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Message from the General Chair

Welcome to EACL 2021, the 16th conference of the European Chapter of the Association for
Computational Linguistics! This year’s conference is held from the 21st to the 23rd of April, 2021. While
we were planning to hold the conference in Kyiv, due to the current COVID situation the conference is
held entirely online. EACL 2021 is also an anchor conference to several workshops and tutorials, that
are held on April 19th and 20th, also online.

This year’s conference continues the successful growing trend of the community, and further requires
a large organisational effort due to the COVID restrictions. We are learning how to organise and run
conferences online, how to attend them and interact, and how to weave them into this strange suspension
of our ordinary physical lives, that is our common current experience.

I would like to take the opportunity here to thank all the people involved, who have managed to pull
through despite lockdowns, lack of child care, and the many other daily disruptions.

- Scientific programme chairs Jorg Tiedemann, from University of Helsinki and Reut Tsarfaty,
from Bar Ilan University chaired a large scientific programme committee and introduced several
innovative topics in the submissions.

- Workshop chairs Jonathan Berant, from Tel-Aviv University and Angeliki Lazaridou, from
DeepMind selected the workshops, fourteen of which are affiliated to EACL 2021. Tutorial
chairs Isabelle Augenstein, from University of Copenhagen and Ivan Habernal, from Technische
Universitaet Darmstadt selected the tutorials. Demonstration chairs Dimitra Gkatzia, from
Edinburgh Napier University and Djamé Seddah, University Paris la Sorbonne selected the system
demonstrations. They have generated very interesting programmes, which add variety of topics
and serve focussed subcommunities.

- The work of the younger members of our community have been the object of attention of
our Student Research Workshop chairs Ionut-Teodor Sorodoc, from Pompeu Fabra University,
Madhumita Sushil, from University of Antwerp and Ece Takmaz, from University of Amsterdam,
and of their faculty advisor, Eneko Agirre, from the University of the Basque Country.

- Special thanks go to the publication chairs Valerio Basile, from the University of Turin and
Tommaso Caselli, from the University of Groningen, who had to deal with our self-produced
proceedings.

- Thank you also to our publicity chair Julie Weeds, from University of Sussex for making our
conference known online, before and during the meeting.

- We belong, we know, to a scientific community of extreme demographic uniformity and we are
striving to become more aware of issues of inclusivity and diversity. Thanks to our diversity and
inclusion chair, Aline Villavicencio, University of Sheffield and Federal University of Rio Grande
do Sul.

- When we decided to move to a virtual conference, we contacted a knowledgeable crowd
of colleagues to form a Virtual Infrastructure Committee: Amirhossein Kazemnejad, Bruno
Guillaume, Cyril Weerasooriya, Gisela Vallejo, Jan-Christoph Klie, Oles Dobosevych, Viktoria
Kolomiets. The virtual organisation all happens thanks to them. Thanks especially to Jan-
Christoph for sharing all the accumulated knowledge from past conferences and his senior advisor
role for this one, and to Bonnie Webber, for sharing past experiences.
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- We are very grateful to the local chairs from Grammarly and Ukrainian Catholic University,
Viktoria Kolomiets, Dmytro Lider, Iryna Kotkalova, Oleksii Molchanovskyi, Oles Dobosevych.
Thank you for offering to host the conference, manage the web site and be remarkably supportive
and cooperative even when we had to decide to put off the opportunity to visit beautiful Kyiv.

- A large number of volunteers is being recruited as I write: thank you for your availability and
enthusiasm. And thanks to the volunteer chair, Carolina Scarton, from the University of Sheffield,
for hitting the ground running.

- We thank EACL 2021’s sponsors for their very welcome contributions, which were obtained by
the efforts of Raffaella Bernardi, our ACL sponsorship committee members for Europe. Their
names and logos can be seen in the proceedings and on the conference web site.

- Thanks also to David Yarowsky and Priscilla Rasmussen from ACL for their help and advice.

Finally, and foremost, thank to all the authors and conference attendees that have made and will make
this conference a success and source of inspiration.

EACL 2021 General Chair

Paola Merlo, University of Geneva, Switzerland



Message from the Program Chairs

Welcome to EACL 2021 — the 16th meeting of the European Chapter of the Association for
Computational Linguistics. It has now been almost 4 years since EACL was last held, in Valencia,
Spain, 2017, and it is the first time that the EACL conference will be held entirely virtually. This edition
of the EACL conference comes at a challenging time for many in our community, due to consequences
of the covid19 pandemic, but also at an exciting time for NLP researchers, seeing unprecedented growth
and interest in the progress in our field, from both within and outside of our community. We are grateful
for all the contributions and support that we have received, which allowed us to hold a successful and
memorable event, despite having to cope with the challenges of covid and despite EACL being held and
attended from remote.

EACL 2021 had received a record number of submissions compared to all past EACL events — exactly
1,400 submissions, an increase of 35

Organising a conference at this scale is a huge undertaking and the process is demanding, but exciting at
the same time. We have been able to recruit a large number of reviewers with expertise that is necessary
for making appropriate decisions in the many research areas that this conference covers, and we are
beyond thankful for the tremendous support we got from the dedicated senior area chairs, area chairs and
all reviewers involved in the selection process. Altogether, we have been fortunate to have been able to
recruit 1691 reviewers, 149 area chairs and 34 senior area chairs, all professional experts in their fields.

We adopted the recent strategy of automatic COI detection and paper assignments to reviewers, according
to their scholarly profiles and affiliations. This process is fairly new and has its own learning curve, but it
comes with great advantages, in particular the ability to scale for the increasing number of submissions
and reviewers in the * ACL conferences. At the same time, this process also demonstrated the importance
of humans in the loop to make proper adjustments and (re)assignments of papers where the automatic
decisions may be suboptimal. With the enormous help of the senior area chairs we could successfully run
a detailed review process with at least three reviewers per paper, an author rebuttal period, and reviewer
discussions. Thank you all for your efforts to ensure the scientific quality of the reviewing process and
the resulting conference programme!

After the reviewing process, we could include a total of 326 excellent papers, referring to an acceptance
rate of 24.7

The event will be organised in a similar fashion to other recent on-line conferences, emphasising pre-
recorded talks with dedicated live question/answering sessions and interactive poster sessions in a virtual
environment. Setting up the virtual event is yet another challenge, especially considering the various
time zones around the world our keynotes, authors and participants come from. We opted for a morning
session and a late-afternoon session according to the Central European calendar, to emphasise the
European focus of the event . At the same time, in this EACL we introduce a certain novelty: all papers
get assigned a slot at an interactive poster session that takes place at a time-slot that can reasonably be
attended across all different time zones. We hope that this setup will provide the opportunity to truly
immerse in the event, scientifically and socially, to increase both the impact of the different works and
the opportunity of participants to network.

One of the important highlights in the conference is the lineup of renowned keynote speakers who we
could attract to join EACL 2021. We are excited to have the following three speakers who have graciously
accepted to provide lectures at the conference: Melanie Mitchell from the Santa Fe Institute, Fernanda
Ferreira from the University of California, Davis and Marco Baroni from Facebook Al Research and the
University of Trento. We are also delighted to announce a panel discussion on information accessibility
and language technology in situations of emergency and ongoing crises, with international experts
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and representatives from the non-profit organization of Translators without Borders (Alp Oktem), the
Masakhane NLP community, the University of Oxford (Scott Hale), the Bay Area NLP community
(Robert Monarch) moderated by the language enthusiast and internet linguist Gretchen McCulloch.

Needless to say, an event like EACL would have not been possible without the efforts and contributions
of a large number of people, to whom we are indebted:

« Our great 34 Senior area chairs, who meticulously managed the reviewing process in individual
tracks, and led the discussion and selection process.

- and 149 area chairs, who carefully checked the papers, led reviewers’ discussions, wrote meta-
reviews and provided indispensable inputs for the selection process.

+ Our 1691 reviewers, who wrote dedicated reviews and provided valuable feedback to the authors.
Special thanks to reviewers who stepped in at the last minute to serve as emergency reviewers.

+ Our Excellent Best Paper Committee for selecting the best EACL papers under a very tight
schedule.

- The ACL Executive Review Committee. In particular, Amanda Stent, Arya McCarthy and Graham
Neubig for making the COI detection and reviewer-paper assignment software available to us —
these tools were instrumental in streamlining the paper assignment process. Special thanks for
Graham Neubig and Trevor Cohn for technical advice in using these tools throughout the process.

- The 3343 authors who submitted their work to EACL 2021. While not being able to accept all
submissions, it is their work that eventually makes up the exciting contributions and advances in
our community.

- TACL editors-in-chief Ani Nenkova and Brian Roark, TACL Editorial Assistant Cindy Robinson,
and CL Editor-in-Chief Hwee Tou Ng for coordinating the TACL and CL paper presentations with
us.

« The Program co-Chairs of ACL 2020: Joel Tetreault, Natalie Schluter and Joyce Chai; and the
Program co-Chairs of of EMNLP 2020: Trevor Cohn, Yulan He and Yang Liu, for sharing their
experience and providing invaluable advice for the conference organization and the PC-chairing
activities.

- Our Publication Chairs, Valerio Basile and Tommaso Caselli, for the efficient and streamlined
production of the EACL conference proceedings.

« Our Publicity Chair, Julie Weeds and our Web Infrastructure Chair, Viktoria Kolomiets, for
effectively and efficiently taking care of all event communication and PR aspects of the conference.

- Jarda Fikr from SlidesLive, for coordinating the presentations and recordings by the authors with
the SlideLive team.

- Rich Gerber at SoftConf, for extremely quick responses on any email inquiry or emerging
difficulties encountered with the START system.

- Our students, interns, postdocs, colleagues, and families. Sorry for not being available to you as
much as we hoped to, especially in these crazy times of global pandemic. We promise to make up
for it!

