rela-
tive Error Reduction Percentage (ARER %). ARER
% is computed with the following equation.
(1—-ACCyu) — (1 — ACCuy)
1—ACCyuu ’
8)
Here ACC,y is the accuracy of an utterance-

only baseline that masks context information, and
ACC.,; is the accuracy of a contextual model.

ARER:,; =

Implementation Details We set both FastText
and Elmo embedding dimensions to 300 and hid-
den dimension to 256 for all neural network layers,
hypothesized domain and intent, time and turn em-
beddings. We used a bi-directional LSTM for turn
encoder, uni-directional LSTM for sequence en-
coder and set both to 2 layers. For Transformer,
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Figure 2: (a) Left figure plots the ARER % (1) with confidence intervals of our best model on different time interval
bins. (b) Right figure depicts the percentage of each bin within our dataset.

we used 1 layer with 4 heads. Dropout rate is set
to 0.2 for all fully-connected layers, and we used
Adam (Kingma and Ba, 2015) as optimizer with
learning rate set to 0.001. For utterances that do
not have context, we use a special <PAD> token
to pad the turn features. For consistency, we re-
port results averaging 3 random seeds. We use the
MXNet (Chen et al., 2015) framework to develop
our models.

4.2 Main Results

In Table 1, we report performance of temporal
representations with sequence encoders (1) Max-
pooling, (2) LSTM, and (3) Transformer, computed
with respect to an utterance-only baseline. For
all sequence encoders, temporal representations
combining both wall-clock second difference and
turn order offset achieved best results. Specifically,
Time and Turn Embedding works best for Max-
pooling, and Turn Embedding over Time Mask
works best for LSTM and Transformer. Trans-
former achieved the best results of 13.04%, im-
proving 0.35% over using wall-clock and 2.26%
using turn offset. Similar trends are observed with
LSTM and Max-pooling, with both information
outperforming using only one. In general, having
Time Mask performs better than Turn Embedding,
suggesting that wall-clock is more important than
turn offset in CDC. Also, despite being a natu-
ral time series encoder, temporal representations
further improve LSTM performance by up to an
additional 1.49%.

4.3 Analysis

In this section, we conduct analyses to better un-
derstand the role of context in CDC.
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Utt Hyp-Domain Hyp-Intent ARER % (1)
4 4 4 13.04

X v 4 12.70

4 X 4 10.20

4 4 X 12.70

4 X X 5.37

X v X 11.27

X X v/ 10.73

X X X 0.00

Table 2: Analysis on turn features used in Context En-
coder. v indicates the feature is used. X indicates the
feature is masked.

Recent & Distant Context To understand
whether distant context actually improves SLU, we
use the second difference of the first previous turn
allA sec to indicate absolute closeness and divide the
test set into 3 non-overlapping interval bins: (1)
< I min, (2) < 24 hr, (3) > 24 hour, where (1)
represents recent context and (2), (3) are the more
distant context. We also include a fourth bin (4) No
Context for utterances that do not have context. Fig-
ure 2 depicts performance of our best model from
Section 4.2 on each bin. While improvements are
largest for (1), there are still statistically significant
improvements for the more distant (2) and (3), sug-
gesting that distant context is indeed helpful, albeit
decreases with distance and at a smaller scale. In-
terestingly, our best model performed worse on (4),
suggesting that models trained with context exhibit
certain biases when evaluating without context.

Amount of Context Next, we analyze the num-
ber of previous turns needed for CDC. We trained
and evaluated our best model from Section 4.2



Previous Turn

Current Turn

Utterance buy stuff Utterance t.v.
Hyp-Domain Shopping Baseline SmartHome X
Seconds 6.0 Best Model Shopping v
Utterance play <entity1> Utterance  <entity1> by <entity2>
Hyp-Domain Song Baseline AudioBooks X
Seconds 54.0 Best Model Song v
Utterance please read audio collection  Utterance start <entity>
Hyp-Domain AudioBooks Baseline DeviceControl X
Seconds 6235.0 (1 hr, 43 mins) Best Model AudioBooks v
Utterance turn on <entity> Utterance turn off <entity>
Hyp-Domain SmartHome Baseline DeviceControl X
Seconds 212421.0 (2 days, 11hrs) Best Model SmartHome v

Table 3: Examples showing predictions of an utterance-only baseline and our best model from Section 4.2 with
context from the first previous turn. Our best model is able to make correct predictions by utilizing context from
recent and distant time ranges when the current turn utterance is ambiguous. We anonymize entities and modify
certain utterances for user privacy. Hypothesized domain-specific intents and additional previous turns are not

included for clarity.

using 1 and 5 previous turns, which resulted in
ARER% of 10.00%, and 12.86%, respectively.
Compared to 13.04% of using 9 previous turns,
this suggests that while more than 1 previous turn
is needed for performance, using 5 turns is com-
parable as using 9 turns and can potentially save
caching costs.

Where Does Context Improve SLU Most
CSLU works are motivated by rephrases and refer-
ence resolution (Chen et al., 2016; Rastogi et al.,
2019). Noticing that in both phenomena users fol-
low up their requests within the same domain, we
split our test set based on whether the previous
turn’s hypothesized domain (PTHD) is same as or
different from the target domain. Our model largely
improved ARER % by 22.82% on the PTHD Same
set, and has comparable performance of —0.03%
on the PTHD Different set. This suggests that our
model learns to carryover previous domain predic-
tion when the current utterance is ambiguous and
not over rely on them. We also include several ex-
amples with recent and distant context in Table 3
that exhibits this behavior.

Types of Context Information Last, we con-
ducted an ablation study of turn features used in
the context encoder. We mask 1 or retain 1 of the
3 features and show results in Table 2. The most
effective feature we observed is the previously hy-
pothesized domain, as masking domain yielded the
worst results, and keeping domain yielded the best
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results. Since domain is a crude label, we hypothe-
size that previous domain predictions are sufficient
for CDC, and utterance text will be more useful for
more fine-grained tasks such as intent classification
or slot labeling.

The upside of this analysis comes from deploy-
ment costs. Since pre-trained Elmo embeddings
are computation heavy and may require GPU ma-
chines, using only hypothesized domain as turn
features can largely lower the costs as we can infer-
ence using CPUs while sacrificing little accuracy.

5 Conclusions

We presented a novel large-scale industrial CDC
setup and show that distant context also improves
SLU. Our proposed temporal representations com-
bining both wall-clock and turn order information
achieved best results for various encoder architec-
tures in a hierarchical model and outperforms us-
ing only one of the two. Our empirical analyses
revealed how previous turn helps disambiguation
and showed opportunities on reducing deployment
costs.

For future work, we plan to explore more turn
features such as responses, speaker and device in-
formation. We also plan to apply temporal represen-
tations on other tasks, such as intent classification,
slot labeling, and dialogue response generation.
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Our dataset is annotated by in-house workers who
are compensated with above minimum wages. An-
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As our model is a classification based which output
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not cause harm to the user besides an unsatisfactory
experience.
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Abstract

One of the first building blocks to create a
voice assistant is the task of tagging entities
or attributes in user queries. This can be par-
ticularly challenging when the number of en-
tities are in the tenth of millions, as is the
case of music catalogs. Training slot tagging
models at an industrial scale requires large
quantities of accurately labeled user queries,
which are often hard and costly to gather.
On the other hand, voice assistants typically
collect plenty of unlabeled queries that often
remain unexploited. This paper presents a
weakly-supervised methodology to label large
amounts of voice query logs, enhanced with a
manual filtering step. Our experimental eval-
uations show that slot tagging models trained
on weakly-supervised data outperform models
trained on hand-annotated or synthetic data,
at a lower cost. Further, manual filtering of
weakly-supervised data leads to a very signif-
icant reduction in Sentence Error Rate, while
allowing us to drastically reduce human cura-
tion efforts from weeks to hours, with respect
to hand-annotation of queries. The method is
applied to successfully bootstrap a slot tagging
system for a major music streaming service
that currently serves several tens of thousands
of daily voice queries.

1 Introduction

Music listening is among the top-5 reasons of daily
usage of voice assistants in the US.! Users can
have different goals when formulating a music-
related query to their home voice assistant or mo-
bile phones. For instance, users may look for a spe-
cific entity, which can be either explicit (e.g., “play
Led Zeppelin™) or implicit (e.g., “play the latest al-
bum by Foo Fighters”). They may also ask queries
without having a specific entity in mind (e.g., “play

*Equal contribution.

'Source: https://www.pwc.com/us/en/advisory-

services/publications/consumer-intelligence-series/voice-
assistants.pdf

mquadrana,

fgouyon}@pandora.com
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some reggae music”), or make open-ended requests
like “play something that I like” (Ostuni, 2019;
Volokhin and Agichtein, 2018).

Given a transcribed voice query, a fundamental
task towards its understanding is to identify entities
and musical attributes in it. However, this can be
a non-trivial task, especially when the catalog is
composed of possibly millions of different entities.
In such situations, the chances that the name of one
entity will overlap even partially with another en-
tity are non-negligible. It is even more likely to find
overlaps between entities and musical attributes, or
between entities and other commonly-used natural
language phrases in the query (Guy, 2018). For ex-
ample, the word “happy” is at the same time a song
by Pharrell Williams and an attribute belonging to
the “Mood” category in our taxonomy of musical
attributes. Mislabeling entities in a user query can
potentially lead to awkward user experiences.

Slot tagging, or slot filling, is traditionally tack-
led as a supervised sequence labeling problem and
it is often based on methods such as Recurrent Neu-
ral Networks (Goyal et al., 2018), Conditional Ran-
dom Fields (Reimers and Gurevych, 2017) or pre-
trained language models like BERT (Chen et al.,
2019). In real-world industrial applications, how-
ever, the choice and optimization of the Machine
Learning architecture is just the tip of the iceberg.
Most of the time and cost are actually spent in gath-
ering sufficient accurately-labeled training data.
This process generally requires the manual anno-
tation of up to millions of user queries, a process
that should be routinely repeated to keep up with
natural drifts in user queries due to, e.g., new inter-
ests from users or items that are added or removed
from the catalog of searchable products. Manual
annotation can be complemented, or even replaced,
with synthetically generated training data based on
patterns curated by experts (Goyal et al., 2018).
While synthetic generation unlocks the possibility
of gathering nearly infinite labeled training sam-
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ples, it still requires solid domain expertise to create
a sufficiently rich set of patterns to cover as many
query variations as possible.

Both manual annotation and generation of train-
ing data requiring a significant financial and human
resources; another line of thoughts is to exploit un-
labeled query data, which is generally cheap and
abundant, and to label it via weak supervision.

Weak supervision —or distant supervision— has
demonstrated its suitability to a number of natural
language processing tasks such as relation extrac-
tion (Mintz et al., 2009) or entity recognition (Li-
son et al., 2020). Moreover, it has been shown as
a useful method to bootstrap conversational sys-
tems, being applied to intent detection (Mallinar
et al., 2019) or slot tagging (Surdeanu et al., 2011)
tasks. Given this success, flexible frameworks like
Snorkel (Ratner et al., 2017) have been created
to help on building weak supervision pipelines at
scale. However, these frameworks are not easily
adaptable to sequence labeling tasks (Lison et al.,
2020).

In this paper, we present our own methodology
inspired by weak supervision to label large sets
of transcribed voice queries with entities and at-
tributes from a catalog with millions of entries.
The resulting labels are, albeit noisy, sufficiently
accurate to be used for training slot tagging mod-
els. We show how our methodology allows us
to control the amount of noisy labels injected in
the training dataset by combining weak supervi-
sion and human filtering, and provide experimental
evidence of how it was exploited to successfully
bootstrap a slot tagging system that now serves tens
of thousands of voice queries every day in a ma-
jor music streaming platform. It is worth noticing
that the proposed methodology, while defined and
tested specifically for the music domain, is generic
enough to be applied to other voice search applica-
tions that face similar challenges, like e.g. Video
On-Demand (Rao et al., 2018) or online shopping.

2 Training Data Creation Methodology

Starting with large amounts of unlabeled voice
query transcripts,” we automatically label selected
terms with respect to both a set of music enti-
ties (i.e., artists, albums and tracks) and to at-
tributes from an in-house taxonomy of musical

2In this paper we do not deal with the aspect of Automatic
Speech Recognition (ASR), i.e. transcribing voice audio sig-
nals to text. The terms “query” and “query transcript” are used
interchangeably.
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attributes (e.g., genres, instruments, moods, etc.).
Some of these annotated queries are then discarded,
while the remainder are selected for training pur-
poses (see Section 3). This methodology requires
the following basic components:

* A large set of unlabeled queries (in the scale
of 100k+).

* A large catalog of entities (10M+).

* A taxonomy of attributes (1k+) classified into
semantic categories.

There are two main steps to our methodology.
First, a heuristic labeling function makes use of
corpus statistics and string matching rules to fully-
automatically label queries, while discarding some
queries whose annotations cannot be established
with sufficient confidence. Then, query patterns
are extracted from this first set of labeled queries,
and leveraged in a human filtering task where
erroneously-labeled queries are discarded.

2.1 Heuristic labeling
2.1.1 Categorizing Entities

A pre-processing step of the catalog of entities is
necessary before processing the queries. Indeed,
working with very large catalogs of entities implies
potential ambiguities between entity surface forms
and common natural language phrases or even at-
tributes from the taxonomy. For example, in tens
of millions of tracks, as those in our catalog, we
can find almost any word or expression as a track
name (see Table 1). Simple string matching cannot
disambiguate whether a user is asking for a specific
track, or saying anything else.

Our approach to tackle this issue is to separate
entities into three distinct subsets: the safe-set,
ignore-set and unsure-set, illustrated in Table 1.
The first subset is for entities for which we have
high confidence that, when appearing in a query,
the user is in fact referring to the entity, regardless
of the context (i.e, the other words present in the
query). In opposition, the second subset is for en-
tities for which we have high confidence that the
user is in fact not asking for that specific entity, but
saying something else. Finally, the third subset is
for entities where our confidence to assess any of
the two previous statements is low.

To decide on the subset of a given entity, we de-
fine the concepts of corpus frequency of an entity
e as the number of times its surface form appears
in the corpus of unlabeled queries, and intrinsic



popularity of an entity as the number of times
this entity has been interacted with in our prod-
uct (e.g., by considering number of streams, their
Click Through Rates, or through any other notion
of popularity relevant to the product at hand). We
empirically observed that whenever an entity has a
very high corpus frequency but very low intrinsic
popularity, it is highly likely that the user is not
referring to the entity in their query, even if there
is a perfect string matching between the surface
form of the entity and a text span in the query. This
observation led to the definition of simple rules for
entity categorization, making use of the following
concepts:

* Frequency-popularity ratio: is computed as
follows:

_ popularityRank(e)

r(e) (D

~ frequencyRank(e)
where frequencyRank(e) is the ranking of
entity e with respect to its corpus frequency,’
and popularityRank(e) is instead its rank
with respect to its intrinsic popularity. We
compute r(e) for all entities in the catalog,
and then normalize to the [0, 1] range. Values
close to 1 will reflect cases where the entity
is very frequent in queries but not interacted
very much with in our product.

* Attribute overlap: Given T the set of all at-
tributes in the taxonomy we say that an en-
tity e has an overlap with 7' if every token in
the surface form of e pertains to 7'. For exam-
ple, the entity “Spanish House” has attribute
overlap, because “Spanish” and “House” are
both attributes in our taxonomy.

We then use simple rules based on two thresh-
olds 7 and €, with 7 > ¢, to assign entities to either
the safe-set, ignore-set or unsure-set. Given the
ratio 7(e) of an entity e:

 If r(e) > 7, e is added to the ignore-set. This
is likely a mismatch with a natural language
phrase or an attribute.

If 7 > r(e) > ¢, e is added to the ignore-
set or to the unsure-set, depending on their
attribute overlap: If there is attribute overlap,
it is added to the ignore-set, as this is likely a
mismatch with an attribute; otherwise they go
to the unsure-set.

3Higher frequency means higher rank.
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Entity r(e) T overlap  Category
Could You 0.99 no ignore-set
Play Music 0.99 no ignore-set
Xmas 0.99 yes ignore-set
You Did Something ~ 0.94 no unsure-set
Country Joe 0.94 no unsure-set
Acoustic Piano 0.92 yes ignore-set
Little Snowflake 0.84 no safe-set

Spanish House 0.47 yes unsure-set
I'am a Human 0.37 no safe-list

Table 1: Illustration of ambiguities between entities,
natural language sentences and taxonomy attributes:
Examples of actual entities (music tracks, albums or
artists) as found in our catalog, their r(e) ratio, whether
they overlap with our taxonomy C, and their corre-
sponding category. The categorization was performed
using 7 = 0.99, € = 0.90.

* If r(e) < ¢, e is added to the unsure-set or to
the safe-set, depending also on their attribute
overlap: If there is attribute overlap they go
to the unsure-set; otherwise they go to the
safe-set.

Table 1 shows some actual examples of enti-
ties from our catalog, with the corresponding ratio,
attribute overlap and the resulting category. For
instance, Acoustic Piano is the name of a rather
unpopular album in our catalog which frequently
appears in user queries. Since it completely over-
laps with the attributes "acoustic" and "piano" of
our taxonomy and its frequency-popularity ratio is
between 7 and e, it is added the ignore-set.

2.1.2 Labeling Function

Once we have categorized all entities in the cat-
alog into the aforementioned three sets, we use
this information for disambiguation purposes in
the heuristic labeling process. Given a query, we
extract all n-grams and look for all the possible
matches with the entities within the union of the
safe and the unsure sets, and select the longest non-
overlapping matches. Then, we apply the following
rules:

* If any of the matched entities was categorized
in the unsure-set, we discard the whole query;

Otherwise, the matched n-grams in the query
are labeled as the corresponding entity types
of the matched entities from the safe-set (e.g.,
artist, album, track). In case of multiple
matches (e.g., an artist and a song having the
same name) we pick the entity type with the
highest intrinsic popularity.



All entities classified in the ignore-set are simply
ignored in this process. After the labeling of en-
tities in the query, we look for matches in the list
of attributes from the taxonomy among the words
that were left unlabeled. The number of musical
attributes in the taxonomy is orders of magnitude
smaller than the number of entities, and the prob-
ability of a confusion between an attribute and a
natural language phrase is very low, so we choose
to rely on simple string matching to label the at-
tributes, once the entities are labeled in the query.
To illustrate this process, consider the query
“could you play the xmas song little snowflake”.
Our method finds three matches with the cata-
log of entities: “could you”, “xmas” and “little
snowflake”. The first two matches belong to the
ignore-set and the third one belongs to the safe-set
(see Table 1). Since no matched entity is classified
in the unsure-set, the query is not discarded. The
words in the query corresponding to the entity in
the safe-set “little snowflake” are labeled as an en-
tity (specifically a music track); the word “xmas”
belongs to our taxonomy (under the “theme” cate-
gory) and, since it does not overlap with any entity
annotation, is labeled as an attribute (specifically a
theme), see the final annotation in Figure 1.

2.2 Pattern Filtering via Human Curation
2.2.1 Pattern Extraction

For each heuristically labeled query, we extract
the corresponding pattern by substituting all the at-
tributes and entities in the query with a placeholder
that is assigned to its corresponding class. For
example, the pattern corresponding to the query
in Figure 1 is “could you play the [theme] song
[track]”, being [theme] and [track] the placeholders
of any theme attribute and any track name. Follow-
ing this process, we first extract the patterns of all
queries annotated by the heuristic labeling stage,
and then group queries belonging to the same pat-
tern. For example, the query “could you play the
Halloween song I want candy” belongs to the same
pattern of the query in Figure 1.

2.2.2 Human Filtering

After pattern extraction, a filtering process is ap-
plied, as follows. Given the set of extracted pat-
terns, we identify the vocabulary of words present
in those patterns, and compute their respective fre-
quency in the pattern corpus. This list of words is
presented to a human curator who —starting from
the most frequent words to the less frequent ones—
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could you play the xmas song little snowflake

attribute::theme

entity::track
Figure 1: Example query

must identify words that should not be part of a
pattern, and discard them from the vocabulary. Op-
tionally, if the vocabulary of words is very large,
the curator can also select a frequency threshold
below which all words are discarded.

From the full set of extracted patterns, we then
keep only those patterns for which all words are
included in the cleaned-up vocabulary, and discard
the remaining patterns. Finally, all queries from the
remaining patterns will form the final set of filtered
queries.

This process helps us to avoid labeling errors
made by the heuristic labeling step, which can be
caused either by limitations of the method itself,
inconsistent queries made by users, ASR errors,
multilingual queries or entities not present in our
catalog. Removing queries with wrong labels is
fundamental to avoid noisy patterns and have a
clean training dataset. Take for example the query
“can you play la modelo by osona.” The extracted
pattern is “can you play [track] by osona”. The
word “osona” is not in our catalog of entities (there-
fore not labeled as an artist). It also very rarely
appears in the patterns. This word, and respective
pattern, are therefore discarded. Note that artist
“Ozuna” is in our catalog of entities. In this particu-
lar example, an error was probably introduced by
the ASR system.

3 Experimental Setup

We evaluate different quantities of weakly-
supervised labeled queries as training data for slot
tagging models, from a few thousands up to mil-
lions, on a sample of actual voice traffic collected
from our application. With the goal of showing
the potential of weakly-annotated training data, we
compare it to models trained on a dataset of human-
annotated queries and different synthetically gener-
ated datasets. All datasets are described in Table 2.

3.1 Manual and Synthetic Baselines

We asked two expert human annotators to annotate
a set of 7000 randomly selected queries from our
logs. They also had to discard all nonsense queries
from the original set (e.g., incomplete queries, un-
related queries, incomprehensible ASR transcrip-
tions). We kept only the non-discarded queries
having complete agreement between annotators.



Eventually, we obtained a set of 5000 manually
annotated queries. We used 70% of those for the
training of a slot tagging model which serves as our
first baseline (MAN). Then, we used 10% as our
validation set in all the approaches and baselines.
The remaining 20% (i.e., the test set) was used
to evaluate the performance of all trained models.
We used Sentence Error Rate (SER), i.e. the ratio
of queries with at least one slot classification error
over all queries, as our evaluation metric. For space
reasons we do not report slot-level metrics such F1
score, which showed strong correlation with SER
in our experiments.

We generated 4 additional baselines using syn-
thetic query generation to enhance the training set
(SYN). Synthetic queries have shown useful for
training slot tagging models in low resources sce-
narios (Goyal et al., 2018), providing the possibility
of introducing novel patterns, attributes or entities
in the training data. For our experiments, we started
from the patterns extracted using the procedure
described in Section 2.2.1 over the manual anno-
tated queries from the training set. Every pattern is
filled several times using the entities and attributes
available in our catalog and in the taxonomy.* We
generated 4 different synthetic datasets of different
sizes, called respectively SYNg, SYN,s, SYN,
and SYN x, in Table 2.

3.2 Weakly-Supervised Datasets

We compared the baseline annotations against four
different weakly-supervised training sets generated
using our methodology. We applied the heuristic la-
beling function (Section 2.1.2) on four random sam-
ples from our query logs, respectively containing
100k, 1M, 10M and 100M unlabeled queries. The
threshold hyper-parameters 7 and € were tuned on
the validation set. These datasets are respectively
called WSg, WSy, WSy, and WS x in Table 2
and have the same size of the synthetic datasets
described in the previous section.

Finally, we generated the WS(F) dataset with hu-
man filtering (see Section 2.2) on the same dataset
with 100M unlabeled queries used to generate
WS x . Notice that, because of human filtering,
the resulting dataset WS(F) has a smaller number
of queries than WSy,

“Entities and attributes were sampled proportionally to
their intrinsic popularity.
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3.3 Model architecture

In order to provide a fair comparison between the
several procedures to generate training data, we
trained the same architecture using the same proce-
dure for all datasets.

We used a single layer BILSTM-CRF network
with 100 hidden units and pre-trained word embed-
dings of size 250 (Reimers and Gurevych, 2017).
We used a concatenation of FastText (Mikolov
et al., 2018) and Word2Vec (Mikolov et al., 2013)
word embeddings trained on an internal corpus of
artist biographies. The word embeddings were kept
fixed during training to reduce the risk of undesired
semantic shifts.

Each instance of the model was trained using
ADAM (Kingma and Ba, 2015) with batch size
100 and dropout 0.2 for a maximum of 100k iter-
ations. The initial learning rate was set to 0.001
and damped by factor 0.5 every 7.5k iterations. We
used early-stopping to terminate the training when-
ever the SER on the validation set did not improve
for at least 2.5k consecutive iterations. The ex-
perimentation was run using TensorFlow (Abadi
et al., 2016) and follows closely that of (Reimers
and Gurevych, 2017).

4 Results and Discussion

The test set presents a representative sample of the
queries that are effectively asked by users using our
voice assistant and hence provide valuable insights
of how the system will likely perform online. The
SER obtained by the BILSTM-CRF model trained
on each of the training datasets is shown in Table 2.

We can immediately notice that the MAN base-
line is outperformed by all the SYN, WS and
WS(F) variants that we tested. The improvement
brought by weak supervision over the baseline
grows noticeably with size. When training using
small datasets, SYNg outperforms MAN and WSg.
However, the SER of models trained on SYN data
increases with training set size. We hypothesize
this behavior to be due to an amplification of the
bias coming from the relatively small amount of
patterns used in data generation. Indeed, in our
experimentation setup, we are focusing on a rela-
tively small amount of human-labeled queries. One
way of overcoming this issue would be to add more
hand-curated queries or patterns —with the corre-
sponding implications in terms of cost and time.
Further, research should be also be dedicated to
evaluate different ways to generate synthetic data.



Training Description Label # patterns  # words # queries || Test SER

Dataset

MAN manually annotated queries MAN - - S5k 31.64

SYN synthetically generated queries SYNs 1k 630 33k 25.11
SYNu 1k 630 180k 26.75
SYNp, 1k 630 875k 29.65
SYNxr, 1k 630 3.5M 29.19

WS weakly-supervised annotation WSs 8k 732 33k 29.83
WS 38k 2,105 180k 24.93
WSr 180k 8,785 875k 23.03
WSxr 805k 33,984 3.5M 21.94

WS(F) weakly-supervised annotation + || WS(F) 101k 468 2.5M 13.58

human filtering

Table 2: Different configurations of training datasets used in the experiments and respective performances as
evaluated by SER on the test set (smaller is better). We report the numbers of distinct patterns and words in the
patterns for the synthetic and weakly-supervised datasets, and the total number of training queries for every dataset.
Baselines are in italic. The best test SER overall is highlighted in bold.

In opposition, the weakly-supervised WS
datasets are able to feed the network with a set
of query patterns and annotations whose variety
naturally grows with size. This characteristic turns
out to be extremely beneficial, as evidenced by
the incremental reduction in SER with dataset size.
When considering the largest datasets, the models
trained on the WS x;, dataset show a reduction in
SER of 9.7 w.r.t. the MAN baseline, 7.25 w.r.t. the
SYN x dataset of the same size and of 3.17 w.r.t.
the best SYN dataset (SYNyg).

We can however notice that the reduction in SER
slows down as size grows. One possible explana-
tion can be that the inherent noise in the data. As
shown in Table 2, the size of the vocabulary of
pattern words drastically increases with the query
sample size, implying more possibilities of having
wrongly annotated training queries. Once conver-
gence level is reached, manual curation is needed
to further improve the peformance of the model.
The WS(F) dataset showcases the improvements
that can be achieved enhancing the WS x; dataset
with a reasonable manual curation effort, removing
noise from the vocabulary of pattern words, and
therefore, from the training data. This simple but
effective curation step results in a reduction of 8.36
in SER w.r.t. the model trained on WS x, dataset
and a reduction of 18.06 w.r.t. the MAN baseline.

Moreover, the curation task followed to create
WS(F) is much faster than query annotation, not
only because the number of words to review is
smaller than the number of raw queries, but also be-
cause the task itself is easier. We measured that an
expert trained annotator is able to manually anno-
tate approximately 100 queries per hour, whereas
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the pattern vocabulary can be curated following
our methodology in less than 4 hours. Therefore,
annotating 7000 queries by two annotators took ap-
proximately 140 hours, which is orders of magni-
tude more than the time needed for the vocabulary
curation proposed here.

5 Summary and Future Work

This paper presents a methodology to create train-
ing data for training slot tagging models inspired
by weak supervision. The methodology consists of
two steps. First, a simple heuristic query labeling
process is applied, that leverages corpus statistics
obtained from query logs and comparing them with
entity popularity metrics. Second, a pattern extrac-
tion and filtering process is applied to the labeled
queries, that makes use of human curation.

Our experimental evaluation clearly shows the
value of weak supervision for building training
datasets to bootstrap slot tagging models. We
show that training with large amounts of weakly-
supervised data generated from unlabeled voice
queries using the proposed methodology outper-
forms smaller yet reasonable amounts of hand-
annotated data. It also outperforms training with
large amounts of synthetic data generated from the
same hand-annotated data. We showed that the pro-
posed methodology can be combined with a much
less time-consuming word vocabulary curation task
with very significant reduction in the end model
Sentence Error Rate.

Future work should include experimenting with
other manual curation tasks, such as manual clean-
ing of remaining patterns after vocabulary curation,
which could help to increase even more model accu-



racy with a task still much faster than manual anno-
tation of queries. In addition, further study should
focus on how synthetic generated queries can com-
plement weakly-supervised datasets, which may
help not only in terms of accuracy, but also to
assess the quality of labeling of less frequently
queried entities or attributes. Moreover, other
model architectures could be experimented with,
such as pre-trained language models. Finally, ex-
periments could evaluate the applicability of our
weakly-supervised methodology to other domains
with very large catalogs of entities.
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Abstract

Scaling conversational personal assistants to a
multitude of languages puts high demands on
collecting and labelling data, a setting in which
cross-lingual learning techniques can help to
reconcile the need for well-performing natural
language understanding (NLU) with a desider-
atum to support many languages without incur-
ring unacceptable cost. In this paper, we show
that automatically annotating unlabeled utter-
ances using machine translation in an offline
fashion and adding them to the training data
can improve performance for existing NLU
features for low-resource languages, where a
straightforward translate-test approach as con-
sidered in existing literature would fail the la-
tency requirements of a live environment. We
demonstrate the effectiveness of our method
with intrinsic and extrinsic evaluation using a
real-world commercial dialog system in Ger-
man. We show that 56% of the resulting au-
tomatically labeled utterances had a perfect
match with ground-truth labels. Moreover, we
see significant performance improvements in
an extrinsic evaluation settings when manually
labeled data is available in small quantities.

1 Introduction

1.1 Motivation and Background

Voice-controlled personal assistants such as Ama-
zon Alexa or Google Assistant have scaled to a
large number of languages and see a constant in-
flux of new functionalities that are exposed via
the natural language interface. As a result, they
have seen much interest around the development of
multi-lingual and cross-lingual learning techniques
that take this setting into consideration.

Beyond a setting where no target language
data is available (language expansion, or cross-
lingual bootstrapping), ongoing development also
involves use cases where new functionalities from
a resource-rich language (typically English) as the
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Utterance: Turn off

the light in the hallway

Intent:
Slots:

ApplianceOff

ActionTrigger O Device O O Location

Figure 1: An example NLU annotated utterance. Non-
slots are labeled with O (Other).

source language have to be integrated into exist-
ing training sets in the target language (feature
expansion), or even settings where target language
training data of current functionalities exists in
small quantities, but accuracy falls short of its
aim and an influx of unlabeled data in the tar-
get language exists and could be used for contin-
uous model improvement (feature improvement).
In this work, we consider feature improvement use
case for natural language understanding (NLU)
in low-resource languages. We define the task
of NLU as the combination of: (1) Intent Clas-
sification (IC), which classifies an utterance into
a fixed set of intent labels (e.g. Appliance0Off),
and (2) Slot Labeling, which classifies slot val-
ues into a predefined set of slot types (e.g.
SongName) (Weld et al., 2021). For example, as
shown in Figure 1, a valid NLU annotation for the
English utterance “turn off the light in the hallway’
would be: appliance0off: (furn, ActionTrigger),
(off, actionTrigger), (light, Device), (hallway,
Location), where ApplianceOff is the intent la-
bel, and ActionTrigger, Device and Location
are the slot types. We leverage machine transla-
tion to automatically annotate unlabeled utterances
with intent and slot labels. Collecting and labeling
data for NLU is an expensive and time-consuming
process, hardly scalable to an increasing number of
languages without automation.

)

1.2 State of the Art and its Limitations

Many works on academic datasets naturally address
the language expansion setting, including zero-shot
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learning results, or involve a multilingual learning
approach where similar amounts of training data for
each of the languages are available from the start.
However, we want to argue that the setting where
target-language data is available but considerably
smaller is particularly relevant in practice. Such an
imbalance is often due cost considerations (manual
annotation is expensive).

A first line of work on cross-lingual bootstrap-
ping has combined annotation transfer with (to
varying extent) either machine translation (MT)
or parallel corpora. Generally, MT has been har-
nessed either in translate-train or translate-test set-
tings. While in translate-train, source training data
e.g., in English is translated into the target lan-
guage (Gaspers et al., 2018), in translate-test, in-
coming unlabeled utterances in the target language
are translated into the source language and then
source NLU model is used to collect labels. For
the feature improvement use case, on one hand,
translate-train ignores the influx of unlabeled ut-
terances in the target language. On the other hand,
a translate-test approach is not directly applica-
ble to production use in a conversational agent be-
cause a system with MT in the loop would fail
the latency requirements for live use. As a con-
sequence, we propose to use the label projection
from the source language as a way to get more reli-
able labels than the existing target language model
on less confident-cases, and augmenting the tar-
get language training data with these automatically
labeled examples.

In sentiment classification, Mihalcea et al. (2007)
compare translation of a lexicon with translating
the training data (translate-train) or translating
the data to be annotated (translate-test) for cross-
lingual bootstrapping of sentiment classification.
Akbik et al. (2015) investigate cross-lingual boot-
strapping in the context of Semantic Role Labeling,
where a parallel corpus is first annotated with En-
glish labels which are then projected and filtered to
gain a target language training corpus. In dialogue
systems and conversational agent training, He et
al. (2013) show that adding some MT distortion
to the source-language training data in a translate-
test setting can be beneficial. Gaspers et al. (2018)
show that a translate-train approach that uses ma-
chine translation in conjunction with filtering based
on MT confidence can be successful in achieving
a smaller error rate, with a combination of trans-
lated and target-language manually annotated data
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achieving the best possible error rate.