- Last but not least, we wish to express our deepest thanks to our General Chair Paola Merlo. She
has been extremely professional and supportive from the start, providing us with solid advice while
completely trusting us and providing flexibility and room to innovate. From the initial plan to have
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EACL as a physical conference all the way to its realization as a virtual event, Paola has led and
coordinated all efforts through the thick and thin of covid-related uncertainties, confidently leading
to this successful event.

Our deepest gratitude to all of you. We hope you will enjoy this conference experience.

EACL 2021 Program Committee Co-Chairs
Reut Tsarfaty, Bar-Ilan University

Jorg Tiedemann, University of Helsinki
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Language Grounding to Vision, Robots, and other
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NLP Applications for Crisis Managment and Emergency Situations
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Semantics: lexical
Sebastian Pado, Marianna Apidianaki, Gemma Boleda, Jose Camacho Collados, Em-
manuele Chersoni, Anne Cocos, Tim Van de Cruys, Katrin Erk, Manaal Faruqui, Alexander
Panchenko, Lonneke van der Plas, Vered Shwartz

Semantics: sentence level and other areas

James Henderson, Mike Lewis, Wai Lam, Nafise Sadat Moosavi, Daniel Khashabi, Michael
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Roth, Adam Poliak, Swabha Swayamdipta
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Joakim Nivre, Carlos Gomez, Miguel Ballesteros, Jonas Kuhn, Zeljko Agic, Jennifer Foster,
Yue Zhang, Kenji Sagae

Outstanding Members of the PC:

Outstanding Area Chairs
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Abstract

The concept of unsupervised universal sen-
tence encoders has gained traction recently,
wherein pre-trained models generate effec-
tive task-agnostic fixed-dimensional represen-
tations for phrases, sentences and paragraphs.
Such methods are of varying complexity, from
simple weighted-averages of word vectors to
complex language-models based on bidirec-
tional transformers. In this work we pro-
pose a novel technique to generate sentence-
embeddings in an unsupervised fashion by pro-
jecting the sentences onto a fixed-dimensional
manifold with the objective of preserving local
neighbourhoods in the original space. To delin-
eate such neighbourhoods we experiment with
several set-distance metrics, including the re-
cently proposed Word Mover’s distance, while
the fixed-dimensional projection is achieved
by employing a scalable and efficient mani-
fold approximation method rooted in topologi-
cal data analysis. We test our approach, which
we term EMAP or Embeddings by Manifold
Approximation and Projection, on six publicly
available text-classification datasets of varying
size and complexity. Empirical results show
that our method consistently performs similar
to or better than several alternative state-of-the-
art approaches.

1 Introduction

1.1 On sentence-embeddings

Dense vector representation of words, or word-
embeddings, form the backbone of most modern
NLP applications and can be constructed using
context-free (Bengio et al., 2003; Mikolov et al.,
2013; Pennington et al., 2014) or contextualized
methods (Peters et al., 2018; Devlin et al., 2019).
Given that practical systems often benefit from
having representations for sentences and docu-
ments, in addition to word-embeddings (Palangi
et al., 2016; Yan et al., 2016), a simple trick is

1

to use the weighted average over some or all of
the embeddings of words in a sentence or docu-
ment. Although sentence-embeddings constructed
this way often lose information because of the dis-
regard for word-order during averaging, they have
been found to be surprisingly performant (Aldar-
maki and Diab, 2018).

More sophisticated methods focus on jointly
learning the embeddings of sentences and words
using models similar to Word2Vec (Le and Mikolov,
2014; Chen, 2017), using encoder-decoder ap-
proaches that reconstruct the surrounding sentences
of an encoded passage (Kiros et al., 2015), or train-
ing bi-directional LSTM models on large exter-
nal datasets (Conneau et al., 2017). Meaningful
sentence-embeddings have also been constructed
by fine-tuning pre-trained bidirectional transform-
ers (Devlin et al., 2019) using a Siamese architec-
ture (Reimers and Gurevych, 2019).

In parallel to the approaches mentioned above, a
stream of methods have emerged recently which ex-
ploit the inherent geometric properties of the struc-
ture of sentences, by treating them as sets or se-
quences of word-embeddings. For example, Arora
et al. (2017) propose the construction of sentence-
embeddings based on weighted word-embedding
averages with the removal of the dominant singular
vector, while Riicklé et al. (2018) produce sentence-
embeddings by concatenating several power-means
of word-embeddings corresponding to a sentence.
Very recently, spectral decomposition techniques
were used to create sentence-embeddings, which
produced state-of-the-art results when used in con-
catenation with averaging (Kayal and Tsatsaronis,
2019; Almarwani et al., 2019).

Our work is most related to that of Wu et al.
(2018) who use Random Features (Rahimi and
Recht, 2008) to learn document embeddings which
preserve the properties of an explicitly-defined ker-
nel based on the Word Mover’s Distance (Kusner
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et al., 2015). Where Wu et al. predefine the na-
ture of the kernel, our proposed approach can learn
the similarity-preserving manifold for a given set-
distance metric, offering increased flexibility.

1.2 Motivation and contributions

A simple way to form sentence-embeddings is to
compute the dimension-wise arithmetic mean of
the embeddings of the words in a particular sen-
tence. Even though this approach incurs informa-
tion loss by disregarding the fact that sentences
are sequences (or, at the very least, sets) of word
vectors, it works well in practice. This already pro-
vides an indication that there is more information
in the sentences to be exploited.

Kusner et al. (2015) aim to use more of the
information available in a sentence by represent-
ing sentences as a weighted point cloud of embed-
ded words. Rooted in transportation theory, their
Word Mover’s distance (WMD) is the minimum
amount of distance that the embedded words of
a sentence need to travel to reach the embedded
words of another sentence. The approach achieves
state-of-the-art results for sentence classification
when combined with a k-NN classifier (Cover and
Hart, 1967). Since their work, other distance met-
rics have been suggested (Singh et al., 2019; Wang
et al., 2019), also motivated by how transportation
problems are solved.

Considering that sentences are sets of word vec-
tors, a large variety of methods exist in literature
that can be used to calculate the distance between
two sets, in addition to the ones based on transport
theory. Thus, as a first contribution, we compare
alternative metrics to measure distances between
sentences. The metrics we suggest, namely the
Hausdorff distance and the Energy distance, are
intuitive to explain and reasonably fast to calculate.
The choice of these particular distances are moti-
vated by their differing origins and their general
usefulness in the respective application domains.

Once calculated, these distances can be used in
conjunction with k-nearest neighbours for classi-
fication tasks, and k-means for clustering tasks.
However, these learning algorithms are rather sim-
plistic and the state-of-the-art machine learning
algorithms require a fixed-length feature represen-
tation as input to them. Moreover, having fixed-
length representations for sentences (sentence-
embeddings) also provides a large degree of flex-
ibility for downstream tasks, as compared to hav-

ing only relative distances between them. With
this as motivation, the second contribution of this
work is to produce sentence-embeddings that ap-
proximately preserve the topological properties of
the original sentence space. We propose to do so
using an efficient scalable manifold-learning algo-
rithm termed UMAP (Mclnnes et al., 2018) from
topological data analysis. Empirical results show
that this process yields sentence-embeddings that
deliver near state-of-the-art classification perfor-
mance with a simple classifier.

2 Methodology

2.1 Calculating distances

In this work, we experiment with three different
distance measures to determine the distance be-
tween sentences. The first measure (Energy dis-
tance) is motivated by a useful linkage criterion
from hierarchical clustering (Rokach and Maimon,
2005), while the second one (Hausdorff distance)
is an important metric from algebraic topology that
has been successfully used in document indexing
(Tsatsaronis et al., 2012). The final metric (Word
Mover’s distance) is a recent extension of an exist-
ing distance measure between distributions, that is
particularly suited for use with word-embeddings
(Kusner et al., 2015).

Prior to defining the distances that have been
used in this work, we first proceed to outline the
notations that we will be using to describe them.

2.1.1 Notations

Let # € RV*4 denote a word-embedding matrix,
such that the vocabulary corresponding to it con-
sists of NV words, and each word in it, w; € RY, is
d-dimensional. This word-embedding matrix and
its constituent words may come from pre-trained
representations such as Word2Vec (Mikolov et al.,
2013) or GloVe (Pennington et al., 2014), in which
case d = 300.

Let . be a set of sentences and s, s’ be two
sentences from this set. Each such sentence can
be viewed as a set of word-embeddings, {w} € s.
Additionally, let the length of a sentence, s, be
denoted as |s|, and the cardinality of the set, ., be
denoted by |.].

Let e(w;, w;) denote the distance between two
word-embeddings, w;, w;. In the context of this
paper, this distance is Euclidean:

e(wi, wj) = |lw; —wyl, (1)



Finally, D(s, s’
two sentences.

) denotes the distance between

2.1.2 Energy distance

Energy distance is a statistical distance between
probability distributions, based on the inter and
intra-distribution variance, that satisfies all the cri-
teria of being a metric (Székely and Rizzo, 2013).

Using the notations defined earlier, we write it
as:

D(s, )

8||5/, Z Z e(wi, wy)

Wi €S wj €s’

Z > elwi,wy) @)

w;ES WF;ES

g D ) elwiw))

w; €s’ W es’
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The original conception of the energy distance
was inspired by gravitational potential energy of
celestial objects. Looking closely at Equation 2,
it can be quickly observed that it has two parts:
the first term resembles the attraction or repulsion
between two objects (or in our case, sentences),
while the second and the third term indicate the
self-coherence of the respective objects. As shown
by Székely and Rizzo (2013), energy distance is
scale equivariant, which would make it sensitive
to contextual changes in sentences, and therefore
make it useful in NLP applications.

2.1.3 Hausdorff distance

Given two subsets of a metric space, the Hausdorff
distance is the maximum distance of the points
in one subset to the nearest point in the other. A
significant work has gone into making it fast to
calculate (Atallah, 1983) so that it can be applied
to real-world problems, such as shape-matching in
computer vision (Dubuisson and Jain, 1994).

To calculate it, the distance between each point
from one set and the closest point from the other set
is determined first. Then, the Hausdorff distance
is calculated as the maximal point-wise distance.
Considering sentences {s, s’} as subsets of word-
embedding space, R¥*V | the directed Hausdorff
distance can be given as:

h(s,s') =

max min e(w;, w;) ?3)
w;ES wjes

such that the symmetric Hausdorff distance is:

D(s,s") = max{h(s,s'),h(s',s)} ()]

2.1.4 Word Mover’s distance

In addition to the representation of a sentence as a
set of word-embeddings, a sentence s can also be
represented as a N-dimensional normalized term-
frequency vector, where n; is the number of times
word w; occurs in sentence s normalized by the
total number of words in s:

cs

n; = —g—wv - ®)
Zk 1 Ck

where, ¢} is the number of times word w; appears
in sentence s.

The goal of the Word Mover’s distance (WMD)
(Kusner et al., 2015) is to construct a sentence sim-
ilarity metric based on the distances between the
individual words within each sentence, given by
Equation 1. In order to calculate the distance be-
tween two sentences, WMD introduces a transport
matrix, 7 € RV*N such that each element in it,
T;;, denotes how much of n should be transported
to nj/. Then, the WMD between two sentences is
given as the solution of the following minimization
problem:

N
D(s,s) = 171:1>1%1 Tije(i, j)
t,j=1
N N
subject to, ZTU =n; and ZTU = nj
j=1 i=1

6)
Thus, WMD between two sentences is defined as
the minimum distance required to transport the
words from one sentence to another.

2.2 Generating neighbourhood-preserving
embeddings via non-linear
manifold-learning

In this work, we propose to construct sentence-
embeddings which preserve the neighbourhood
around sentences delineated by the relative dis-
tances between them. We posit that preserving
the local neighbourhoods will serve as a proxy for
preserving the original topological properties.

In order to learn a topology-preserving fixed-
dimensional manifold, we seek inspiration from
methods in non-linear dimensionality-reduction
(Lee and Verleysen, 2007) and topological data
analysis literature (Carlsson, 2009). When broadly
categorized, these techniques consist of methods,
such as Locally Linear Embedding (Roweis and
Saul, 2000), that preserve local distances between



points, or those like Stochastic Neighbour Embed-
ding (Hinton and Roweis, 2003; van der Maaten
and Hinton, 2008) that preserve the conditional
probabilities of points being neighbours. However,
existing manifold-learning algorithms suffer from
two shortcomings: they are computationally expen-
sive and are often restricted in the number of output
dimensions. In our work we use a method termed
Uniform Manifold Approximation and Projection
(UMAP) (Mclnnes et al., 2018), which is scalable
and has no computational restrictions on the output
embedding dimension.

The building block of UMAP is a particular type
of a simplicial complex, known as the Vietoris-
Rips complex. Recalling that a k-simplex is a k-
dimensional polytope which is the convex hull of
its k + 1 vertices, and a simplicial complex is a
set of simplices of various orders, the Vietoris-
Rips simplicial complex is a collection of 0 and
1-simplices. In essence, this is a means to building
a simple neighbourhood graph by connecting the
original data points.

Original
sentence-space

* Embedding-space

[
P
Minimize . s1_
cross- ' @

entropy - s2
e

S1: Obama speaks in Chicago

S2: President’s speech at lllinois

S3: POTUS flies to O’hare

S4: Putin inaugurates World Cup in Russia

Figure 1: Figure showing a simple example of the em-
bedding algorithm. On the left is the original sentence-
space, approximated by the nearest neighbours graph
formed by the Vietoris-Rips complex. Instead of points
and edges, our simplicial complex has sets of points
and edges between them, formed by one of the dis-
tance metrics mentioned in Section 2.1. In this ex-
ample, four sentences, denoted by S1 through 54,
form two simplices, with S4 being a 0-simplex. The
sentences are denoted by colored ellipses, while the
high-dimensional embedding of each word in a sen-
tence is depicted by a point having the same color
as the parent sentence ellipse. The UMAP algorithm
is then employed to find a similarity-preserving Eu-
clidean embedding-space, shown on the right, by min-
imizing the cross-entropy between the two representa-
tions.

A key difference, in this work, to the original

formulation is that an individual data sample (i.e.,
the vertex of a simplex) is not a d-dimensional
point but a set of d-dimensional words that make
up a sentence. By using any of the distance metrics
defined in Section 2.1, it is possible to construct the
simplicial complex that UMAP needs in order to
build the topological representation of the original
sentence space. An illustration can be found in
Figure 1.

As per the formulation laid out for UMAP, the
similarity between sentences s’ and s is defined as:

_(D(37 S,) — ps)

Vs'|s = €XP pu (7)
s

where o, is a normalisation factor selected based on
an empirical heuristic (See Algorithm 3 in the work
of Mclnnes et al. 2018), D(s, s') is the distance be-
tween two sentences as outlined by Equation 2, 4
or 6, and p; is the distance of s from its nearest
neighbour. It is worth mentioning that for scala-
bility, v/, is calculated only for predefined set of
approximate nearest neighbours, which is a user-
defined input parameter to the UMAP algorithm,
using the efficient nearest-neighbour descent algo-
rithm (Dong et al., 2011).

The similarity depicted in Equation 7 is asym-
metric, and symmetrization is carried out by a fuzzy
set union using the probabilistic t-conorm:

Vss! = (Us’|s + vs|s’) = Us|sVUs|s 3)

As UMAP builds a Vietoris-Rips complex gov-
erned by Equation 7, it can take advantage of the
nerve theorem (Borsuk, 1948), which makes this
construction a homotope of the original topological
space. In our case, this implies that we can build
a simple nearest neighbours graph from a given
corpus of sentences, which has certain guarantees
of approximating the original topological space, as
defined by the aforementioned distance metrics.

The next step is to define a similar nearest neigh-
bours graph in a fixed low-dimensional Euclidean
space. Let s, s € R%Z be the corresponding
dp-dimensional sentence-embeddings. Then the
low dimensional similarities are given by:

-1
wey = (14 al|sg — s%|1,")) )

where, ||sp — s7|| is the Euclidean distance be-
tween the d p-dimensional embeddings, and setting
a, b are input-parameters, set to 1.929 and 0.791,
respectively, as per the original implementation.



Algorithm 1: Constructing sentence-
Embeddings by Manifold Approximation
and Projection: EMAP
Data: A pre-trained word-embeddings
matrix, #'; a set of sentences, .¥;
desired dimension of the generated
sentence-embeddings, dg
Result: A set of sentence-embeddings,
{se} € Y&

1 Calculate the distance matrix for the entire
set of sentences, such that the distance
between any two sentences is given by
Equation 2, 4 or 6;

2 Using this distance matrix, calculate the
nearest neighbour graph between all input
sentences, given by Equations 7 and 8;

3 Calculate the initial guess for the low
dimensional embeddings, .5 € R 1*Pe,
using the graph laplacian of the original
nearest neighbour graph;

4 Until convergence, minimize the
cross-entropy between the two
representations (Equation 10) using
stochastic gradient descent;

5 Return the set of d p-dimensional
sentence-embeddings, .7f;

The final step of the process is to optimize the
low dimensional representation to have as close
a fuzzy topological representation as possible to
the original space. UMAP proceeds to do so by
minimizing the cross-entropy between the two rep-
resentations:

/ 1 — ’
C= § Ussr log U + (1 - Uss’) log S
’ Wss! I — wsy
S#s
(10)

usually done via stochastic gradient descent.

A summary of the proposed process used to
produce sentence-embeddings is provided in Al-
gorithm 1, and pictorially presented in Figure 1.

3 Datasets and resources

3.1 Datasets

Six public datasets! have been used to empirically
validate the method proposed in this paper. These
datasets are of varying sizes, tasks and complex-
ities, and have been used widely in existing liter-

'nttps://drive.google.com/open?id=
1sGgA02SBoYKhQQOK_kilUp8KSToCI55]1

ature, thereby making comparisons and reporting
possible. Information about the datasets can be
found in Table 1.

3.2 Resources

Pre-trained word-embedding corpus: We use
the pre-trained set of word-embeddings provided
by Mikolov et al (2013)?.

Software implementations: We use a variety of
software packages and custom-written programs
perform our experiments, the starting point being
the calculation of sentence-wise distances. We cal-
culate the Hausdorff distance using a directed im-
plementation provided in the Scipy python library?,
whereas the energy distance is calculated using
dcor*. Lastly, the word mover’s distance is cal-
culated using implementation provided by Kusner
et al. (2015)°. In order to produce the symmetric
distance matrix for a dataset, we employ custom
parallel implementation which distributes the calcu-
lations over all available logical cores in a machine.

To calculate the sentence-embeddings, the im-
plementation of UMAP provided by Mclnnes et al
(2018) is used®. Finally, the classification is done
via linear kernel support vector machines from the
scikit-learn library (Pedregosa et al., 2011)”.

All of the code and datasets have been packaged
and released® to rerun all of the experiments.
Compute infrastructure: All experiments were
run on a m4.2xlarge machine on AWS-EC2°, which
has 8 virtual CPUs and 32GB of RAM.