A second line of work concerns the use of
shared representations across languages to cross-
lingual transfer learning or learning of multilin-
gual representations, as demonstrated by Upad-
hyay et al. (2018) who compare translate-train
and translate-test approaches with zero-shot and
minimally supervised multilingual approaches. It
shows that the helpful bias from shared representa-
tions gives a boost in the minimally supervised
setting but is especially helpful when very few
target-language examples are available. Johnson
et al. (2019) and Do et al. (2019) show that these
effects generally also hold at a larger scale, and
that training data selection also helps when transfer
learning is used instead of machine translation in a
translate-train setting.

Finally, and partially relevant for feature im-
provement when a smaller-than-source amount of
target data is available, we have approaches that
perform data augmentation on the smaller target-
language training data: Malandrakis et al. (2019),
and Jolly et al. (2020) explore the use of sentence-
to-sentence paraphrasing and interpretation-to-
sentence generation approaches to generate labeled
paraphrases of conversational NLU training data.

1.3 Approach and Contribution

In this paper we investigate whether a translate-
test approach of doing machine translation and an-
notation projection of target-language utterances
with labels from the more resource-rich source lan-
guage can be used in a feature improvement setting,
where target-language training data is available but
in smaller quantities than in the source language.

Our approach, depicted in Figure 2, makes use
of MT in conjunction with an NLU model already
trained for the source language to annotate unla-
beled utterances. We assume that this reference
NLU model was previously trained on the fea-
tures of interest for the target language. Similar
to Gaspers et al. (2018), we also assume access to
an MT system trained on general-purpose parallel
data, but instead of relying on MT from reference to
target language, (forward MT), we consider MT in
the opposite direction i.e. from target to reference
language (backward MT). Our goal is to cheaply
improve NLU features using readily available MT
and NLU models. For example, we do not require
in-domain MT model.

Experimentally, we considered a scenario with



DE: Mach das Licht im Flur aus

EN: Turn off the light in the hallway

Intent: ApplianceOff

EN Annotation: Turn|ActionTrigger off | ActionTrigger
the|Other light| Device in|Other the | Other hallway | Location

Intent: ApplianceOff

DE Annotation: Mach|ActionTrigger das|Other licht| Device

im|Other flur|Location aus|ActionTrigger

EN NLU System

Label Projection

Figure 2: Given an unlabeled utterance in some target language e.g., German, our method translates it into a
reference language e.g., English using MT, labels it with intent and slot types using an (EN) NLU model, and

projects the labels back onto the unlabeled utterance.

English (EN) as reference language and German
(DE) as target language, and carried out both an
intrinsic and an extrinsic evaluation, where we se-
lected a set of five diverse NLU features to improve.
We compared against a baseline approach that gen-
erates synthetic training examples directly in the
target language.

We demonstrate the effectiveness of our method
using a real-world commercial dialog system in
German. We show that 56% of the resulting auto-
matically labeled utterances had a perfect match
with ground-truth labels. We also show that using
our method leads to 90% reduction in manually
labeled data, while achieving better performance.
In the remainder of the paper, Section 2 contains
details on the methods used, whereas Section 3 de-
scribes our experimental setup. Section 4 discusses
the results of our experiments.

2 Method

Given unlabeled utterances in a target language
e.g. German (DE), for example “mach das licht
im flur aus”, our goal is to automatically annotate
them with an intent label, and slot types for every
token, as shown in the example in Figure 1. To this
end, we consider the pipeline shown in Figure 2,
which consists of three components: (1) Machine
translation system, (2) NLU model, and (3) Label
projection model. First, the MT system translates
the unlabeled utterances into a reference language
e.g. English. For the German utterance above,
a valid English translation would be “turn off
the light in the hallway”. Note that we do not
make any assumption on the architecture of the
MT system, be it statistical or neural, or on the
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way it is trained. We assume, however, a label
projection model trained on the same data as
the MT system. In a standard MT bootstrapping
setting (Gaspers et al., 2018) this is usually a
word alignment model, either embedded in the
MT system itself (as in phrase-based MT we
used in Section 3) or trained as a stand-alone
component. After translation, we use an English
NLU model on the translated utterances in order
to get predictions for the intent label and the
slot types.! For the example above, the result
of this step would be the following annotated
utterance: [ApplianceOff turn/ActionTrigger
off[actionTrigger  thelother  light/Device
infother thelother hallway/Location]. Finally,
we use the word alignment model to project the
slot types from the (EN) labeled utterances onto
the unlabeled (DE) utterances. For example, if
the two words ‘light’ and ‘licht’ are aligned, the
slot label of ‘light’ is copied over onto ‘licht’.
In our experiments (Section 3), we make use of
alignment models trained for the MT system to
avoid building standalone alignment models. For
the intent label, we simply copy it over from the
English labeled utterance to the German unlabeled
one.

For reasons of simplicity and better interpretabil-
ity, we used statistical machine translation (SMT)
as well as linear models (CRF and maximum en-
tropy) for the NLU component, however we believe
that the improvements gained with this method
would carry over to a case where neural MT and
transformer-based NLU components are used.

"Note that this NLU model is pre-trained independently
and it is completely decoupled from our pipeline.



3 Experimental Setup

In our experiments, we translate target-language
(German) utterances from live conversational agent
usage using an existing MT system (§3.1), tag these
using the English NLU system (§3.2) and project
the labels back onto the target language using word
alignments. We report results using first intrinsic
evaluation (How well does the translate-test ap-
proach perform in labeling the utterances?) and
then a full evaluation in a feature improvement set-
ting, and we evaluate these using a Semantic Error
Rate metric (SemER, §3.3).

3.1 MT System

We used an internal phrase-based MT system
trained with Moses (Koehn et al., 2007). The sys-
tem comprises a general-purpose MT model trained
on DE-EN parallel data. We plan to investigate the
usage of neural machine translation (NMT) mod-
els in the future. To better match the spoken user
utterances of an NLU system, training data of the
MT system is converted into spoken form using an
internal written-to-spoken converter. For example,
“1994” is converted to “nineteen ninety four”. The
MT model was fine-tuned on 4K in-domain par-
allel utterances. To project slot type labels from
the machine-translated English utterance (labeled
by the English NLU model) to the unlabeled Ger-
man utterance, we make use of the word alignment
model trained for the MT system (Dyer et al., 2013).
We opted for using a general-purpose MT model
since it is readily available, and hence cheaper (as
opposed to building in-domain MT model). Also,
using phrase-based MT enabled us to leverage the
word alignment model trained for MT for our label
projection step.

3.2 NLU System

We used Conditional Random Fields (Lafferty et al.,
2001) for slot labeling, and a Maximum Entropy
classifier for the IC task (Berger et al., 1996). The
English NLU system was trained on a large dataset
of NLU-annotated utterances. The training data
covers multiple domains e.g., HomeAutomation,
with a diverse set of intents and slot types, with
more than 200 intents and several hundreds of slot
types. For example, intents like playMusic and
slot types like city and songName. The quality
of the reference NLU model (e.g., English) is im-
portant for our pipeline to work. Our assumption
is that English NLU models perform well, while
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Feature #Auto labeled #Test utterances
utterances

DailyBriefing 21,894 3,530

PlayMusic 194,180 66, 959

SendMessage 1,690 1,783

SmartHome 108,210 29,056

SetNotification 26,074 9,616

Table 1: The size of automatically labeled and test data
for each feature.

NLU models for other languages still suffer (most
industrial NLP applications support English pretty
well).

3.3 SemER Evaluation Metric
Following Gaspers et al. (2018) we report the Se-

mantic Error Rate (SemER), which is computed as
follows:

#(slots + intent errors)

SemER =

#slots in reference + 1

Errors correspond to the number of insertions, dele-
tions and substitutions for slots and the intent in a
recognized utterance.

Note that as the task of NLU is our main focus,
we report evaluation metrics on the NLU rather
intrinsically evaluating each component of our ap-
proach e.g., the MT model. We plan to invest in
this direction in the future. Moreover, while in-
trinsic evaluation measures of individual compo-
nents would assess their quality e.g., BLEU for MT,
there is no correlation between these measures and
NLU metrics. In other words, having higher BLEU
scores does not necessarily mean lower SemER.

3.4 Utterance Dataset

To simulate a continuous model improvement sce-
nario for DE, we selected a diverse set of features
that belong to different domains:

1. DailyBriefing, which enables users to play

daily briefing e.g., news,
PlayMusic, which enables playing music,

. SendMessage, which allows users to exchange
messages,

SmartHome, which enables users to control
home appliances,

SetNotification, which enables users to set no-
tifications and reminders.



Model Size of training data SemER (%)
DE 6.4M 41.4
DE_0.5 3.TM 37.4
DE_0.7 3.2M 37.8
DE_grammars 1.0M 57.0

Table 2: The effect of filtering the data based on NLU
confidence. Using 0.5 achieved best results.

Features span across multiple intents with differ-
ent slot labels. For example, SmartHome supports
the intents of turning an appliance on and off, and
supports the slot lables of appliance names and
their locations. We assume that the five features
have been just launched either using grammars,
very little labeled data or using the approach of
Gaspers et al. (2018). Our goal is to continuously
improve performance on the five features using our
method.

For each feature, we randomly selected 10,000
manually labeled utterances from its training data.
Next, we generated five splits out of the 10,000
utterances: 100, 500, 1000, 5000 and 10,000. Each
split corresponds to the size of data, for example,
the split of 100 indicates that 100 manually labeled
utterances are used. For each split, we trained two
DE NLU models:

e Baseline model, which contains only manu-
ally labeled feature data, and

e Combined model, which contains both man-
ually and automatically labeled feature data.

Note that the training data of the NLU models con-
tain data for other features that were launched al-
ready. We report absolute SemER difference be-
tween the two models.

We collected 3,651,039 unlabeled DE utterances
in order to run the MT-based automatic annotation.
Table 1 shows the size of the automatically labeled
data for each feature. We also collected test data
for each feature (Table 1).

4 Results
4.1 Accuracy of Automatic Labeling

To intrinsically measure the accuracy of our
method, we collected 1.2 million labeled utterances
from features already launched in a real-world com-
mercial dialog system in German, and simulated
a scenario where the corresponding labels were
not available. We then used our method to label
them: we translated them into English, ran the
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English NLU model on them, and projected back
all the predicted labels. We observed that 56.35%
of the resulting automatically labeled utterances
had a perfect match with ground-truth labels (i.e.,
they agreed on both the intent label and all the slot
types), while 81.87% of them agreed on the intent
only, with at least one unmatched slot type.

4.2 Effect of English NLU Confidence

We studied the effect of the English NLU model’s
prediction confidence. We collected 6.4M unla-
beled German utterances and then used our method
to annotate them. Each prediction (intent and slot
labels) is associated with a score € [0, 1] that re-
flects the confidence of the English NLU model
about the prediction. We then trained three DE
NLU models: (1) DE, where confidence equals
0.01i.e., 6.4M utterances are kept, (2) DE_0.5, and
(3) DE_0.7, where utterances whose confidence
score is greater than 0.5 and 0.7 are kept, respec-
tively. The three models were tested on the same
test set with 120K German utterances that were
manually transcribed and annotated with intents
and slot types. The test set spans multiple domains
with different intents and slot types. As shown in
Table 2, DE_0.5 outperformed other baselines, in-
dicating the importance of using NLU confidence
scores. We attribute this to the fact that some trans-
lations are malformed, and hence incorrectly la-
beled by the English NLU model. When incorrect
labels are propagated to the DE NLU model, they
negatively impact performance. We set the EN
NLU model’s confidence score to 0.5 for the sub-
sequent experiments.

We also trained an NLU model using ran-
domly sampled utterances from manually curated
grammars (D E_grammars), which achieved 57.0
SemER and was outperformed by DE_0.5, with
19.6 absolute SemER difference.

4.3 Feature Improvement

Table 3 shows the results on the five features,
showing the SemER difference between a base-
line (trained with the given number of hand-
annotated utterances) and a version with our pro-
posed method, combining the hand-annotated ut-
terances with additional data which has been auto-
matically labeled.

Combining manually and automatically labeled
data improves performance across features and
splits. The greatest gains are achieved for smaller
splits i.e., 100 and 500, which suggest that our



Split DailyBriefing | PlayMusic | SendMessage | SmartHome | SetNotification
100 —38.65 —26.98 —-13.25 —74.34 —19.42
500 —10.72 —20.17 —1.47 —19.22 —-9.97

1000 —7.24 —14.96 —0.88 —8.11 —7.5
5000 —1.69 —-0.97 —0.21 +3.71 —0.18
10,000 —0.63 +2.72 —0.37 +3.12 —0.06

Table 3: SemER difference between the baseline and the combined model on the five features (lower is better).
Across features, using automatically labeled data improved performance.

method is especially effective for an early fea-
ture improvement. For example, the difference
in SemER between the baseline and the combined
model is —38.65 on DailyBriefing at 100 split. For
PlayMusic, SmartHome and SetNotification, the
SemER value of the Combined model at 100 split
is better than the one achieved by the baseline at
1000 split i.e., a reduction in labeled data of 90%.

As the size of manually labeled data increases
(i.e., larger splits), the positive effect of the auto-
matically labeled data decreases. For example, on
DailyBriefing, the SemER difference between the
baseline and Combined models is —0.63 absolute
at 10,000 split. For the largest split at 10,000, the
automatically labeled data hurts the performance
for PlayMusic and SmartHome, with SemER dif-
ference of +2.72 and +3.12, respectively. This is
largely due to cumulated errors in both the MT sys-
tem and the label projection module, which inject
noise in the downstream NLU task. To mitigate
this, we are currently investigating ways to automat-
ically combine training data with varying quality
for NLU. We also carried out similar experiments
to improve the same features in French and so far
observed the same trends. We are planning to ex-
pand our evaluation to other languages.

5 Conclusion

This paper presents a new method to automatically
annotate utterances with intents and slot types, lead-
ing to faster and cheaper early improvement of
features. Our method harnesses existing MT, En-
glish NLU and word alignment models which have
been trained on general-domain data but adapted
to our specific use case through preprocessing and
fine-tuning. Intrinsic evaluation results show that a
translate-test approach is a viable way to get data
labels in a way that is independent from the target
language production system, whereas our extrinsic
evaluation results suggest that the approach is es-
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pecially useful when a given feature has not seen
extensive use yet.

We plan to address in future work whether cer-
tain properties of a given feature can predict the
viability of a translate-test approach in general and
data augmentation with translated examples in par-
ticular, and whether the use of neural machine trans-
lation models would suggest modifications to this
approach, as translations are often better but align-
ment results can be less clear-cut.
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Abstract

Spoken language understanding (SLU) extracts
the intended meaning from a user utterance and
is a critical component of conversational virtual
agents. In enterprise virtual agents (EVAs), lan-
guage understanding is substantially challeng-
ing. First, the users are infrequent callers who
are unfamiliar with the expectations of a pre-
designed conversation flow. Second, the users
are paying customers of an enterprise who de-
mand a reliable, consistent and efficient user
experience when resolving their issues. In this
work, we describe a general and robust frame-
work for intent and entity extraction utilizing a
hybrid of statistical and rule-based approaches.
Our framework includes confidence modeling
that incorporates information from all compo-
nents in the SLU pipeline, a critical addition
for EVAs to ensure accuracy. Our focus is on
creating accurate and scalable SLU that can be
deployed rapidly for a large class of EVA appli-
cations with little need for human intervention.

1

Advances in speech recognition in recent years have
enabled a variety of virtual agents that answer ques-
tions, execute commands and engage in task-oriented
dialogs in customer care applications. Beyond the ac-
curate transcription of the user’s speech, these virtual
agents critically rely on interpreting the user’s utter-
ance accurately. Interpretation of a user’s utterance —
spoken language understanding (SLU) is broadly char-
acterized as extracting intents — expressions that refer
to actions, and entities — expressions that refer to ob-
jects. The entity expressions are further grounded to spe-
cific objects in the domain of the dialog (eg. latest
iphone — iphone 11)or through world knowledge
(eg. Christmas — 12/25).

SLU has been a topic of research for the past three
decades. Public data sets like ATIS (Price, 1990),
SNIPS (Coucke et al., 2018), and recently FSC (Lu-
gosch et al., 2019) have allowed for comparing var-
ious methodologies, including many recent develop-
ments driven by deep learning (Mesnil et al., 2014; Xu
and Sarikaya, 2013; Liu and Lane, 2016; Price, 2020;
Tomashenko et al., 2019). Such data sets are also a
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reasonable proxy for the intent classification and entity
extraction handled by many consumer virtual agents
(CVAs), applications that provide single shot question-
answering and command-control services through smart-
speakers or smart-home appliances. However, in con-
trast to the CVAs and the aforementioned data sets, en-
terprise virtual agents (EVAs) provide customer care
services that rely on SLU in a dialog context to extract
a diverse range of intents and entities that are specific
to that business. SLU for EVAs encompasses a wide-
ranging set of challenges. Speech recognition needs
to be robust to varying microphone characteristics, di-
verse background noises, and accents. For EVAs, the
robustness is further underscored as they are expected
to deliver a better user experience to paying customers.
Furthermore, SLU in EVAs needs to extract entities
and intents that are specific to the domain of the en-
terprise. Matching expectations of novice users with
the capabilities of SLU systems is challenging (Glass,
1999). Unlike users of CVAs, the users of EVAs are
typically non-repeat users, who are not familiar with a
particular EVA’s conversational flow, leading them to
provide unexpected and uncooperative responses to sys-
tem prompts. Accordingly, EVAs need to contend with
a larger space of alternative intents in a given dialog
state. Other factors, like changes to the system that are
dictated by business needs and continuous development
of applications for new customers for which there is
no labeled data yet, create a strong need for an SLU
framework that can scale. Finally, while deep learning
models with large modeling capacity can offer excellent
results, latency at runtime is of great concern in paid
for services like EVAs so designing towards lower com-
putational complexity may be necessary (Tyagi et al.,
2020).

To address the several challenges that relate to SLU
in EVAs, we describe a general and robust framework
for intent and entity extraction. Our primary goal is
to create accurate and scalable SLU that can be widely
deployed for a large class of EVA applications with little
need for human intervention. We focus on techniques
for the extraction and grounding of general entities (eg.
dates, names, digit sequences) that are broadly used in
SLU for EVAs, and also address the critical need for the
extracted entities and intents to be associated with confi-
dence scores that could be used by the dialog manager to

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 63-71
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Figure 1: Flow diagram of the proposed pipeline. The outputs of interest for our human-in-the-loop SLU system are

intents, entities, and overall confidence score.

either reprompt or to request human assistance. A vari-
ety of design considerations are discussed with insights
drawn from real world EVA applications. We know of
few previous studies having similar aim and scope of
work as ours. Early work on industrial SLU systems
sharing the aim of scalable SLU without human inter-
vention was described in (Gupta et al., 2005), though
without confidence modeling. An SLU pipeline is also
addressed in (Coucke et al., 2018), but with design con-
siderations made for CVA-like applications running on
a device. While Gupta et al. (Gupta et al., 2019) does
recognize that the needs of EVAs are different, their
work primarily focuses on a framework for joint intent
classification and slot filling that is modularized into
different components.

This paper presents a complete study of a deployed
SLU pipeline for handling intents and entities. The
models described have been deployed in applications
for Fortune 500 companies and a variety of design con-
siderations are discussed with insights drawn from these
real world EVA applications. In particular, we focus
on improving performance on entities and intents for
several core subtasks in a goal directed conversational
system, namely date capture, number capture and name
capture. Our contributions in this paper include (a) a
unified framework for intent and entity identification
(b) a synergistic combination of the robustness of sta-
tistical entity extraction models with rule-based value
grounding (c) uncertainty modeling through confidence
scoring and rejection criteria to maximize user expe-
rience (d) application of the framework for intent and
entity extraction to new applications without the need
for annotated data.

The outline of the paper is as follows. Section 2
provides an overview of the SLU framework for intent
classification and entity extraction. Our experiments are
presented in Sections 3, 4, and 5. Finally, conclusions
and future work are given in Section 6.

2 Framework for Intent and Entity
Extraction

In this section we describe the framework for simul-
taneous intent and entity extraction with confidence
modeling. An illustration of the overall pipeline is show
in Figure 1. We introduce the main components consist-
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ing of ASR, Text Classification, Entity Extraction, and
Confidence Modeling depicted in Figure 1 in Sections
2.1,2.2,2.3, and 2.4, respectively. More details on the
specific manifestations these components take on for a
given task are described in Sections 3, 4, and 5.

2.1 ASR

The ASR systems used in our experiments consist
of hybrid DNN acoustic models trained to predict
tied context-dependent triphone HMM states with
cross-entropy and sequential loss functions using 81-
dimensional log-spectrum features. The pronunciation
dictionaries consist of hand-crafted pronunciations for
common words and grapheme-to-phoneme generated
pronunciations for the rest.

Grammar-based language models (GLMs) can be
very accurate in scenarios where the domain is con-
strained and the structure of likely utterances is pre-
dictable. Furthermore, GLMs have the advantage of not
requiring much training data and provide recognition
and semantic interpretation together, eliminating the
need for an intent classifier and entity extractor. While
there can be some overlap in GLMs used across simi-
lar dialog states making them attractive for immediate
deployment, to really achieve peak accuracy in a non-
trivial dialog state requires manual tuning by an expert,
which is an obstacle to deploying GLMs rapidly at scale.
Although it may seem that entity capture states in a well-
designed dialog would elicit predictable user responses
making them suitable for recognition with GLMs, in
our goal-oriented dialogs deployed in EVAs we have
observed that is not always the case. Statistical lan-
guage models (SLMs) paired with intent classifiers and
entity extraction methods can outperform GLMs. There-
fore, we use SLMs built from n-grams or a hybrid LM
combining SLMs and GLMs.

2.2 Intent Classification

We employ a linear Support Vector Machine (SVM)
for intent classification, using n-gram based TF-
IDF features. Although classifiers based on deep
neural networks have gained popularity in recent
years (Kim, 2014), linear classifiers remain as strong
baselines (Wang and Manning, 2012), particularly on
short text, with their ability to efficiently handle high-



dimensional sparse features, and their training stability
through convex optimization.

In SLU, the outputs from ASR are inherently uncer-
tain and erroneous. For example, an utterance corre-
sponding to “I want to buy a phone” may result in mul-
tiple recognition hypotheses: (“I want to buy phone”,
“Want to buy phone”, “I want a phone”), which we call
ASR n-best. Instead of relying only on the first best
ASR hypothesis, for intent extraction we use ASR n-
best for better robustness and accuracy. There is a long
history of leveraging information beyond the ASR 1-
best for SLU in the literature (Hakkani-Tiir et al., 2006;
Li et al., 2020; Henderson et al., 2012).

To incorporate the ASR n-best information we take a
sample-based approach. In this approach, we treat the
hypotheses of an utterance as independent samples (with
equal sample weights that sum to one), hence the num-
ber of samples will be larger than the number of original
utterances. We apply this sample-augmentation process
in the training phase, to account for the uncertainties in
the ASR hypotheses. While in the testing phase, we first
obtain the model scores for those independent samples,
and then aggregate scores from the same utterance to
yield the final scores for decision making. We use equal
sample weights for hypotheses in the n-best because
the weighting schemes we have tried based on ASR
confidence for the entries in the n-best was not found to
improve classification accuracy. Additionally, we found
that an n-best list of three was sufficient for the tasks
studied in this paper and increasing the number further
just adds additional training time. The number of intents
modeled by the text classifiers for the date, number, and
name capture tasks we study ranges from approximately
20 to 40 different intents.

2.3 Entity Extraction

While increasingly accurate sequence tagging models
for named entity recognition (NER) have been devel-
oped over the years, NER on speech input adds another
complexity which cannot be mitigated by advanced al-
gorithms developed for text alone. For speech input,
recognition errors have to be accounted for at least in
the form of a confidence value on the extracted val-
ues. EVAs must handle different types of spoken en-
tities. Some appear with minor variations in surface
forms (lexical strings) and appear in contexts where
they are mostly unambiguous. For example, account
numbers and phone numbers appear in the form of digit
sequences of a predetermined length. Although ASR
errors present some difficulties, such entities can be di-
rectly captured by a rule-based system and require little
or no normalization. On the other hand, entities such
as dates can appear in many surface forms like “this
Monday”, “New Year’s day”, “on the 7th”, for example,
and their context can cause ambiguities which require
sequence tagging algorithms. In addition to sequence
tagging, normalization is needed to convert the entity to
the desired format. In any case, additional confidence
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models to account for ASR errors are required.

We also address entity capture tasks such as last name
capture, that provide unique challenges in the context of
speech input, but also have structure that can be lever-
aged to improve capture accuracy. EVAs for customer
care dialogs must contend with a large number of unique
names. Furthermore, many names may occur rarely and
have unreliable pronunciations in the ASR lexicon. As a
result, the main challenge is accurately recognizing the
spoken name, rather than tagging and normalization. To
accurately capture last names we leverage the spelling of
the last name and utilize a hierarchical language model
which combines SLMs and grammars.

2.4 Confidence Modeling

In order to maintain the high standard of customer ex-
perience demanded of EVAs, our SLU system utilizes
a human-in-the-loop approach to ensure a sufficiently
low error rate of the SLU system. Only high-confidence
results from the SLU system are accepted, and utter-
ances with low SLU confidence are handed-off to hu-
man agents who label them in real-time instead of being
automated using the SLU output. The rejection of an
SLU output is based on comparing the overall confi-
dence measure for each utterance to a threshold. This
utterance-level semantic confidence score quantifies the
reliability of the information extracted from a spoken ut-
terance, including entities and intents. It has been shown
that combining speech recognition scores with seman-
tic features to train a confidence model is an effective
approach for semantic confidence estimation (Sarikaya
et al., 2005; Mehrabani et al., 2018; San-Segundo et al.,
2001). We use a logistic regression confidence model
that is trained by passing each utterance through the
SLU pipeline and the predicted result (intents and enti-
ties) is compared with the reference label containing the
spoken intents and entities. After this binary model is
trained, the following is used as the confidence measure:

1
1+ exp(— > Ajz)

where Z is the confidence predictor feature vector, § is
the predicted label (including all entities and intents)
and y is the reference label. Confidence predictors x;
depend on the inputs and outputs of the SLU system and
the feature weights that are estimated during confidence
model training are denoted by A;.

‘We used a number of ASR confidence scores, based
on posterior probabilities, as well as comparing the ASR
best path to alternative paths (Williams and Balakrish-
nan, 2009). Basic statistics of word-level scores were
computed to create utterance-level features. The num-
ber of ASR n-best was used as another feature as an
indication of ASR uncertainty (larger number of n-best
shows uncertainty). We also used the text classification
scores as semantic features. Another semantic feature
that we used was the predicted intent category encoded
as a 1-hot vector over the intent classes. ASR confi-
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dence for digits or the number of digits in the ASR
n-best text were also added as features. Finally, since
for number and date capture dialog states we utilized
a text classifier that in addition to intent, showed if the
utterance included the relevant entity or not, we used
this as a binary feature which was an effective indicator
of semantic confidence.

3 Date Capture

In this section, we apply the described framework to the
task of date capture and we also describe our approach
to creating a generic date capture model in Section 3.1.
Typically, dialog-state specific models are built using
labeled data from a single dialog state to train an intent
classifier and entity extraction pipeline for the target
state. However, the generic date capture model enables
rapid deployment of models for date capture states in
new applications before any data can be collected.

At least four different components are essential for
capturing dates in speech input. 1) A language model
for ASR to reliably transcribe the input speech. 2) A
sequence tagger for identifying the span of transcribed
speech containing the date specifications. 3) A function
that takes into account chances of errors and computes
a confidence value in the extracted entity. Finally, 4)
a normalizer that converts the identified span into the
desired date format. In a fully rule-based approach, the
grammar-based LM performs the functions of all four
components. For ASR, we use an SLM trained on a
large corpus of utterances containing dates as well as ut-
terances containing different intents instead of date enti-
ties. For span identification we use a statistical sequence
tagger (MEMM (McCallum et al., 2000) or BLSTM-
CRF (Huang et al., 2015)) trained on date tagged data.
For entity extraction confidence, we use logistic regres-
sion models trained with scores from the tagger and
from text-based binary Date or No-Date classifiers.
For normalization, we use a rule-based approach apply-
ing a grammar to the tagged sequence of text.

While a large majority of users do provide a response
with a date to a system prompt requesting a date, a sig-
nificant number of users do not, and instead respond
with utterances expressing different intents that must
be robustly identified for the dialog to progress grace-
fully. We trained a text classifier as described in Sec-
tion 2.2, which in addition to many non-date related
intents such as Cancel Reservation, Billing
and Charges, and Live Agent, includes a Date
label, as well as Vague Date, for when the user re-
sponds with a partial date, such as only the month, rather
than an utterance with a date expression that could be
grounded to a specific date. A Vague Date intent can
be used to trigger a reprompting of the user to disam-
biguate. In the case that the sequence tagger detects
a date but the intent classifier does not return a Date
intent, the detected date entity is still returned by the
system. Including the DATE intent, there are a total of
41 intents in this date capture task.
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The training, development and test sets consist of
approximately 53K, 5K, and 10K utterances labeled
by humans-in-the-loop, respectively. We compare the
proposed framework with an SLM and a MEMM se-
quence tagger against a grammar-based LM that has
been hand-tuned for accuracy on the target dialog state.
Confidence-based rejection is typically employed to en-
sure a sufficiently low error rate of EVAs at run-time.
Therefore, it is more informative to analyze the perfor-
mance of SLU systems by examining the error rate as
a function of the utterance rejection rate at different
thresholds, rather than just reporting the average error
rate at 100% automation. In this way, a suitable operat-
ing point at a low error rate can be selected to evaluate
the performance of an SLU system.

We plotted the error rate of accepted utterances versus
the percentage of utterances rejected using a confidence-
based threshold (FA-Rej curve) for each system in Fig-
ure 2. Both intent classification and entity extraction
performance are reflected in these plots because both
the intent and entity, if present, must be correct. We ob-
serve superior performance with the proposed approach,
noting that the proposed approach starts with a slightly
lower error rate but due to the effectiveness of the de-
signed confidence modeling, the gap in performance
between the two approaches grows considerably wider
as low-confidence utterances are rejected. At an oper-
ating point of 5% error, the proposed approach offers
about 10% more automation compared to the grammar-
based approach, a significant gain.

Error Rate vs. Rejection Rate for Date Capture State
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Figure 2: The error rate of accepted utterances ver-
sus the percentage of utterances rejected using a
confidence-based threshold (FA-Rej curve) for a hand-
tuned grammar-based LM compared to the proposed

framework for a date capture state in a car rental dialog.

3.1 Generic Date Capture Model

Building out models for new dialog states and appli-
cations at scale is challenging under the paradigm of
collecting data for training dialog-state specific intent
classifiers and entity taggers. To address this issue, we
propose a modeling approach that enables deployment
of models for new capture states on day zero. First,
a representative set of dialog states for a given entity,
such as date, are identified and data from those states



is aggregated. For example, to build a generic date cap-
ture model date capture states pertaining to service start
or stop dates, hotel check-in dates, car rental pick-up
dates, service appointment dates, and so on are pooled
together. Then either rule-based or statistical models for
entity extraction are trained using the combined data.
There can be a “long tail” of unique dialog state specific
intents that may appear in one dialog state from one
application but would result in an invalid output that
can not be handled by the dialog manager in the dialog
state of another application. Thus, a set of fairly “uni-
versal” intents for this collection of dialog states must
be found. The generic model can then be applied to a
new target domain or task that is semantically similar
without additional training data. However, the generic
model does not generalize to new entity types, meaning
that a generic date capture model would be applied to
new date capture states only.

The training data for the generic date capture model
is aggregated across six date capture states from five
different EVA applications. Approximately 1.1 million
utterances were used for training the intent classifier and
entity extraction pipeline for the generic date capture
model. Testing is done on approximately 10K utter-
ances from a held-out date capture state from a novel
application whose data never appeared in the training
set. The generic intent classifier model supports 38
different intent classes that were determined based on
the intents observed in the cross-application training
data. The test data from the held-out dialog state con-
tains unique intents that are not covered by the intent
classifier because they did not occur in the other states
comprising the training data. We compare the generic
date capture model having a MEMM sequence tagger
to a dialog state specific model having an intent clas-
sifier and a BLSTM-CRF sequence tagger trained on
62K utterances from the target dialog state. We use
a BLSTM-CREF for the model trained on target dialog
state data because it improved performance slightly but
we use a MEMM in the case of the generic model be-
cause the BLSTM-CREF did not improve performance
on that data.

Error Rate vs. Rejection Rate for Date Capture With Generic Model
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Figure 3: FA-Rej curves for a generic model and a
dialog state specific model in a utility start of service
date capture state.
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FA-Rej curves for both the generic and dialog state
specific SLU systems are shown in Figure 3. As ex-
pected, there is some loss in performance relative to the
dialog state specific model trained on data from the tar-
get dialog state. However, analysis of the errors reveals
that the performance on entity extraction is unchanged
and the loss is largely due to a few specific intents that
were not covered in the generic model in this case. Fur-
thermore, the generic model results in a loss of only
about 2.5% in automation at an operating point of 5%
error, which we believe is reasonable given that this
model can be deployed immediately once a new appli-
cation goes online since data from the target dialog state
or application is not required for training.

4 Number Capture

The goal in number capture dialog states is to capture
a long sequence of digits, such as phone or account
numbers. While the majority of users provide the nu-
meric input as requested by the system prompt, approx-
imately 30% of utterances do not include a digit se-
quence. Therefore the challenge in such dialog states
is two-fold: 1) ensuring that if the user provided a digit
sequence, it is captured accurately — a challenge due to
ASR errors (even if one digit is substituted or deleted,
the entire digit sequence is inaccurate) 2) if the user re-
sponds with a non-digit utterance, capture the provided
intents in the utterance.

Traditional SLU systems use ASR with a carefully
hand-tuned grammar-based LM to capture the digit se-
quence but a separate grammar needs to be designed
and tuned for every new application to cater to that
application’s intents so it is difficult to scale. In con-
trast, we demonstrate in Section 4.1 that our proposed
pipeline for generic digit sequence models, once trained,
can be applied to any utterance with digit sequences.
As an alternative to hand-tuned grammar-based mod-
els, DNN-based slot-filling models could be applied but
they typically require large amounts of domain-specific
annotated data for training.

We propose a hybrid grammar-based and statistical
approach that overcomes the limitations of grammar-
based models alone, yet is scalable and maintains high
accuracy. Following the framework described in Section
2, we use an SLM-based ASR system and train a text
classifier on the output for intent detection. A Number
label is used for all utterances that only include a digit
sequence, along with a broad set of other intent labels
to cover the approximately 30% of utterances that do
not include digit sequences. If an utterance is classified
as including a digit sequence via the Number label, a
rule-based system is used to extract and normalize the
number. Note that this approach yields the best accu-
racy for utterances in a specific dialog state since the
structure of the digit sequence is predetermined, but
for more general number capture an entity tagger could
be applied. The rule-based system finds the best digit
sequence match in any of the ASR n-best results. Addi-



tionally, we trained a confidence model to produce an
overall confidence score. An important factor in con-
fidence estimation for number capture is the presence
or absence of the digit sequence, and therefore we use
that as an additional binary confidence predictor fea-
ture. Furthermore, if a digit sequence is detected in the
utterance, ASR word scores for the recognized digits,
and the length of the digit sequence are used as input
features for the number capture confidence model.
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Figure 4: FA-Rej curves for a hand-tuned grammar-
based LM compared to the proposed framework for a
phone/account number capture state.

We compare the proposed pipeline to a hand-tuned
application-specific grammar-based LM approach for
account/phone number capture. For this experiment, 2K
utterances with reference labels were used for testing,
and about 3M utterances for training. Note that only
a small subset of the training data (~10%) which had
low SLU confidence with an existing grammar-based
system were labeled by humans in an online fashion.
The data to train the confidence model included about
300K utterances with online human labels. Results are
shown in Figure 4. The accuracy (at zero rejection) with
the proposed approach has improved by 2.35% absolute,
and at an operating point of 5% error, the proposed
approach offers 1.2% more automation compared to the
grammar-based approach. As shown the grammar-based
approach outperforms the SLM-based pipeline for error
rates of lower than 4%, which is due to several rounds of
careful hand-tuning of the grammar-based LM for some
of the less frequent utterances. However, the proposed
approach is still superior because of its flexibility to be
easily applied to any application.

4.1 Generic Number Capture Model

Following a methodology similar to the one described in
Section 3.1, a generic model for digit sequence capture
was built. Data for the generic number capture model
was pooled from five different applications containing
digit capture states with digit sequence lengths ranging
from 5-10 digits. In total, 715K utterances were used
for training an intent classifier that covered 69 unique
intents for these digit capture states, including a label
to indicate the presence of a digit sequence. Approxi-
mately 67% of the training utterances contained digit
sequences and the remaining 33% were only other in-
tents. As before, a rule-based system is used to extract
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and normalize the number when the intent classifier pre-
dicts a digit sequence is present. To train a system-level
confidence model, a total of 88k held-out utterances
having human-in-the-loop annotated labels from the set
of five applications was used. The generic intent and
confidence models for digit capture were tested on a
test set from one of the five applications included in
the model using held-out data and compared to a dialog
state specific model trained with data from the target
application.

Similar to the results for the generic date capture
model in Section 3.1, we observe that the generic model
for number capture does perform slightly worse than
the dialog state specific model but still offers an accept-
able level of automation at an operating point of 5%
error. The number capture accuracy of the generic digit
capture model is approximately 1% lower than that of
dialog state specific model at zero rejection, and less
than 2% performance difference at other rejection rates.
Error rate versus rejection rate curves for the two models
are shown in Figure 5.
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Figure 5: FA-Rej curves comparing a generic model
and a dialog state specific model for a number capture
dialog state.

S Name Capture

Person name recognition is a difficult task in spoken
language understanding due to the size of the vocabulary
and confusions in name pronunciations (Yu et al., 2003;
Raghavan and Allan, 2005; Bruguier et al., 2016). In the
course of customer care dialogs users are often asked
to provide their last name for identification purposes.
There are a very large number of last names, some of
which are similar sounding like “Stuard”, “Stuart”, and
“Stewart”, making it difficult to accurately recognize
names in isolation. However, if the user is also asked
to provide the spelling as well that can be leveraged
to correctly capture the name. We observe that names
at the beginning of an utterance are very difficult for
ASR to recognise correctly but spelled letters are often
recognized more accurately and can be concatenated to
capture the name. To recognize potentially hundreds
of thousands of last names using a traditional n-gram
SLM or grammar, every possible last name and spelling
sequence should be encoded, resulting in a very large
LM. Instead, we propose a hierarchical language model,



which consists of sub language models derived from the
beginning sounds of the last names (hereafter, we call
this language model /-layer LM). This is motivated by
the fact that the beginning of a name’s pronunciation
leads the rest of name and spelling sequence, unlike
other ASR tasks (see Figure 6a).

Still, asking the user to also spell their name does
not make the recognition task trivial. When spelling a
word, there are frequent confusion pairs such as ‘f and
s’, ‘band v’, ‘pand t" and ‘m and n’. To distinguish
between such confusion pairs, a common practice is to
use the NATO phonetic alphabet - “Sam S as in sierra
A as in alpha M as in Mike”. However, people tend to
use any word they can think of easily for distinguishing
the characters in their name, rather than adhering to
the NATO phonetic alphabet which may not be familiar
to many users. Thus, we added another layer of sub
grammar at the bottom of last name sub grammars in
the hierarchical language model to cover the NATO
phonetic alphabet, as well as a large number of other
words people use to distinguish characters (hereafter,
2-layer LM) shown in Figure 6b. Similar to the date and
number capture systems, our approach for last name
capture also incorporates an intent classifier covering a
set of intents which are likely to occur when last names
are not given.

a) 1-layer LM: b) 2-layer LM:
A_names.Im
B_names.Im
C_names.Im

A_names.Im
B_names.Im
C_names.Im
Z_names.Im Z_names.Im
A_names.Im:
allenallen
allen a as in apple | like lab ...
allenallen
aasinapplelasinlab ... allen

A_names.Im:
allenallen
allenaasin A_words |like L_words ...
allenallen

aasin A_words lasin L_words ... allen

A_words.Im:
apple
adam
animal

Figure 6: Last name LMs: a) 1-layer LM is trained
on name and spell as it is; b) 2-layer LM is trained on
names and spells but taking NATO words as another
LM component.

We compare four different systems to capture last
names in spoken input: 1) SVM classifier trained on
170K ASR hypotheses using bi-gram features and hu-
man annotated labels for the names; 2) I-layer LM with
which we decode the utterances and then concatenate
the spelled letters to predict the last name. Note that
the usual ASR confidence score is used as prediction
confidence to draw the rejection curves; 3) 2-layer LM
which is used in the same way as the second system and
4) 2-layer LM with confidence model which is used in
the same way as the third system, but instead a confi-
dence model (described in Section 2.4) is exploited to
generate the confidence scores. The confidence model
is trained on a 29K data set with features consisting of
the ASR-based confidence scores and utterance length.

A test set containing 1K utterances labeled with
the last name by human annotators is used for testing.
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Curves for the various systems on the test set are shown
in Figure 7. As expected, the SVM classifier performs
very poorly due to the problem of data sparsity in the
data set. We selected this approach as one of our base-
lines for comparison because it shows reasonable per-
formance on a first name capture task where the sparsity
of data is less than it is for last names. The second
algorithm in which we use the /-layer LM to decode
the utterances and then concatenate the spelled letters
to determine the last names performs better on average
but it fails in many cases due to the inclusion of char-
acters that distinguish words in the utterance. However,
the 2-layer LM resolves many of those issues and it
significantly improves the accuracy, requiring far fewer
utterances to be rejected at an operating point of 5%
error. Confidence modeling only marginally helps per-
formance with the simple ASR confidence features used
and we suspect more informative features need to be
designed.

Error Rate vs. Rejection Rate for Last Name Capture State
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Figure 7: FA-Rej curves for last name capture.

6 Conclusions

SLU for EVAs encompasses a wide-ranging set of prac-
tical challenges and investigations into the design of
accurate and scalable SLU systems that can quickly be
deployed for new applications without requiring much
human intervention each time is warranted. In this paper,
we have presented an enterprise-grade deployed SLU
pipeline for handling intents and entities and demon-
strated its effectiveness across several real world sub-
tasks in a deployed customer care virtual agent. We have
also highlighted the importance of confidence model-
ing using features from each component in the pipeline.
The proposed approach to create generic date and digit
capture models for intents and entities allows for day
zero deployment of models for new applications. In the
future, we will incorporate word confusion networks
and lattices for the different capture tasks presented in
this paper.
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Proteno: Text Normalization with Limited Data for Fast Deployment in
Text to Speech Systems
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Abstract

Developing Text Normalization (TN) systems
for Text-to-Speech (TTS) on new languages
is hard. We propose a novel architecture to
facilitate it for multiple languages while us-
ing data less than 3% of the size of the data
used by the state of the art results on En-
glish. We treat TN as a sequence classifi-
cation problem and propose a granular tok-
enization mechanism that enables the system
to learn majority of the classes and their nor-
malizations from the training data itself. This
is further combined with minimal pre-coded
linguistic knowledge for other classes. We
publish the first results on TN for TTS in
Spanish and Tamil and also demonstrate that
the performance of the approach is compara-
ble with the previous work done on English.
All annotated datasets used for experimenta-
tion will be released at https://github.
com/amazon-research/proteno.

1

Text-to-speech synthesis (TTS) consists of a num-
ber of processing steps that control the conversion
of input text to output speech. Text normalization
(TN) is usually the first step for any TTS system.
It is defined as the process of mapping of written
text to its spoken form. As per Taylor (2009), semi-
otic class denotes things like numbers, dates, times,
etc. that are written differently from the way they
are verbalized. TN is the process of verbalizing
instances of such classes.

Most systems are entirely based on hard coded
rules which are neither scalable across languages
nor easy to maintain. Many machine learning based
techniques have been proposed for TN but they
still have heavy dependency on encoded linguis-
tic knowledge or require considerable amount of
annotated data making it difficult to scale.

The contributions of this paper are as follows:
i) Presenting Proteno, a novel architecture for TN

Introduction

*Work done while at Amazon
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with a granular tokenization mechanism, which
requires minimal language specific rules, curtails
unacceptable errors and is transferable to a large
extent to multiple languages, ii) Establishing an
architecture which can be used to benchmark TN
baselines for multiple languages with limited anno-
tated data, iii) Release of annotated TN datasets for
Tamil and Spanish suitable for TTS systems.

As no benchmark datasets or baselines exist for
TN for TTS in Spanish and Tamil, we curated
datasets for both and evaluated Proteno on them.
We also use the best performing system for TN in
English and compare its results with previous work.

2 Related Work

In spite of the success of deep learning approaches
in other natural language processing tasks, the prob-
lem of TN for TTS systems still remains a chal-
lenging one (Sproat and Jaitly, 2016). Work has
been done to solve TN by pure encoder-decoder
methods particularly Recurrent Neural Networks
(Sproat and Jaitly, 2017; Zhang et al., 2019). How-
ever, authors have shown that even though such
models can perform well overall, occasionally they
can make “unacceptable errors" like reading “$2"
as “two pounds" and thus rendering the system
unsuitable for industrial TTS applications.

To curtail such unacceptable errors, previous
work based on semiotic classification (Sproat et al.,
2001; Ebden and Sproat, 2014; Zhang et al., 2019),
are encoded with measures like weighted Finite-
state Transducers (FSTs) introduced by Sproat
(1996). FSTs revolve around creating a weak cov-
ering grammar which encompasses language spe-
cific lexical information. Although such grammars
are easier to create as compared to a full blown
grammar, they still need prior knowledge of the
language and the language specific rules need to
be coded in the system (Sodimana et al., 2018).
To completely induce FST from training data, as
suggested by Zhang et al. (2019), diverse and large
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amount of data is required. The data should repre-
sent all the forms a particular token can appear in a
given language. Such requirements for all semiotic
classes limit the reproducibility of such models for
a new language with limited annotated data. Other
language-agnostic approaches (A. Conkie and A.
Finch, 2020) also need large amounts of data (SM
sentences for each language) as parallel corpus and
can also result in unacceptable errors.

Our approach curtails such errors by breaking
down complex entities like dates into multiple to-
kens by a granular tokenization mechanism and
also by limiting which tokens can be accepted into
a class. This mechanism, we will see, also enables
the system to rely more on data and disambiguate
context for normalizations without requiring the
knowledge to be specifically coded in the system.

3 Proposed Approach

The target normalization can be directly predicted
from unnormalized text with a seq2seq architec-
ture (Sutskever et al., 2014) by treating TN as a
machine translation task (Zhang et al., 2019; Mans-
field et al., 2019) with the previously mentioned
limitations. A way to limit the unacceptable errors
in such systems would be to limit the kind of nor-
malizations the network can generate for a token
(Sproat and Jaitly, 2017).

On the other hand, solutions based on semiotic
classification convert TN into a sequence tagging
problem, where each class has associated mecha-
nisms for normalizing the corresponding unnormal-
ized token(s). It produces verbalizations by first
suitably tokenizing the input, then classifying the
tokens, and then verbalizing each token according
to its corresponding class. These approaches often
have a complex tokenization mechanism which is
not easily transferable across languages and also
need all the possible classes to be exhaustively de-
fined manually.

We solve both these problems by a granular tok-
enization mechanism which extends the concept of
semiotic classification to a granular level wherein
each unique unnormalized token to normalized to-
ken mapping can have a class of its own. The
majority of the classes and their appropriate nor-
malizations are automatically learnt from data.

Our classes represent whether a particular token
is of a certain type and convert unnormalized to-
kens into their normalized form. The goal is to man-
ually define the minimum possible set of classes
and all the other classes will be automatically learnt
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from the data. The system learns when each class
should be applied. The solution is divided into 4
stages: i) Tokenization of unnormalized data, ii)
Data preparation, iii) Classifying unnormalized to-
kens into correct classes, iv) Normalizing tokens
using the corresponding class.

3.1 Tokenizer

Typically, TN approaches either assume pre-
segmented text by the rule-based standard (Ebden
and Sproat, 2014) which identifies multiword se-
quences as single segment like dates (Jan. 3, 2016)
according to pre-defined semiotic classes or train a
neural network for tokenization together with a nor-
malization model (Zhang et al., 2019). Proteno’s to-
kenization on the other hand, has elementary rules
and is deterministic. The segmentation is done by
splitting the sentences on spaces and then further
splitting the text when there is a change in the Uni-
code class. E.g., after splitting on spaces, a token
like ‘C3PO’ will be further split into [‘C’,3’,°PO’].
Such tokenization enables the system to accurately
split complex entities like dates while eliminating
the need for a manually defined complex class for
them. The same tokenization mechanism was used
for all the languages tested. Hence, it is transfer-
able across a large group of languages which have
words separated by spaces.

3.2 Data Preparation
While collecting training data, first the unnormal-
ized data is tokenized according to the granu-
lar tokenization mechanism described above and
then each token is annotated with its correspond-
ing normalized form. Thus, we obtain unnor-
malized token to normalized token mappings.
E.g., a date occurrence ‘1/1/2020° tokenized as
[‘1°,¢,¢1°,¢/,2020’] is annotated as [‘first’,‘of”,
‘January’,*’, ‘twenty twenty’]. For such data annota-
tion, linguistic experts are not needed and this can
be done by anyone proficient in the target language.
From our experiments, we observe that for TN
the diversity in data is more important than the
quantity of data. It is better for the model to see
different kinds of normalizations. Hence, while col-
lecting the data, we try to ensure decent coverage
of different semiotic classes by having at least 25%
of tokens which need normalization (i.e., non-self).

3.3 Classes

Each class has 2 functions: i) Accepts: This func-
tion returns a Boolean value of whether a token is
accepted by the class. E.g., cardinal class accepts



only numeric tokens, ii) Normalize: This is a deter-
ministic function that transforms the unnormalized
token into its verbalized form

A token can be classified into a class only if it is
accepted by it. By restricting the classes a token is
accepted into, we limit the kind of normalization
output that can be generated. This prevents the
model from making unacceptable errors. A token
can be accepted by multiple classes which can give
different normalizations. In such cases, the model
is responsible for predicting the appropriate class
from the context. If multiple classes give the same
normalization for a token, then during inference it
doesn’t matter which class is chosen.

We have 2 kinds of classes: i) Pre-defined: We
define limited number of classes (~10-15) contain-
ing basic normalization rules out of which only a
small subset (~5) contain language specific verbal-
ization rules like cardinal, ordinal etc. Rules be-
hind the normalization logic for others like self, sil,
digit, roman numerals, etc. remain similar across
many languages, only the surface form of the nor-
malized version changes. E.g., self class indicates
that the input is to be passed through as it is and it
accepts tokens containing only alphabetical char-
acters. Sil is used to represent silence, which is
typically associated with punctuation. It accepts
only punctuation or other kinds of symbols which
should not be verbalized. Roman numerals also
have language agnostic logic to convert the roman
number into number form and pass it down to its
corresponding cardinal or ordinal class for gener-
ating desired normalization. ii) Auto Generated
(AG): Apart from pre-defined classes, the model
learns automatically generated classes from the
data by going through the unnormalized to normal-
ized token mappings in the dataset. If none of the
existing classes (pre-coded or AG) can generate the
target normalization for a token in the training data,
then a class is automatically generated which ac-
cepts only the token responsible for its generation.
Its normalize function returns the target normaliza-
tion observed in the annotated data for that token.
E.g., if “12—December" is observed in the dataset
and if none of the existing classes can generate this
normalization then a class “/2_to_December_AG"
is created. This class accepts only “12" and its nor-
malize function returns “December"”. If multiple
normalizations are observed for an unnormalized
token in the dataset which cannot be generated by
existing classes then multiple AGs are stored. AGs
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enable Proteno to learn majority of the normaliza-
tions automatically from data.

3.4 Classification & Normalization

We model TN as a sequence tagging problem
where the input is a sequence of unnormalized
tokens and the output is the sequence of classes
which can generate the normalized text. Before
training the classification model, we transform
the data to get unnormalized token to class map-
pings. E.g., [‘1’,/,‘1°,*/,2020’] — [ordinal,
/_to_of_AG, 1_to_January_AG, sil, year]. We pre-
pare this data by going over the unnormalized to-
ken to normalized token mapping for a sentence
and identifying which existing classes can give the
target normalization. For a token there can be mul-
tiple matching classes. E.g., ‘2’ can be correctly
normalized by both cardinal and digit classes. In
such cases of multiple matching classes we pick
the least frequent class to increase the representa-
tion of infrequent classes. This compensates for the
imbalance present in the proportion of classes in
training set. A more optimum approach to handle
cases of multiple matching classes will be explored
in the future.

To classify the sequence of unnormalized tokens
to their corresponding classes we experimented
with 4 classifiers. We first train a first order Condi-
tional Random Fields (CRFs) (Lafferty et al., 2001)
and then train neural network (NN) based architec-
tures like Bi-LSTMs (Hochreiter and Schmidhuber,
1997), BiLSTM-CRFs (Huang et al., 2015) and
Transformers (Vaswani et al., 2017). We used word
embeddings from Mikolov et al. (2018) for NN
systems. i) CRF: The features used for each un-
normalized token in the model are - part of speech
tag, list of classes which accept the token as an
input, next token in sequence, suffix of the token
(from length 1-4), prefix of the token (from length
1-4), is the token in upper case, is the token nu-
meric and is the token capitalized, ii) Bi-LSTM &
BiLSTM-CRFs: Using word embeddings and list
of classes which accept the token as input features,
iii) Transformer: A Transformer with 6 heads with
word embeddings as input features.

For each token we renormalize the probabilities
predicted over all classes to only the classes which
accept the token. Hence, the model is restricted
to classify a token only to one of its few accepted
classes. If the system is unable to find a suitable
class for the given token (i.e., none of the given
classes accept that token) then it gives a empty



output instead of an incorrect normalization.

3.5 Aligning tokens in order of verbalization
One of the major challenges in automated TN is
handling realignment of tokens which may be re-
quired between the written and its spoken form.
Our method so far assumes monotonic alignment
between the written unormalized tokens and their
corresponding spoken normalizations. However,
this is not always true. For our chosen languages
we saw two exceptions: currency and measure
units. E.g., $3.45 — ‘Three dollars forty five cents’
and m? — ‘squared metres’. Seq2seq models
can naturally learn such kind of realignment from
training data (Sproat and Jaitly, 2017). However,
they are susceptible to errors specially for limited
amount of training data for specific classes.

Thus, to limit errors in such cases we define
some rules. Proteno first recognises instances of
currency/measure in the text and prevents them
from further splitting by the granular tokenizer.
The currency/measure classes have the same gran-
ular tokenisation logic along with realignment con-
ditions. They further pass the final tokens to their
corresponding classes. Thus, an entity like ‘$45.18’
is transformed into [‘45°, ‘$’, ‘18’, ] and passed
to classes as 45— cardinal, $—3$_to_dollars_AG,
18—cardinal, . —_to_cents_AG.

As all currency symbols have their own AGs
automatically generated from the data there will
always be a 1:1 mapping between a symbol and
its normalized form. As a result, this approach
eliminates the possibility of an unacceptable error
like normalizing $ — Pounds.

Classes like currency and measure contain rules
that are responsible for realignment only and hence
require limited knowledge to be transferred across
languages. The normalization is handled by the al-
ready learnt or defined classes. Thus, these classes
can be skipped or be used as is for any language
which has this kind of realignment.

4 Experiment Protocol

4.1 Datasets

As the goal of Proteno is to be applicable for multi-
ple languages, we evaluate the system across 3 lan-
guages. For experimentation with new languages
we chose Spanish and Tamil. Further, we evalu-
ate Proteno on English, to see how it compares
against a language which has more evolved TN
systems available. There are no benchmarked an-
notated TN for TTS datasets available for Tamil
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and Spanish. i) Spanish: We gathered data from
Wikipedia by selecting sentences rich with entities
requiring normalization. Due to budget constraints
we could collect a dataset of only 135k tokens (5k
sentences), ii) Tamil: We annotate the data sourced
from English-Tamil parallel corpus (Ramasamy
et al., 2012) and Comparable Corpora (Eckart and
Quasthoff, 2013). From these datasets we sampled
500k tokens (30k sentences) with higher preference
towards sentences that needed normalization, iii)
English: We used a portion of the annotated data
from Sproat and Jaitly (2016). First, we run the Pro-
teno tokenizer over the unnormalized section of the
dataset and got unnormalized token to normalized
token mappings using elementary rules. By doing
so, we were able to correctly match only a por-
tion of the dataset due to its different tokenization.
And then, from this subset, 300k tokens (24.7k sen-
tences) were randomly sampled to keep the data
size comparable to that used for Tamil. This is
1.5% of the data used by Pramanik and Hussain
(2019) which used first 20M tokens and 3% of data
used by Zhang et al. (2019) which used first 10M
tokens.

4.2 Training & Evaluation

Train and test data were split by the ratio of 60:40.
We keep a higher test set proportion to have a chal-
lenging setting for the systems. Word Error Rate
(WER) is used as the evaluation metric for the dif-
ferent classifiers. We use this metric instead of
classification accuracy on the classes in order to
enable comparison of results from different TN ap-
proaches in the future, which may not use the same
tokenization mechanism and hence may not have
the same classes benchmarked by previous work.

WER is measured as Levenshtein Distance (Lev-
enshtein, 1966) between the model prediction and
the desired normalization. Hence, lower WER is
desirable. We also report classification accuracy to
illustrate that classification accuracy does not di-
rectly translate into WER. We first evaluate all the
classifiers on Spanish and then choose the classifier
with lowest WER for Tamil and English.

5 Results

5.1 Spanish

Due to lack of a standard baseline, we compare
the performance of Proteno on Spanish with an
existing rule based (RB) system. This is the pro-
duction TN system containing 1.7k lines of regular



expressions code which required extensive linguis-
tic knowledge and programming proficiency.

Normalization was required for 27 % of tokens
in both the training and the test set. 10 classes
were pre-coded with normalization logic: self, sil,
spell, currency, unit, digit, cardinal, ordinal, ro-
man cardinal and roman ordinal out of which
only 5 had language specific normalization rules
(spell, cardinal_masculine, cardinal_feminine, or-
dinal_masculine and ordinal_feminine). 279 AGs
were generated from this dataset. The WER results
from different models is given in Table 1.

Models WER(Train) | WER(Test)
RB System 2.3 2.3
CRF 0.3 1.02%*
BiLSTM 0.03 0.89*
BiLSTM-CRF 0.04 0.89*
Transformer 1.2 2.3

Table 1: WER for CRF vs LSTM vs Transformer.
Fields in bold are indicative of best model. * signifies
statistically significant difference in comparison to RB

On the test set, all models except Trans-
formers showed statistically significant difference
(p<<0.01) in comparison to the RB system. We
can attribute the lower performance of Transform-
ers to lack of accepted classes as input features.

Although the numbers suggest that the NN mod-
els might be overfitting, we were not able to sig-
nificantly improve them using regularization tech-
niques. Introducing dropout from 0.1-0.3 increased
the train WER from 0.03 to 0.04 but did not impact
the test WER. Further increase in dropout increased
test WER. We also try replacing the cross entropy
loss with the Weighted Categorical Cross Entropy
Loss to avoid the model’s bias towards predicting
the dominant class (in this case ‘self’). This loss
function decreased the train WER from 0.03 to
0.027 but it did not impact the test WER.

For most of the classes CRFs and NN models
performed at par with each other. Classification
accuracy by the models is given in Table 2. How-
ever, low classification accuracy, though indica-
tive of inaccurate normalization, does not directly
translate into higher WERs. Multiple classes can
give the same normalization and thus there is no
unique correct class. This is particularly prevalent
in some cases of number instances where cardi-
nal_masculine and cardinal_feminine can be used
interchangeably.
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Even though Transformers give unstable perfor-
mance in class prediction, they still give a low
enough WER. This particular iteration has a bias
towards predicting cardinal_ masculine over car-
dinal_ feminine. This bias changes with different
iterations but the WER remains consistent as the
normalization output remains unaffected.

5.2 Tamil

For Tamil, we have 8 pre-coded classes
(self_english, self _tamil, sil, spell, currency, digit,
cardinal and ordinal) out of which only 3 are en-
coded with language specific normalization logic
(cardinal, ordinal and spell) and 74 AGs were gen-
erated from the dataset. To normalize text on Tamil
corpus, we trained the system which performed
the best on Spanish i.e., BILSTMs with the same
configurations. The model gave a WER=0.6 on the
train set and WER=3.3 on the test set. The token
proportion and high-level classification accuracy
results for the tokens are detailed in Table 3.

5.3 English

To evaluate the potential of the approach and bench-
mark it with existing work we trained Proteno on
English. The model had 8 pre-coded classes (self,
sil, spell, cardinal, ordinal, digit, roman, units,
year) out of which only 4 classes contained lan-
guage specific rules (spell, cardinal, ordinal, year).
2658 AGs were generated from the data. The num-
ber of AGs in English are significantly higher than
the ones generated for Tamil or Spanish as English
tends to use much more abbreviations in written
form as compared to the other two languages. The
model achieved a WER=0.47 on the train set and
a WER=2.6 on the test set. High level classifi-
cation accuracies are detailed in Table 3. Out of
the 99.26% correctly normalized tokens, 88.2%
of the non-self tokens were normalized via AGs
i.e., 88.2% of the normalizations were learnt auto-
matically from data without relying on pre-coded
linguistic knowledge.

It is not possible to directly compare our results
with previous work done on English TN (Pramanik
and Hussain, 2019; Zhang et al., 2019) as these
works report classification accuracy on 16 manu-
ally defined classes and not WER. Moreover, Pro-
teno does not have the same set of classes due to its
granular tokenization mechanism. It also uses only
1.5%-3% of the dataset used by them and further
splits it into train and test set. It cannot use the
full dataset due to differing tokenization mecha-



Token Proportion CRF BiLSTM BIiLSTM-CRF | Transformers
Train Test Train | Test | Train Test Train Test Train Test
Accuracy 99.7 199.1 | 99.9 | 99.01 | 99.99 98.9 93.0 92.8

Accuracy per class

‘self’ 70.5 70 100 100 100 99.9 100 99.9 100 99.8
‘sil’ 13.24 13 99.7 | 99.8 | 100 99.5 | 99.99 99.6 100 98.7
Others 98.0 | 93.2 | 99.9 | 93.06 | 99.9 95.9 442 48.3
‘es_num_by_num_cardinal’ | 2.14 2.1 999 | 99.2 | 99.9 99.2 99.9 98.6 3.85 2.4
‘es_cardinal_feminine’ 3.8 3.8 98.9 | 96.7 100 93.5 99.9 92.8 37.7 41.6
‘es_ordinal_masculine’ 0.38 0.4 95.2 | 96.7 | 99.7 96.7 100 97.1 0 1.9
‘spell’ 0.62 0.57 98.7 | 96.0 | 100 75.2 100 71.1 99.6 99.3
‘es_cardinal_masculine’ 1.75 2.16 98.2 | 89.2 100 98.8 99.8 98.6 87.0 88.1
‘es_ordinal_feminine’ 0 0.00004 n/a 0.0 n/a 0 n/a 0 n/a 100
‘mean’ 7.63 8 97.6 | 92.6 | 99.9 89.7 99.9 88.5 479 51.9

Table 2: Token proportions and classification accuracy across systems for Spanish. ‘mean’ depicts the average
accuracy of the remaining pre-coded and all the AG classes. Bold font highlights the best results

Language | Proportion of | Proportion of | Accuracy on | Accuracy on Overall
self tokens other tokens self tokens other tokens Accuracy
Train | Test | Train | Test | Train | Test | Train | Test | Train | Test
Tamil 0.73 | 075 | 027 | 0.25 |99.99 | 99.99 | 99.94 | 96.49 | 99.98 | 99.12
English 0.72 | 0.71 028 | 0.29 [99.97 | 99.99 | 99.55 | 97.5 | 99.85 | 99.26
Table 3: Token proportions and classification accuracy for Tamil and English
Plain | Punct | Date | Cardinal | Verbatim | Measure | Ordinal | Decimal | Digit | Fraction | Letters
Train Proportion | 70.2 18.8 6.13 1.13 0.82 0.21 0.11 0.20 0.04 0.0 2.39
Test Proportion | 70.3 18.7 6.08 1.30 0.71 0.19 0.15 0.16 0.04 0.001 2.27
Proteno 99.9 100 | 98.16 99.08 96.97 96.09 73.05 90.0 41.30 100.0 79.18
P&H 99.4 99.9 99.7 99.4 99.4 97.1 98.0 98.9 79.5 92.3 97.1
Z 99.9 99.9 99.5 99.4 99.9 97.2 98.1 100 86.4 81.3 97.5

Table 4: English Classification Accuracy: Proteno vs Pramanik and Hussain (2019) vs Zhang et al. (2019)

nisms which result into mismatch in the alignment
between the unnormalized token and their corre-
sponding normalized forms. However, we extract
their pre-defined categories on the dataset we used
and evaluate how many tokens within them were
normalized correctly. In Table 4 we compare Pro-
teno accuracy with the accuracy reported by Pra-
manik and Hussain (2019) (P&H) and by Zhang
et al. (2019) (Z). It illustrates the token normal-
ization accuracy achieved by Proteno on the test
dataset for all the categories which had instances
in the small subset we have used.

Proteno performs at par with the other systems
for most of the categories in spite of seeing much
fewer instances in the train set. For complex enti-
ties likes date Proteno gave 98.16% accuracy on
the 6% tokens available in test set. The system
(Z) gives 99.5% accuracy on its set by using a cov-
ering grammar learnt from large amounts of data.
We observe comparable performance for another
complex category like measure. On the other hand,
we see a significant drop in Proteno’s performance
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when normalizing ordinal and digit. This is due to
low representation of these classes during training
and hence during inference the model has a bias
towards predicting cardinal over them when seen
in similar context. This bias can be addressed by
having a more equitable representation of instances
of cardinals, ordinals and digits during training.

6 Conclusions

We propose a novel architecture suitable for scal-
ing Text Normalization for TTS across languages
using minimal language specific rules, limited an-
notated dataset and while curbing unacceptable er-
rors which makes it suitable for fast deployment in
industry applications. We treat Text Normalization
as a sequence classification problem while propos-
ing a granular tokenizer which enables majority of
normalizations to be automatically learnt from data.
We experiment across 3 languages: Spanish, Tamil
and English, while pre-coding maximum S classes
with language specific logic. We also demonstrate
that datasets of the order of 135k-500k tokens can
give competitive performance while still being of a



size practical for hand annotation.

Proteno consists of i) a granular tokenizer based
on Unicode classes, ii) a classifier of tokens into
classes, either predefined or added based on the
tokenized data, and iii) the class verbalizers, either
defined by linguists for predefined classes or au-
tomatically learnt from the data. BiLSTMs give
the best performance with WER=0.89 for Spanish,
WER=3.3 for Tamil and WER=2.6 for English. In
English, 88.2% of the normalizations were learnt
automatically from data while using less than 3% of
the data used in previous work (Zhang et al., 2019;
Pramanik and Hussain, 2019) and still showed com-
parable performance.

Given the simplicity of this architecture, we be-
lieve that Proteno can be used to benchmark TN for
many languages with limited annotated data. How-
ever, languages which are not separated by space or
highly inflected languages will be a challenge for
the proposed system (Nikuldsdéttir and Gudnason,
2019). We leave the adaptation of Proteno to more
challenging languages for future work.
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Abstract

Neural Machine Translation (NMT) has
achieved significant breakthrough in perfor-
mance but is known to suffer vulnerability to
input perturbations. As real input noise is dif-
ficult to predict during training, robustness is a
big issue for system deployment. In this paper,
we improve the robustness of NMT models by
reducing the effect of noisy words through a
Context-Enhanced Reconstruction (CER) ap-
proach. CER trains the model to resist noise
in two steps: (1) perturbation step that breaks
the naturalness of input sequence with made-
up words; (2) reconstruction step that defends
the noise propagation by generating better and
more robust contextual representation. Exper-
imental results on Chinese-English (ZH-EN)
and French-English (FR-EN) translation tasks
demonstrate robustness improvement on both
news and social media text. Further fine-
tuning experiments on social media text show
our approach can converge at a higher position
and provide a better adaptation.

1 Introduction

Recent techniques (Bahdanau et al., 2014; Wu et al.,
2016; Vaswani et al., 2017) in NMT have gained re-
markable improvement in translation quality. How-
ever, robust NMT that is immune to real input noise
remains a big challenge for NMT researchers. Real
input noises can exhibit in many forms such as
spelling and grammatical errors, homophones re-
placement, Internet slang, new words or even a
valid word used in an unfamiliar or a new context.
Unlike humans who can easily comprehend and
translate such texts, most NMT models are not ro-
bust to generate appropriate and meaningful trans-
lations in the presence of such noises, challenging
the deployment of NMT system in real scenarios.

*Work was done when the author was a staff in Institute
for Infocomm Research, A*STAR.
f Corresponding Author

Input | 385 T ESWR

Ref. | It’s super-fast to gain scores when playing games
over the night.

MT | Play the game all night and take points thief fast.
CER | Play games all night to score points quickly.
Input | OB T AR B0 7T —RER
FIET . o o o

Ref. | Ihave cut my hair, i cut off the punishment, i away
the awkwardness that hurt me.

MT | Igot my punishment, got rid of my embarrassment.
CER | I cut short my hair , cut off punishment , and cut
off my embarrassment that hurts me.