4 Experiments

4.1 Competing methods

In order to check the usefulness of our proposed
approach, we benchmark its performance in two
different ways. The first, and most obvious, ap-
proach is to consider the performance of the £-NN

https://drive.google.com/file/d/
0B7XkCwpISKDYNINUTT1SS21pQmM/edit
*https://docs.scipy.org/doc/scipy/
reference/generated/scipy.spatial.
distance.directed_hausdorff.html
4https://dcor.readthedocs.io/en/
latest/functions/dcor.energy_distance.
html#dcor.energy_distance
Shttps://github.com/mkusner/wnd
®https://umap-learn.readthedocs.io/en/
latest/api.html
"Thttps://scikit-learn.org/stable/
modules/generated/sklearn.svm.SVC.html
8https://github.com/DeepK/
distance-embed
‘https://aws.amazon.com/ec2/



Dataset | #classes | #train docs | #test docs | #avg tokens Data-details

amazon 4 5600 2400 70 Reviews labeled by product
bbcesport 5 517 220 192 Articles labeld by sport

classic 4 4965 2128 62 Manuscripts labeled by publisher
ohsumed 10 3999 5153 104 Medical abstracts categorized by subject headings
reuters8 8 5485 2189 69 News article categorization

twitter 3 2176 932 8 Tweet sentiment analysis

Table 1: Dataset information: Metadata describing the datasets used in our experiments.

classifier as a baseline. This is motivated by the
state-of-the-art £-NN based classification accuracy
reported by Kusner et al. for the word mover’s
distance. Thus, our embeddings need to match or
surpass the performance of a k-NN based approach,
in order to be considered for practical use.

The second approach is to compare the clas-
sification accuracies of several state-of-the-art
embedding-generation algorithms on our chosen
datasets. These are:
dct (Almarwani et al., 2019): embeddings are gen-
erated by employing discrete cosine transform on
a set of word vectors.
eigensent (Kayal and Tsatsaronis, 2019): sentence
representations produced via higher-order dynamic
mode decomposition (Le Clainche and Vega, 2017)
on a sequence of word vectors.
wmovers (Wu et al., 2018): a competing method
which can learn sentence representations from the
word mover’s distance based on kernel learning,
termed in the original work as word mover’s em-
beddings.
p-means (Riicklé et al., 2018): produces sentence-
embeddings by concatenating several power-means
of word-embeddings corresponding to a sentence.
doc2vec (Le and Mikolov, 2014): embeddings pro-
duced by jointly learning the representations of
sentences, together with words, as a part of the
word2vec procedure.
s-bert (Reimers and Gurevych, 2019): embeddings
produced by fine-tuning a pre-trained BERT model
using a Siamese architecture to classify two sen-
tences as being similar or different.

Note that the results for wmovers and doc2vec
are taken from Table 3 of Wu et al.’s work (2018),
while all the other algorithms are explicitly tested.

4.2 Setup

Extensive experiments are performed to provide a
holistic overview of our neighbourhood-preserving
embedding algorithm, for various sets of input pa-
rameters. The steps involved are as follows:

Choose a dataset (one of the six mentioned in

Section 3.1). For every word in every sentence
in the train and test splits of the dataset, retrieve
the corresponding word-embedding from the pre-
trained embedding corpus (as stated in Section 3.2).
Calculate symmetric distance matrices corre-
sponding to each of the chosen distance metrics,
for all of the sets of word-embeddings from the
train and test splits.
Apply the UMAP algorithm on the distance ma-
trices to generate embeddings for all sentences in
the train and the test splits.
Calculate embeddings for competing methods
for the methods outlined in Section 4.1.
Embeddings are generated for various hyperpa-
rameter combinations for EMAP as well as all the
compared approaches, as listed in Table 2.
Train a classifier on the produced embeddings
to perform the dataset-specific task. In this work,
we train a simple linear-kernel support vector ma-
chine (Cortes and Vapnik, 1995) for every compet-
ing method and every dataset tested. The classifier
is trained on the train-split of a dataset and eval-
uated on the test-split. The only parameter tuned
for the SVM is the L2 regularization strength, var-
ied between 0.001 and 100. The overall test ac-
curacy has been been reported as a measure of
performance.

5 Results and Discussion

The results of all our experiments are in compiled
in Tables 3 and 4. All statistical tests reported are
z-tests, where we compute the right-tailed p-value
and call a result significantly different if p < 0.1.

Performance of the distance metrics: From Ta-
ble 3 it can be observed that the word mover’s dis-
tance consistently performs better than the others
experimented with in this paper. WMD calculates
the total effort of aligning two sentences, which
seems to capture more useful information com-
pared to the hausdorff metric’s worst-case effort
of alignment. As for the energy distance, it cal-
culates pairwise potentials amongst words within
and between sentences, and may suffer if there are



Method Parameter Value(s) Tested
n_neighbors 40
embedding _dim 50, 100, 300, 1000
min_dist 1.0,1.5,2.0
EMAP spread 1.0, 2.5
n_iters 1000
distance wmd, hausdorff, energy
k 1
kNN distance wmd, hausdorff, energy
dct components 1 through 6
cigensent components 1 through 3
time_lag 1,2,3,[1,2], [1,2,3], [1,2,3,4]
pmeans powers 1,[1,2], [1,2,3], [1,2,3,4,5,6]
s-bert model bert-base-nli-mean-tokens

Table 2: Hyperparameter values tested. For EMAP, n_neighbours refers to the size of local neighborhood used
for manifold approximation, embedding_dim is the fixed dimensionality of the generated sentence-embeddings,
min_dist is the minimum distance apart that points are allowed to be in the low dimensional representation, spread
determines the scale at which embedded points will be spread out, n_iters is the number of iterations that the UMAP
algorithm is allowed to run, and finally, distance is one of the metrics proposed in Section 2.1. For the spectral
decomposition based algorithms, dct and eigensent, components represents the number of components to keep in
the resulting decomposition, while time_lag corresponds to the window-length in the dynamic mode decomposi-
tion process. For pmeans, powers represents the different powers which are used to generate the concatenated
embeddings.

Distance energydist hausdorffdist wmddist
Method knn EMAP knn EMAP | knn | EMAP
amazon | 0.923* | 0.909 0.781 | 0.844* | 0918 | 0.929*

bbesport | 0.941 0.942 0.925 0.941 | 0972 | 0.987

classic 0.912 0.921 0.943 | 0.953* | 0.961 | 0.978*
ohsumed | 0.456 | 0.505* | 0.491 0.603* | 0.551 | 0.630*
r8 0.942 | 0.962* | 0.863* | 0.837 | 0.951 | 0.973*
twitter 0.731 0.749 0.736 0.741 | 0.712 | 0.722

Table 3: Comparison versus KNN. Results shown here compare the classification accuracies of k-nearest neigh-
bour to our proposed approach for various distance metrics. For every distance, bold indicates better accuracy,
while * indicates that the winning accuracy was statistically significant with respect to the compared value (.i.e.,
EMAP vs kNN for a given distance metric). It can be observed that our method almost always outperforms k-
nearest neighbour-based classification.

Method | wmd-EMAP dct eigensent | wmovers | pmeans | doc2vec | s-bert
amazon 0.929 0.932 0.902v 0.943/ 0.938 0.912v 0.923
bbcsport 0.986 0.972 0.968 0.982 0.981 0.979 0.986
classic 0.978 0.964 0.947v 0.971 0.960 0.965 0.966
ohsumed 0.630 0.594v 0.574v 0.645/ 0.614v | 0.598v | 0.556V
r8 0.973 0.967 0.958v 0.972 0.969 0.949v | 0.954v
twitter 0.722 0.644v 0.669V 0.745 0.636v | 0.673v | 0.673V

Table 4: Comparison versus competing methods. We compare EMAP based on word mover’s distance to various
state-of-the-art approaches. The best and second-best classification accuracies are highlighted in bold and italics.
We perform statistical significance tests of our method (wmd-EMAP) against all other methods, for a given dataset,
and denote the outcomes by V when the compared method is worse and A when our method is worse, while the
absence of a symbol indicates insignificant differences. In terms of absolute accuracy, we observe that our method
achieves state-of-the-art results in 2 out of 6 datasets.

shared commonly-occurring words in both the sen-  outperforms k-nearest neighbours based classifica-
tences. However, given that energy and hausdorff  tion, for all the tested distance metrics. The perfor-
distances are reasonably fast to calculate and per- mance boost for WMD is between a relative per-
form respectably well, they might be worth usingin ~ centage accuracy of 0.5% to 14%. This illustrates
applications with a large number of long sentences.  the efficiency of the proposed manifold-learning

method.
Comparison versus KNN: EMAP almost always



Query Sentence

Best Match Sentence Cosine Sim

I have spent thousands of dollar’s On Meyers
cookware everthing from KitchenAid Anolon
Prestige Faberware & Circulan just to name a few
Though Meyers does manufacture very high quality
pots & pans and I would recommend them to anyone
it’s just sad that if you have any problem with them
under warranty you have to go throught the chain

When I opened the box I noticed corrosion

on the lid When I contacted Rival customer
service via email they told me I had to purchase
a new lid I called and spoke with a customer
service representative and they told me that a
lid was not covered under warranty When |

If I were Stephen King I'd have put a pen name on
that crap as well One of King’s fans brought me
around She recommended THE SHINING Of course
I thought of that Kubrick/Nicholson travesty No no
she said read the book It’s much different Yes it is
It’s fantastic for its perceptiveness Next up PET
SEMATARY which scared the crap out of me

And that my friends is not easy ON WRITING I've
gushed about that enough times The films STAND
BY ME and THE APT PUPIL So in the end I
appreciate King and forgive him for CARRIE

and [ think he’s forgiven himself

Third Secret was OK but I think he hit his *peak*
right there

of command that never gets you anywhere even if explalped that I just opengd itand it was 0.997
. defective they told me to just return the
you want to speak with upper management about roduct that there was nothing that they were
the rudeness of the customer service department poin t0 do After bein treategd this way I will
Their customer service department employees are gomsg . & . Y
4 NOT be purchasing any more Rival products
always very rude and snotty and they act like they . , : .
. . if they don’t stand behind their product VERY
are doing you a favor to even talk to you about their .
products VERY poor customer service
. R . Co I waited years for this movie to be released in the
This movie will bring up your racial prejudices in . : )
2 United States As far as [ was concerned it wasn’t
ways that most movies just elude to It demonstrates . .
about the acting as much as it was about the
how connected we all are as people and how seperated . . .
. . . . feeling the actors wanted to portray in which
we are by only one thing our viewpoints The acting .
is superh and vou get one cameo appearance after they profoundly accomplished I would recommend 0.998
S Sup ayoue pp . this movie to anyone who can reach that one step
another which is a treat Of course the soundtrack is . . .. .
. L . L deeper into the minds of creativity and passion
terrific The ending is intense to witness one situation . ..
after another coming to an unfortunate finish and app reciate the struggles of rising above and
beyond the pain of broken dreams
We see a phrase a lot when we visit how to sites for
writers World building By this we mean the setting
the characters and everything else where our story
will occur For me this often means maps memories
and visits since I write about where I live But if
you’d like to see exactly what world building means
head down to your local library and grab SALEM’S
LOT by Stephen King When Stephen
King mania first gripped the English speaking world
I missed it I saw the film of CARRIE and hated it
Years later at a guard desk on a long shift scheduled in the possibility that Steve Berry could ever
so suddenly that I hadn’t had a chance to visit the transcend his not so great debut The Amber Room
library I read what was in the desk instead THINNER | Romanov Prophecy started in the right direction 0.955

Table 5: Examples of best-matching sentences. From the amazon reviews dataset using wmd-EMAP.