Table 1: Examples of NMT’s vulnerability in trans-
lating text containing noisy words (“zei" — “thief",
“chengfa" — “punishment"). CER mitigates the effect
of noisy words.

Noisy words have long been discussed in previ-
ous work. Aw et al. (2006) proposed the normaliza-
tion approach to reduce the noise before translation.
Tan et al. (2020a,b) addressed the character-level
noise directly in the NMT model. Though these
approaches addressed the effect of noisy words to
some extent, they are limited to spelling errors,
inflectional variations, and other noises definable
during training. In addition, strong external su-
pervision like a parallel corpus of noisy text trans-
lation or dictionary containing the translation of
those noisy words are hard and expensive to obtain;
they are also not practical in handling real noises
as noisy words can exhibit in random forms and
cannot be fully anticipated during training.

Belinkov and Bisk (2018) pointed out NMT mod-
els are sensitive to small input perturbations and if
this issue is not addressed, it will continue to bot-
tleneck the translation quality. In such cases, not
only the word embeddings of perturbations may
cause irregularities with the local context, the con-
textual representation of other words may also get
affected by such perturbations (Liu et al., 2019).
This phenomenon applies to valid words in unfa-
miliar context as well, which will also cause the
translation to fail as illustrated in Table 1 (case 2).

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 80—-88
June 6-11, 2021. ©2021 Association for Computational Linguistics



In this paper, we define “noisy word” as a valid
or invalid word that is uncommonly used in the
context or not observed frequently enough in the
training data. When encoding a sentence with such
a noisy word, the contextual representation of other
words in the sentence are affected by the “less
jointly trained" noisy word embeddings. We refer
this process as “noise propagation”. Noise propa-
gation can extend to the decoder and finally distort
the overall translation.

The main intuition of our proposed method is
to minimize this noise propagation and reduce the
irregularities in contextual representation due to
these words via a Context-Enhanced Reconstruc-
tion (CER) approach. To reduce the sensitivity of
contextual towards noisy words in the encoder, we
inject made-up words randomly to the source side
of the training data to break the text naturalness.
We then use a Noise Adaptation Layer (NAL) to
enable a more stable contextual representation by
minimizing the reconstruction loss. In the decoder,
we add perturbations with a semantic constraint
and apply the same reconstruction loss. Unlike ad-
versarial examples which are crafted to cause the
target model to fail, our perturbation process does
not have such constraint and does not rely on a
target model. Our input perturbations are randomly
generated, representing any types of noises that can
be observed in real-world usage. This makes the
perturbation process generic, easy and fast. Follow-
ing (Cheng et al., 2018), we generate semantically
related perturbations in the decoder to increase the
diversity of the translations.

Together with NAL, our model shows its ability
to resist noises in the input and produce more ro-
bust translations. Results on ZH-EN and FR-EN
translation significantly improve over the baseline
by +1.24 (MTO03) and +1.4 (N15) BLEU on news
domain, and +1.63 (Social), +1.3 (mtntl8) on so-
cial media domain respectively. Further fine-tuning
experiments on FR-EN social media text even wit-
ness an average improvement of +1.25 BLEU over
the best approach.

2 Related Work

Robust Training: Robust training has shown to
be effective to improve the robustness of the mod-
els in computer vision (Szegedy et al., 2013). In
Natural Language Processing, it involves augment-
ing the training data with carefully crafted noisy
examples: semantically equivalent word substitu-
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tions (Alzantot et al., 2018), paraphrasing (Iyyer
et al., 2018; Ribeiro et al., 2018), character-level
noise (Ebrahimi et al., 2018b; Tan et al., 2020a,b),
or perturbations at embedding space (Miyato et al.,
2016; Liang et al., 2020). Inspired by Lei et al.
(2017) that nicely captures the semantic interac-
tions in discourse relation, we regard noise as a dis-
ruptor to break semantic interactions and propose
our CER approach to mitigate this phenomenon.
We make up “noisy” words randomly to act as ran-
dom noise in the input to break the text naturalness.
Our experiment demonstrates its superiority in mul-
tiple dimensions.

Robust Neural Machine Translation: Methods
have been proposed to make NMT models resilient
not only to adequacy errors (Lei et al., 2019) but
also to both natural and synthetic noise. Incorpo-
rating monolingual data into NMT has the capacity
to improve the robustness (Sennrich et al., 2016a;
Edunov et al., 2018; Cheng et al., 2016). Some non
data-driven approaches that specifically designed
to address the robustness problem of NMT (Sper-
ber et al., 2017; Ebrahimi et al., 2018a; Wang et al.,
2018; Karpukhin et al., 2019; Cheng et al., 2019,
2020) explored effective ways to synthesize adver-
sarial examples into the training data. Belinkov
and Bisk (2018) showed a structure-invariant word
representation capable of addressing multiple typo
noise. Cheng et al. (2018) used adversarial stability
training strategy to make NMT resilient to arbitrary
noise. Liu et al. (2019) added an additional pho-
netic embedding to overcome homophone noise.
Meanwhile, Michel and Neubig (2018) released
a dataset for evaluating NMT on social media text.
This dataset was used as a benchmark for WMT 19
Robustness shared task (Li et al., 2019) to improve
the robustness of NMT models on noisy text. We
show our approach also benefits the fine-tuning
process using additional social media data.

3 Approaches

We propose a Context-Enhanced Reconstruction
(CER) approach to learn robust contextual repre-
sentation in the presence of noisy words through a
perturbation step and a reconstruction step in both
encoder and decoder during model training. Fig-
ure 1 shows the architecture.

The perturbation step automatically inserts
made-up words in the input sequence x to gen-
erate a noisy example x’. The noisy example mim-
ics input where text naturalness is broken due to
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Figure 1: The architecture of CER (a), and the use of NAL in training (b) and testing (c). The solid lines indicate
the flow for original input, while the dotted lines for noisy input, generated in the perturbation step.

the noisy words. Similarly, we perturb the output
sequence y to y’ using a semantic constraint to
generate noisy examples for the decoder to have
more diversity in the translations.

The reconstruction step in the model aims to re-
store the contextual representation c® of X to be
similar to its corresponding original contextual rep-
resentation c* in the encoder. Specifically, under
the Transformer architecture (Figure 1), the recon-
struction step aims to stabilize and minimize the
disruption of attention distribution for a word over
the whole input in the presence of inserted noise.
The stabilization is needed for both clean and noisy
words as both of their contextual representations
are affected. For a noisy word, reconstruction re-
duces the attention to itself and encourages the
construction of the contextual representation to
leverage more on its clean neighbors. For clean
words, reconstruction works as a denoise module
to mitigate the interference of noisy words. For ¢¥’
in the decoder, the aim is to generate more exam-
ples with similar context as ¢¥. The reconstruction
helps to normalize the contextual representation of
semantically similar words.

3.1 Perturbing Input Text with Noise

We insert made-up words, representing any kinds
of noise, to disturb the contextual representation
during training. To create those words, we build
a made-up dictionary D, with M made-up words.
As shown in Figure 1(a), made-up words are sim-
ply indexed slots in D, , whose embeddings are
randomly initialized with no prior restriction and
updated during training just as valid words. During
the perturbation step, we randomly select multiple
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positions in each input sequence based on proba-
bility o, and replace the words with any arbitrary
made-up words in D

For the decoder, as the aim is not to insert noise
but to increase the diversity of translation, we add
small perturbations with a semantic constraint to
make the model robust. Specifically, we randomly
select multiple positions in each target sequence
with a probability o, and perturb the corresponding
words. For the word y; chosen to be perturbed, we
create a dynamic set V), consisting of m words
having the highest cosine similarity with it (exclud-
ing y;). We average the embeddings of the words
in V,, as the perturbation for y;.

M

Vy, = top_m (cos(e’,e’))
y; €Dy, j#1

Ly

Yj GVyi

vi _

e

= @)
Where D, is the target dictionary, e¥/ is the target
word embedding for y; and eYi is the perturbed
embedding for y;.

3.2 Reconstructing Contextual
Representation

As the injected noise in x’ affects the self-attention
mechanism in producing correct contextual repre-
sentation, we regularize the contextual representa-
tion using a Noise Adaptation Layer (NAL) imme-
diately after the self-attention layer as depicted in
Figure 1(a). This NAL is trained together with the
NMT model and used as a reconstruction module
during testing (See Figure 1(b),(c)).

Formally, let ¢ and cf' be the outputs of the
self-attention in the I-th encoder layer for x and x’



respectively. We train the NAL by:

|S > chl NALE)I® 3

(x,y)es I=1

cnal Bnal

Where 67, are parameters of NAL, S'is the train-
ing corpus and N is the encoder layer size. Given
¢, NAL attempts to output a more correct con-
textual representation guided by c*. We use a sin-
gle layer feed-forward network (FFN) in (Vaswani
etal., 2017) as our NAL implementation. Similarly,
the reconstruction loss for decoder is:

Z Zucl
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3.3 Model Training

We apply the perturbation step at the embedding
layer, see Figure 1. The inserted noise in x’ and y’
would also receive gradient from the final loss func-
tion and update just like other clean words. NAL is
added at each Transformer layer where the outputs
are only used to calculate the reconstruction loss
and not passed to the next layer. On the other hand,
the output of FFN is propagated to the next layer
as usual. The reconstruction step mainly serves as
a stabilizer to prevent the noise from propagating.

The final training objective L is the combina-
tion of the above three loss functions, the original
translation loss, the reconstruction loss for the en-
coder and the reconstruction loss for the decoder.
Both A\, and A, are set empirically to count for the
relative importance.

£ = l:nmt (enmt) + /\Z‘C'TILal (e'rzLal) + A ‘C'na,l( Zul) (5)

4 Experiment Settings

Experiments are conducted on ZH-EN and FR-EN
translation tasks for both news and social media
domains. We also use social media text to fine-tune
the NMT systems on FR-EN.

4.1 Data

ZH-EN: The training data consists of 1.25M sen-
tence pairs extracted from LDC. For news domain,
we use NIST MTO2 as the development set and
select the best model to test MT03, MT04, MTOS,
MTO06 and MTOS8 news test sets. For social media
domain, we create a test set (Social) consisting of
2000 sentences with three human annotated refer-
ences. The source sentences are collected from pub-
lic social media platforms in four Chinese-speaking
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regions: Mainland China, Hong Kong, Taiwan and
Singapore !.

FR-EN: We use the same datasets as Michel and
Neubig (2018). The training set consists of 2.16M
sentence pairs extracted from europarl-v7 and
news-commentary-vi0. We use the newsdiscuss-
dev2015 as development set and evaluate the model
on two news test sets, newstest2014 (N14) and
newsdiscusstest2015 (N15). We also evaluate on
two social media test sets: mntl8 (Michel and
Neubig, 2018) and mtnt19 (Li et al., 2019).
FR-EN Fine-Tuning: We use the noisy training
set (mtnttrain) provided by Michel and Neubig
(2018) to fine-tune the FR-EN model.

We use fairseq’s implementation of Trans-
former (Ott et al., 2019). In evaluation, we report
case-insensitive tokenized BLEU for ZH-EN (Pap-
ineni et al., 2002) and sacre-BLEU (Post, 2018)
for FR-EN. Following Michel and Neubig (2018),
we do not use development set but only report best
results on three social media test sets.

We segment the Chinese words using THU-
LAC (Li and Sun, 2009) and tokenize both French
and English words using t okenize.perl? We
apply BPE (Sennrich et al., 2016b) to get sub-word
vocabularies for the encoder and decoder, both with
20K merge operations.

The hyper-parameters setting is the same as
transformer-base in (Vaswani et al., 2017)
except that we set dropout rate as 0.4 in all our
experiments. Our proposed models are trained on
top of Transformer baseline for efficiency purpose,
where additional parameters from the embeddings
of D and ReL are uniformly initialized. The
madeup dictionary size M is set to 10,000. The
size of dynamic set m is set to 3. The probability
o, and o, are both set to 0.1 and balance coefficient
Az and A, are both set to 1.

4.2 Baseline Models

We use Transformer as our baseline.

ZH-EN: We compare with Wang et al. (2018);
Cheng et al. (2018, 2019). Wang et al. (2018) use
a data augmentation approach by randomly replac-
ing words in source and target sentences with other
in-dictionary words. Cheng et al. (2018) use ad-
versarial stability training to make NMT resilient
to noise. Cheng et al. (2019) employ a white-box
approach to synthesize adversarial examples.

! Available
CER-MT.
Zhttps://github.com/moses-smt/mosesdecoder

at https://github.com/wwxu2l/



Model H MTO02 (DEV) [ MT03 MT04 MT05 MT06 MTO8 News Ave. [ Social
Existing systems
Wang et al. (2018) 47.13 46.68 4741 46.66 46.62  38.46 45.17 23.20
Cheng et al. (2018) 46.10 44.07 45.61 4345 4444 3494 42.50 21.27
Cheng et al. (2019) 47.06 46.48 4739 4658 4695  37.38 44.96 22.74
Our systems
Transformer 46.98 4635 4727 4635 46.77  38.20 45.00 22.41
+ CER-Enc 47.65 46.72 4753 47.06 47.04 38.53 45.38 23.81
+ CER 48.34 4759 4821 47.29 47.64 39.33 46.01 24.04

Table 2: Case-insensitive BLEU scores (%) on ZH-EN translation. MTO2 is our development set.

Model [[ NI4  NI5 [ mmt8  mmtl9
Exising systems
Wang et al. 2902 31.1 25.0 28.1
Michel and Neubig 289 30.8 233 26.2
Zhou et al.* N.A. N.A. 24.5 30.3
Our systems
Transformer 29.7  31.0 25.2 28.0
+ CER-Enc 304 317 26.1 28.7
+ CER 30.7 324 26.5 29.1

Table 3: sacreBLEU (%) on FR-EN translation task.
*Zhou et al. use more data to train their model.

FR-EN: In addition to Wang et al. (2018), we com-
pare with Michel and Neubig (2018); Zhou et al.
(2019); Vaibhav et al. (2019) on FR-EN or FR-EN
Fine-Tuning tasks. Michel and Neubig (2018) do
the first benchmark of the noisy text translation
tasks in three languages. Vaibhav et al. (2019)
leverage effective synthetic noise to make NMT re-
silient to noisy text. We implement their approach
on Transformer backbone. For a fair comparison,
we limit the data to train back-translation mod-
els only with mtnttrain. Zhou et al. (2019) adopt
a multitask transformer architecture with two de-
coders, where the first decoder learns to denoise
and the second decoder learns to translate from the
denoised text. They adopt the approach proposed
by Vaibhav et al. (2019) to synthesize the noisy text
for their first decoder.

We do not compare our model with (Berard et al.,
2019; Helcl et al., 2019) as they use much more
out-domain data, a great number of monolingual
data and a bigger Transformer model, and hence
not comparable with our experimental settings.

5 Results and Analysis

5.1 Comparison with Baseline Models

Table 2 and Table 3 show the performance on ZH-
EN and FR-EN tasks. We show the results of ap-
plying CER only to the encoder (+ CER-Enc), and
to both the encoder and decoder (+ CER).
As illustrated, our approach improves the news
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Figure 2: BLEU improvements compared to Trans-
former baseline shown in Table 2 and Table 3 when
applying noise-insertion methods.

text translations on all test sets for both ZH-EN and
FR-EN and outperforms the Transformer baseline
in terms of average BLEU by +1.01 and +1.2 on
ZH-EN and FR-EN respectively, illustrating the
superiority of our approach.

The performance on social media test sets shows
significant improvement with up to +1.63 BLEU
over Transformer and +0.84 BLEU over the best ap-
proach (Wang et al., 2018) on ZH-EN. For FR-EN,
our model outperforms Wang et al. (2018) by +1.5
and +1.0 BLEU on mtntI8 and mtnt19 respectively.
Zhou et al. (2019) use mtnttrain and TED (Qi et al.,
2018) to synthesize noisy sentences for their first
decoder, hence effectively they are exploiting in-
domain data during training and thus not quite a fair
comparison in the evaluation. Nevertheless, CER
still significantly outperforms Zhou et al. (2019) by
+2.0 BLEU on mint18.

5.2 Effect of Noise

We investigate the effect of different noise-insertion
methods by dynamically inserting noise into the
source side of the original training set using differ-
ent strategies with a same probability 0.
Madeup: Our approach to add made-up words.
Semantics: We test our semantic constraint in the
decoder to assess if it benefits the encoder.
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Figure 3: BLEU scores of CER variants.

Dropout: We replace word embeddings with all-0
vectors, similar to enlarging the dropout rate.
Gaussian: Following the feature-level perturba-
tions of Cheng et al. (2018), we add the Gaussian
noise to a word embedding to simulate the noise.
Random: We replace a word with an arbitrary word
in the dictionary. This would result in a valid word
being placed in an unreasonable context.

Figure 2 shows the BLEU improvement of var-
ious noise-insertion methods on social media test
sets. We find that nearly all kinds of noise-insertion
methods improve the robustness of MT with the
exception of Dropout. Since we have already set
the dropout rate to an optimal rate, inserting ad-
ditional Dropout noise does not increase but de-
creases the performance. As shown, Madeup im-
proves the performance nearly twice than the rest
of the noise-insertion methods. We conjecture
Semantics, Dropout and Gaussian may be small
and not diverse enough to simulate the real noisy
words. Both Random and Madeup can break the
text coherence. However, Random uses a random
in-dictionary word, which can place a valid word in
an unreasonable context and cause its embedding
to update in a wrong direction. In fact, this method
improves the robustness of NMT models at the cost
of those replaced words. Our Madeup can entirely
avoid this cost as we use made-up words to work as
noisy words and does not cause any context change
of all in-dictionary words.

5.3 Effect of NAL

To further gain insights on how NAL helps improve
the robustness of NMT models. We create three
variants to aid our analysis:

CER-inactive: We do not activate NAL at testing
time. The contextual representation is feed directly
into later FFN. This variant is to test the effective-
ness of NAL.

CER-con: We remove NAL but only add a con-
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Model [[ mtntI8  mtntl9
Existing systems
Michel and Neubig 30.3 N/A
Wang et al. 35.1 36.7
Zhou et al. 31.7 32.8
Vaibhav et al. 36.0 37.5
Our systems
Transformer (Base) 25.2 28.1
+FT 35.2 374
+FT w/ CER 37.3 38.7

Table 4: sacreBLEU on FR-EN fine-tuning task.

straint to ensure {c*, X } and {c¥, c¢¥'} to be close
respectively at training time. This forces the self-
attention layer to reconstruct the correct contextual
representation itself. This variant is to demonstrate
the necessity to set apart the context generation
module (self-attention layer) and the reconstruc-
tion module (NAL).

CER-D: We borrow the adversarial stability train-
ing strategy proposed in Cheng et al. (2018) here.
In this variant, NAL is replaced by a discriminator
and 62, and 6Y , are changed to the adversarial
learning loss in Cheng et al. (2018). The purpose
is to assess the effectiveness of NAL and the dis-
criminator in context reconstruction.

Figure 3 shows the results of the three variants
on three social media test sets. From the figure, we
make the following observations.

NAL is effective at Test Time. The activation
of NAL at test time helps to produce more reli-
able contextual representation. Notably, NAL gains
+1.19 BLEU on Social.

NAL needs to be learnt separately. As shown in
CER-con, by forcing self-attention layer to do both
tasks (context generation and reconstruction), the
performance improvement gets affected by at least
0.4 BLEU.

NAL is more effective than a discriminator to
guide reconstruction. The improvements are less
significant in all test sets when using a discrimi-
nator (CER-D) comparing to CER. Therefore, we
can conclude that NAL is more effective than a dis-
criminator to reconstruct the perturbed contextual
representation and CER outperforms all variants.

5.4 FR-EN Fine-Tuning on Social Media Text

We fine-tune the same Transformer model in Ta-
ble 3 with the social media data mtnttrain (+FT)
and further include CER in the fine-tuning (+FT
w/ CER). Table 4 shows our performance (+FT
w/ CER) with other four fine-tuning approaches
on mtnttrain. It shows that our CER also bene-



Model Social
Google Translate 38.59
Baseline 39.01
Ours | +FT 40.56 (+3.97%)
+FT w/ CER || 40.82 (+4.64%)

Table 5: Case-insensitive BLEU scores (relative im-
provement) on large-scale ZH-EN translation system.

fits the fine-tuning process and outperforms all the
approaches in two noisy test sets. Specifically, it
gains +2.1 and +1.3 BLEU over +FT on mtntI8
and mtnt19 and outperforms Vaibhav et al. (2019)
by +1.3 and +1.2 BLEU respectively.

5.5 Experiments on Large-Scale Datasets

We first train a ZH-EN baseline model using 25M
sentence pairs, which are mainly in news domain.
Similar to the setting in Table 4, we apply both
simple finetuning (+FT) and our CER (+ FT w/
CER) approach using 125K social media training
data. We evaluate those models on Social. We also
include the performance of Google Translate > here
to show the competitiveness of our baseline model.

As shown in Table 5, our CER approach can still
benefit the fine-tuning process even on the strong
baseline. It should be noted that the baseline has al-
ready maintained high robustness with large-scale
training data where improvement in such a model
is hard to obtain. In fact, 125K in-domain data can
only contribute to 1.55 BLEU improvement. Under
this circumstance, the 0.26 BLEU improvement
brought by CER should be highly valued consid-
ered no additional fine-tuning data is used.

6 Conclusions

In this work, we propose an approach to reduce the
vulnerability of NMT models to input perturbations.
Our input perturbation is easy, fast and not specific
to a target victim model. Experimental results show
our proposed approach improves the robustness
on both news and social media text and helped to
improve the translation of real input.
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Abstract

We propose to improve unsupervised neural
machine translation with cross-lingual super-
vision (CUNMT), which utilizes supervision
signals from high resource language pairs to
improve the translation of zero-source lan-
guages. Specifically, for training En—-Ro sys-
tem without parallel corpus, we can leverage
the corpus from En-Fr and En-De to collec-
tively train the translation from one language
into many languages under one model. Simple
and effective, CUNMT significantly improves
the translation quality with a big margin in
the benchmark unsupervised translation tasks,
and even achieves comparable performance to
supervised NMT. In particular, on WMT’14
En-Fr tasks CUNMT achieves 37.6 and 35.18
BLEU score, which is very close to the large
scale supervised setting and on WMT’16 En-
Ro tasks CUNMT achieves 35.09 BLEU score
which is even better than the supervised Trans-
former baseline.

1 Introduction

Neural machine translation (NMT) has achieved
great success and reached satisfactory translation
performance for several language pairs (Bahdanau
et al., 2015; Gehring et al., 2017; Vaswani et al.,
2017). Such breakthroughs heavily depend on the
availability of colossal amounts of bilingual sen-
tence pairs, such as the some 40 million parallel
sentence pairs used in the training of WMT14 En-
glish French Task. As bilingual sentence pairs are
costly to collect, the success of NMT has not been
fully duplicated in the vast majority of language
pairs, especially for zero-resource languages. Re-
cently, (Artetxe et al., 2018b; Lample et al., 2018a;
?) tackled this challenge by training unsupervised
neural machine translation (UNMT) models using
only monolingual data, which achieves consider-
ably high accuracy, but still not on par with that of
the state of the art supervised models.
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(c) CUNMT w/o Para.

(d) CUNMT w/ Para.

Figure 1: Different settings for zero-resource NMT.
Full edges indicate the existence of parallel training
data. Dashed blue edges indicate the target translation
pair. “CUNMT w/o Para.” jointly train several unsu-
pervised pairs in one model with unsupervised cross-
lingual supervision. “CUNMT w/ Para.” train unsuper-
vised directions with supervised cross-lingual supervi-
sion, such as jointly train unsupervised En-De with
supervised En—-Fr.

Most previous works focused on modeling the
architecture through parameter sharing or proper
initialization to improve UNMT. We argue that
the drawback of UNMT mainly stems from the
lack of supervised signals, and it is beneficial
to transfer multilingual information across lan-
guages. In this paper, we take a step towards prac-
tical unsupervised NMT with cross-lingual su-
pervision (CUNMT) — making the most of the
signal from other language. We investigate two
variants of multilingual supervision for UNMT.
a) CUNMT w/o Para.: a general setting where un-
related monolingual data can be introduced. For
example, using monolingual Fr data to help the
training of En-De (Figure 1(c)). b) CUNMT w/
Para.: a relatively strict setting where other bilin-
gual language pairs can be introduced. For ex-
ample, we can naturally leverage parallel En-Fr
data to facilitate the unsupervised En-De transla-
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tion (Figure 1(d)).

We introduce cross-lingual supervision which
aims at modeling explicit translation probabilities
across languages. Taking three languages as an
example, suppose the target unsupervised direc-
tion is En — De and the auxiliary language is
Fr. Our target is to model the translation prob-
ability p(De|En) with the support of p(Fr|En)
and p(De|Fr). For forward cross-lingual super-
vision, the system NMTr,_,p. serves as a teacher,
translating the Fr part of parallel data (En,Fr) to
De. The resulted synthetic data (En,Fr,De) can
be used to improve our target system NMTg,_spe.
For backward cross-lingual supervision, we trans-
late the monolingual De to Fr with NMTpe ey,
and then translate Fr to En with NMTg,_g,. The
resulted synthetic bilingual data (De,En) can be
used for NMTg,_pe as well.

Our contributions can be summarized as fol-
low: a) Empirical evaluation of CUNMT on six
benchmarks verifies that it surpassed individual
MT models by a large margin of more than 3.0
BLEU points on average, and also bested several
strong competitors. Particularly, on WMT 16 En-
Ro tasks, CUNMT surpass the supervised base-
line by 0.7 BLEU, showing the great potential for
UNMT. b) CUNMT is very effective in the use of
additional training data. MBART or MASS intro-
duces billions of sentences, while CUNMT only in-
troduces tens of millions of sentences and achieves
super or comparable results. It shows the impor-
tance of introducing explicit supervision.

2 The Proposed CUNMT

CUNMT is based on a multilingual machine trans-
lation model involving supervised and unsuper-
vised methods with a triangular training structure.
The original unsupervised NMT depends only on
monolingual corpus, therefore the performances
of these translation directions cannot be guaran-
teed.

Formally, given n different languages L;, x; de-
notes a sentence in language L;. D; denotes a
monolingual dataset of L;, and D; ; denotes a par-
allel dataset of (L;, L;). We use £ to indicate the
set of all translation directions with parallel data
and WV to indicate the set of all unsupervised trans-
lation directions respectively. The goal of CUNMT
is to minimize the log likelihood of both unsuper-
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Figure 2: Forward and backward cross lingual trans-
lation for auxiliary data. The dashed blue arrow indi-
cates target unsupervised direction. The solid arrow in-
dicates using the parallel data. The dashed black arrow
indicates generating synthetic data.
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2.1 Direct & Cross-lingual Supervision

Direct supervision We will first introduce the
notion of direct supervision loss, which only con-
sider the translation probability between two dif-
ferent languages.

For supervised machine translation models,
given parallel dataset D,; with source language
L, and target language L;, we use L5 ,, to denote
the supervised training loss from language L; to
language L;. The training loss for a single sen-
tence can be defined as:

‘Cs~>t - (Is,xt)NDs,t [_ log P(l‘t‘ﬂfs)] (2)

For unsupervised machine translation models,
only monolingual dataset Ds; and D, are given.
We use LY, to denote the unsupervised training
loss from language L to language L;. We use
Bs_:+ to denote this back translation procedure.
After that, we can use these data to train the model
with supervised method from L to L;. The losses
of the dual structural are:

[’t~>s :EstDs [_ log P(‘(ES ’gS-)t (xS)L

3)
EB t =Eg t’VDt[ log P($t’9t—>s(wt)]a

where gs_,+(s) translate the sentence in language
L to L, that is, the back translation of x5. Then



the total loss of an unsupervised machine transla-
tion is:

i E?*)s + ‘C’fﬁt' “

Cross-lingual supervision When extend to the
multilingual scenario, it is natural to introduce in-
direct supervision across languages. Given n dif-
ferent languages, for each language pair (L;, L;),
we can easily obtain the translation probability of
P(x;|x;) through the direct supervised model £°
or LY. We use EAS_M to indicate the indirect super-
vised loss, which can be defined as:

n
ﬁs%t = E )\iﬁs%i%t
1=0,i#s,t

&)

where A is the coefficient. T

Due to the lack of triples data (L;, Ly, Lj), it is
difficult to directly estimate the cross translation
loss EAS_H-_,t. We therefor propose the backward
and forward indirect supervision to calculate the
cross loss:

ﬁs—>j—>t = Extht [_ log P<xt|9t—>j—>s(37t))]
+ EwsNDs [_ log P(fs—>j—>t(335)‘$s>]
(6)

where g, j_s(z¢) is the indirect backward trans-
lation which translate x; to language L, and
fs—j—s(x¢) is the indirect forward translation
which translate x4 to language L;.

2.2 Training Procedure of CUNMT

The procedure of CUNMT includes two main
steps: multi-lingual pre-training and iterative
multi-lingual training.

Multi-lingual Pre-training Due to the ill-posed
nature, it is also important to find a good initializa-
tion to associate the source side languages and the
target side languages. We propose a Multi-lingual
Pre-training approach, which jointly train the un-
supervised auto-encoder and supervised machine
translation. Intuitively, the multi-lingual joint pre-
training can take advantage of transfer learning
and thus benefit the low resource languages. Apart
form the monolingual data, pre-training can also
leverage the bilingual parallel data. We suggest the
supervised data provides strong signal to optimize
the network, which also advantage the unrelated
unsupervised NMT pre-training. For example, it
is beneficial to use the supervised En-Fr model to
initialize the unsupervised De-F r model.
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Indirect Supervised Training The goal is to
train a single system that minimize the jointly loss
function of LEUNMT,

Generally, CUNMT can be applied to a restrict
unsupervised scenario where only monolingual
are provided, and also can be extended to a un-
restricted scenario where parallel data are intro-
duced. For the sake of simplicity, we describe
our method on three language pairs, which can be
easily extended to more language pairs. Suppose
that the three languages are denoted as the triad
(En,Fr,De), and we have monolingual data for
all the three languages and also bilingual data for
En-Fr. The target is to train an unsupervised En
—Fr system. The detailed method is as follows:

1. Sample batch of monolingual zg,, Xy, Tpe
sentences from Dz, Dy, Dpe

2. Sample batch of parallel sentence from
Dg, v+ to generate supervised data S

3. Back translate xg,,Trr,Tpe tO generate
pseudo data B

4. Indirect back translate rg,, Ty, Tpe to gen-
erate pseudo data B

5. Indirect forward translate zg,,Zrr, Tpe tO
generate pseudo data F*

6. Merge B, B!, F' and S to jointly train
CUNMT.

7. Repeat 1-6 until convergence.

For indirect or direct supervision, we follow the
Equation (6), which will adopts one step forward
translation if parallel data is provided. Since we
train all directions in one model, the pseudo data
will include all directions. In this setting, it con-
tains: En <> Fr, En <> De, Fr < De with both
direct and indirect directions.

3 Experiments

3.1 Datasets and Settings

We conduct experiments including (De,En,Fr),
(Fr,En,De), and (Ro,En,Fr). For monolin-
gual data of English, French and German, 20
million sentences from available WMT mono-
lingual News Crawl datasets were randomly se-
lected. For Romanian monolingual data, all of the
available Romanian sentences from News Crawl
dataset were used and and were supplemented
with WMT16 monolingual data to yield a total of
in 2.9 million sentences. For parallel data, we use
the standard WMT 2014 English-French dataset
consisting of about 36M sentence pairs, and the



(Fr,En,De) (De,En,Fr) (Ro,En,Fr)

En-Fr Fr-En En-De De-En En-Ro Ro-En
Supervised Transformer 41.0 - 34.0 38.6 343 34.0
Comparison systems of UNMT
UNMT (Lample et al., 2018c) 25.1 24.2 17.2 21.0 21.2 194
EMB (Lample and Conneau, 2019) 29.4 29.4 213 27.3 27.5 26.6
MLM (Lample and Conneau, 2019)  33.4 333 26.4 343 333 31.8
MASS (Song et al., 2019) 37.5 34.9 28.3 35.2 35.2 33.1
MBART (Liu et al., 2020) - - 29.8 34.0 35.0 30.5
CUNMT
CUNMT w/o Para. 3290 3193 2303 31.01 3323 3234
CUNMT w/ Para. 3437 3277 2399 3198 3395 33.15
CUNMT + Forward 3588 33.64 2650 33.11 3412 33.61
CUNMT + Backward + Forward 37.60 3518 27.60 34.10 35.09 33.95

Table 1: Main results comparisons. MASS uses large scale pre-training and back translation during fine-tuning.
MBART employ large scale multi-lingual pretraining with billions sentences. The last four lines are the results of

our method.

standard WMT 2014 English-German dataset con-
sisting of about 4.5M sentence pairs. For anal-
yses, we also introduce the standard WMT 2017
English-Chinese dataset consisting of 20M sen-
tence pairs. Consist with previous work, we re-
port results on newstest 2014 for English-French
pair, and on newstest 2016 for English-German
and English-Romanian.

In the experiments, CUNMT is built upon Trans-
former models. We use the Transformer with 6
layers, 1024 hidden units, 16 heads. We train
our models with the Adam optimizer, a linear
warm-up and learning rates varying from 10~ to
5 x 107, The model is trained on 8 NVIDIA
V100 GPUs. We implement all our models in Py-
Torch based on the code of (Lample and Conneau,
2019)!. All the results are evaluated on BLEU
score with Moses scripts, which is in consist with
the previous studies.

3.2 Main Results

The main results of similar pairs are shown in Ta-
ble 1. We make comparison with three strong un-
supervised methods:

e MLM (Lample and Conneau, 2019) uses
large scale cross-lingual data to train the
mask language model and then fine-tune on
unsupervised NMT.

e MASS (Song et al., 2019) is a sequence to
sequence model pre-trained with billions of

"https://github.com/facebookresearch/
X1LM
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monolingual data.

e MBART (Liu et al., 2020) introduces tens of
billions monolingual data to pre-train a deep
Transformer model.

CUNMT is very efficient in the use of multi-lingual
data. While the pretrained language model is ob-
tained through several hundred times larger mono-
lingual or cross-lingual corpus, CUNMT achieves
superior or comparable results with much less
cost.

The model was improved by using synthetic
data of cross translation that is based on the
jointly trained model. The results of “CUNMT
+ Forward” are from the model tuned by only 1
epoch with about 100K sentences. This method
is fast and the performances are surprisingly ef-
fective. The “CUNMT + Forward + Backward”
denotes that, besides forward translation, we also
use monolingual data and cross translate it to the
source language. This method yielded the best
performance by outperforming the “CUNMT w/o
Para.” by more than 3 BLEU score on average.
The improvements show great potential for intro-
ducing indirect cross lingual supervision for unsu-
pervised NMT.

When compared with supervised approaches,
CUNMT shows very promising performance. For
the large scale WMT14 En-Fr tasks, the gap be-
tween CUNMT and supervised baseline is closed
to 3.4 BLEU score. And for the medium WMT16
En-Ro task, CUNMT performs even better than the
supervised approach.



4 Analyses

In this part, we conduct several studies on CUNMT
to better understand its setting.

80 100 120 20 40 60 80 100

Figure 3: Results comparison for CUNMT fine-tuning
with different auxiliary data. “Bw” only adopts cross-
lingual backward translation synthetic data, and “Fw”
only adopts cross-lingual forward translation synthetic
data. The black horizontal is the baseline of UNMT.
The horizontal axis is epoch and the vertical axis is the
BLEU score. Epoch size is 100K sentences.

Backward or Forward Here we have explored
the effect of cross-lingual backward supervision
and cross-lingual forward supervision, and plot
the performance curves along with the training
procedure in Figure 3. The comparison system
is CUNMT trained only with monolingual data.
To make a fair comparison, we use “CUNMT w/
Para.”” as the baseline model and fine-tuning it
with only indirect forward supervision or indirect
backward supervision. We conduct experiments
on WMT16 En-De and En-Ro tasks. Clearly,
the forward supervision outperforms the backward
one with big margins, which shows the importance
of introducing the forward supervision for mul-
tilingual UNMT. It is still interesting to find that
only introducing the indirect backward translation
achieves better results than the unsupervised base-
line.

We suppose the reasons for the performance gap
is that, a) The UNMT baseline has included the
traditional direct back translation, therefore the
information gain from indirect backward transla-
tion is limited compared to the forward transla-
tion. b) The indirect forward translation provides
a more direct way to model the relation across dif-
ferent languages. The results in consist with the
previous research that pivot translation can help
low resource language translation.

Robustness on Parallel Data Scale As shown
in Table 4, CUNMT is robust to the parallel data

120
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Auxiliary Direction En-Ro Ro-En
En-De 3486  33.18
En-De (50%) 3472 32.85
En-De (25%) 3452 3233

Table 2: Robustness of Parallel Data Scale. Mainly
evaluated on unsupervised En-Ro direction with dif-
ferent auxiliary parallel data settings.

scale. The results also dovetail with the unsuper-
vised En-Fr experiments in Table 1. As it turns
out the smaller parallel data of En-De was able to
significantly improve the performance of unsuper-
vised En-Fr translation. We then reduce the scale
of the parallel data En-De and surprisingly find
that even with only 25% supervised data, CUNMT
still works well. The experiments demonstrate that
CUNMT is robust and has great potential to be ap-
plied to practical systems.

Auxiliary Direction En-Ro Ro-En
En-Fr 35.09  33.95
En-De 3486  33.18
En-Zh 33.85 32.86
En-De-Fr 3526  34.20

Table 3: Effects of the Auxiliary Language. Mainly
evaluated on unsupervised En-Ro direction with differ-
ent parallel data settings.En-Fr,En-De and En-Zh are
the auxiliary parallel data for training En-Ro. En-De-
Fr is the combination of the En-De and En-F r parallel
data.

Importance of the Auxiliary Language Table
3 shows effects of the auxiliary language. We first
switch the parallel data from En-Fr to En-De, the
performance is almost consistent. We then switch
the parallen data to En — Zh, where Zh is dis-
similar with Ro, the performance increases. This
is in line with our expectations, that similar lan-
guages make it easier for transfer learning. Fi-
nally, we extend the parallel data to En-De and
En-Fr, and achieves further benefits. Compared
with , we suggest the language similarity is more
important than the auxiliary data scale.

Benefits as All in One Model In table 4, the
performance of supervised directions are shown
to illustrate the effects on which jointly training
a single system has First, we test the baseline su-
pervised system, that is, only En — F'r and
Fr — En are conducted on the model. Due to
difference in model architecture, the performance



System En-Fr Fr-En
Supervised Training  39.70  36.62
CUNMT + Forward 39.26 36.82
CUNMT + Backward  39.12  36.20

Table 4: Translation performance on supervised direc-
tions of CUNMT.

of CUNMT is slightly lower than that of its state of
the art counterparts. Also, some techniques such
as model average are not applied, and two direc-
tions are trained in one model. In CUNMT, the
performance of supervised directions drops a lit-
tle, but in exchange, the performances of zero-shot
directions are greatly improved and the model is
convenient to serve for multiple translation direc-
tions.

Strategies of Synthetic Data Generation For
the synthetic data generation, the reported results
are from greedy decoding for time efficiency. We
compared the effects of sample strategies on the
language setting of (Ro, En, De) where En-De is
the supervised direction. The results based on
beam search generation for En — Ro is 34.86,
and 33.18 for En — Fr in terms of BLEU. Com-
pared with greedy decoding, the performance of
beam search is slightly inferior. A possible reason
is that the beam search makes the synthetic data
further biased on the learned pattern. The results
suggest that CUNMT is exceedingly robust to the
sampling strategies when performing forward and
backward cross translation.

5 Related Work

Multilingual NMT It has been proven low re-
source machine translation can adopt methods to
utilize other rich resource data in order to develop
a better system. These methods include multilin-
gual translation system (Firat et al., 2016; John-
son et al., 2017), teacher-student framework (Chen
et al., 2017), or others (Zheng et al., 2017). Apart
from parallel data as an entry point, many at-
tempts have been made to explore the usefulness
of monolingual data, including semi-supervised
methods and unsupervised methods which only
monolingual data is used. Much work also has
been done to attempt to marry monolingual data
with supervised data to create a better system,
some of which include using small amounts of par-
allel data and augment the system with monolin-
gual data (Sennrich et al., 2016; He et al., 2016;
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Wang et al., 2018; Gu et al., 2018; Edunov et al.,
2018; Yang et al., 2020). Others also try to uti-
lize parallel data of rich resource language pairs
and also monolingual data (Ren et al., 2018; Wang
et al., 2019; Al-Shedivat and Parikh, 2019; Lin
et al., 2020). (Ren et al., 2018) also proposed a tri-
angular architecture, but their work still relied on
parallel data of low resource language pairs. With
the joint support of parallel and monolingual data,
the performance of a low resource system can be
improved.

Unsupervised NMT In 2017, pure unsuper-
vised machine translation method with only
monolingual data was proven to be feasible. On
the basis of embedding alignment (Artetxe et al.,
2017; Lample et al., 2018b), (Lample et al.,
2018a) and (Artetxe et al., 2018b) devised simi-
lar methods for fully unsupervised machine trans-
lation. Considerable work has been done to im-
prove the unsupervised machine translation sys-
tems by methods such as statistical machine trans-
lation (Lample et al., 2018c; Artetxe et al., 2018a;
Ren et al., 2019; Artetxe et al., 2019), pretraining
models (Lample and Conneau, 2019; Song et al.,
2019), or others (Wu et al., 2019), and all of which
greatly improve the performance of unsupervised
machine translation.

Our work attempts to utilize both monolin-
gual and parallel data, and combine unsupervised
and supervised machine translation through mul-
tilingual translation method into a single model
CUNMT to ensure better performance for unsuper-
vised language pairs.

6 Conclusion

In this work, we propose a multilingual machine
translation framework CUNMT incorporating dis-
tant supervision to tackle the challenge of the un-
supervised translation task. By mixing different
training schemes into one model and utilizing un-
related bilingual corpus, we greatly improve the
performance of the unsupervised NMT direction.
By joint training, CUNMT can serve all transla-
tion directions in one model. Empirically, CUNMT
has been proven to deliver substantial improve-
ments over several strong UNMT competitors and
even achieve comparable performance to super-
vised NMT. In the future, we plan to build a uni-
versal CUNMT system that is applicable in a wide
span of languages.
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Abstract

Most of the recent natural language process-
ing (NLP) studies are based on the pretrain-
finetuning approach (PFA). However for small
and medium-sized industries with insufficient
hardware, there are many limitations in servic-
ing latest PFA based NLP application software,
due to slow speed and insufficient memory.
Since these approaches generally require large
amounts of data, it is much more difficult to
service with PFA especially for low-resource
languages. We propose a new tokenization
method, ONE-Piece, to address this limitation.
ONE-Piece combines morphologically-aware
subword tokenization and vocabulary commu-
nicating method, which has not been care-
fully considered before. Our proposed method
can also be utilized without modifying the
model structure. We experiment by applying
ONE-Piece to Korean, a morphologically-rich
and low-resource language. We revealed that
ONE-Piece with vanilla transformer model
can achieve comparable performance to the
current Korean-English machine translation
state-of-the-art model.

1 Introduction

Recent studies using pretrain-finetuning approach
(PFA) technique have achieved state-of-the-art
(SOTA) performance in many natural language pro-
cessing (NLP) tasks and are becoming the latest
trend (Devlin et al., 2018; Yang et al., 2019; Rad-
ford et al., 2019; Brown et al., 2020; Liu et al.,
2019; Clark et al., 2020). To utilize the PFA, a
large amount of pre-training data and a system with
sufficient computing power are required. For exam-
ple, TS5 (Raffel et al., 2019) was trained with 11 B
parameters and 1 T tokens in order to get SOTA
performance, and for GPT3 (Brown et al., 2020),
170 B parameters were required to train a model to
demonstrate the best performance.
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The trend of model research based on PFA raises
two problems. First, it is hard to expect a similar
performance for the low-resource setting. This is
because most studies based on the PFA technique
rely on large amounts of data (Zoph et al., 2016).
But for low-resource languages, it is difficult to
provide the comparable amount of data required by
recent papers. Second, it is necessary to overturn
the existing model and pre-train a new model from
scratch to create a PFA-based model that follows
the latest research trends.

Since the PFA-based model requires many pa-
rameters, companies without adequate server or
graphic processing unit (GPU) environments may
have many difficulties in configuring the service
environment and utilizing the latest model (Park
et al., 2020b). Therefore, new approaches are re-
quired to ensure high performance for low-resource
languages and companies lacking extensive server
and GPU environments.

To solve this problem, many researches are be-
ing conducted on the way of improving the perfor-
mance of NLP application software without chang-
ing the model through data pre and post-processing,
typically in machine translation (Pal et al., 2016;
Currey et al., 2017; Banerjee and Bhattacharyya,
2018; Koehn et al., 2018; Kudo, 2018; Park et al.,
2020b). Reflecting this trend, we conducted a study
on an optimized tokenization that can improve the
performance of neural machine translation (NMT)
without changing the model.

We propose two perspectives for optimized tok-
enization. First, we analyze the limitations of byte
pair encoding (BPE) (Sennrich et al., 2015) and sen-
tencepiece (Kudo and Richardson, 2018), which
can easily be applied to various languages. Due to
its language-agnostic characteristic, these methods
are currently used as the defaults in language model
research and existing tokenization methods. How-
ever, there are 7,111 languages around the world.
More than 50 million people speak 25 languages

Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 97-104
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as their mother tongue that have various morpho-
logical characteristics such as isolating language,
agglutinative language, and fusional language. Con-
sidering this, it seems hard to assert that applying
sentencepiece and BPE always produce the best
performance.

Second, we focus on the problem that there is
not enough discussion about the corpus used in
tokenizer training. Several studies that applied BPE
and sentencepiece use a merged bilingual corpus,
that combines two language corpora into one, when
training its tokenizer (Song et al., 2019; Liu et al.,
2020). However in these studies, merged bilingual
corpus is utilized without sufficient comparative
analysis.

In this study, tokenization methods which lever-
aging merged bilingual corpora and separate bilin-
gual corpora are denoted as Vocabulary Commu-
nicating (VC) and Vocabulary Separating (VS), re-
spectively. We denote VC and VS as vocabulary
methods and compare the performance of each
method in NMT. In other words, we further fig-
ure out the optimal tokenization method through
comparative experiments on various tokenization
methods.

All the experiments are made on a Korean
dataset, which is a representative of low-resource
and morphologically rich language (MRL). In
particular, we propose ONE-Piece that combines
the VC method and morphological segmentation
followed by sentencepiece. Through comparative
experiments with tokenization methods currently
used in NLP research, such as BPE and sentence-
piece, we revealed that ONE-Piece can encourage
the optimal performance in Korean-English ma-
chine translation. The contributions of our study
are as follows:

We proposed a new subword tokenization
method, ONE-Piece, which leveraging morpho-
logical segmentation and vocabulary communi-
cating method. Through ONE-Piece, we can ob-
tain better performance than the existing tok-
enization methods such as BPE and sentence-
piece.

Based on linguistic analysis, we showed that con-
structing corpus for training tokenizer is an im-
portant factor that has a critical influence on ma-
chine translation performance.

We presented a new viewpoint for pre-processing
that can improve translation performance without
modifying model structure. Our proposal consid-
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ered industrial service and demonstrated high
speed and performance without using PFA.

2 Proposed Method

This study proposes an optimal tokenization
method for improving machine translation perfor-
mance from the viewpoints of morphological seg-
mentation and vocabulary method. We derive an
optimal tokenization method for Korean-English
machine translation by conducting a case study
that combines the morphological segmentation and
vocabulary method.

2.1

Korean is classified as an agglutinative language
according to its type of morphemes. Due to the
nature of agglutinative languages, one word can
comprises substantive (noun/pronoun/numeral) fol-
lowed by postposition, or the stem followed by the
ending. Table 1 shows the result of tokenizing Ko-
rean sentences through BPE (Sennrich et al., 2015),
sentencepiece (Kudo and Richardson, 2018), and
morphological segmentation using MeCab-ko.

In the case of BPE and sentencepiece, the postpo-
sitions ‘7} (ga), + (neun), £ (leul), 2] (ui), I (in)’
have not been properly separated from the substan-
tives. This failures in separating the postpositions
from the substantives can lead to mistranslation of
entities and grammartically incorrect translation.
Generally, the postposition indicates the grammat-
ical relationship to the substantive and plays an
important role in organizing the meaning of words.
Therefore, miss-separating the postpositions can
lead to the incorrect translation of the whole sen-
tence, and misunderstanding of the semantic rela-
tionship.

Also, in the case of BPE and sentencepiece, the
entities (red-common noun, blue-proper noun) are
over-tokenized. Both methods tokenize sentences
based on frequency and probability without consid-
ering linguistic characteristics. This can lead to in-
appropriate segmentation between substantives and
postpositions, or between stems and endings. These
problems can be alleviated by employing morpho-
logical segmentation. In this study, we quantita-
tively analyze the effect of morphological segmen-
tation in NMT, and propose the optimal method of
leveraging it by combining sentencepiece.

Morphologically-Aware SentencePiece

2.2 Why MeCab-ko?

We use Konlpy (Park and Cho, 2014) for morpho-
logical segmentation of Korean sentences. Konlpy



Target Sentence BPE sentencepiece MeCab-ko
The number of diag- | A/ 2=/ J | A}/ 2=/ FF5 | AR 2= 235/
noses started to soar, | Z@@/JY1/ Z@@/ | PI/_Z/GY_F/A/ | F/3/ ZUHNNP)/LY
just as Lorna and Judith | U}9}/ F@@/t@@/ | A7V _S AR/ A/ | FEYXANNP)/ 7Y A
predicted, indeed hoped, | 27} @ @/RP3/ | A2/ _TE0|/ 8yl | /3 AAR/ 1/E/
that it would Aee@/Adz/ 50|/ | 9/ _AAH o|/ vt/ A/ H
vl @ @/d/ A A |
Instead of blaming par- | A9|@ @/5-&/ 529/ | _AH|/F&/_F R 2| /&) B R/Q)/ B
ents for causing autism, | @@/ 2/ Ed+=/| 9/ 8o 72/ =7 o 2/ =g/=/ g4l of
Asperger framed it as a | T4/ ofA@@/H @@/ | =/_thAl/_ofA/H/ AHA(NNP)/ =/ 17/
lifelong, polygenetic dis- | A=/ AL/ A7) | AS/_OAE/ A7A | /71121 7)Y/
ability Zol/ tte@/7|@@/ | Q/_th7|/gel/_Zol/ | 2|/ Aol/=
o)/ Aoll@@/2 =

Table 1: Comparison of BPE, sentencepiece and MeCab-ko segmentation results.

is an open-source Korean morphological analyzer
package which provides 6 morphological analyz-
ers: MeCab-ko, Kkma, Komoran, Hannanum, Okt,
and Twitter. In this study, we select an analyzer
that shows the best performance among them by
experimenting morphological analysis for up to 1
M characters. In particular, since inference speed
is a very important factor in the industry field, we
focused on the time required for morphological
analysis. The inference time required for each ana-
lyzer is shown in Figure 1.

Hannanum
Kkma
Komoran
MeCab-ko
Okt

1 — Twitter

| ==

-

121

101

©

Time (sec)

10? 10° 104 10° 10°

Number of characters

10° 10!

Figure 1: Inference time of morphological analyzer

As shown in Figure 1, MeCab-ko shows the best
results compared to other morphological analyz-
ers. It takes 0.3353 secs in processing 1 M charac-
ters. Additionally, through experiments on different
number of characters, we can see that MeCab-ko
conducts analysis of the input sequence at a sta-
ble speed despite the exponential increase in the
number of characters. For these reasons, we adopt
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MeCab-ko by its high processing speed and stabil-
ity in character length.

2.3 Vocabulary Communicating Method

The VC method has been used in several PFA-
based models. In MASS (Song et al., 2019), a 60K
vocabulary was extracted by composing the source
and target language into a merged bilingual corpus.
In mBART (Liu et al., 2020), the CC25 corpus was
composed of a total of 25 languages extracted from
CommonCrawl (CC) (Lample and Conneau, 2019;
Wenzek et al., 2019) and used for unified vocab-
ulary extraction. When using the VC method in
mBART, there is a generalization effect for unseen
languages. However, this effect has not been suf-
ficiently discussed for languages that do not share
an alphabet, and no quantitative basis for a gener-
alization effect has been proposed. In this study,
we conducted probing for this approach through
quantitative analysis.

In practical cases, source and target languages
often communicate to each other; source language
is contained in target sentences, and vice versa. In
the case of our training data, approximately 6.9%
of source sentences contains English tokens. For
instance, domain specific terms such as "Host IP"
can not be replaced by Korean token and constitute
Korean sentences in its original form.

For the case of VS method, each language only
contributes to the processing of corresponding lan-
guage corpus, and different tokenizers are applied
to the source and target sentences. If a vocabulary
is extracted according to the VS method, source
language dictionary is composed by reflecting only
small fraction of the target languages, which is con-
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Figure 2: Overall Architecture of NMT training process using ONE-Piece model

tained in source sentences. In this case, target lan-
guage token, which is not contained in source lan-
guage dictionary but contained in target language
dictionary, is treated as unknown.

The VC method can alleviate this problem. As
previously mentioned, the VC method construct a
merged corpus and the vocabulary extracted from
this merged corpus is identically applied to the
source and target sentences. By using VC method,
the source and target language can interact within
the same vocabulary and are mutually reference-
able. Therefore, the source and target language can
interact within the same vocabulary and are mutu-
ally referenceable. This can lead to full understand-
ing of target language tokens in source sentences
and vice verssa.

2.4 ONE-Piece

ONE-Piece is a subword tokenization method that
utilizes morphological analysis and the VC method.
By applying morphological analysis, characteris-
tics of an agglutinative language, that a single word
can comprises multiple morphemes, can be consid-
ered. Then by following sentencepiece, applying
VC method, can alleviate the out of vocabulary
(OOV) problem.

The ONE-piece can be obtained by following
processes. First, from a parallel corpus P, which
is consist of source sentences S = {S;}\, and
target sentences 7' = {Ti}fil, merged corpus M
is created. More specifically, this procedures can
be described as follows:

Si = {Sf }:;1

m (1)

s{ denote j" word of source sentence S;, which
is segmented by whitespace, and n; indicate the
word length of S;. Similarly, ¢/ denote j th word,
and m; indicate the word length of target sentence
T;, which is segmented by whitespace.

We apply morphological analyzer to agglutina-
tive language. In this paper, source sentences is
re-segmented by morpheme-units, through morpho-
logical analyer. This can be denoted as equation

2).

Segi = MA(S;) = {seg]};_, ()

M A indicates morphological analyzer for source
language. By M A, morpheme-unit-segmented sen-
tence Seg; is generated from source sentence .S;.
k; denotes morpheme-token length of Seg;. Since
a word comprises one or more morphemes, k; is
always equal to or greater than j;. Then by combin-
ing all the Seg; and T; into one, merged corpus M
is generated as equation (3).

M = [Tl,...,TN,Segl,...,SegN] (3)

M is composed of both source language and
target language. As M is created, we can generate
ONE-piece by training sentencepiece model by M.

Figure 2 is an overall architecture that describes
the process of training NMT model by leveraging
ONE-Piece. For Korean sentences in the source
part, morphological segmentation is performed
with MeCab-ko, and English sentences correspond-
ing to the target side are segmented by whites-
pace. After combining source sentences and tar-
get sentences, we train sentencepiece model by
using them. In this process, ONE-Piece model is
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created. Through ONE-Piece, input sentences are
segmented into subwords and fed into the encoder
and decoder for training NMT model.

3 Experiments

3.1 Dataset and Experimental Setting

We utilized Korean-English parallel corpora from
3 different data sources for our dataset: the Al
Hub Korean-English parallel corpus!, OpenSub-
titles”, and the IWSLT-17 TED corpus (Cettolo
et al., 2017). We constructed 2.7 M sentence pairs
from these data sources. For better NMT perfor-
mance, we applied parallel corpus filtering to our
corpus and construct 2.2 M sentence pairs for train-
ing. We applied the same filtering method as Park
et al. (2020a). We randomly selected 5,000 sen-
tence pairs from our training data for validation
and used IWSLT-16 and IWSLT-17 test sets, which
is consist of 1,143 and 1,429 sentence pairs, for
performance evaluation.

Since our ultimate purpose is to check whether
the performance of the NMT model can be im-
proved only by the subword tokenization method
without changing the model, we adopt vanilla trans-
former as our baseline. The performance evaluation
of translation results was conducted based on the
BLEU score (Papineni et al., 2002). To measure the
score, we adopted multi-bleu.perl script® in Moses.

3.2 Experimental Results

3.2.1 Verification of the Effectiveness of the
VC Method

In this section, we experimentally compare and ver-
ify the performance of Korean-English machine
translation using VC and VS methods. By applying
each method to BPE and sentencepiece, we inves-
tigate the impact of the vocabulary method in the
performance of NMT. The experimental results are
shown in Table 2.

In sentencepiece, the VC method outperforms
the VS method by 1.34 BLEU score on the IWSLT-
16 test set and 0.99 BLEU score on the IWSLT-
17 test set. Conversely for BPE, the VS method
outperforms the VC method by 2.78 BLEU score
on the IWSLT-16 test set and 2.42 BLEU score on
the IWSLT-17 test set. There are some cases where

'https://aihub.or.kr

http://opus.nlpl.eu/
OpenSubtitles-v2018.php

*https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl
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Tokenization | IWSLT-16 IWSLT-17
Method (BLEU) (BLEU)
VC SP 21.63 19.11
VS Sp 20.29 18.12
VC BPE 17.47 15.42
VS BPE 20.25 17.84

Table 2: Korean-English NMT results applying differ-
ent vocabulary method in BPE and sentencepiece. SP
refers to sentencepiece.

the VS method yields a more superior performance
than the VC method, depending on the tokenization
algorithm. In other words, the VC method does not
show consistently superior performance to the VS
method.

Currently, many studies have employed the VC
method based tokenizer as a default choice, regard-
less of the tokenization algorithm. From this exper-
iment, we revealed that the current default option
may not be the optimal choice depending on the
selection of the tokenization algorithm. We fur-
ther show that selecting vocabulary method is an
important factor that significantly affects machine
translation performance. This indicates that the vo-
cabulary method must be considered when adopt-
ing a tokenization algorithm to ensure the optimal
machine translation performance.

3.2.2 Verification of the Effectiveness of
Morphological Segmentation

In this section, we verify the impact of the morpho-
logical segmentation. We experimented two tok-
enization methods using MeCab-ko in Korean cor-
pus. The first method is to segment by morpheme
units, and the second method is to add sentence-
piece after this process, as first suggested by Park
et al. (2019). Whereas Park et al. (2019) used VS
method based tokenizers in all of their experiments,
we utilized VS method based tokenizers for this
experiment. Our results are shown in Table 3.

Tokenization IWSLT-16 IWSLT-17
Method (BLEU) (BLEU)
VS SP 20.29 18.12
VS MeCab-ko 19.61 17.08
VS MeCab-ko+SP 19.78 17.49

Table 3: Korean-English NMT results using MeCab-ko.
All experiments are implemented using the VS method.
sentencepiece is denoted as SP.



Applying sentencepiece after morphological seg-
mentation demonstrates better performance in both
the IWSLT-16 and IWSLT-17 test sets compared to
the MeCab-ko based segmentation without senten-
cepiece. However, our results show that applying
morphological segmentation for tokenizer training
yields overall performance degradation in both test
sets. This is contrary to the experimental results of
Park et al. (2019), which claim that morphological
analysis consistently improves machine translation
performance. The main difference between our ex-
periment and Park et al. (2019) is the vocabulary
method. From these results, we can infer that the
effect of applying morphological segmentation on
NMT is relatively different depending on the vo-
cabulary method. This indicates that prior to apply-
ing morphological segmentation, the vocabulary
method must be considered to get improved NMT
performance.

3.2.3 Verification of the ONE-Piece

ONE-Piece differs from existing tokenizers in that
it utilizes VC method and the morphological seg-
mentation followed by sentencepiece. In this sec-
tion, we verify the effectiveness of ONE-Piece by
comparing NMT performance using various pre-
processing strategies based on the VC method. The
results are shown in Table 4.

Tokenization IWSLT-16 IWSLT-17
Method (BLEU) (BLEU)
VC Word 7.98 7.16
VC Character 16.39 17.06
VC BPE 17.47 15.42
VC sentencepiece 21.63 19.11
ONE-Piece (ours) 24.95 22.58

Table 4: Korean-English NMT results of different to-
kenization algorithms. All the experiments are imple-
mented using the VC method.

Compared to the VC-based tokenizer, ONE-
Piece produces at least 3.32 BLEU score supe-
rior translation performance. This result suggests
that further improvement can be made by applying
ONE-Piece to other existing sentencepiece-based
NMT models.

In sections 3.2.1 and 3.2.2, we revealed that vo-
cabulary method and morphological segmentation
significantly affect the NMT performance, but nei-
ther of these consistently improve the NMT perfor-
mance by themselves. However as shown in table

4, by properly combining these two factors, we can
derive mutual supplementation effect which lead
to a meaningful improvement in the translation per-
formance. This can be viewed as the new criteria
for constructing corpus for training tokenizer.

3.2.4 Comparison with Existing Studies

We compare the performance of vanilla transformer
model applying ONE-Piece with the performance
of mBART(Liu et al., 2020). mBART was trained
with 610 M params and 5.6 B tokens from the CC
corpus. mBART utilized morpheme based segmen-
tation using MeCab-Ko in the Korean corpus and
applied sentencepiece in the English corpus, which
is the same tokenization method as VS MeCab-ko
in Table 3.

mBART MeCab-ko ONE-Piece
IWSLT-17
(BLEU) 24.6 17.08 22.58
model 610M 32M 32M
parameter

Table 5: Comparison of proposed ONE-Piece model
with mBART.

As shown in Table 5, when the same tokeniza-
tion method used in mBART was applied to the
baseline model, the performance was 7.52 BLEU
lower than that of mBART. However, by applying
ONE-Piece to the baseline model, the performance
difference narrowed to a 2.02 BLEU score. This
shows that applying ONE-Piece enables the vanilla
transformer model to have similar performance to
the SOTA model. Although the baseline model us-
ing ONE-Piece did not exceed the performance
of mBART, it is a notable result considering that
the number of parameters required by the baseline
model is 32 M, approximately 5% of the number
of parameters compared to mBART.

The significance of this experiment is that simply
by changing the tokenization method, a model with
a small number of parameters can achieve a similar
performance to SOTA model, which is trained with
a more advanced algorithm and larger number of
parameters.

4 Conclusion

In this study, we proposed a new tokenization
method called ONE-Piece. This can provide the
best performance in Korean-English machine trans-
lation compared with other tokenization methods.
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Our results quantitatively confirmed the effect of
the vocabulary method and morphological segmen-
tation on NMT performance. Furthermore, we ex-
perimentally proved that the VC method and mor-
phological segmentation cannot consistently im-
prove the performance of NMT by themselves. Our
results showed that significant and consistent per-
formance improvement can only be achieved in
NMT if they are properly used together. By using
ONE-Piece, the vanilla transformer model shows
comparable translation performance to the mBART.
Accordingly, we expect that companies that have
difficulties using the latest PFA-based model, due
to an inadequate server environment, will be able to
utilize our proposed model to provide sufficiently
good performance.

Acknowledgments

This research was supported by the MSIT(Ministry
of Science and ICT), Korea, under the ITRC (Infor-
mation Technology Research Center) support pro-
gram (IITP-2018-0-01405) supervised by the IITP
(Institute for Information & Communications Tech-
nology Planning & Evaluation), Institute for Infor-
mation & communications Technology Planning
& Evaluation (IITP), grant funded by the Korean
government (MSIT) (No. 2020-0-00368, A Neural-
Symbolic Model for Knowledge Acquisition and
Inference Techniques) and MSIT(Ministry of Sci-
ence and ICT), Korea, under the ICT Creative Con-
silience program(IITP-2021-2020-0-01819) super-
vised by the IITP(Institute for Information & com-
munications Technology Planning Evaluation).

References

Tamali Banerjee and Pushpak Bhattacharyya. 2018.
Meaningless yet meaningful: Morphology grounded
subword-level nmt. In Proceedings of the Sec-
ond Workshop on Subword/Character LEvel Models,
pages 55-60.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,
Niehues Jan, Stiikker Sebastian, Sudoh Katsuitho,
Yoshino Koichiro, and Federmann Christian. 2017.
Overview of the iwslt 2017 evaluation campaign. In
International Workshop on Spoken Language Trans-
lation, pages 2—14.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than genera-
tors. arXiv preprint arXiv:2003.10555.

Anna Currey, Antonio Valerio Miceli-Barone, and Ken-
neth Heafield. 2017. Copied monolingual data im-
proves low-resource neural machine translation. In
Proceedings of the Second Conference on Machine
Translation, pages 148—156.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Philipp Koehn, Huda Khayrallah, Kenneth Heafield,
and Mikel L Forcada. 2018. Findings of the wmt
2018 shared task on parallel corpus filtering. In Pro-
ceedings of the Third Conference on Machine Trans-
lation: Shared Task Papers, pages 726—739.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. arXiv preprint arXiv:1804.10959.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. arXiv
preprint arXiv:2001.08210.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Santanu Pal, Sudip Kumar Naskar, Mihaela Vela, and
Josef van Genabith. 2016. A neural network based
approach to automatic post-editing. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 281-286.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311-318.

Chanjun Park, Gyeongmin Kim, and HeuiSeok Lim.
2019. Parallel corpus filtering and korean optimized
subword tokenization for machine translation. In
The 31st Annual Conference on Human Cognitive
Language Technology, pages 221-224.

103



Chanjun Park, Yeonsu Lee, Chanhee Lee, and
Heuiseok Lim. 2020a. Quality, not quantity? : Ef-
fect of parallel corpus quantity and quality on neural
machine translation. In The 32st Annual Conference
on Human Cognitive Language Technology, pages
363-368.

Chanjun Park, Yeongwook Yang, Kinam Park, and
Heuiseok Lim. 2020b. Decoding strategies for im-
proving low-resource machine translation. Electron-
ics, 9(10):1562.

Eunjeong L. Park and Sungzoon Cho. 2014. Konlpy:
Korean natural language processing in python. In
Proceedings of the 26th Annual Conference on Hu-
man Cognitive Language Technology, Chuncheon,
Korea.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. Mass: Masked sequence to sequence
pre-training for language generation. arXiv preprint
arXiv:1905.02450.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzman, Ar-
mand Joulin, and Edouard Grave. 2019. Ccnet: Ex-
tracting high quality monolingual datasets from web
crawl data. arXiv preprint arXiv:1911.00359.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5753-5763.

Barret Zoph, Deniz Yuret, Jonathan May, and
Kevin Knight. 2016. Transfer learning for low-
resource neural machine translation. arXiv preprint
arXiv:1604.02201.

104



Autocorrect in the Process of Translation — Multi-task Learning
Improves Dialogue Machine Translation

Tao Wang'?, Chengqi Zhao', Mingxuan Wang!, Lei Li!, Deyi Xiong**
'ByteDance Al Lab
2School of Computer Science and Technology, Soochow University, Suzhou, China
3College of Intelligence and Computing, Tianjin University, Tianjin, China

{wangtao.960826,

zhaochengqgi.d,

wangmingxuan. 89} @bytedance.com

{lilei.02}@bytedance.com
dyxiong@tju.edu.cn

Abstract

Automatic translation of dialogue texts is a
much needed demand in many real life scenar-
i0s. However, current neural machine transla-
tion systems usually deliver unsatisfying trans-
lation results of dialogue texts. In this pa-
per, we conduct a deep analysis of a dia-
logue corpus and summarize three major is-
sues on dialogue translation, including pro-
noun dropping (ProDrop), punctuation drop-
ping (PunDrop), and typos (DialTypo). In
response to these challenges, we propose a
joint learning method to identify omission and
typo in the process of translating, and utilize
context to translate dialogue utterances. To
properly evaluate the performance, we pro-
pose a manually annotated dataset with 1,931
Chinese-English parallel utterances from 300
dialogues as a benchmark testbed for dia-
logue translation. Our experiments show
that the proposed method improves transla-
tion quality by 3.2 BLEU over the baselines.
It also elevates the recovery rate of omit-
ted pronouns from 26.09% to 47.16%. The
code and dataset are publicly available at
https://github.com/rgwt123/DialogueMT.

1 Introduction

Remarkable progress has been made in Neural Ma-
chine Translation (NMT) (Bahdanau et al., 2015;
Wau et al., 2016; Lin et al., 2020; Liu et al., 2020)
in recent years, which has been widely applied
in everyday life. A typical scenario for such ap-
plication is translating dialogue texts, in particu-
lar the record of group chats or movie subtitles,
which helps people of different languages under-
stand cross-language chat and improve their com-
prehension capabilities.

However, traditional NMT models translate texts
in a sentence-by-sentence manner and focus on the
formal text input, such as WMT news translation

*Corresponding author.

Nancy &2 | ?

D 1y, BARETH.

What happened to Nancy?
MT .

Did you cry?