Comparison versus state-of-the-art methods:
Consulting Table 4, it seems that wmovers, pmeans
and s-bert form the strongest baselines as com-
pared to our method, wmd-EMAP (EMAP with
word mover’s distance). Considering the statistical
significance of the differences in performance be-
tween wmd-EMAP and the others, it can be seen
that it is almost always equivalent to or better than
the other state-of-the-art approaches. In terms of
absolute accuracy, it wins in 3 out of 6 evaluations,
where it has the highest classification accuracy, and
comes out second-best for the others. Compared

to it’s closest competitor, the word mover’s embed-
ding algorithm, the performance of wmd-EMAP is
found to be on-par (or slightly better, by 0.8% in
the case of the classic dataset) to slightly worse
(3% relative p.p., in case of the twitter dataset). In-
terestingly, both of the distance-based embedding
approaches, wmd-EMAP and wmovers, are found
to perform better than the siamese-BERT based
approach, s-bert.

Thus, the overall conclusion from our empiri-
cal studies is that EMAP performs favourably as
compared to various state-of-the-art approaches.




Examples of similar sentences with EMAP: We
provide motivating examples of similar sentences
from the amazon dataset, as deemed by our ap-
proach, in Table 5. As can be seen, our method
performs quite well in matching complex sentences
with varying topics and sentiments to their closest
pairs. The first example pair has the theme of a cus-
tomer who is unhappy about poor customer service
in the context of cookware warranty, while the sec-
ond one is about positive reviews of deeply-moving
movies. The third example, about book reviews,
is particularly interesting: in the first example, a
reviewer is talking about how she disliked the first
Stephen King work which she was exposed to, but
subsequently liked all the next ones, while in the
matched sentence the reviewer talks about a simi-
lar sentiment change towards the works of another
author, Steve Berry. Thus in the last example, the
similarity between sentences is the change of senti-
ment, from negative to positive, towards the works
of books of particular authors.

6 Conclusions

In this work, we propose a novel mechanism to
construct unsupervised sentence-embeddings by
preserving properties of local neighbourhoods in
the original space, as delineated by set-distance
metrics. This method, which we term, EMAP or
Embeddings by Manifold Approximation and Pro-
Jection leverages a method from topological data
analysis can be used as a framework with any dis-
tance metric that can discriminate between sets,
three of which we test in this paper. Using both
quantitative empirical studies, where we compare
with state-of-the-art approaches, and qualitative
probing, where we retrieve similar sentences based
on our generated embeddings, we illustrate the ef-
ficiency of our proposed approach to be on-par or
exceeding in-use methods. This work demonstrates
the successful application of topological data anal-
ysis in sentence embedding creation, and we leave
the design of better distance metrics and manifold
approximation algorithms, particularly targeted to-
wards NLP, for future research.
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Abstract

Multi-document question generation focuses
on generating a question that covers the com-
mon aspect of multiple documents. Such a
model is useful in generating clarifying op-
tions. However, a naive model trained only
using the targeted (“positive”) document set
may generate too generic questions that cover
a larger scope than delineated by the document
set. To address this challenge, we introduce
the contrastive learning strategy where given
“positive” and “negative” sets of documents,
we generate a question that is closely related
to the “positive” set but is far away from the
“negative” set. This setting allows generated
questions to be more specific and related to
the target document set. To generate such
specific questions, we propose Multi-Source
Coordinated Question Generator (MSCQG), a
novel framework that includes a supervised
learning (SL) stage and a reinforcement learn-
ing (RL) stage. In the SL stage, a single-
document question generator is trained. In
the RL stage, a coordinator model is trained
to find optimal attention weights to align mul-
tiple single-document generators, by optimiz-
ing a reward designed to promote specificity
of generated questions. We also develop
an effective auxiliary objective, named Set-
induced Contrastive Regularization (SCR) that
improves the coordinator’s contrastive learn-
ing during the RL stage. We show that our
model significantly outperforms several strong
baselines, as measured by automatic metrics
and human evaluation. The source repository
is publicly available at www.github.com/
woonsangcho/contrast_ggen.

1 Introduction
User queries on web search engines can sometimes
be vague. Search engines may resolve this ambi-

T Work done when the author was an intern at Microsoft
Research.
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Figure 1: Non-contrastive and contrastive method
for multidocument question generation. Left: non-
contrastive modeling that takes input as a set of posi-
tive documents. However, model-generated questions
from this method are rather generic and not specific
to the input documents. Right: contrastive modeling,
which considers both positive and negative document
sets, and learns to generate questions that are more
grounded on the positive document set.

guity by suggesting clarification options back to
the user in the form of questions (Braslavski et al.,
2017; Aliannejadi et al., 2019; Zamani et al., 2020).
However, asking the right clarification questions
is a challenging information-seeking task, given a
plethora of possible questions (Rao and Daumé I1I,
2018, 2019; Qi et al., 2020). One workaround is
to take informational cues from the search engine
results given the initial query. The clarification
options are then generated from non-ranked and
non-overlapping thematic partitions of the search
engine results. The whole pipeline is akin to the
pseudo-relevance feedback (Rocchio, 1971; Cao
et al., 2008). This can significantly reduce the
search space, and has the potential to generate cor-
rect clarification questions within the context (Cho

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 12-30
April 19 - 23, 2021. ©2021 Association for Computational Linguistics



et al., 2019b).

This particular approach may involve three non-
trivial phases: @) retrieval: gather the initial re-
turn documents by the search engine; ii) partition:
partition the documents into semantically similar
clusters in an unsupervised manner; iii) multi-
document question generation: generate a clari-
fication question by finding an “overlap” among
documents in each cluster. In principle, the clari-
fication questions should be specific to each clus-
ter rather than generic and bland, otherwise it is
counter to the objective of clarification (Radlin-
ski and Craswell, 2017). In this work, we focus
on developing a multi-document question genera-
tor to generate cluster-specific questions in the i7)
step. Nevertheless, we believe our approach can be
readily applied to multi-document text generation
such as summarization (Liu and Lapata, 2019) and
response generation (Zhang et al., 2020).

We address this challenge by leveraging con-
trastive learning. Given a set of positive documents
D7 and a set of negative documents ©~ (where
D~ is yet semantically close to © 1), we propose
a new strategy to generate a question that is se-
mantically relevant to D% and far away from ® .
Ideally, the model would use both ®* and ®~ to
identify distinguishing features between the two
sets and constrain the generation to be specific
to ©*. The similarity between the ® " and D~
makes the generation more challenging and forces
the model to be as specific as possible in order to
distinguish between the two sets. The compari-
son between the contrastive and non-contrastive
multi-document question generation is illustrated
in Figure 1.

This task is particularly challenging because )
there does not exist direct supervised ground-truth
multi-document question given positive and nega-
tive sets of documents. i) The whole procedure
involves multiple aspects including language un-
derstanding, inter-document information aggrega-
tion, coordinative planning and language genera-
tion. In theory, the generator can be trained to
maximize the chance that the generated question
specifically retrieves the given document cluster,
using RL. However, the space of possible sequence
is prohibitively large which results in large variance
in RL (Lewis et al., 2017). To effectively reduce
the search space of RL, we employ a hybrid su-
pervised learning (SL) and RL strategy. We also
propose a novel reward-shaping auxiliary objec-
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tive, Set-induced Contrastive Regularization (SCR)
(Section 2), which heuristically drives the genera-
tion closer towards © T, by minimizing/maximizing
the KL divergence between the hypothesis distribu-
tion and distributions induced by D /D ~.

Our contributions are summarized below: i) We
develop a novel Multi-Source Coordinated Ques-
tion Generator (MSCQG) model that is trained
using a hybrid hierarchical generation scheme.
The document-specific generator is fine-tuned
from GPT-2 and the inter-document coordina-
tor is trained using reinforcement learning. i)
We introduce Set-induced Contrastive Regulariza-
tion (SCR), an auxiliary regularizer that pushes
MSCQG toward © ™ relative to ©~ while limit-
ing the effect of ® in a principled manner. i)
Empirical results show that our model is able to
generate more grounded and specific questions, sig-
nificantly outperforming existing baseline models
in automatic measures and human evaluation.

2 Method

Overview: The overview of our model is il-
lustrated in Figure 2. The model consists of
two major components: i) The document-specific
generator generates a question from a single
document, and is fine-tuned from OpenAl GPT-
2. 1) The inter-document coordinator integrates
multiple-document information from the document-
specific generator instances. The coordinator is
trained using reinforcement learning after fixing
the document-specific generator.

During the RL training, at each generation time
step, each (positive and negative) document will
independently use the same generator trained from
i) to predict the next token. The coordinator will
learn to aggregate the probabilities to a consensus
probability by maximizing a reward function.
The reward function is designed to encourage
the generated question to tie to the positive set
and to be away from the negative set. The word
newly generated from the consensus probability
are concatenated to all documents as inputs for
next time step.

Document-specific Generator: At the first
pre-training stage, we load the publicly available
GPT-2 (Radford et al., 2019) model as our underly-
ing document-specific generator. The GPT-2 model
leverages massive out-domain data and serves as
a good initialization to generate grammatical and
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Figure 2: System overview. The example is an illus-
tration using fictitious tokens for ease of understanding.
Our MSCQG model learns to attend different weights
and form a final aggregated distribution at each decod-
ing time. The decision to enforce or penalize the neg-
ative set distributions to the aggregated distribution is
controlled in a principled manner.

informative question. Then, we further fine-tune
the language model on MS-MARCO (Nguyen
et al., 2016) selected document as an input and the
corresponding question as an output.

Ranking-based Rewards: Before moving to the
RL training, we first describe calculating the reward
signal based on retrieval statistics from a BERT-
based ranker (Nogueira and Cho, 2019) (Ranker),
a state-of-the-art model * in the MS-MARCO docu-
ment retrieval task (Nguyen et al., 2016) , is trained
to rank (document, question) pairs. This ranker
assigns high scores for true positive document and
question pairs. We assume the ranker delivers an ac-
curate reward signal since it achieves good perfor-
mance on the challenging MARCO retrieval task,
which covers a vast range of general topics. Let
g be the generated question from the underlying
generator block and coordinator with the positive
and negative document sets (®1 and ©7) as the
input.

Ranker(d, q) = score € (0,1)
vde ", D"

(1)

We pair ¢ with each of the documents in the
positive and negative set, and evaluate the
question-document pairs through the ranker
for answer-relevancy. Using the scores and
their memberships in DT or D, we compute
retrieval statistics, such as Precision@]0 and
mean-Average-Precision (mAP) (Zhu, 2004) which
are candidate non-differentiable rewards R.

“http://www.msmarco.org/leaders.aspx
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Training an Inter-generator Coordinator via
RL: Next, we train a coordinator system using
policy gradient to optimize the reward described
above. The separation between the generator and
the coordinator aims to ease the RL training by
significantly reducing the action space.

Note that the generator model is fixed during
this stage. We find that using RL to train the en-
tire generating pipeline yields large variance since
the action space is large and the auto-regressive
nature of the generation process further amplifies
such variance. Therefore, we fix the underlying
generator component and then on top of multiple
instances of the underlying generator, we stack our
coordinator model, which is trained using RL in
isolation. Instead of training both token-level GPT-
2 and document-level coordinator over multiple
GPT-2 instances using RL, only the coordinator
is trained using RL, which structure dramatically
reduces variance.

The coordinator is a transformer-based (Vaswani
et al., 2017) model to utilize its superior attention
capabilities across input documents.Unlike Trans-
former Decoder (Liu et al., 2018), there is no causal
mask. Instead, the coordinator model uses the hid-
den states updated every decoding time from the
underlying fine-tuned GPT-2 (Radford et al., 2019)
language model generators.

We add learned cluster embedding c; to the input
document hidden states h;, similar to learned posi-
tional embedding (Devlin et al., 2019), to indicate
whether the source document i is in ®F or © .

2

The coordinator model consists of n recurrent trans-
formers blocks (Vaswani et al., 2017), followed by
three different feed-forward layers (FF,,, FF,,, and
FF,) to output w, v, and z.

0
z; =hi+c¢

2% = Add-Norm(u, FF, (u)) (3)
u = Add-Norm(z*~1, MultiHead (="~ 1)) (4)

fork=1,...,n
w = FF,, (") ®)
v = FF,(2") (6)
z = FF,(z") (7)

w and v are the 10-dimensional attention weights
that sum to 1.0 among the positive documents D™,
and negative documents .

z parametrizes 1 in how much the coordina-
tor model penalizes, or sometimes reinforces,



weighted average of decoding distributions from
the negative set ® . 7 is a simple heuristic varia-
tion of tanh such that the image lies in (—1,0.5)
for all real numbers R. Thus, 1 is a damped penal-
ization coefficient.

e — 0.5

—1,0.
S €(-1,05)

n(z) = — VzeR (8)
Given w, v, and z, we obtain the final question

decoding distribution at test time .

=5 X wleni-neh: T odort] | ©
iept €D

where 6 is the coordinator’s parameters, the
subscript + is a ReLU (Nair and Hinton, 2010)
operator that selects non-negative weighted
tokens, and C' is the normalizing factor that
converts it into a distribution. The concatenations
of each input document in ©1 and ©~, EOS
token, and partially decoded question word
sequence are used to obtain new hidden states
and next decoding distributions. The decoding
process is repeated until the generation is complete.

Policy Gradient Loss: The policy gradient loss
is defined as follows:

EPG(Q) =-E [(R(q|©+7®_) - Rbaseline)

. -1 o
.Zlogﬂ-g(ot’q<t7G7©+7© )
t

With a complete generation ¢, a terminal re-
trieval statistics reward is computed from the
Ranker scores and score memberships, noted
as R(q|®",©7). This reward weights the sum
of log-likelihoods of generating the observed
words o, given the generation so far G, from the
underlying generator (G, and the two document
sets. We use oracle questions as the policy gradient
baseline for variance reduction in Rpaseline. Results
using a different policy gradient baseline are in
Appendix.

Set-induced Contrastive Regularization: We
further propose an auxiliary to provide richer sig-
nals when optimizing the coordinator model. The
intuition is that we would like to encourage the co-
ordinator model to generate questions foward the
positive set D7 relative to the negative set . We
name the regularizer as Set-induced Contrastive
Regularization (SCR) because the decoding distri-
butions from ©* and ©~ guide the coordinator to
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learn to make contrasts between the two sets. Al-
though the decoding distributions from Tand D~
are not gold supervision signals, modifying distri-
butional distance toward or away from them helps
regulate specificity to ©T. The former idea can
be formulated as minimizing the KL-divergence,
evaluated at timestep ¢:

min L5 (0) = min > [DKL(WEHWD
€Dt

+ Dy (] 5)]

1D

We minimize both the forward and the reverse KL
divergence since the forward KL does not penalize
high mass of 79 where 7; does not. Likewise for the
reverse KL. On the other hand, the latter idea can
be formulated as maximizing the KL-divergence
against the negative set, evaluated at time step ¢:

max C¢E, (0) = max Y | Dia ()
€D

+ DKL(WfHWé)}

(12)

However, we need to cap the negative set penalty
rather than naively maximizing it, more restric-
tively if the positive set and the negative sets are
semantically close. Intuition is that if the KL diver-
gence against the negative set is too large, then we
do not penalize further. Therefore, we define our
contrastive regularization function as follows:

1 s
ﬁSCR(e) = T Z [‘CII?L,t(H) - ‘C%eﬁt(e) 13
— (13)
’ le'ﬁyf,t(9)<£pK(f,t(9)}

where T is the length of the completed generation,
and v is the similarity measure between positive
and negative sets at decoding time ¢. Specifically,

1
> 7 2 )
€D

€Dt
(14)

V4 = COS sim
' <\®+\

Negative Entropy Loss: We add negative entropy
loss Ly across the attention weights w and v, aver-
aged over T to encourage the model attend to all
the documents rather than attend to a small sub-
set of the documents and risk losing positive and



Out-Sample IR Search-Engine Augmented IR
Model mAP RPrec MRR (=MRR@10) nDCG | mAP RPrec MRR MRR®@10 nDCG
Top-TFIDF @100 0.416 0.533 0.696 0.545 | 0.113 0.0588 0.0260  0.0050 0.181
Top-Frequent @100 0.680 0.742 0.921 0.779 | 0.171 0.129 0.0404  0.0119 0.204
MSQG (Cho et al. ’19) - - - - - - 0.0704 0.0441 0.234
MSQGgpro 0.713  0.763 0.945 0.804 | 0.245 0.217 0.0714  0.0400 0.240
MSCQGger 0.751  0.790 0.974 0.836 | 0.258 0.234 0.0745 0.0420 0.245
MSCQGpq 0.753 0.791 0.978 0.838 | 0.256 0.232  0.0742 0.0421 0.244
MSCQGpaiscr 0.767 0.803 0.981 0.849 | 0.265 0.242 0.0748  0.0420 0.245
MSCQGpgyscriH 0.765 0.800 0.976 0.847 | 0.262 0.239 0.0759  0.0434 0.246
Oracle Questions for ©F | 0.759  0.797 0.976 0.842 | 0.292 0.273 0.0846  0.0495 0.256

Table 1: Retrieval performance. “Out-Sample IR” refers to the evaluation data sample that consists of 10+10
documents ®T and ©~. “Search-Engine Augmented IR” refers to augmenting the out-sample into 100 documents

in total through Lucene.