What happened to Nancy?
REF | bid she cry?

2 | Nancy B4 T[7
MT | Did Nancy cry?

REF | What happened to Nancy? Did she cry?
3) Nancy /& 2 [%]typo?

MT | How happy is Nancy?

REF | What happened to Nancy?

R

dro

Table 1: Examples of ProDrop (1), PunDrop (2) and
DialTypo (3). MT is translation results from Google
Translate while REF is references.

(Barrault et al., 2020), while the translation of di-
alogue must take the meaning of context and the
input noise into account. Table 1 shows examples
of dialogue fragment in Chinese and their transla-
tion in English. Example (1) demonstrates that the
omission in traditional translation (e.g., dropped
pronouns in Chinese) leads to inaccurate translation
results.

Despite its vast potential application, efforts of
exploration into dialogue translation are far from
enough. Existing works (Wang et al., 2016; Maruf
et al., 2018) focus on either extracting dialogues
from parallel corpora, such as OpenSubtitles (Lison
et al., 2019), or leveraging speaker information for
integrating dialogue context into neural models.
Also, the lack of both training data and benchmark
test set makes current dialogue translation models
far from satisfying and need to be further improved.

In this paper, we try to alleviate the afore-
mentioned challenges in dialogue translation. We
first analyze a fraction of a dialogue corpus
and summarize three critical issues in dialogue
translation, including ProDrop, PunDrop, and
DialTypo. Then we design a Multi-Task Learn-
ing (MTLDIAL) approach that learns to self-correct
sentences in the process of translating. The model’s
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encoder part automatically learns how to de-noise
the noise input via explicit supervisory signals
provided by additional contextual labeling. We
also propose three strong baselines for dialogue
translation, including repair (REPAIRDIAL) and
robust (ROBUSTDIAL) model. To alleviate the
challenges arising from the scarcity of dialogue
data, we use sub-documents in the bilingual paral-
lel corpus to enable the model to learn from cross-
sentence context.

Additionally as for evaluation, the most com-
monly used BLEU metric (Papineni et al., 2001)
for NMT is not good enough to provide a deep look
into the translation quality in such a scenario. Thus,
we build a Chinese-English test set containing sen-
tences with the issues in ProDrop, PunDrop and
DialTypo, attached with the human translation
and annotation. Finally, we get a test set of 300
dialogues with 1,931 parallel sentences.

The main contributions of this paper are as fol-
lows: a) We analyze three challenges ProDrop,
PunDrop and DialTypo, which greatly impact
the understanding and translation of a dialogue.
b) We propose a contextual multi-task learning
method to tackle the analyzed challenges. c) We
create a Chinese-English test set specifically con-
taining those problems and conduct experiments to
evaluate proposed method on this test set.

2 Analysis on Dialogue Translation

There were already some manual analyses of trans-
lation errors, especially in the field of discourse
translation. Voita et al. (2019) study English-
Russian translation and find three main challenges
for discourse translation: deixis, ellipsis, and
lexical cohesion. For Chinese-English transla-
tion, tense consistency, connective mismatch, and
content-heavy sentences are the most common is-
sues (Li et al., 2014).

Different from previous works, we mainly an-
alyze the specific phenomena in dialogue trans-
lation. We begin with a study on a bilingual di-
alogue corpus (Wang et al., 2018)." We trans-
late source sentences into the target language at
sentence level and compare translation results
with reference at dialogue level. Around 1,000
dialogues are evaluated, and the results are re-
ported in Table 2. From the statistic, we ob-
serve two persistent dialogue translation problems:
pronoun dropping (ProDrop), punctuation drop-

"https://github.com/longyuewangdcu/tvsub

Types of phenomena Frequency
Correct 88.1%
ProDrop 4.3%
PunDrop 3.2%
Incorrect segmentation 2.4%
Other translation errors 2.0%

Table 2: Manual evaluation of dialogue samples.

ping(PunDrop). The phenomenon is consistent
with the issue we collect in practical Instant Mes-
saging (IM) chat scenarios, except for typos since
the analyzed dialogue corpus has been proofread
to remove typos.

2.1 Pronoun Dropping

Pronouns are frequently omitted in pro-drop lan-
guages (Huang, 1989), such as Chinese, Japanese,
Korean, Vietnamese, and Slavic languages. Such
phenomenon are more frequent in dialogue, where
the interlocutors are both aware of what’s omit-
ted in the context. However, when translating a
pro-drop language into a non-pro-drop language
(e.g., English)?, it is hard to translate those omit-
ted pronouns, resulting in grammatical errors or
semantic inaccuracies in the target language. The
first conversation in Table 1 is an example.

2.2 Punctuation Dropping

In dialogue scenarios, such as IM software, punc-
tuation is often omitted and users tend to segment
sentences with spaces. The problem becomes much
serious in languages with no spaces, such as Chi-
nese, Japanese, Korean, and Thai. Table 1 shows
this phenomenon in Example (2).

2.3 Dialogue Typos

Typo repairing is another fundamental but very
challenging practical problem. In dialogue transla-
tion, typos or misspellings are very common, which
dramatically undermine the quality of translation
output produced by machine translation. Table 1
shows this phenomenon in Example (3).

3 Approach to NMTDIAL

This section aims to propose a unified framework
that facilitates NMT to correct noisy inputs in dia-
logue neural machine translation (NMTDIAL). The
framework includes three different methods, which
are REPAIRDIAL, ROBUSTDIAL and MTL-
DIAL.

Zhttps://en.wikipedia.org/wiki/Pro-drop_language
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Figure 1: Overall diagram of NMTDIAL. (a) demonstrates the process of data generation, and (b) displays the
three proposed methods. (1/(2)/3) represent REPAIRDIAL, ROBUSTDIAL and MTLDIAL respectively.

3.1 Contextual Perturbation Example
Generation

The most challenging problem for NMTDIAL is
the data distribution gap between training and in-
ference stage, where the training data are clean
sentence-level pairs while the test data are noisy
dialogue-level conversations.

To bridge the distribution gap, the first step is to

generate perturbation examples based on training
instances. The data generation mainly consists of
two steps. The first step is to obtain sub-documents
with cross-sentence context, and the second step
is to generate examples with word perturbations
within sub-documents. Figure 1a shows a complete
process.
Cross-sentence Context It is difficult to acquire
dialog-level parallel training data. As an alternative
approach, we use parallel document data to catch
dependencies across sentences.

Formally, let 24 = {z(1), 23 ... (M)} be a
source-language document containing M source
sentences. And yg = {y1),y® ... y(M)} is the
corresponding target-language document contain-
ing the same number of sentences as that of the
source document. To get more context information,
we randomly sample consecutive sub-document
pairs (z4,yq) of N sentences (i.e., snippet pairs
from aligned documents). We set N € [1,10] in
this paper.

We use a special token <sep>> as the separa-
tor to concatenate sentences into a parallel sub-
document {(z4,yq)}, as shown in Figure 1a.
Contextual Perturbation We then consider gener-
ating perturbation example z/, from x4 with re-
spect to sub-document context. For ProDrop,

PunDrop and DialTypo, we build a Chinese
pronoun table Tp oprop, @ cOMmon punctuation
table Tpunprop and a Chinese homophone table
Tpia1Typo respectively.

For ProDrop and PunDrop, we tra-
verse source sentences of x4, discard pro-
nouns/punctuation in these sentences with a
probability of 30% and record deletion positions
with corresponding labels (see details below);
to construct a typo, we choose a word with a
probability of 1%, of which 80% is replaced with
one of its homophones according to TpiaiTypo
and 20% is replaced with another random word.
We determine these percentages by observing the
generated perturbation data. For annotation labels,
we tag correct words with 0, words of DialTypo
with 1, ProDrop words with 2 and PunDrop
words with 3.

Finally we get x4, 2/, and their corresponding
label sequences £, £,. £, is a sequence of all Os.

3.2 NMTDIAL Base Models

With the created training data, we first introduce
two methods for NMTDIAL as our strong baselines,
which will be elaborated here for model compari-
son.

REPAIRDIAL A natural way for NMTDIAL is to
train a dialog repair model to transform dialogue
inputs into forms that an ordinary NMT system
can deal with. REPAIRDIAL involves training a
repair model to transform z/, to x4 and a clean
translation model that translates x4 to y4. As a
pipeline method, REPAIRDIAL may suffer from
error propagation.

ROBUSTDIAL We extend the robust NMT
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(Cheng et al., 2018) to dialogue-level translation.
Specifically, we take both the original (x4, y4) and
the perturbated (27, y4) bilingual pairs as training
instances. So the model is more resilient on dia-
logue translation. During the inference stage, the
robust model directly translates raw inputs into the
target language.

3.3 MTLDIAL

ROBUSTDIAL has the potential to handle trans-
lation problems caused by noisy dialogue inputs.
However, the internal mechanism is rather implicit
and in a black box. Therefore, the improvement is
limited, and it is not easy to analyze the improve-
ment. To address this issue, we introduce a context-
aware multi-task learning method MTLDIAL for
NMTDIAL.

As shown in (3) of Figure 1b, the only difference
is that we have a contextual labeling module based
on the encoder. We denote the final layer output of
the Transformer encoder as H. For each token h; in
H = (hy, hg, ..., hyp,), the probability of contextual
labeling is defined as:

P(p; = j|X) = softmax(W - h; + b)[j] (1)

where X = (21,2, ..., Z;,) is the input sequence,
P(p; = j|X) is the conditional probability that
token x; is labeled as j (j € 0,1,2,3 as defined
above).

Here we make the labeling module as simple as
possible, so that the Transformer encoder can be-
have like BERT (Devlin et al., 2019), learning more
information related to perturbation and guiding the
decoder to find desirable translations.

During the training phrase, the model takes
(@4, x)), Ly, €, yq) as the training data. The learn-
ing process is driven by optimizing two objectives,
corresponding to sequence labeling as auxiliary
loss (Lg1) and machine translation as the primary
loss (Ls7) in a multi-task learning framework.

Lsr, = —log(P(lz|zq) + P(Ly|zy) ()
Lyt = —log(P(yalza) + P(yalzy))  (3)

The two objective are linearly combined as the
overall objective in learning.

L=Lyr+ X Lsr “4)

A is coefficient. During experiments, we set as
follows according the best practice:
update_num

A =maz(1.0 — TG

02) (5

where update_num is the number of updating
steps during training.

We introduce multi-task learning for two reasons:
1) The labeling performance reflects the model’s
understanding of sentences containing the men-
tioned phenomena. 2) Contextual Labeling can be
seen as a pre-training process based on the BERT-
like model, and explicit guidance can enable the
encoder to learn more about the information we
annotate.

3.4 Modeling Dialogue Context

The modes for exploring dialogue context during
decoding can be divided into offline and online.
For the offline setting, all sentences in a dialogue
are concatenated one by one with <sep>. The
concatenated sequence is translated, and the target
translation for each sentence can be easily detected
according to the separator <sep>.

The offline mode can be used for dialogue trans-
lation where the entire source dialogue has already
been available before translation (e.g., movie sub-
titles). However, we continuously get new source
sentences for online chat and need to generate cor-
responding translations immediately. We refer to
this mode as the online setting.

We experiment with two online methods. One
is online-cut where the current sentence is concate-
nated to the previous context with the separator
<sep>. The trained NMTDIAL model then trans-
lates the concatenated sequence and the last target
segment is used as the translation for the current
source sentence. The other is online-fd. Online-fd
is a force decoding method. It forces the decoder
to use translated history and continues decoding
instead of re-translating the entire concatenated
sequence. Online-fd brings more consistent trans-
lation.

4 Experiments

4.1 Test Set

For better evaluation of NMTDIAL, we create a
Chinese-English test set covering all issues dis-
cussed above based on the corpus we analyze in
the second section. Statistics on the built test set
are displayed in Table 3. Building such a test set
is hard and time-consuming as we need to perform
manual selection, translation and annotation.

As for translation quality evaluation, we use
other metrics in addition to BLEU. For PunDrop
and DialTypo, we evaluate BLEU scores on sen-
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Item Count
#dialogues 300
#sentence pairs 1,931
#total tokens 19,155/15,976
#average tokens 9.92/8.27
#ProDrop 299
#PunDrop 542
#DialTypo 203

Table 3: Statistics on the test set. “/”” denote numbers
in Chinese and English separately.

tences containing missing punctuation or typos
according to the annotation information. As for
ProDrop, we evaluate the translation quality by
the percentage of correctly recovering and translat-
ing the dropped pronouns.

4.2 Settings

We adopt the Chinese-English corpus from
WMT20203, with about 48M sentence pairs, as our
bilingual training data D. We select newstest2019
as the development set. After splicing, we get
Dgoe with 1.2M pairs and corresponding pertur-
bated dataset D’ and D/, . with 48M and 1.2M
pairs respectively.

We use byte pair encoding compression algo-
rithm (BPE) (Sennrich et al., 2016) to process all
these data and limit the number of merge operations
to a maximum of 30K. In our studies, all translation
models are Transformer-big, including 6 layers for
both encoders and decoders, 1024 dimensions for
model, 4096 dimensions for FFN layers and 16
heads for attention.

During training, we use label smoothing = 0.1
(Szegedy et al., 2016), attention dropout = 0.1 and
dropout (Hinton et al., 2012) with a rate of 0.3 for
all other layers. We use Adam (Kingma and Ba,
2015) to train the NMT models. 51 and 52 of
Adam are set to 0.9 and 0.98, the learning rate is
set to 0.0005, and gradient norm 5. The models
are trained with a batch size of 32,000 tokens on 8
Tesla V100 GPUs during training. During decod-
ing, we employ beam search algorithm and set the
beam size to 5. We use sacrebleu (Post, 2018) to
calculate uncased BLEU-4 (Papineni et al., 2001).

4.3 Results of Offline Setting

The offline mode aims at using the entire source
dialogue for translation. We experiment with all
the methods in the offline setting, and the results

3This corpus includes News Commentary, Wiki Titles,
UN Parallel Corpus, CCMT Corpus, WikiMatrix and Back-
translated news.

Methods Overall Details

BLEU | ProDrop PunDrop DialTypo
BASE 32.7 26.09% 282 24.0
REPAIRDIAL 34.0 29.77% 312 274
ROBUSTDIAL 34.1 45.48% 33.0 28.8
MTLDIAL 359 47.16% 34.3 28.7
GOLD+BASE ‘ 36.8 ‘ 97.32% 34.6 36.8

Table 4: Experiment results on our constructed di-
alogue translation test set in offline setting. The
GOLD+BASE represents translations of completely
correct inputs (without ProDrop, PunDrop or
DialTypo) using BASE model, which is used to
show the oracle results with Transformer on the test
set.

Methods Overall Details

BLEU ProDrop PunDrop DialTypo
BASE 32.8(+0.1) | 19.06%(-7.03%)  28.1(-0.1) 22.3(-1.7)
REPAIRDIAL | 33.8(-0.2) | 24.75%(-5.02%)  32.0(+0.8) 28.3(+0.9)
ROBUSTDIAL | 34.2(+0.1) | 36.79%(-8.69%) 32.7(-0.3) 28.9(-0.5)
MTLDIAL 35.3(-0.6) | 34.78%(-12.38%) 34.3(-0.0) 28.6(-0.1)
GOLD+BASE | 37.1(+0.3) | 96.66%(-0.66%) 35.3(+0.7) 35.9(-0.9)

Table 5: Results on our constructed dialogue transla-
tion test set in online setting at the sentence level.

are shown in Table 4. BASE is a Transformer-big
model trained with D and Dg4,.. GOLD+BASE
represents the oracle result on this test set. We can
see that MTLDIAL has achieved the best results,
reducing the gap between testyrong and testyoiq
from 4.1 to 0.9. Compared with ROBUSTDIAL
and MTLDIAL, REPAIRDIAL performs relatively
poorly. We believe that this is due to the error
propagation caused by the pipeline.

From the specific indicators, we can draw the
following conclusions: 1) DialTypo has a very
obvious impact on BLEU, and the gap between
BASE and GOLD+BASE is more than 12 points;
2) The recovery of ProDrop is a relatively dif-
ficult task. Although compared with BASE, the
current best result of 47.16% has been greatly im-
proved, but is still far away from the golden result
97.32%; 3) PunDrop seems to be a relatively easy
task for each method to address.

4.4 Results of Online Setting

The online mode only makes use of previous con-
text during translation. An extreme situation of
online setting is that there is no context, that is,
sentence-level translation. We show the results of
all the methods on the test set at the sentence level
in Table 5. Despite the lack of context, our ap-
proaches can still bring general benefits. We find
that ProDrop relies heavily on context, especially
for MTLDIAL, where the absence of context results
in a 12.38% drop in performance. This is in line
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Figure 2: Overall BLEU and ProDrop recovery per-
formance (Accuracy) of MTLDIAL with different con-
text length. Dash lines are the offline results.

Data Precison | Recall | F1
ProDrop 61.3 48.7 54.3
validation PunDrop 80.0 63.6 70.9
DialTypo 85.3 64.2 73.2
ProDrop 48.6 32.2 38.8
test PunDrop 96.6 87.9 92.1
DialTypo 83.3 31.0 [ 452

Table 6: Labeling performance on the validation/test
set.

with our expectations, as in many cases machine
translation system heavily depends on context to
fulfill the dropped pronouns.

We further experiment on how context lengths
can affect NMTDIAL. The results are shown in Fig-
ure 2. In the online-cut setting, we can see that us-
ing previous few sentences as context may improve
overall BLEU score, but continuously adding more
preceding texts will lead to a continuous decline.
Online-fd performs well because using historical
translation records to continue decoding can bring
more consistent translation results. For the recov-
ery accuracy of ProDrop, online-cut is better than
online-fd in contrast, because forced decoding may
cause wrong pronoun transmission.

5 Analysis

5.1 Labeling Performance

To better understand how our proposed MTLDIAL
make sense, we calculate the labeling performance
on both validation and test set. Table 6 shows the
overall performance. The validation set follows the
same processing progress of training data, while the
test set is the real dialogue data set built manually.

The proposed model obtains 54.3% F1 score
on the validation set for ProDrop, 70.9% for

zh en

YRR EAFET What’s going on with Ellie?
m B ENERMEFTT | She is no longer in my law firm.
2 (tti/she) T4 7E T | What, why are you/is she going?
(ltt/she)FF T H CLAIEET | T open my/She opens her own law firm.
) | HH EMRREE Jones asked/, I want to ask you something.

) | EERHHRA M
V| ey TiEnET

He helped me out in private last time.
I/He nearly lost my/his job.

Table 7: Examples of ProDrop recovery errors.

2 total
2 DIALMTL
X3 BASE

§ aa%m

Figure 3: ProDrop recovery performance of BASE
and contextual MTLDIAL. Total means the total num-
ber of occurrence of corresponding pronouns in the test
set. We ignore pronouns with a total occurrence num-
ber less than 5.
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PunDrop, and 73.2% for DialTypo. When
testing on the real test data, the performance on
ProDrop has declined a lot because of the dif-
ference between synthetic training/validation data
and real test data. Especially noteworthy is the fact
that F1 score of DialTypo drops the most, reach-
ing 26%, because of its low recall. It may be due
to the considerable difference between the typos
generated by our automatic method and the actual
distribution.

5.2 Effects of Pronoun Correcting

We further explore the auto-correction of specific
pronouns. As shown in Figure 3, we can find that
pronouns such as I/you, which occur mostly in the
corpus, generally have a higher recovery success
rate. We believe this is due to the data imbalance.
Compared with BASE, MTLDIAL has a much
better performance. While ProDrop recovery ac-
curacy has been improved, it still has not achieved
50%. The most common error is that the model
does not capture any context or captures previous
inappropriate context. We summarize frequently-
occurring recovery errors in Table 7.

6 Related Work

Our work is related with both dialogue translation
and robust training.
Dialogue Translation
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There has been some work on building bilingual
dialogue data sets for the translation task in recent
years. Wang et al. (2016) propose a novel approach
to automatically construct parallel discourse cor-
pus for dialogue machine translation and release
around 100K parallel discourse data with manual
speaker and dialogue boundary annotation. Maruf
et al. (2018) propose the task of translating Bilin-
gual Multi-Speaker Conversations. They introduce
datasets extracted from Europarl and Opensubtitles
and explore how to exploit both source and target-
side conversation histories. Bawden et al. (2019)
present a new English-French test set for evaluating
of Machine Translation (MT) for informal, written
bilingual dialogue. Recently WMT2020 has also
proposed a new shared task - machine translation
for chats,* focusing on bilingual customer support
chats (Farajian et al., 2020).

Robust Training

Neural models have been usually affected by
noisy issues. Many efforts (Li et al., 2017; Sperber
etal., 2017; Vaibhav et al., 2019; Yang et al., 2020)
focus on data augmentation to alleviate the problem
by adding synthetic noise to the training set. How-
ever, generating noise has always been a challenge,
as natural noise is always more diversified than
artificially constructed noise (Belinkov and Bisk,
2018; Anastasopoulos, 2019; Anastasopoulos et al.,
2019).

7 Conclusions

In this paper, we manually analyze challenges in di-
alogue translation and detect three main problems.
In order to tackle these issues, we propose a multi-
task learning method with contextual labeling. For
deep evaluation, we construct dialogues with trans-
lation and detailed annotations as a benchmark test
set. Our proposed model achieves substantial im-
provements over the baselines. What is more, we
further analyze the performance of contextual la-
beling and pronoun recovery errors.
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Abstract

Transformer, BERT and their variants have
achieved great success in natural language pro-
cessing. Since Transformer models are huge
in size, serving these models is a challenge for
real industrial applications. In this paper, we
propose LightSeq, a highly efficient inference
library for models in the Transformer family.
LightSeq includes a series of GPU optimiza-
tion techniques to to streamline the computa-
tion of neural layers and to reduce memory
footprint. LightSeq can easily import models
trained using PyTorch and Tensorflow. Exper-
imental results on machine translation bench-
marks show that LightSeq achieves up to 14x
speedup compared with TensorFlow and 1.4x
compared with FasterTransformer, a concur-
rent CUDA implementation. The code is avail-
able at https://github.com/bytedance/
lightseq.

1 Introduction

Sequence processing and generation have been fun-
damental capabilities for many natural language
processing tasks, including machine translation,
summarization, language modeling, etc (Luong
et al., 2015; Qi et al., 2020; Dai et al., 2019). In
recent years, with the introduction of Transformer
model (Vaswani et al., 2017b), many pre-trained
language models such as BERT, GPT, and mRASP
have also been widely used in these tasks (Devlin
et al., 2019; Radford et al., 2019; Yang et al., 2020;
Lin et al., 2020).

However, the parameters of these models be-
come increasingly large, which causes the high
latency of inference and brings great challenges
to the deployment (Kim and Hassan, 2020). The
current popular inference systems are not neces-
sarily the best choice for the online service of se-
quence processing problems. First, training frame-
works, such as TensorFlow and PyTorch, require
accommodating flexible model architectures and
backward propagation, which introduce additional

memory allocation and extra overhead of using
fine-grain kernel functions. Therefore, the direct
deployment of the training framework is not able to
make full use of the hardware resource. Taking an
example of machine translation, the Transformer
big model currently takes roughly 2 seconds to
translate a sentence, which is unacceptable in both
academia and industry (Edunov et al., 2018; Hsu
et al., 2020). Second, current optimizing compilers
for deep learning such as TensorFlow XLA (Abadi
et al., 2017), TVM (Chen et al., 2018) and Ten-
sor RT (Vanholder, 2016) are mainly designed for
fixed-size inputs. However, most NLP problems
enjoy variable-length inputs, which are much more
complex and require dynamic memory allocation.
Therefore, a high-performance sequence inference
library for variable-length inputs is required. There
are several concurrent CUDA libraries which share
a similar idea with our project, such as Faster-
Transformer ! and TurboTransformers (Fang et al.,
2021).

We will highlight three innovative features that
make LightSeq outperforms similar projects. First,
we replace a straightforward combination of fine-
grained GPU kernel functions in TensorFlow or
PyTorch implementations with coarse-grain fused
ones, which avoid high time cost introduced by a
mass of kernel function launches and GPU mem-
ory I/O for intermediate results. As a result, Light-
Seq reduces the atomic kernel functions by four
times compared with Tensorflow approaches. Sec-
ond, we specially design a hierarchical auto regres-
sive search method to speed up the auto-regressive
search. Third, we propose a dynamic GPU memory
reuse strategy. Different from fixed-length inputs,
sequence processing tackles the variable-length in-
puts, which bring difficulty for memory allocation.
LightSeq proposes to pre-define the maximal mem-
ory for each kernel function and shares the GPU

"https://github.com/NVIDIA/
FasterTransformer
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Inference Libraries Models Decoding Methods

Transformer GPT VAE BERT Multilingual | Beam Search Diverse Beam Search ~ Sampling
FasterTransformer v v X v X v v v
TurboTransformers v X X v X X X X
LightSeq v v v v v v v v

Table 1: Features for FasterTransformer, TurboTransformers and our proposed LightSeq. LightSeq supports the
most features for a comprehensive set of Transformer models.

memory across non-dependent ones. As a result,
LightSeq reduces eight times memory allocation
without loss of inference speed. As a benefit, Light-
Seq enjoys several advantages:

Efficient LightSeq shows better inference perfor-
mance for generation tasks. For example, in
machine translation benchmarks, LightSeq
achieves up to 14 times speedup compared
with TensorFlow and 1.4 times speedup com-
pared with FasterTransformer.

Functional LightSeq supports more architecture
variants, such as BERT, GPT, Transformer,
and Variational Autoencoders (VAEs). Fur-
ther, LightSeq provides different search algo-
rithms, such as beam search, diverse beam
search and probabilistic sampling (Vijayaku-
mar et al., 2018). Table 1 shows the functional
comparison between FasterTransformer?, Tur-
boTransformers?, and LightSeq in text gener-
ation tasks.

Convenient LightSeq is easy to use, which con-
tains a serving system and efficient CUDA im-
plementations. The popular models, such as
BERT, Roberta, GPT, VAEs, MT Transformer,
and Speech Transformer can be directly de-
ployed online without code modification. For
user-specific architectures, LightSeq supports
multiple model reuse, which can be easily
adapted with only a few lines of code modifi-
cation.

2 LightSeq Approach

Transformer-based NLP models mainly consist of
two components during inference: the feature cal-
culation layer and the output layer, as shown in
Figure 1.

2As of this writing, we use FasterTransformer v2.1 for

comparison.

3we use TurboTransformers for comparison at commit

Oeae02ebadc8b816cd9bb71{8955a7e620861cd8

The feature calculation layer is mainly based on
self-attention mechanism and feature transforma-
tion, which is actually implemented by matrix mul-
tiplication and a series of I/O-intensive operations
such as element-wise (e.g., reshape) and reduce
(e.g., layer normalization).

The output layer slightly changes in different
tasks, such as classification in NLU tasks or search
(e.g., beam search) in NLG tasks. This layer is usu-
ally composed of the Softmax over vocabulary,
probability sorting, cache refreshing, etc., which
are essentially I/O-intensive.

These two components pose challenges for effi-
cient inference:

e The fine-grained call of I/O-intensive GPU
kernel function brings a huge amount of GPU
memory 1/O, which becomes the performance
bottleneck of feature calculation.

e Redundant calculations exist due to the fact
that we only need a few tokens/labels with the
highest probability instead of all in classifica-
tion or search for the output layer.

e Dynamic shape in variable sequence length
and auto-regressive search makes it difficult to
achieve memory reuse within or between re-
quests, which leads to a large number of GPU
memory allocation during model service.

LightSeq employs a series of innovative meth-
ods to address these challenges to accelerate model
development, such as fusion of multiple kernel
functions to reduce I/O overhead, hierarchical opti-
mization of search algorithms to erase redundant
calculations, and reuse of dynamic GPU memory
to avoid run-time allocation. The following is a
detailed introduction to these methods.

2.1 Operation Fusion

Transformer feature calculation layer needs to be
highly optimized since it is ubiquitous in various
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NLP tasks today. In most deep learning frame-
works, such as TensorFlow and PyTorch, it is imple-
mented by a straightforward combination of fine-
grained kernel functions from standard libraries
provided by hardware manufacturers, which in-
troduces high time cost due to a mass of kernel
function launches and GPU memory I/O for inter-
mediate results.

Taking layer normalization implemented by Ten-
sorFlow as an example, there are still three kernel
launches* and two intermediate results (mean and
variance) even with the help of optimizing com-
pilers like TensorFlow XLA (Abadi et al., 2017).
As a comparison, we can write a custom kernel
function dedicated to layer normalization based on
the CUDA toolkit, which produces only one kernel
launch without intermediate results.

LightSeq implements the Transformer feature
calculation layer with general matrix multiply
(GEMM) provided by cuBLAS? and custom ker-
nel functions. The detailed structure is shown in
Figure 2. Combination of fine-grained operations
between GEMM operations is fused into one cus-
tom kernel function. In consequence, there are only
six custom kernel functions and six GEMM in a
Transformer encoder layer, which is usually more
than four times less than its corresponding imple-
mentation in common deep learning frameworks
like TensorFlow or PyTorch.

2.2 Hierarchical Auto Regressive Search

LightSeq supports a comprehensive set of output
layers, such as sentence-level and token-level clas-
sification, perplexity calculation for language mod-

“Two for reduce_mean operations and one for calcula-
tion of the final result.
Shttps://developer.nvidia.com/cublas
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Figure 2: The structure of optimized Transformer en-
coder layers in LightSeq.

els, and auto-regressive search like beam search, di-
verse beam search and top-k/top-p sampling (Holtz-
man et al., 2020). Redundant calculations often ex-
ist in these output layers since we only need a few
labels/tokens with the highest probability instead
of all of them. Auto-regressive search is relatively
complicated, and we will discuss it in the next para-
graph. For the other types of output layers, we can
simply replace Softmax with the probability cal-
culation of token/label with the highest 1ogits,
which brings more obvious benefit when the size
of vocabulary or labels is large.

Auto-regressive search is widely used in ma-
chine translation and text generation. LightSeq
proposes Hierarchical Auto Regressive Search
(HARS) method to erase redundant calculations
and parallel computing. Here we take the most
used beam search method as an example to intro-
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duce the proposed HARS method.

In one step of the beam search process, given
the logits, we need to perform two calculations
over the whole vocabulary:

1. Compute the conditional probability using
Softmax and write the intermediate result
into GPU memory.

2. Read the intermediate result from GPU mem-
ory and select the top-k beams and tokens by
sequential probability.

These two calculations are highly time-
consuming since the vocabulary size is usually in
tens of thousands of scales. For example, they
account for a latency proportion of 30% in Trans-
former base models.

In order to reduce the input size of these two
calculations, LightSeq introduces a two-stage strat-
egy that is widely employed in the recommended
system: retrieve and re-rank.

Before the probability computation and top-k
selection, the retrieve is carried out first. For each
beam, we calculate as follows:

1. Randomly divide 1ogits into k groups.

2. Calculate the maximum of group ¢, denoted
as m;

3. Calculate the minimum of m;, denoted as R,
which can be regarded as a rough top-k value
of logits.

4. Select 1ogits larger than R and write them
into GPU memory.

The retrieve is co-designed based on GPU char-
acteristics and 1ogits distribution. Hence it is
efficient and effective:

o Efficient. The retrieve is implemented by one
kernel function and can be executed within a
dozen instruction cycles.

e Effective. After the retrieve, only dozens of
candidates were selected.

After the retrieve, the original two calculations of
beam search will be carried out on the small set of
candidates, named as Hierarchical Auto Regressive
Search.

Figure 3 is a detailed illustration of the proposed
hierarchical strategy. In the original beam search

!
1 |
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| Directly sorting |
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Figure 3: An illustration of the proposed hierarchical
strategy. In this case, beam size is 2 and vocabulary
size is 8. Each row represents 1ogits in a beam.

method, we need to compute the probability and
select the top-k over the whole vocabulary. How-
ever, by hierarchical method, we only need to pick
a small set of candidates from each beam and then
perform probability computation and top-k selec-
tion.

2.3 Dynamic GPU Memory Reuse

In order to save GPU memory occupancy and avoid
allocation of GPU memory during the model serv-
ing, LightSeq pre-defines the maximum of dynamic
shapes, such as the maximal sequence length. At
the start of the service, each intermediate result in
the calculation process is allocated GPU memory
to its maximum. Besides, GPU memory is shared
for non-dependent intermediate results.

Through this memory reuse strategy, on a T4
graphics card, we can deploy up to 8 Transformer
big models® at the same time, so as to improve
graphics card utilization in low frequency or peak-
shifting scenarios.

3 Experiments

In this section, we will show the improvements
of LightSeq with different GPU hardware and pre-
cisions. We first analyze the GPU occupation of
LightSeq during inference to investigate if Light-
Seq can make full use of GPU resources. Then, we
make a fair comparison with TensorFlow, PyTorch,
FasterTransformer, and TurboTransformers on ma-
chine translation and text generation to show the
efficiency of LightSeq.

8Under the configuration of 8 batch size, 256 sequence
length, 4 beam size and 30000 vocabulary size.
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Figure 4: Proportion of computation occupation. GEMM is the main indicator and the larger number indicates the

higher computation efficiency.
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Figure 5: Speedup on Transformer with beam search compared with FasterTransformer, TurboTransformers and
PyTorch implementation. The baseline is TensorFlow implementation.

3.1 Experiment Settings

We test the generation performance of LightSeq
on two latest NVIDIA inference GPU Tesla P4
and T4, choosing TensorFlow, PyTorch, and Faster-
Transformer implementations as a comparison. An-
other related library, TurboTransformers, mainly
focuses on the Transformer encoder and is not pow-
erful enough for text generation. Its speedup for
sequence generation compared to TensorFlow is
only about 15%, and it only supports Float32 on
GPU. Therefore we do not compare with it.

The experiments on machine translation are con-
ducted on the popular WMT14 English to German
translation tasks. The hyper-parameters setting re-
sembles transformer base model (Vaswani et al.,
2017a). Specifically, we reduce the vocabulary size
of both the source language and target language to
50K symbols using the sub-word technique (Bo-
janowski et al., 2017).

The experiments on text generation are con-
ducted on a randomly initialized Transformer

model and test dataset. Results of Tensorflow and
FasterTransformer are obtained from the scripts
in the source code of FasterTransformer. The se-
quence length is used for limiting the total size in
the generation test, and the values for top-k and
top-p are the most selected settings in our deploy-
ments.

3.2 GPU Occupation of LightSeq

We first analyze the GPU occupation to verify the
efficiency of LightSeq. The experiments are con-
ducted on Tesla T4 card with the GPU profiling
toolkit. The latency of each module is shown in Fig-
ure 4 with both Float16 and Float32 precision. We
classify the operation into three categories: GEMM,
cache refreshing, and others. GEMM latency is the
most important indicator, which shows the pro-
portion of matrix calculations occupying the GPU
calculation.
After optimization, we can find that:

o GEMM operation in LightSeq accounts for
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Figure 6: T4 speedup on Transformer with sampling
compared with FasterTransformer in Floatl6. Light-
Seq outperforms FasterTransformer in most cases.

87% and 82% respectively for Float16 and
Float32, accounting for most of the inference
time. However, in the original TensorFlow
model, GEMM operations account for only
25%. This shows that beam search optimiza-
tion has achieved good results.

e Cast and other operations in TensorFlow are
expensive, which launches over 80 different
GPU kernels. In LightSeq, we fuse cast opera-
tions into weight loading, and other operations
into more efficient implementations.

o The latency of cache refreshing in LightSeq
accounts for 6% and 10% respectively, which
are not negligible but hard to be optimized fur-
ther. Possible solutions include reducing the
amount of cache, such as reducing the number
of decoder layers, reducing cache precision,
etc.

The results demonstrate that LightSeq has been
optimized to a disabling extent and greatly in-
creases the speed of inference. Another interest-
ing finding is that Float16 is more efficient than
Float32. A possible explanation is that Float16 oc-
cupies less memory. Therefore the cache refreshing
and memory I/O operations potentially take less
time.

3.3 Comparison on Machine Translation

The comparison between LightSeq, TensorFlow,
PyTorch and FasterTransformer are shown in Fig-
ure 5. We group the test set into different buckets
according to the sequence length and batch size.
For example, the z-axis (a,b) indicates that the
batch size is a and the sequence length is b. The

y-axis is the speedup compared with TensorFlow
baseline. The results provide several interesting
findings:

e For both LightSeq and FasterTransformer, the
speedup gap for smaller batch size or shorter
sequence length is much larger.

e The speedup for T4 is larger than P4. The
main reason is that T4 is more powerful than
P4 and has much room for improvement.

e In most cases, LightSeq performs better than
FasterTransformer. For larger batch size and
longer sequences, the gap increases. While
for smaller batch size, FasterTransformer per-
forms better.

e PyTorch is slightly slower than TensorFlow
in P4 and faster in T4, which indicates that
LightSeq also greatly outperforms PyTorch in
all cases.

The findings provide some guidance for opti-
mization work in the future. There is almost no
space to accelerate the inference by fusion of non-
computationally intensive operators, especially for
small batch size. Future work is recommended
to focus on optimizing GEMM operations which
account for 80% to 90% of the total computation
time.

Finally, we compare TurboTransformers with Py-
Torch by the translation demo’. As of this writing,
only decoder layers of MT Transformer in float32
precision is supported, so we only compare the la-
tencies of decoder layers without beam search and
cache refreshing. In the final results, TurboTrans-
formers only achieves about 2x speedup for differ-
ent batch sizes and sequence lengths. So Turbo-
Transformers has no comparability with LightSeq
in machine translation tasks (As TurboTransformer
repo says, ‘“TurboTransformer will bring 15.9% per-
formance improvements on RTX 2060 GPU. We
are still working on decoder model optimization.”).

3.4 Comparison on Text Generation

In the text generation scenario, the sampling strat-
egy is applied to improve the diversity of gener-
ation. Among which, top-k and top-p sampling
strategies are more popular.

"Thttps://github.com/
TurboNLP/Translate—-Demo/tree/
443e6a46fefbdf64282842b6233a8bd0az22d6aeb
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Figure 6 shows the performance comparison of
Transformer base with top-k/top-p sampling. The
values of top-k and top-p are added in the x-axis.
The results provide following findings:

e In most cases, LightSeq achieves greater
speedup than FasterTransformer. Unlike re-
sults in machine translation, LightSeq per-
forms better for smaller batch size and shorter
sequence, while FasterTransformer performs
better for larger batch size and longer se-
quence.

e The speedup in generation tasks are not as
large as machine translation. It is mainly
because of the lower complexity of sam-
pling methods than beam search, reducing the
benefits obtained from operation fusion and
HARS.

4 Conclusion

In this paper, we address the deployment problem
of expensive sequence models and present an effi-
cient inference library LightSeq for sequence pro-
cessing and generation, reducing the gap between
the performance of big models and the require-
ment of online services. Comparisons with Faster-
Transformer show that we perform better in both
machine translation and text generation. In future
work, we will focus on exploring more techniques
to achieve a more significant speedup, including ef-
ficient integer-arithmetic-only inference and sparse
GEMM computations.
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Practical Transformer-based Multilingual Text Classification
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Abstract

Transformer-based methods are appealing for
multilingual text classification, but common
research benchmarks like XNLI (Conneau
et al., 2018) do not reflect the data avail-
ability and task variety of industry applica-
tions. We present an empirical comparison
of transformer-based text classification mod-
els in a variety of practical monolingual and
multilingual pretraining and fine-tuning set-
tings. We evaluate these methods on two dis-
tinct tasks in five different languages. De-
parting from prior work, our results show that
multilingual language models can outperform
monolingual ones in some downstream tasks
and target languages. We additionally show
that practical modifications such as task- and
domain-adaptive pretraining and data augmen-
tation can improve classification performance
without the need for additional labeled data.

1 Introduction

While the development of natural language un-
derstanding (NLU) applications often begins with
high-resource languages such as English, there is a
need to create products that are accessible to speak-
ers of the world’s nearly 7,000 languages. Only
5% of the world’s population is estimated to speak
English as a first language.!

The growth of NLU-centric products within di-
verse language markets is evidenced by the increase
in language support for popular consumer applica-
tions such as virtual assistants, Web search, and so-
cial media platforms. As of mid-2020, Google As-
sistant supported 44 languages on smartphones, fol-
lowed by Siri (21 languages) and Amazon Alexa (8
languages). At the start of 2021, Google Search and
Microsoft Bing supported 149 and 40 languages
respectively. Also at this time, Twitter officially
supported a total of 45 languages with Facebook
reaching over 100 languages.

'CIA World Factbook

Michele Banko
Sentropy Technologies
mbanko@sentropy.io

Advances in multilingual language models such
as multilingual BERT (mBERT; Devlin et al., 2019)
and XLM-RoBERTa (XLM-R; Conneau et al.,
2020) which are trained on massive corpora in
over 100 languages, show promise for fast iteration
and deployment of NLU applications. In theory,
cross-lingual approaches reduce the need for la-
beled training data in target languages by enabling
zero- or few-shot learning. Additionally, they en-
able simplified model deployment compared to the
use of many monolingual models. On the other
hand, evaluations show that scaling to more lan-
guages causes dilution (Conneau et al., 2020) and
consequently cite the relative under-performance
of multilingual models on monolingual tasks (Vir-
tanen et al., 2019; Antoun et al., 2020).

Recent studies (Hu et al., 2020; Rust et al., 2020)
have explored tradeoffs of multi versus monolin-
gual model paradigms. However, we observe that
existing multilingual text classification benchmarks
are designed to measure zero-shot cross-lingual
transfer rather than supervised learning (Conneau
et al., 2018; Yang et al., 2019), though the latter is
more applicable to industry settings. Thus, the goal
of this paper is to evaluate multilingual text classifi-
cation approaches with a focus on real applications.
Our contributions include:

* A comparison of state-of-the-art language
models spanning monolingual and multilin-
gual setups, evaluated across five languages
and two distinct tasks;

* A set of practical recommendations for fine-
tuning readily available language models for
text classification; and

* Analyses of industry-centric challenges such
as domain mismatch, labeled data availability,
and runtime inference scalability.

2 Multilingual Text Classification

We consider a series of practical components for
building multilingual text classification systems.
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Lang. Model Pretraining Corpus Tokenizer Param.
EN RoBERTa (Liu et al., 2019) Various (160GB) BPE 125M
DE German BERT (deepset.ai, 2019) German Wikipedia, OpenLegalData, and SentencePiece 110M
news articles (12 GB)
ES BETO (Caiiete et al., 2020) Various (18.4GB) WordPiece 110M
FR CamemBERT (Martin et al., 2020)  OSCAR (138GB) SentencePiece 110M
JA Japanese BERT (Suzuki and Taka- Japanese Wikipedia (2.6GB) MeCab+Wordpiece 110M
hashi, 2019)
MULTI XLM-RoBERTa (Conneau et al., CC-100 (2.5 TB) EN (301GB), DE (67GB), SentencePiece 270M

2019)

ES (53GB), FR (57GB), JA (69GB)

Table 1: Pretraining corpora, tokenizers, and size (# parameters) of the language models used in our experiments.

2.1 Pretrained Transformer Language
Models

Transfer learning using pretrained language models
(LMs) which are then fine-tuned for downstream
tasks has emerged as a powerful technique for NLU
applications. In particular, models using the now-
ubiquitous transformer architecture (Vaswani et al.,
2017), such as BERT (Devlin et al., 2019) and its
variants, have obtained state of the art results in
many monolingual and cross-lingual NLU bench-
marks (Wang et al., 2019a; Raffel et al., 2020; He
etal., 2021).

One drawback of data-hungry transformer mod-
els is that they are time- and resource-intensive
to train. In our experiments, we consider LMs
pretrained on both monolingual and multilingual
corpora, and analyze the effects of combining these
models with other NLU system components.

For monolingual LMs, we use BERT models
pretrained on corpora in each target language. The
one exception is English, where we use RoBERTa,
a BERT reimplementation that exceeds its perfor-
mance on an assortment of tasks (Liu et al., 2019).

For multilingual LMs, we use XLM-R, which
significantly outperforms mBERT on cross-lingual
benchmarks and is competitive with monolingual
models on monolingual benchmarks such as GLUE
(Wang et al., 2019b). All of the pretrained models
used are accessible from the Hugging Face (Wolf
et al., 2020) model hub, and their details are sum-
marized in Table 1.

2.2 Domain-Adaptive and Task-Adaptive
Pretraining

Though pretrained language models have hundreds
of millions of parameters and are trained on di-
verse corpora, they are not guaranteed to gener-
alize to all tasks and domains. For downstream
tasks, a second phase of pretraining on a smaller
domain- or task-specific corpus has been shown to

provide performance improvements. Gururangan
et al. (2020) compare domain-adaptive pretraining
(DAPT), which uses a large corpus of unlabeled
domain-specific text, and task-adaptive pretrain-
ing (TAPT), which uses only the training data of a
particular task. The primary difference is that the
task-specific corpus tends to be much smaller, but
also more task-relevant. Therefore, while DAPT
is helpful in both low- and high-resource settings,
TAPT is much more resource-efficient and outper-
forms DAPT when sufficient data is available.

In our experiments, we evaluate both approaches,
using the classification task training data as the
TAPT corpus and in-domain unlabeled data as the
DAPT corpus (see Section 3 for details). BERT and
RoBERTa are pretrained with a masked language
modeling (MLM) objective, a cross-entropy loss on
randomly masked tokens in the input sequence. We
similarly use the MLM objective when performing
DAPT and TAPT.

2.3 Supervised Fine-Tuning

We consider three settings for supervised fine-
tuning of language models for downstream classifi-
cation tasks (V is the number of target languages).
* mono-target (N final models): Fine-tune a
monolingual LM on the training data in each
target language
* multi-target (N final models): Fine-tune
XLM-R on the training data in each target
language
* multi-all (one final model): Fine-tune XLM-R
on the concatenation of all training data
To represent sequences for classification, we use
the final LM hidden vectors B € R ¥ correspond-
ing to each of the [ input tokens.> We then compute
average and max pools over the sequence length

>Though only the hidden vector for the first ([CLS]) to-
ken is typically used (Devlin et al., 2019), we find that the
pooled sequence summary attains better results on our tasks.
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Dataset Task Lang. Unlab. Train Test
CLS Sentiment EN 105k 6k 6k
(AMAZON) DE 317k 6k 6k

FR 58k 6k 6k

JA 294k 6k 6k
HATEVAL Hate speech  EN - 10k 3k
(TWITTER) ES - S5k 1.6k

Table 2: The target tasks, languages, and number of
training and test examples in each dataset.

layer and concatenate them to create the aggregate
representation C' € R?H. Finally, the summary
vector C'is passed to a classification layer where
we compute a standard cross-entropy loss.

2.4 Data Augmentation

In real applications, labeled data is often available
in high resource languages such as English but
sparse or nonexistent in others. We experiment
with machine translation® as a form of cross-lingual
data augmentation, which has been shown to im-
prove performance on multilingual benchmarks
(Singh et al., 2019). In single target language set-
tings, we translate training data from other lan-
guages into the target language, yielding N times
the number of training examples. In the multi-all
setting, we translate data from every language into
every other language, yielding N(N — 1) times
the number of training examples. At training time,
we directly include the translated examples in the
training corpus. Following the pretraining conven-
tion of XLM-R, we do not use special markers to
denote the input language.

3 Data

We choose sentiment analysis and hate speech de-
tection as evaluation tasks due to their relevance to
industry applications and the availability of mul-
tilingual datasets. An overview of the datasets is
shown in Table 2.

3.1 Sentiment Analysis

The Cross-Lingual Sentiment dataset (CLS; Pret-
tenhofer and Stein, 2010)* consists of AMAZON
product reviews in four languages and three prod-
uct categories (BOOKS, DVD, and MUSIC). Each
review includes title and body text, which we con-
catenate to create the input example. The dataset

3https://cloud.google.com/translate

“We use the processed version of this dataset provided by
Eisenschlos et al. (2019).

Hashtag Train  Test  Test'
#NoDACA 99.36 3426 99.60
#EndDACA 98.31 33.87 98.39
#BuildThatWall 100.0 24.89 95.99
#BuildTheDamnWall ~ 100.0  62.07  100.0
#NoAmnesty 100.0 48.25 100.0
#SendThemBack 82.02 6829 87.80
#DeportThemAll 100.0 83.15 99.46

Table 3: Percentage of hateful class by anti-immigrant
hashtags in HATEVAL (non-exhaustive list). TDenotes
the relabeled test set.

contains training and test sets with balanced binary
sentiment labels, as well as 50-320k unlabeled ex-
amples per language. We sample 10k unlabeled
examples from each language for DAPT.

3.2 Hate Speech Detection

The HATEVAL dataset (Basile et al., 2019) con-
tains tweets in English and Spanish annotated for
the presence of hate speech targeting women and
immigrants. Examples were collected by querying
Twitter for users with histories of sending or receiv-
ing hateful messages, as well as keywords related
to women and immigrants.

Relabeling English Test Data During experi-
mentation, we found that English example labels
were inconsistent across the training and test sets.
For instance, many test examples containing anti-
immigration hashtags were mislabeled as non-
hateful while similar examples were labeled as
hateful in the training set (see Table 3). We man-
ually relabeled 641 examples in the test set and
release the relabeled data for future research.>-¢

Unlabeled Twitter Data Since no unlabeled cor-
pus is provided, we collected a sample of 10k ran-

dom tweets per language from November 2020,
which we use for DAPT.

4 Experimental Setup

Preprocessing and Tokenization We apply min-
imal preprocessing to both datasets, replacing
URLs and Twitter usernames with <url> and
<user>tokens. At all stages of training, we use the
default tokenizers associated with each pretrained

>Prior work (Stappen et al., 2020) has also noted this
discrepancy and proposed repartitioning the train and test sets.
We instead relabeled the test set due to the large number of
mislabeled examples.

®https://github.com/sentropytechnologies/
hateval2019- relabeled
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Model DE FR JA

mBERT 843 86.6 &81.2
MultiFiT 922 914 86.2

Model EN ES
Majority label 36.7 37.0
SVM + tf-idf 45.1 70.1

1st place submissions  65.1  73.0

Table 4: Prior results (macro-F1) for CLS (Eisenschlos
et al., 2019, top) and HATEVAL (Basile et al., 2019,
bottom).

LM (see Table 1) and truncate sequences with more
than 512 tokens.

Training We use 80% of each training set for
training and the rest for validation. During DAPT
and TAPT, we train using the MLM objective for
10 epochs. During supervised fine-tuning, we train
for 5 epochs. We use the default hyperparameters
for all pretrained LMs and apply dropout of 0.4 to
the final classification layer.

Evaluation We report the test set macro-
averaged F1 score for both datasets. (For CLS,
this is equivalent to accuracy since the classes are
balanced.) For reference, prior results on CLS and
HATEVAL are shown in Table 4.

5 Results and Analysis

We report results for all experiments in Table 5. For
both datasets, (1) TAPT and DAPT and (2) data
augmentation with machine translations improve
model performance. These strategies, which re-
quire no additional labeled data, improve macro-F1
score by between 0.6-1.5% for CLS and between
0.3-4.3% for HATEVAL. Even without DAPT,
which is often the most expensive step, applying
TAPT and/or data augmentation alone improves
performance in all settings and languages except
HATEVAL EN.

CLS For languages where extremely high-
resource monolingual LMs are available (EN and
FR), models perform best in the mono-target set-
ting, in which a monolingual LM is fine-tuned
on target language data. This is consistent with
prior findings that XLM-R suffers from fixed model
capacity and vocabulary dilution (Conneau et al.,
2019). However, for DE and JA, which are not low-
resource languages but whose monolingual LM
pretraining corpora are relatively limited in size

and domain (see Table 1), XLM-R models perform
better.

HATEVAL On average, XLM-R models perform
better on HATEVAL than those fine-tuned from
monolingual LMs. Unlike for CLS, this is true
even in EN, suggesting that for some classification
tasks, the LM pretraining corpus is not as impor-
tant for downstream task performance as XLM-R’s
larger model capacity and cross-lingual transfer.
Though scores were much higher for the relabeled
EN dataset than the original, the effects of LM fine-
tuning, TAPT, DAPT, and data augmentation were
consistent.

5.1 Not All Classification Tasks Are Created
Equal

The two text classification tasks we evaluate are sig-
nificantly different from both an annotation and a
modeling perspective. Sentiment is a well-defined
facet of language, and language model represen-
tations have even been shown to encode semantic
information about it (Radford et al., 2017). Mean-
while, defining and identifying hate speech is much
more nuanced, even for humans. Hate speech de-
tection is confounded by many factors that require
not only immediate context of the input but also
cultural and social contexts (Schmidt and Wiegand,
2017). The difference in the types of information
that models need to encode for each task may ex-
plain why monolingual LMs, which tend to encode
better lexical information than multilingual LMs
(Vuli€ et al., 2020), can outperform XLM-based
models when fine-tuned for sentiment analysis but
not for hate speech detection.

5.2 Cross-lingual Transfer

Prior work has established that multilingual LMs
benefit from the addition of more languages dur-
ing pretraining up to a point, after which limited
model capacity and vocabulary dilution cause per-
formance to degrade on downstream tasks — this is
referred to as the curse of multilinguality (Conneau
et al., 2019). Though this is reflected in the results
of CLS EN and FR, other models fine-tuned from
XLM-R exhibit gains from cross-lingual transfer.
In particular, for CLS JA and HATEVAL EN, the
best-performing models benefit not only from mul-
tilingual pretraining corpora but also from multilin-
gual task training data.

These results suggest that when fine-tuning LMs
for downstream tasks, XLM-R is a robust baseline.
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CLS HATEVAL

Model Adapt. Aug. EN DE FR JA  AVG EN EN' ES AVG AVG'

m()n()-target
% X 94.70.4 909906 95.200 88.703 924 44.45 3 b58.5g.2 75.60.6 60.0 67.1
v 95.30.3 92.002 95.60.3 89.30.02 93.0 46.156 60.632 76.01.7 61.0 68.3
RoBERTa (EN) TAPT X 94.90.1 91.60.1 95.4p.1 89.303 92.8 45.419 59.927 76.11.1 60.8 68.0
BERT (OTHERS) Ve 95.00,4 92.30_4 95.80,2 89.7(),4 93.2 44.71,5 59.21‘7 76.91,4 60.8 68.0
TAPT+ X 94.90.4 91.80.2 95.50.3 89.502 929 48.01.5 63.12 76.31.1 622 69.7
DAPT e 95.30.1 93.008 95901 89.904 93.5 46.04.3 60.244 76.906 614 68.5

multi-target
% X 92.50.4 93.002 92.50.3 90405 92.1 47290 61419 T74.80.5 61.0 68.1
v 93.30.1 94.002 93.802 90.30.3 92.8 45616 59.325 77.01.1 61.3 68.1
X 92.705 93.505 93.9p53 90.30.1 92.6 47.007 62433 76.11.4 61.6 69.2
XLM-RoBERTa  TAPT - o374 " 04005 93.805 90.504 929 A47.915 63515 T7.909 629 707
TAPT+ X 93.106 93.005 93.60.1 90.80.3 92.6 49955 65.604 76.519 632 71.0
DAPT Ve 94.003 94104 93.80.3 91.1p4 932 46.62.1 61.725 78108 62.3 69.9

multi-all

% X 92.403 92.604 93.30.4 90.404 922 48.435 63.145 77.50.4 629 70.3
e 93.40.3 93.302 94.002 90.495 92.8 49.835 66.046 77.80.9 63.8 719
X 92.50.4 93.00.3 93.993 90.993 92.6 48407 64.235 T7.409 629 70.8
XLM-RoBERTa  TAPT 935, 93405 94102 9lloz 930 50.022 66.526 77.806 639 722
TAPT+ X 92.70.3 93.302 94.00.3 91.203 92.8 47139 62.753 77.4109 623 70.1
DAPT Ve 93.503 93.802 94.30.3 91402 933 50.7,1 67.4,4 T7.707 642 72.6

Table 5: CLS and HATEVAL results (macro-F1) averaged over five random seeds. The best results for each target
language test set are bolded, and standard deviations are shown in subscripts. Model denotes the supervised fine-
tuning setting. Adapt. denotes the adaptive pretraining setting: X (no adaptive pretraining), TAPT (task-adaptation
only), or TAPT+DAPT (task- and domain-adaptation). Aug. denotes whether the training data was augmented with

machine-translated examples. For HATEVAL, we report results for both the original and relabeled’ test sets.

Model Data DE FR JA ES

multi-target  target 94.1 93.8 91.1 78.1
multi-all all 938 943 914 777
zero-shot EN 92.7 926 885 72.1

Table 6: Zero-shot learning versus best multilingual ap-
proaches. Data denotes language of training data. We
fine-tune XLM-R and use DAPT, TAPT, and data aug-
mentation for all models shown.

In cases where knowledge transfer from a monolin-
gual LM might be difficult (e.g. due to a limited
pretraining corpus or specialized downstream task),
XLM-R may even outperform its monolingual com-
petitors.

5.3 Are Target Language Labels Needed?

Zero-shot learning is a topic of significant inter-
est in multilingual NLU research (Conneau et al.,
2018, 2019; Artetxe and Schwenk, 2019). In this
context, we use zero-shot learning to refer to learn-
ing a classification task without observing training
examples in the target language. Such an approach
would allow practitioners to train a classification
model using labeled data in a high-resource lan-

guage such as EN and deploy it in other languages
for which labels are not available.

To evaluate the viability of zero-shot approaches
for our tasks, we compare the best performing mod-
els from the experiments in Table 5 with models
trained only on EN training data. We report the
test set results for each of the non-EN target lan-
guages in Table 6. Zero-shot models are compet-
itive with previously published baselines (Table
4), which demonstrates the effectiveness of cross-
lingual transfer in models like XLLM-R. However,
models trained using target language labels still out-
perform them by a large margin. Since obtaining a
small number of target language labels is straight-
forward and typically required for validation in
real applications, the need for zero-shot learning is
reduced in practical scenarios.

5.4 Speed and Memory Usage

The deployment of multilingual NLU systems
varies significantly depending on the number of
downstream task models trained and the model ar-
chitectures used. For instance, the mono-target and
multi-target settings induce one model per target
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language. Conversely, multi-all models have more
consistent end-task performance and do not require
the added complexity and latency of language de-
tection.

We use the Hugging Face library to benchmark
the pretrained transformer models used in our ex-
periments. We measure the inference time and
memory usage of a single forward pass on a sin-
gle Nvidia Tesla P100 GPU. Results are shown in
Figure 1.

Monolingual BERT models in different lan-
guages are nearly identical in inference speed, but
vary slightly at small batch sizes. ROBERTa has
more parameters than BERT, but the impact on
inference time and memory is small. XLM-R is
also comparable with monolingual models at small
batch sizes, but its memory usage becomes pro-
hibitively large at batch sizes larger than 32. For
certain applications such as those with real-time
inference, this may not be important since the most
common batch size is 1. Overall, the main tradeoff
we observe is between the complexity of deploying
N language-specific models and the high parame-
ter count of a single multilingual model.

6 Related Work

6.1 Multilingual Classification Benchmarks

XNLI (Conneau et al., 2018) and PAWS-X (Yang
et al., 2019) are commonly used as representative
benchmarks for cross-lingual text classification (Hu
et al., 2020; Conneau et al., 2019). However, both
datasets are designed for evaluating zero-shot cross-
lingual transfer. While useful, they do not reflect
practical scenarios where (1) a small amount of
labeled data obviates zero-shot approaches, and
(2) target language test data are not semantically
aligned.

Meanwhile, benchmarks for supervised multi-
lingual text classification are limited. Artetxe and
Schwenk (2019) propose Language-Agnostic SEn-
tence Representations (LASER) and evaluate them
on Multilingual Document Classification Corpus
(MLDoc; Schwenk and Li, 2018). Eisenschlos
et al. (2019) later show that their multilingual fine-
tuning and bootstrapping approach, MultiFit, out-
performs LASER and mBERT on CLS and ML-
Doc. The recently released Multilingual Amazon
Reviews Corpus (MARC; Keung et al., 2020) is
similar to CLS, but contains a different set of lan-
guages and large-scale training sets. Rust et al.
(2020) perform a systematic evaluation similar
to ours, comparing monolingual and multilingual
BERT models on seven monolingual sentiment
analysis datasets. Unlike our work, they do not con-
sider multilingual test sets or cross-lingual transfer
during training (as in the multi-all setting). None of
the above evaluate practical training modifications,
XLM-R, or tasks with class imbalance.

6.2 Hate Speech Detection

Due to the increased volume and consequence of
online content moderation in recent years, there is a
growing body of work on multilingual hate speech
data and methodology. The Multilingual Toxic
Comment Classification Kaggle challenge (Jigsaw,
2019) included a multilingual test set of Wikipedia
talk page comments annotated for toxicity. More
recently, Glavas et al. (2020) introduced XHATE-
999, an evaluation set of 999 semantically aligned
test instances annotated for abusive language in
five typologically diverse languages. Similar to our
work, they compare state-of-the-art monolingual
and multilingual transformer models. However,
both the Jigsaw dataset and XHATE-999 are de-
signed for evaluating zero-shot transfer and do not
contain multilingual training data.

126



Other multilingual hate speech studies have
largely combined separate existing monolingual
datasets for evaluation (Pamungkas and Patti, 2019;
Sohn and Lee, 2019; Aluru et al., 2020; Corazza
et al., 2020; Zampieri et al., 2020). To avoid do-
main mismatch effects across languages, we use the
HATEVAL dataset (Basile et al., 2019), for which
all examples were collected simultaneously.

Previously evaluated approaches include LSTM
architectures and feature selection (Pamungkas and
Patti, 2019; Corazza et al., 2020), as well as us-
ing transformers for fine-tuning (Sohn and Lee,
2019) or feature extraction (Stappen et al., 2020).
Aluru et al. (2020) show that fine-tuning from
transformer-based language models generally out-
performs other methods, including cross-lingual
fixed representations like LASER.

7 Conclusion

We conduct an empirical evaluation of transformer-
based methods for multilingual text classification
in a variety of pretraining and fine-tuning settings.
We evaluate our results on two multilingual datasets
spanning five languages: CLS (sentiment analysis)
and HATEVAL (hate speech detection). Addition-
ally, we contribute a relabeled version of HATE-
VAL to address mislabeled test examples and enable
meaningful comparisons in future work.

Our results and analysis show that practical meth-
ods such as task- and domain-adaptive pretrain-
ing and data augmentation using machine trans-
lations consistently improve model performance
without requiring additional labeled data. We fur-
ther show that multilingual model performance can
vary based on task semantics, and that monolingual
models are not always guaranteed to outperform
massively multilingual models like XLLM-R due to
its large pretraining corpora and increased capacity.

Our work points to a number of future direc-
tions, including cross-domain and cross-task trans-
fer, low-resource and few-shot learning, and practi-
cal alternatives to large multilingual models such
as distillation.

Acknowledgements

We wish to thank Boya (Emma) Peng, Alexander
Wang, and Thomas Boser for discussions and feed-
back on this work. Thanks also to the anonymous
reviewers whose detailed suggestions helped im-
prove its clarity and usefulness.

References

Sai Saket Aluru, Binny Mathew, Punyajoy Saha, and
Animesh Mukherjee. 2020. Deep learning mod-
els for multilingual hate speech detection. arXiv
preprint arXiv:2004.06465.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
AraBERT: Transformer-based model for Arabic lan-
guage understanding. In Proceedings of the 4th
Workshop on Open-Source Arabic Corpora and Pro-
cessing Tools, with a Shared Task on Offensive Lan-
guage Detection, pages 9—15, Marseille, France. Eu-
ropean Language Resource Association.

Mikel Artetxe and Holger Schwenk. 2019. Mas-
sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transac-

tions of the Association for Computational Linguis-
tics, 7:597-610.

Valerio Basile, Cristina Bosco, Elisabetta Fersini,
Debora Nozza, Viviana Patti, Francisco Manuel
Rangel Pardo, Paolo Rosso, and Manuela San-
guinetti. 2019. SemEval-2019 task 5: Multilin-
gual detection of hate speech against immigrants and
women in Twitter. In Proceedings of the 13th Inter-
national Workshop on Semantic Evaluation, pages
54-63, Minneapolis, Minnesota, USA. Association
for Computational Linguistics.

José Caiiete, Gabriel Chaperon, Rodrigo Fuentes, Jou-
Hui Ho, Hojin Kang, and Jorge Pérez. 2020. Span-
ish pre-trained bert model and evaluation data. In
PMLADC at ICLR 2020.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmén, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Michele Corazza, Stefano Menini, Elena Cabrio, Sara
Tonelli, and Serena Villata. 2020. A multilingual
evaluation for online hate speech detection. ACM
Trans. Internet Technol., 20(2).

127



deepset.ai. 2019. Open sourcing german bert. https:
//deepset.ai/german-bert.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Julian Eisenschlos, Sebastian Ruder, Piotr Czapla,
Marcin Kadras, Sylvain Gugger, and Jeremy
Howard. 2019. Multifit: Efficient multi-lingual lan-
guage model fine-tuning. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 5706-5711.

Goran Glavas, Mladen Karan, and Ivan Vuli¢. 2020.
XHate-999: Analyzing and detecting abusive lan-
guage across domains and languages. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 6350-6365, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Suchin Gururangan, Ana Marasovié, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks.
In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics,
pages 8342-8360. Association for Computational
Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-task
benchmark for evaluating cross-lingual generaliza-
tion. CoRR, abs/2003.11080.

Jigsaw. 2019. Jigsaw multilingual toxic comment
classification. https://www.kaggle.com/c/
jigsaw-multilingual-toxic-comment-
classification.

Phillip Keung, Yichao Lu, Gyorgy Szarvas, and
Noah A. Smith. 2020. The multilingual Amazon
reviews corpus. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4563—4568, Online. As-
sociation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Louis Martin, Benjamin Muller, Pedro Javier Or-
tiz Sudrez, Yoann Dupont, Laurent Romary, Eric
de la Clergerie, Djamé Seddah, and Benoit Sagot.
2020. CamemBERT: a tasty French language model.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
7203-7219, Online. Association for Computational
Linguistics.

Endang Wahyu Pamungkas and Viviana Patti. 2019.
Cross-domain and cross-lingual abusive language
detection: A hybrid approach with deep learning
and a multilingual lexicon. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics: Student Research Workshop,
pages 363-370, Florence, Italy. Association for
Computational Linguistics.

Peter Prettenhofer and Benno Stein. 2010.  Cross-
language text classification using structural corre-
spondence learning. In Proceedings of the 48th An-
nual Meeting of the Association for Computational
Linguistics, pages 1118-1127.

Alec Radford, Rafal J6zefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. CoRR, abs/1704.01444.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-

text transformer. Journal of Machine Learning Re-
search, 21(140):1-67.

Phillip Rust, Jonas Pfeiffer, Ivan Vuli¢, Sebastian
Ruder, and Iryna Gurevych. 2020. How good is your
tokenizer? on the monolingual performance of mul-
tilingual language models.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, pages 1-10, Valencia, Spain. Associa-
tion for Computational Linguistics.

Holger Schwenk and Xian Li. 2018. A Corpus for
Multilingual Document Classification in Eight Lan-
guages. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Jasdeep Singh, Bryan McCann, Nitish Shirish Keskar,
Caiming Xiong, and Richard Socher. 2019. Xlda:
Cross-lingual data augmentation for natural lan-
guage inference and question answering.

Hajung Sohn and Hyunju Lee. 2019. Mc-bert4hate:
Hate speech detection using multi-channel bert for
different languages and translations. 2019 Inter-
national Conference on Data Mining Workshops

(ICDMW), pages 551-559.

128



Lukas Stappen, Fabian Brunn, and B. Schuller. 2020.
Cross-lingual zero- and few-shot hate speech detec-
tion utilising frozen transformer language models
and axel. ArXiv, abs/2004.13850.

Masatoshi Suzuki and Ryo Takahashi. 2019.
Pretrained japanese bert models. https:
//github.com/cl-tohoku/bert-japanese.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998-6008.

Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma,
Juhani Luotolahti, Tapio Salakoski, Filip Ginter, and
Sampo Pyysalo. 2019. Multilingual is not enough:
Bert for finnish. arXiv preprint arXiv:1912.07076.

Ivan Vuli¢, Edoardo Maria Ponti, Robert Litschko,
Goran Glavas, and Anna Korhonen. 2020. Probing
pretrained language models for lexical semantics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7222-7240.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019a. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. In Advances in Neural Infor-
mation Processing Systems, volume 32, pages 3266—
3280. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the Pro-
ceedings of ICLR.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,

pages 38-45.

Yinfei Yang, Yuan Zhang, Chris Tar, and Jason
Baldridge. 2019. PAWS-X: A cross-lingual adver-
sarial dataset for paraphrase identification. In Pro-
ceedings of EMNLP 2019, pages 3685—-3690.

Marcos Zampieri, Preslav Nakov, Sara Rosenthal, Pepa
Atanasova, Georgi Karadzhov, Hamdy Mubarak,
Leon Derczynski, Zeses Pitenis, and Cagr1 Coltekin.
2020. SemEval-2020 task 12: Multilingual offen-
sive language identification in social media (Offen-
sEval 2020). In Proceedings of the Fourteenth
Workshop on Semantic Evaluation, pages 1425—
1447, Barcelona (online). International Committee
for Computational Linguistics.