BL-1 BL-2 BL-3 BL-4 | METEOR ROUGE_L | CIDEr ST EM VE GM
Oracle Question for ©~ | 0.449 0.291 0.177 0.100 0.215 0.428 1.076  0.547 0.766 0.617 0.697
Top-TFIDF @100 0.253 0.157 0.104 0.075 0.195 0.339 1.174 0470 0.747 0.575 0.671
Top-Frequent @100 0.438 0.328 0.260 0.217 0.281 0.476 2.684 0573 0.799 0.682 0.735
MSQGgpro 0.457 0313 0.207 0.139 0.282 0.494 1.993 0.563 0.814 0.705 0.768
MSCQGgcr 0.501 0.363 0.260 0.193 0.303 0.535 2533 0.604 0.829 0.729 0.786
MSCQGpg 0.562 0.418 0.310 0.234 0.304 0.565 27702 0.630 0.844 0.734 0.798
MSCQGpgiscr 0.589 0.449 0.339 0.262 0.323 0.591 2994 0.647 0858 0.759 0.815
MSCQGpgiscor+m 0.573 0.436 0.330 0.255 0.321 0.583 2946 0.641 0.851 0.752 0.808

Table 2: Comparison against the oracle MARCO questions for ©T. Since retrieval scores cannot give a complete
picture of the generation, we aim to understand how close the generations are in terms of various metrics. The
numbers show that our proposed model generates questions similar to the oracle MARCO questions. Notations:
BL for BLEU; ST for Skip-Thought similarity; EM for Embedding Mean similarity; VE for Vector Extrema

similarity; and GM for Greedy Matching.

negative set representational information.

T
Lu(0) = %Z [ Z w} glog w}

t=1 jep+ (15)
+ Z vf glog vfﬂ]
€D
We finally optimize for the following loss:
5(9) = /\1,Cpc.(9) -+ )\2£SCR(6) -+ )\SEH(H) (16)

where )1 2 3 are the scaling hyper-parameters.

3 Experiments

Dataset: We use the MS-MARCO Q&A dataset
(Nguyen et al., 2016) where for the Bing query
q, we consider the top-10 retrieved documents
as our positive set D . To get our negative set
D™, we use the Conversational Search’ dataset,
which contains additional annotations for the
same MS-MARCO Bing queries, to find a query
¢ that is similar to ¢ yet not a paraphrase and

Thttps://github.com/microsoft/ MSMARCO-
Conversational-Search
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consider the top-10 documents retrieved for ¢’ as
our negative set © . In total, we gather 100K
train/10K dev/10K eval data points. Details of the
pre-processing, usage of additional annotations
from the secondary dataset, and experimental
configuration are in Appendix.

Automatic evaluation: The generated questions
are evaluated through standard retrieval-based met-
rics: MRR and MRR10 (Voorhees, 1999; Radev
et al.,, 2002), nDCG (Jarvelin and Kekilidinen,
2002), precision, mAP. These metrics are computed
from the 10 positive and 10 negative document
sets (=: Out-Sample IR). In addition, as a stan-
dardized evaluation routine in the MS-MARCO
Retrieval task, for each generated question, we use
Lucene* to retrieve the most relevant 100 MARCO
documents via BM25 (Robertson and Zaragoza,
2009), and use the retrieved document set and a
trained model to rank (document, generated ques-
tion) pairs, thus compute the retrieval statistics (=:
Search-Engine Augmented IR).

The generated questions are also evaluated in

*https://lucene.apache.org/
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Figure 3 shows that our model MSCQG pg4scr+m outperforms the oracle questions by a small margin on the
Out-Sample IR. In the larger retrieval evaluation using Lucene, it performs subpar against the oracle questions, but
performs significantly better than all the considered baseline models, shown in Figure 4.

Pair (M vs. B) Pair (M vs. O) Pair (B vs. O)
Criteria M B = M (0] = B (0] =
Ans. 522 17.5 303|392 19.83 41.0 | 323 425 252
Rel. 533 187 28.0 | 352 222 427 | 317 442 242
Flu. 493 223 283|508 247 245|437 327 237
Ovr. 575 213 212|495 27.0 235|383 42.8* 1838
M B (6]
Criteria  d+  d— = d+ d— = d+ d— =
Ans. 707 102 19.2|61.2 140 248 | 672 13.7 192
Rel. 722 113 165 ] 622 163 21.5]703 143 153
Ovr. 720 105 175|632 142 227 169.0 140 17.0

Table 3: Pairwise comparison and d*/d~ comparison
of human evaluation. M=MSCQG, B=MSQG¢gp72,
O=Oracle. Preferences are expressed in percentage
(%). Comparison results are statistically significant
(p < 0.01) unless indicated *. Ans., Rel., Flu. and
Ovr. denotes Answerability, Relevancy and Fluency
and Overall, respectively.

terms of BLEU (Papineni et al., 2002), ROUGE
(Lin and Hovy, 2003), METEOR (Banerjee and
Lavie, 2005), CIDEr (Vedantam et al., 2015),
Greedy Matching (Rus and Lintean, 2012),
Skip-Thought (Kiros et al., 2015), Embedding
Average (Kenter et al., 2016) and Vector Extrema
(Forgues et al., 2014) cosine similarities.

Human evaluation: We conduct human eval-
uation through Amazon Mechanical Turk where
we evaluate questions generated by MSCQG,
MSQGg prs, and the oracle question in four crite-
ria: fluency, relevancy, answerability, and overall.
First, we randomly select 600 (d, g4, qp) tuples
where the d is any from ©* and ¢4, gg from the
three questions, and collect responses on which
question is preferred over the other. Secondly,
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we evaluate 600 (d*,d™, q) tuples where given
a question, d*, d~ are randomly chosen from D+
and ® . This can determine questions’ specificity
to ® 7 relative to © . Each sample is judged by
3 crowd-sourced workers who passed a rigorous
spam-detection screening, totalling 3,600 samples
to obtain reliable results. For details, see Appendix.

3.1 Baseline models

Multi-Source Question Generator: This model
MSQGgpro is similar to MSQG in Cho et al.
(2019b). It processes individual documents in par-
allel through the fine-tuned GPT-2 generator, rather
than RNN-based Seq2Seq model in MSQG, and
averages the decoding distributions at test time ¢.

pos

t
2.
i

Unlike MSQG in Cho et al. (2019b), no further
heuristic modifications are made to the model.

1

— (17
|[pos|

t _
T™SQGgpra —

Top-TFIDF@K: Why do we not simply retrieve
the top question implied by the 10 positive docu-
ments? To this end, we design a retrieval baseline
using the learned TF-IDF (Luhn, 1957; Jones,
1972; Salton and McGill, 1983) weights. This
baseline re-evaluates the collection of retrieved
questions from the corpus, gathered against each
document in ©®F using TF-IDF, and retrieves the
most relevant question. For design details, see
Appendix.



Top-Frequent@K: Another retrieval model is to
find an intersecting subset among all the 10 top-k
question sets. For pseudo-code details, see Ap-
pendix.

3.2 Results and Analysis

Model comparison and ablation study: For sim-
plicity, we abuse the term oracle by calling the
ground-truth question that retrieves ©* when con-
structing the dataset as the oracle question. How-
ever, these questions are not gold questions as they
might not be the most relevant and specific ques-
tions to the given positive and negative sets.

Table 1 shows that our proposed model is effec-
tive at generating questions given multiple docu-
ments. In particular, it shows that policy gradient
or set-induced contrastive regularization alone is
effective in improving performance. The coordina-
tor performs better when optimized for both policy
gradient and regularization objectives.

The retrieval results for the questions that ini-
tially clustered ®* sets are presented. Note that
these are not gold questions because in most cases
not all the retrieved documents in © T answer the
questions. For clarity of our presentation, we
abuse the term and name them as oracle ques-
tions. Search-engine augmented IR evaluation
shows that our methods are upper-bounded by the
oracle MARCO questions.

Entropy regularization improves the search-
engine augmented IR scores, in particular, MRR.
However, it is not crucial as supplemented by
Table 2. For additional results, see Table 4 in
Appendix.

Model performance v.s. similarities between
DT and D : cossim(DT, D) is approximated
using the oracle questions that are available in the
dataset. The similarity is computed by the cosine
similarity of the two GEN-Encoder (Zhang et al.,
2019) representations. Figures 3 and 4 show that
our model generated questions are more grounded
on DT than the baseline model generations.
The more similar the two sets ©1 and ©~, the
more difficult for the models, even humans, to
distinguish which document is more relevant, if
not answerable, given the generated question. The
model outperforms the baseline model uniformly
across different similarities between 1 and © .

Role of ®~ by visualizing w, v, and z: Figures 5
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and 6 show that our model MSCQG learns to gradu-
ally penalize ®~ as it sequentially generates words
that are more grounded on © . Notice the roughly
uniform weights across ® ™ but increasing penal-
ization weights across © ", in decoding time.

1, which is controlled by the z, is learned to
encourage, rather than discourage, certain words
during decoding. The displayed ©~ weights v
are multiplied by the dampening factor —n(z) for
interpretation purposes, thus it does not necessarily
sum to 1, see equation 9. We observe that words
that are not semantically distinguishing between
D71 and ®, are encouraged by the coordinator
to maintain readability. For example, the weights
of the word of is mostly non-negative, whereas
weights for other words are mostly negative. This
indicates that the coordinator learns to selectively
activate/suppress decoding of certain words by
coordinating information from Dtand ©~.

Human judgments: Table 3 shows that our model
significantly outperforms the strong baseline in ev-
ery aspect. Furthermore, we draw a more favorable
conclusion toward our model-generated questions
when compared against the oracle questions than
from the automatic metrics, which are approximate
yet reasonable metrics. The pairwise agreement
between judges is 54% =+ 1%. The Cohen’s Kappa
score is 0.19 £ 0.01. Note that this is a reasonable
number given the “same” or ambiguous option in
pairwise comparisons. Ranker achieves a rela-
tively high Pearson correlation of 0.6 with respect
to human evaluation. For details, see Appendix.