129



An Emotional Comfort Framework for Improving User Satisfaction in
E-Commerce Customer Service Chatbots

Shuangyong Song, Chao Wang, Haiqing Chen, Huan Chen
Alibaba Groups, Hangzhou 311121, China
{shuangyong.ssy, chaowang.wc, haiging.chenhqg, shiwan.ch}
@alibaba-inc.com

Abstract

E-commerce has grown substantially over the
last several years, and chatbots for intelligent
customer service are concurrently drawing at-
tention. We presented AliMe Assist, a Chi-
nese intelligent assistant designed for creat-
ing an innovative online shopping experience
in E-commerce. Based on question answer-
ing (QA), AliMe Assist offers assistance ser-
vice, customer service, and chatting service.
According to the survey of user studies and
the real online testing, emotional comfort of
customers’ negative emotions, which make up
more than 5% of whole number of customer
visits on AliMe, is a key point for providing
considerate service. In this paper, we propose
a framework to obtain proper replies to cus-
tomers’ emotional questions. The framework
takes emotion classification model as a core,
and the final reply selection is based on topic
classification and text matching. Our exper-
iments on real online systems show that the
framework is very promising.

1 Introduction

A chatbot is considered as a question answering
system in which experts provide knowledge on
users’ behest. Meanwhile, chatbots are not just
question answering systems, since they can carry
out a lot of tasks depending on how you design
it (Zhu et al., 2018). As chatbot has become an
important solution to rapidly increasing customer
service demands in recent years, many companies
have recently launched their own intelligent cus-
tomer service (ICS) chatbots for providing cus-
tomer service, such as Lenovo (Li et al., 2018),
Fujitsu (Okuda and Shoda, 2018), JD.com (Zhu,
2019) and Alibaba (Li et al., 2017).

For customers’ emotional questions, proper emo-
tional comfort can help improve the service. This
is not only applicable to customer service staffs,
but also a key point of ICS chatbots, while demon-
strating human-like service is the ultimate goal of

ICS chatbots. Emotional quotient (EQ) has been
a core competence of chatbot (Zhou et al., 2020),
and about EQ, we can roughly categorize it into
two key components: identifying users’ emotions
and giving users proper emotional responses. Be-
sides, chatbots’ EQ is domain-specific, since it is
mainly based on emotion analyzing, and emotion-
analyzing technologies are mostly domain specific.

In this paper, we introduce an emotional com-
fort framework for the e-commerce chatbots. E-
commerce customers usually complain of slow de-
livery, poor quality of goods and difficulty of con-
tacting sellers, etc. Traditional question answering
based ICS chatbots may just reply customers with
some pieces of ‘knowledge’ such as ‘how to speed
up the delivery’, ‘how to report the quality issues
of goods’ and ‘how to contact sellers’. Without
responses that are emotionally appropriate, ICS
robots are too ‘robotic’ to users. Human-like em-
pathy and appropriate emotional reply can help the
users regain their confidence and move forward
with a positive attitude. Besides, in our framework
we don’t consider emotional response generation
models, such as (Huo et al., 2020) and (Zhou et al.,
2018), since we should meet the high Queries-per-
second (QPS) needs of real online applications.

Figure 1 gives two simple examples for the com-
parison of traditional ICS chatbots and emotional
ICS chatbots, which are without or with emotional
comforts. Without emotional comfort, the response
appears abruptly.

2 Related Work

Classification model: classification model train-
ing is strongly based on extraction of textual seman-
tic features, and textual semantic features can be
roughly separated into word- (or character-) level
features (Wang et al., 2018; Song et al., 2017; Kus-
ner et al., 2015) , n-gram level features (Yin et al.,
2016; Wan et al., 2016) and sentence level features
(Shen et al., 2018; Arora et al., 2016).
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Figure 1: Comparison of conversations with or without
emotional comforts.

1) Word-level features: Kusner et al. (Kus-
ner et al., 2015) proposed word mover’s distance
(WMD), a distance function between two docu-
ments, which measures the minimum traveling dis-
tance from the embedded words of one document
to another one. WMD achieved good performance
in the document classification task (Ma et al., 2018).
Referring to WMD, Song et al. (Song et al., 2017)
proposed Word Similarity Maximization (WSM),
which is a faster method for calculating similarity
between two short texts with word embeddings, and
WSM can achieve even better results than WMD
on short text classification task. Wang et al. (Wang
et al., 2018) proposed a novel classification model
that considers correlation between embeddings of
category labels and word embeddings (LEAM),
which has further enriched the word-level features
of text classification.

2) N-gram level features: Yin et al. (Yin et al.,
2016) proposed Attention based CNN (ABCNN)
model to extract n-gram features of each of two
texts, and then combine those features as input of
Logistic regression model to obtain semantic sim-
ilarity between two texts. Wan et al. proposed a
MV-LSTM model, which utilize Bi-LSTM model
to obtain multiple positional sentence representa-
tions as a kind of ‘dynamic’ n-gram features.

3) Sentence level features: Arora et al. (Arora
et al., 2016) represent a sentence with a weighted
average of word embeddings, with their projection
onto the first principal component across all sen-
tences in the corpus removed. Shen et al. (Shen
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et al., 2018) thoroughly analyzed the effect of pool-
ing mechanisms on representing sentences with
simple word embeddings. With those sentence-
level features, classification task, text sequence
matching task and some other feature based tasks
can all achieve good performance.

In our sentiment classification model and topic
classification model, we combine those multiple-
level features, and prove that our model can achieve
significantly improved results.

Emotional chatbot: the most famous emotional
chatbot is Xiaoice (Zhou et al., 2020), which was
designed about 6 years ago. Understanding and
responding to users’ emotions are two dimensions
of the ability of emotional chatbots. For realizing
a human-like customer service chatbot, we try to
understand users’ emotions with an emotion classi-
fication model, and detect topics in user questions
with a topic classification model. Then for respond-
ing users’ emotions, we design an emotional com-
fort framework including matching based comfort,
comfort with considering both emotion and topic,
and a base comfort with just considering emotion.
Text matching: text matching needs to capture the
rich interaction structures in the matching process,
and this process can be conducted between abstract
features of two texts (Yin et al., 2016; Hu et al.,
2014; Qiu and Huang, 2015) or between word em-
bedding of two texts (Pang et al., 2016; Hu et al.,
2014; Lu and Li, 2013) . In papers (Yin et al.,
2016; Hu et al., 2014; Qiu and Huang, 2015) (the
ARC-I model in (Hu et al., 2014)), they all extract
features from each of those two texts and then com-
bine those features as the input of final Logistic
regression model. In papers (Pang et al., 2016; Hu
et al., 2014; Lu and Li, 2013) (the ARC-II model
in (Hu et al., 2014)), they all take the interaction
matrix of two texts as input of their models, and
extract features from the given interaction matrix
to evaluate similarity between two texts. In our
matching-based emotional comfort part, we com-
bine a BCNN model (Yin et al., 2016), which is
with a text interaction on abstract feature level, and
a MatchPyramid model (Pang et al., 2016), which
is with a text interaction on word embedding level,
to obtain an eligible performance for online service.

3 Framework Description

Our proposed framework consists of two parts (Fig-
ure 2), offline part and online part, and each of them
consists of three components. With the offline part,



we want to realize the ability to understand users’
emotions as detailed as possible, and with the on-
line part, we sequentially run increasingly general
comfort strategies for responding users’ emotions
on a larger scale.

Offline Online

Knowledge Construction Knowledge-based Comfort

Topic Classification Model Emotion & Topic Comfort

Emotion Classification Model Emotion-level Comfort

Figure 2: Framework of emotional comfort in ICS chat-
bots.

Offline Part: 1) Emotion classification model
is trained with considering word-level features, n-
gram level features and sentence level features. We
consider seven different emotions as fear, abuse,
disappointed, aggrieved, anxious, anger and grate-
ful. 2) Topic classification model is trained with a
same way as the emotion classification model, and
we choose 35 high frequency service classes, such
as ‘complaints about the quality of service’ and
‘complaints of slow Delivery’, etc. 3) Knowledge
construction is for collecting some user questions
with very specific content that needs to response
emotional comforts. Those specific questions are
with high frequency, but they are hard to be clas-
sified into a topic or cannot get well treated with
just topic-level comforts. For each question, our
service experts will design a professional reply, and
for each ‘question-reply’ pair we call it as a piece
of ‘knowledge’.

Online Part: 1) Knowledge-based comfort is
for users with specific questions, and we use a
text-matching model to match a user’s question
and the high-frequent questions in collected pieces
of knowledge. If we can get a prepared question,
which has the biggest similarity with the given
user’s question and also the similarity value is big-
ger than a particular threshold, the corresponding
reply will be taken as the emotional comfort result
to this user. 2) Emotion & topic comfort means
the comfort based on both users” emotions and the
topics of users’ questions. 3) Emotion-level com-
fort is a backup component to the emotion & topic
comfort, since we cannot list all topics. So for other
emotional queries without listed topics, we use this
component to reply a general emotional response.
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Figure 3: Examples of comforts: (a) emotion-level; (b)
emotion & topic level; (c) knowledge-based level

Figure 3 gives examples of online emotional
comforts. (a) shows an emotion-level comfort ex-
ample. This user just complains, without any topic
or any reason, so we can just give this user a very
general comfort. (b) shows a comfort considering
both emotions and topics. This user complains
about service, so we can pointedly give a comfort
about service. (c) shows a user’s complain about
bad robot service, and for this kind of questions
with very specific content, we utilize knowledge-
based matching models to give proper responses.

4 Offline Part

4.1 Emotion Classification

Emotion classification is the base and core of whole
emotional comfort framework. We propose an
ensemble classification model MLC (Multi-Level
feature based Classification), which combines sen-
tence level features, n-gram level features and word-
level features. Figure 4 gives the description of this
model, and from left to right, sentence level fea-
tures, n-gram level features and word-level features
are respectively obtained. Given the word embed-
ding of which the dimension is set as M, we also
define a series of embedding of labels (emotions)
of which the dimension is also set as M. Below we
discuss the feature extraction steps:

1) Sentence level features: Simple Word-
Embedding based Models (SWEM) (Shen et al.,
2018), which employs simple pooling strategies
operated over word embeddings, shows close per-
formance to some classic CNN- or RNN-based
text matching models or classification models. In
our work we use those simple pooling strategies
to obtain sentence-level features of users’ ques-
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Figure 4: Emotion classification model.

tions for the emotion classification task. For com-
bining the features obtained from average-pooling
strategy and max-pooling strategy, two different
methods are proposed as concatenating method
and hierarchical method. Under the design idea of
whole emotion classification model, we choose the
SWEM-concat method to combine SWEM-max
features and SWEM-avg features.

2) n-gram level features: Traditional CNN is
used to obtain n-gram level features, and » is a vari-
ate denoting the convolution window size. In this
paper, we set n as 2, 3 and 4 respectively, and for
each window size, 16 convolution kernels are used
to extract plentiful information from the original
word embedding matrix. Pooling steps are similar
as that in extraction of sentence level features.

3) Word-level features: We use the Label-
Embedding Attentive Model (LEAM) proposed in
(Wang et al., 2018) to extract word-level features.
LEAM embeds the words and labels in the same
joint space for text classification. It utilizes label
descriptions for increasing the interaction between
labels and words, which can obtains deeper con-
sideration of semantic information of words. In
our model, each ‘label’ means a kind of emotion,
such as ‘anger’ or ‘disappointment’, etc. In our
online service, 6 negative emotions and a ‘grateful’
emotion are considered.

Finally, features of different levels are put to-
gether for the output layer trained with logistic
regression model.

4.2 Topic Classification

We summarize high frequent service topics with
referring the experience of service experts, and
then use the same model design with the emotion

classification step to realize topic classification.

4.3 Knowledge Construction

Besides ICS chatbots, we also have human cus-
tomer services. For extracting users’ high frequent
questions and also the high-quality replies, we can
all refer to the chat log data of human customer
services. We combine the chat log of chatbots and
human customer services together, and utilize a
self-adapting clustering method proposed in (Song
et al.) to cluster similar user questions. With the
arrangement of professional service experts, we
finally choose 649 high-frequent user questions as
basis of constructing ‘question-reply’ pairs. For
each high-frequent user question, we collect ref-
erenceable replies from log of human customer
services. Then with those referenceable replies,
professional service experts can reorganize them
to obtain final 649 ‘question-reply’ pairs as our
‘knowledge base’.

5 Online Part

5.1 Knowledge-based Comfort

Query Question Answer

‘ ‘You provide junk robot service! Sorry, robot’s capacity keeps being improved.
—| 1 regret to give you such a bad experience.

Question Processing |
1. Coreference Resolution

~
Answer Processing
Return the answer of the top

2. Tokenization

N

- one knowledge.
G )
T {3
Index and Recall
Lucene indexing to recall top K Kn“wled'ge Rgranking
Similarity computation

pieces of candidate knowledge.

2 ™
I 1D | Candidate knowledge

‘Question: I don’t need robot service!
Answer: Sorry, | transfer you to human customer service
NOW.

Knowledge Base

(Question-Answer pairs)

Cl

‘Question: your robot service is so bad.
Answer: Sorry, robot’s capacity keeps being improved, 1
regret to give you such a bad experience.

c2

[

Figure 5: The workflow of retrieval-based QA systems.

We utilize a retrieval-based QA system (Yu
et al., 2018) to realize knowledge-based comfort,
of which the workflow is shown in figure 5. Col-
lected knowledge base is indexed by Lucene, and
for each emotional user question, we recall top K
pieces of candidate knowledge from Lucene index,
and then rerank those candidates to get a final reply.
Similarity computation in ‘Knowledge Reranking’
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module is the key component, and with different
situations we have designed different models.

An unsupervised text similarity computation
model: For making our framework applicable to
some domains with no domain-sensitive labeled
data, we use an unsupervised text matching model
to rank candidates and decide which is most similar
with the given user question. We use Word Simi-
larity Maximization (WSM) (Song et al., 2017),
which is an optimization of Word Mover’s Dis-
tance (WMD) proposed in (Kusner et al., 2015), to
realize this unsupervised text matching step. Com-
pared to WMD, WSM can get a normalized similar-
ity value restricted to [0,1] instead of the distance
value of WMD of which is not normalized, and
computational complexity of WSM can be greatly
decreased compared to WMD.

A supervised deep text similarity computa-
tion model: With the discussion of ‘text match-
ing’ in related work section, we choose two well-
performing models, MatchPyramid (Pang et al.,
2016) and BCNN (Yin et al., 2016), as baselines,
and we realize a combined model PBmatch, with
considering features in both MatchPyramind and
BCNN. Feature extraction steps of MatchPyramind
and BCNN are separated and then on the Logistic
regressions step, features extracted from both mod-
els are combined together, and the whole frame-
work makes a joint training of both models.

5.2 Emotion & Topic Comfort

Emotion classification and topic classification are
all run on a given user question, and for each
possible ‘emotion+topic’ combination, our service
experts have set different comfortable replies for
realizing diversified emotional comfort. These
‘emotion+topic’ sensitive replies are randomly re-
sponded when needed.

5.3 Emotion-level Comfort

Similar with the description in above subsection,
with user questions without obvious topical con-
tent, we just consider the emotional information
contained in questions. For each emotion, our ser-
vice experts have also set different emotion-level
comfortable replies for realizing diversified emo-
tional comfort. Compared with comfortable replies
considering both emotion and topic, emotion-level
comfortable replies are more general, which are
like the example in figure 3(a).

6 Experiments and Evaluations

6.1 Dataset and Evaluation Metric

Dataset: 1) Emotion classification dataset: Since
we annotate that just about 5% of user questions are
with emotion, a manual labeling on all user ques-
tions for emotion classification is a waste. We first
extract some suspicious emotional questions with
an emotional dictionary, which is empirically col-
lected, and then we published crowdsourcing tasks
with checking and revising those dictionary-based
labels. Each question was labeled by 3 annotators,
with one of the given emotions or *no emotion’. If
3 annotators give 3 different labels, we delete this
question, otherwise we label this question as the
emotion labeled by at least 2 annotators. Finally,
we got a totally 46,000 labeled questions with 8
different classes: 6 negative emotions, 1 grateful
emotion and a class ‘other’.

2) Topic classification dataset: Similar with the
creation of the emotion classification dataset, we
also firstly extract some suspicious topical ques-
tions with an empirically collected topical dictio-
nary, which contains 35 topics such as ‘poor service
attitude’, ‘recharge slow’ and ‘urging a refund’, and
similar crowdsourcing tasks were also published.
Finally, we got totally 98,000 labeled questions.

3) Text matching dataset: For creating enough
dataset for training the text matching model, we
implement following strategies: we randomly se-
lect 10,000 user questions from chatbot log, and
top 15 candidates for each of them can be obtained
with Lucene index. Then 8 service experts labeled
those candidates with right/wrong, and some exam-
ples are shown in Table 1. Serious data unbalance
shows in above labeled data, since just 14.3% can-
didates are labeled as right ones (positive samples).
For balancing the data, we randomly extract about
20% candidates, which are labeled as wrong, of
whole dataset as negative samples.

User questions Candidate knowledge titles Labels

After my application, the seller still won’t refund,
how should I do?

Seller does not refund shipping charge, how should I do? wrong

right
The seller does not b
refund, how should
Ido?

Buyer does not finish payment after a successful auction. wrong

Can I change the phone number if I have filled a fault one? | right

‘l;‘ill‘lnz;)gull phone I filled a fault phone number, how should I do? right
T filled a fault phone number. Does it impact my ticket

service?

wrong

Table 1: Examples of Labeled Training Dataset (Trans-
lated into English).

Evaluation Metric: User Satisfaction.
Same as other kind chatbots, accuracy rating of
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single-turn response can also be taken to measure
the performance of an ICS chatbot. However, ‘User
Satisfaction’ is a much more important metric for
ICS domain and we also take it as a mirror of the
performance of our proposed framework. In prac-
tice, about 1.5K conversation sessions per day are
labeled by users with a satisfaction degree of 1,2
and 3, which respectively mean ‘very satisfied’,
‘so-so’ and ‘unsatisfied’. We take the percentage of
the label ‘1’ as final ‘User Satisfaction’.

We choose the final period of data for ‘User
Satisfaction’ evaluation as from Oct. 15, 2020 to
Nov. 15, 2020, which consist of almost 20,000
labeled data by user research experts. Besides, our
emotional comfort framework was deployed in the
online system on Oct. 31, 2020.

6.2 Results and Discussions

Models Threshold | Precision | Recall | F-value
WMD 0.73 0.823 0.782 0.802
WSM 0.75 0.845 0.823 0.834
BCNN 0.87 0.876 0.858 0.862
MatchPyramid 0.93 0.873 0.866 0.869
PBmatch 0.85 0.901 0.878 0.889

Table 4: Comparison of Text Matching Models.

results. For the Lucene recalling before the text
matching step, we set the maximum number of re-
called candidates as 20, considering the high ‘query
per second’ (QPS) demand of our online system.

Emotion-
51.67%

Comfort strategies
Percentages

Knowledge-
21.64%

Emotion- & topic-
26.69%

Table 5: Percentages of Different Comfort Strategies.

Table 5 gives the coverages of different comfort
strategies on emotional user questions. We can
see the emotion-level comfort strategy is with the

Table 2: Comparison of emotion classification models

First, we check the performance of the emotion
classification model. Table 2 gives an emotion-
level performance comparison of different models,
which are CNN, SWEM, LEAM and our model.
With more diversified features, our model can get
better results than all the baseline models. And a
total precision of 0.903 has reached the standard of
online service when we set an optimum threshold
of the classification probability as 0.625. Besides,
topic classification is with a same model design
of emotion classification. Since the topics are too
many to show up all of them, we just give a total
precision result comparison in table 3.

CNN
0.801

SWEM
0.809

LEAM
0.793

MLC
0.817

Total

Table 3: Comparison of topic classification models

Table 4 gives the comparison of different models’
performance on text matching, and we can see the
PBmatch model can get a higher F-value than ei-
ther BCNN or MatchPyramid models, with setting
an optimum threshold. Besides, the two unsuper-
vised models can also get passable experimental

CNN_| SWEM | LEAM | MLC largest percentage, since most of the user question
Fear 0.680 | 0.688 | 0652 | 0.701 gest percentage, s stot the user questions
Abuse 0940 | 0925 | 0880 | 0.945 are usually very short and the emotional expression
Disappointed | 0.902 | 0921 | 0.905 | 0.920 of users are without specific content or specific
Aggri.eved 0.840 0.821 0.812 | 0.847 tOpiCS.
Anxious 0.921 0.949 0.911 0.953
Anger 0.930 0.948 0.932 0.955 Without our framework | With our framework
Grateful 0.955 0.987 0.952 | 0.997 User Satisfaction 0.214 0.301
Total 0.881 0.891 0.865 0.903

Table 6: User Satisfaction with or without Our Frame-
work on Negative Emotions.

Table 6 shows the comparison results of user
satisfaction with or without our framework on 6
negative emotions. We can see that those chat ses-
sions with users’ negative emotions have a very
low user satisfaction, and our emotional comfort
framework can help slightly raise the user satis-
faction with 8.7 percent. Table 7 shows the com-
parison results of user satisfaction with or without
our framework on the grateful emotion. With our
framework, users may feel more comfortable and
satisfied with the responses to their grateful emo-
tion. So, more human-like service can get more
customers’ satisfaction.

With our framework
0.723

Without our framework
0.589

User Satisfaction

Table 7: User Satisfaction with or without Our Frame-
work on the Grateful Emotion.

7 Conclusion

In this paper, we focus on an emotional comfort
framework in e-commerce chatbots, and the ex-
periments show such a framework can effectively
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improve user satisfaction. About the future work,
we will consider more emotions in this framework.
Besides, we will automatically evaluate users’ satis-
faction with technologies on emotion analysis and
sequence labeling.
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Abstract

We consider the problem of scaling automated
suggested replies for Outlook email system to
multiple languages. Faced with increased com-
pute requirements and low resources for lan-
guage expansion, we build a single universal
model for improving the quality and reduc-
ing run-time costs of our production system.
However, restricted data movement across re-
gional centers prevents joint training across
languages. To this end, we propose a multi-
task continual learning framework, with auxil-
iary tasks and language adapters to learn uni-
versal language representation across regions.
The experimental results show positive cross-
lingual transfer across languages while reduc-
ing catastrophic forgetting across regions. Our
online results on real user traffic show signif-
icant gains in CTR and characters saved, as
well as 65% training cost reduction compared
with per-language models. As a consequence,
we have scaled the feature in multiple lan-
guages including low-resource markets.

1 Introduction

Automated suggested replies or smart replies (SR)
assist users to quickly respond with a short, generic,
and relevant response, without users having to type
in the reply. SR is an increasingly popular feature
in many commercial applications such as Gmail,
Outlook, Skype, Facebook Messenger, Microsoft
Teams, and Uber (Kannan et al., 2016; Henderson
et al., 2017a; Shang et al., 2015; Deb et al., 2019;
Yue Weng, 2019). While the initial versions of
this feature mostly targeted English users, making
it available in multiple languages and markets is
important not only from the perspective of prod-
uct expansion but also from a linguistic inclusivity
point of view.

In this paper we consider the problem of rapid
scaling of the SR feature to multiple languages for

*Both authors contributed equally in the paper.
TWork performed at Microsoft Research.

Outlook. To develop such a system at production
scale, we are faced with the following challenges.

- Model management: Language scaling in-
creases the effort of training, deploying, and man-
aging per-language models, which needs to be repli-
cated for each language. In addition, one model
per language increases the storage and compute
requirements for the production servers, which can
increase costs and occurrences of run-time issues.

- Data constraints: Developing models at pro-
duction quality requires considerable effort in data
collection and management. Due to regional mar-
ket share and infrastructure constraints, rich and
domain-specific data may not be available for all
languages.

- Data privacy and security policies: Regional
policies enforce data to be located in correspond-
ing regions. For example, Spanish and Portuguese
data are stored in North American (NAM) clus-
ters while French data is stored in European (EUR)
clusters. Data movement across regions is not al-
lowed and this prevents leveraging commonly used
multi-lingual co-training methods which require all
the data stored to be in the same place.

To reduce the cost of model management, we
propose to build a single universal SR model, ca-
pable of serving multiple languages and markets.
To overcome data constraints, we propose to use
augmentation with machine-translated (MT) data
for languages without supervised data. To over-
come privacy constraints, we propose a continual
learning framework, where the model is trained se-
quentially across regions. To alleviate catastrophic
forgetting (French, 1999; McCloskey and Cohen,
1989) in the continual learning process, we rein-
force the universal properties via multi-task learn-
ing approach with public task-agnostic data, and
an adapter-based model architecture that leverages
domain-specific SR data and MT data.

Our experimental results followed with improve-
ments shown on real user traffic illustrate the ef-
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fectiveness of the approach. As a consequence,
we have rapidly scaled the feature in several lan-
guages including low-resource markets. Multi-
lingual training for universal models is often very
tricky to work in practice (especially with our data
constraints). Thus, we demonstrate a significant
accomplishment of a multi-lingual SR system run-
ning at production scale on millions of users, which
saves resources while improving performance.

2 Core SR Model

The SR feature is similar to open-domain chat-
bots and task-oriented conversational agents, (Zhou
et al., 2020; Henderson et al., 2019b; Fadhil and
Schiavo, 2019; Xu et al., 2017; Okuda and Shoda,
2018; Kopp et al., 2018). In terms of usage, SR
is closer to the latter, in that it assists users to
complete a reply, instead of continuing an open-
ended dialog. Following commonly used IR-based
models in commercial SR applications (Hender-
son et al., 2017b; Deb et al., 2019), we use a dual
encoder matching model for our SR system.

The matching model has two parallel encoders
projecting input message and corresponding reply
into a common representation space. Different en-
coders such as feed-forward and BiLSTM layers
can be used here (Henderson et al., 2017a; Deb
et al., 2019). More recently, (Devlin et al., 2018;
Liu et al., 2019; Yang et al., 2019; Henderson et al.,
2019a,b) show considerable improvements with
transformer-based pre-trained models. Our English
SR model uses a BERT equivalent (Devlin et al.,
2018) encoder, while our mono-lingual baselines
in other languages use BiLSTM encoders.

The model is trained on one-on-one message-
reply (m-r) pairs from commercial email data. We
minimize the symmetric loss function. It is a modi-
fied softmax on dot products between m-r encod-
ing in equation 1 where s; ; = e®(mi)¢(ri)  As
described in (Deb et al., 2019), it was shown to
improve the relevance by targeting at bi-directional
conversational constraints.

Sii

p(miyri) = Ej i + Zk Sk — Sii

ey

IR-based model requires a fixed response set. To
generate that, we collect differentially private (DP)
(Gopi et al., 2020) and anonymized replies, filtered
for sensitive content from the training data which
preserves user privacy while mining actual user
responses. Furthermore, we use human curation
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Figure 1: (a) Matching model architecture with sym-
metric loss and TLM/MLM cross-entropy loss. (b)
Multi-task continual training loop for EUR->NAM-
>LRL clusters.

to edit responses for cultural-sensitivity, gender-
neutrality, etc. DP filtration requires a large amount
of data due to low yields. For low-resource markets,
we translate English responses with human curation
for cultural adaptation to languages and locales.

During prediction, we compute the matching
score () between the message and pre-computed
response set vectors. Similar to (Henderson et al.,
2017a; Deb et al., 2019), we add a language-model
(LM) penalty representing the popularity of re-
sponses to bias the predictions towards more com-
mon ones. Translated responses inherit the penalty
score from the corresponding English responses.
Using this score in equation 2 we first select top /Vy
responses, and down-select to top N, after dedupli-
cation using lexical clustering, before presenting to
users.

Score = ¢(m;) - ¢pr(rr)) + aLMg (ri) 2

3 Universal SR Model

The universal SR model consists of parallel encoder
architecture trained using symmetric loss function

139



similar to the core SR model. We initialize the
m-r encoders with InfoXLM (Chi et al., 2020),
an XLM-Roberta (Conneau et al., 2019) equiva-
lent multi-lingual model as shown in as Figure 1(a)
which creates language-agnostic text representation
across 100 languages. The encoder is pre-trained
with both publicly available and internal propri-
etary corpora and has shown good cross-lingual
transfer capabilities on benchmarks such as XNLI
(Conneau et al., 2018).

Using a universal pre-trained model in itself en-
ables language expansion. However, as we dis-
cuss next, data movement constraints made train-
ing the universal model tricky, with performance
frequently worse than single mono-lingual models.

3.1 Continual Learning

Joint training of universal encoders has led to
enormous progress on standard benchmarks and
industrial applications such as (Ranasinghe and
Zampieri, 2020; Gencoglu, 2020).

However, privacy policies restrict the data move-
ment across geographic clusters. This prevents the
joint training at a single compute cluster. As a re-
sult, we train the model sequentially in a continual
learning fashion by fine-tuning the model in one
region, and then continue training in another.

The actual sequence of how this is conducted is
important. We observed that keeping English at the
last stage provides the best performance. This is
likely because English data (which frequently con-
tains bilingual data through code-switching) cov-
ers a large proportion in pre-training corpora, thus
serving as an anchor in subsequent training stage
to maintain the universal properties of the model.

3.2 Multi-task Learning

Training the SR model in multiple stages can lead
to catastrophic forgetting, where new knowledge
easily supplants old knowledge. This problem can
be alleviated to some extent by freezing layers of
the pre-trained encoders but is still significant after
the model is fine-tuned with large corpora.
Several papers have leveraged self-supervised
pre-training tasks based on bi-lingual parallel cor-
pora to create or enhance cross-lingual representa-
tions (Devlin et al., 2018; Conneau et al., 2019; Chi
et al., 2020). Following such approaches, we ex-
periment with Translation Language Model (TLM)
(Lample and Conneau, 2019) in continual learning
to preserve the universal properties of the model.

A total of 79M translation pairs from WikiMa-
trix (Schwenk et al., 2019) and MultiParaCrawl
(Aulamo et al., 2020) data including the languages
considered in production are extracted as train-
ing data. In addition, we conduct an ablation
study on auxiliary task selection by comparing with
Masked Language Model (MLM) (Devlin et al.,
2018) trained on 370M samples from Wikipedia.
The multi-task training alternates between SR
and auxiliary tasks according to a set proportion of
mini-batches in an epoch. The proportion controls
the trade-offs between the tasks, to achieve the
desired levels of performance in the system.

3.3 Data Augmentation

Native supervised data (m-r pairs) is currently not
available for low-resource languages. In such cases,
English data is leveraged to generate pseudo m-r
pairs using machine-translation (MT). We utilize
MT data in continual learning process with auxil-
iary tasks, or with adapters (Houlsby et al., 2019)
by introducing additional parameters in the trans-
former layers. When training with adapters, we
freeze all parameters except the adapters.

3.4 Universal Model Training Loop

The production system targets 5 high-resource lan-
guages (HRL): Spanish (ES), Portuguese (PT),
French (FR), German (DE), Italian (IT) with rich
native data, and 5 low-resource languages (LRL):
Chinese (ZH), Japanese (JA), Dutch (NL), Czech
(CS) and Hungarian (HU) without any supervised
data. English (EN) serves as pivot language in
our experiments. As shown in Table 1, the data is
distributed across Europe (EUR), North America
(NAM) and a dedicated cluster storing MT data
for LRL. Data movement across these regions is
not allowed. Public task-agnostic data for auxiliary
tasks in 8 languages is accessible in all regions.

Region Languages Category
EUR DE, IT, FR
NAM ES, PT, EN

LRL ZH, JA,NL, CS, HU Low-resource*

High-resource

High-resource

Table 1: Regional distribution of training data for dif-
ferent languages. *: data translated from EN.

We train the model sequentially in 3 stages as
shown in Figure 1(b). First, we jointly train the
model in EUR for FR, DE, and IT. Next, we move
the model to NAM and continue train with EN, ES,
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and PT along with auxiliary task. Finally, in LRL,
we train the model on machine translated m-r pairs
along with original EN data in 2 different ways:
(1) jointly train with auxiliary task, or (2) infuse
the model with low-resource language adapters. In
all stages, we freeze the embedding layer of the
encoder during fine-tuning. According to previous
studies (Lee et al., 2019; Peters et al., 2019), freez-
ing partial layers can maintain the model quality
while reducing training time during fine-tuning. We
observed that freezing embedding layer provides a
good balance between micro-batch size per GPU
(low if no layers are frozen) and learning capacity
of the model (low if many layers are frozen).

3.5 Universal Model Graph for Serving

For deployment, we create a composite graph with
pre-computed response vectors of all languages em-
bedded into the main model. A separate language
identifier switches the prediction vectors to the pre-
dicted language of the input at run-time. Besides,
several auxiliary models are added in online system
to decide whether to trigger the universal model
according to the characteristics of input message
such as length and detected language.

4 Experiments and Results

The training data is collected and processed with-
out any eyes access from commercial users in Out-
look email system. To be more specific, we filter
50M m-r pairs from one-to-one conversations for
each high-resource language, and translate 20M
m-r pairs for each low-resource language. Con-
sidering the m-r length distribution, we truncate
m-r pairs to (96, 64) tokens as training data, and
filter out messages longer than 96 tokens during
inference, so that the model is more focused on
providing quick responses to short messages. The
response set size for each language is 20K, filtered
or trans-created from English native data.

In all three stages of training, we use an effective
batch size of 16K. We utilize the Adam optimizer
(Kingma and Ba, 2014) with weight decay and
set peak learning rates as [Se-4, 3e-4, le-4] for
three stages respectively. We train up to 30 epochs
from which the best model is selected based on
validation set loss over all languages.

For MLM/TLM objectives, we use single-token
masking, the task proportion is set as 0.5. The
final loss of the model is sum of symmetric loss
and auxiliary task loss. For adapters, we use the

hidden dimension of 256 in the bottleneck architec-
ture and initialize these parameters with a normal
distribution of mean 0 and standard deviation 0.01.
According to our observation, high standard devi-
ation for initialization can cause divergence. All
experiments are conducted with 16 Nvidia V100-
32GB GPU cards.

During prediction, we pick top N1 = 30 re-
sponses according to equation 2, and then cluster
the ranked results and down-select No = 3 re-
sponses as final prediction.

4.1 Offline Evaluation Metrics and Sets

We compute evaluation metrics based on two kinds
of evaluation sets. The first test set samples m-
r pairs, where reply is contained in the response
set (GoldenMR) and is used for computing the
ranking metric, Mean Reciprocal Rank: M RR =
+ Zf\;l #nki’ for the top 15 predictions.

The second set consists of general m-r pairs
(GenMR) where the reply is not restricted to the
response set. weighted-ROUGE metrics is com-
puted on final 3 responses with the re