4 Related Work

Multi-Source Encoder-Decoder: Ensemble set
induction mechanism (Rokach, 2010) has been
widely applied to neural machine translation
(NMT) tasks (Bojar et al., 2014). Firat et al.
(2016) introduced a new type of ensemble of
NMT systems which take inputs as multiple
sentences in different languages and output a
translation into a single language. Each NMT
system is trained on a mono-lingual source to
target language translation dataset. Garmash and
Monz (2016) further developed the multi-source
encoder-decoder framework for multi-lingual
NMT systems, by learning to assign uneven
attention weights, called expert combination
weights. To handle multi-source input, we take a
similar multi-source encoder-decoder approach
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Visualization of sequential attention weights. In the vertical axis, 0-9 indices indicate documents in ©%, and 10-19
in ®~. For explanation on ®~ weights v, see analysis below. Figure 5 shows that the model learns to push the
sequential generation semantics more toward © " by gradually penalizing © . Figure 6 shows that frequent and
semantically less distinguishing words such as ‘of ” are encouraged even by © ~, which empirically aligns with our

intuition for TF-IDF.

for our coordinator model. For such multi-lingual
translation tasks, the target translation is available.
However, in our task of generating multi-document
questions, the target does not exist which makes it
more challenging, thus we train via RL, rather than
supervised learning.

Question Generation: Most prior work on
question generation has been on single document
i.e. given a document and an answer phrase
in the document, generate a question that is
answered by the answer phrase (Heilman, 2011;
Rus et al., 2010). For a survey, see Pan et al.
(2019). However, in our work, we aim to generate
a multi-document question that is answerable
by multiple input documents. Fan et al. (2018)
propose a visual question generation model to
generate natural questions about images using
reinforcement learning where they use naturalness
and human-like as reward signals. In our work, we
use retrieval statistics, similar to Nogueira and Cho
(2017), derived from a document-question ranker
as the reward for training our coordinator model in
isolation, rather than the entire generating pipeline.

Contrastive learning in NLP: Contrastive learn-
ing has been widely used in NLP (Smith and Eisner,
2005; Collobert et al., 2011; Bordes et al., 2013;
Hjelm et al., 2019; Deng et al., 2020). Broadly,
contrastive learning methods differentiate observed
data from artificial negative examples. Gutmann
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and Hyvérinen (2010) leverages the Noise Con-
trastive Estimation (NCE) metric to differentiate
the target sample from noise samples. Negative
Sampling proposed by Mikolov et al. (2013) is a
simplified variation of NCE loss. Recently, con-
trastive learning has also been employed in learning
sentence representations (Clark et al., 2020). To
our best knowledge, we are the first to leverage
contrastive learning and establish set-induced pe-
nalization in the context of question generation.

5 Conclusion

We proposed a novel coordinator model that can
generate questions that are more grounded on doc-
uments of interest. This coordinator model con-
sists of transformer blocks, and is trained through
reinforcement learning and an effective auxiliary:
Set-induced Contrastive Regularization.

The rewards are derived from a publicly avail-
able state-of-the-art pre-trained ranker (Section 2)
to compute retrieval statistics among ©®* and D .
Our novel contrastive regularization induces gener-
ations to be more specific to T than to ©~ while
limiting the effect of © ~ in a principled manner by
accounting for their semantic similarity.

We evaluate a generated question from each
model by assessing how many of the input ®
documents among a pool of relevant documents
it can retrieve, based on the (document, question)
ranker that is trained on the same wide-ranging do-



main. For a comprehensive automatic evaluation of
the models, retrieval statistics are computed from
a larger pool of relevant documents gathered via
BM25. Experiment results show that our model
significantly outperforms previous neural genera-
tion as well as strong retrieval baselines in both
automatic and human metrics.

Given the promising comprehensive results of
the proposed models and training approach, we can
extend the framework with appropriate modifica-
tions and train via imitation learning algorithms,
and this is left for future work.
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Appendix
Appendix A. Data Pre-processing Details

Data Pre-processing: MS-MARCO Q&A
data-set (Nguyen et al., 2016) contains 1,010,916
questions, in which each question is associated with
top-10 documents. Each data point contains a ques-
tion and its top-10 returned documents from the
Bing search engine®. This question is not a target
itself since not all the top-10 retrieved documents
answer the question. However, it can give rela-
tive evaluation against a model-generated question
based on the top-10 retrieved documents. We target
a broader class of problems where only document
groups are available but no such group-inducing or
oracle questions.

In fact, among the top-10 retrieved documents,
often one document is labeled ‘selected’ by human
annotators to indicate that the document answers
the question (true positive), and left unknown or
unlabeled for the rest of the documents, implying
they may or may not answer the question (true

Shttps://www.bing.com



negative or false negative). This label information
is used to train the underlying generator block of
their MSQG model (Cho et al., 2019b). A sin-
gle selected MS-MARCO (Nguyen et al., 2016)
document is fed into a long short-term memory-
based sequence-to-sequence model to output the
corresponding question. An example of the input
selected document is: The House of Representa-
tives shall be composed of Members chosen every
second Year by the People of the several States....
Article I, Section 2, Clause 1, and the correspond-
ing question is: how long is a term for a member of
the house of representatives. We chose this dataset
since the question that retrieve the top-10 docu-
ments can shed light to relative performance of our
model.

To find two 10-document sets D and D~ that
are similar, we find a pair of questions that are se-
mantically similar. However, computing pair-wise
similarities among roughly 1 million questions is
computationally intractable. Therefore, we lever-
age another dataset: MS-MARCO-Conversational
Searchl: an artificially constructed public dataset
that simulate user search sequences.

Each data point or session is an artificial se-
quence of similar questions grounded on true
user behavior. Since many similar questions are
grouped together, we can reduce the search space
for finding pairs of similar questions. Then we take
pairs of high semantic similarity (> 0.7) yet not a
paraphrase (< 0.85 following their classification
criteria) using GEN-Encoder (Zhang et al., 2019)
which two associated 10-document sets do not have
overlaps, primarily for prototype evaluation conve-
nience. For deployment models, one may choose to
allow overlaps between two sets for more challeng-
ing learning. From the two similar 10-document
sets, either one is set to positive ©T or negative
9™, yielding two data points for the our derived
dataset.

These pre-processing steps yield 346,215 data
points, each of which contains a pair of positive
and negative questions, and positive and negative
10-document sets. Training MSCQG on the
entire dataset requires processing about 7 million
MARCO documents. This is computationally
intensive and takes about two days on 8 Nvidia
Tesla V100 GPU cards for a single epoch. There-
fore, for building small research prototypes and

Thttps://github.com/microsoft/MSMARCO-
Conversational-Search
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benchmarks, we will also release a subset of the
data, that consists of 100K/10K/10K training,
development, and evaluation data points.

Appendix B. Data Example

Oracle question for D :
number of saturn’s moons

Oracle question for ©~:
uranus how many moons

Positive Set DT :

1. moons of saturn. there are 62 moons orbiting
saturn. the moons of saturn vary not only in size
but also in composition and shape. the largest of
the moons of saturn is the aptly named titan, more
than 5,000 km across and is bigger than mercury.
there are 7 major moons of saturn and the rest are
grouped based on the mythology from which it is
taken.

2. iapetus with a diameter of 1,470 km, it is the
3rd largest moon of saturn. it was discovered by
giovanni cassini in 1671. it has a distinct feature
of having a bright and dark hemisphere. dione the
4th largest moon of saturn named after a vague
character in greek mythology.

3. titan is the largest of saturn’s moons and
the first to be discovered. titan is the only moon
in the solar system known to have a significant
atmosphere. nitrogen and methane extend around
the moon 10 times as far into space as earth’s
atmosphere, sometimes falling to the surface in the
form of methane rain.

4. saturn has at least 150 moons and moonlets,

53 of which have formal names. titan, the largest,
comprises more than 90% of the mass in orbit
around saturn, including the rings. saturn’s
second-largest moon, rhea, may have a tenuous
ring system of its own, along with a tenuous
atmosphere.

5. their journeys around the ringed planet average
from half an earth day to just over four earth years.
saturn’s moons formed early in the history of the
solar system. one of the moons, titan, makes up 96
percent of the mass orbiting the planet. scientists
think that the system may have originally housed



two such moons, but the second broke up, creating
the debris that formed the rings and smaller, inner
moons.

6. saturn has a prominent ring system that
consists of nine continuous main rings and three
discontinuous arcs and that is composed mostly of
ice particles with a smaller amount of rocky debris
and dust. sixty-two moons are known to orbit
saturn, of which fifty-three are officially named.

7. sixteen of the moons are tidally locked, with
one face permanently turned toward saturn. the
first moon was discovered in 1655. over the next
200 years, the other seven major satellites were
spotted. by 1997, astronomers on earth had found
18 moons in orbit around the planet.

8. saturn is the sixth planet from the sun and the

second-largest in the solar system, after jupiter. it
is a gas giant with an average radius about nine
times that of earth. although only one-eighth the
average density of earth, with its larger volume
saturn is just over 95 times more massive.

9. this temporary name usually consists of the
year of discovery and a number indicating the
order of discovery in that year. in the case of
saturn’s moons, these provisory names follow the
format s/2005-s1, s/2005-s2 etc. the first s (before
the slash) is for saturn. the second s (after the
dash) is for satellite.

10. this does not include the hundreds of moonlets
comprising the rings. titan, saturn’s largest moon,
and the second-largest in the solar system, is
larger than the planet mercury, although less
massive, and is the only moon in the solar system
to have a substantial atmosphere.

Negative Set D :

11. uranus has 27 moons that we know of. five
of the moons are large and the rest are much
smaller. the five large moons are called miranda,
ariel, umbriel, titania, and oberon. titania is the
largest moon of uranus and it is covered with
small craters, a few large craters, and very rough
rocks. ariel is the brightest moon of uranus and
has canyons and valleys as well as a lot of craters.
umbriel is very dark.
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12. uranus can’t seem to catch a break these days.
besides spinning on its side like the drunkard of
the solar system and being the butt of everyone’s
jokes, new research suggests several of its tiny
moons will collide in a million years. uranus can’t
seem to catch a break these days.

13. the gas giant uranus is the third largest planet
in our solar system, has many moons, a ring
system, and composed of gases and ices. universe
today space and astronomy news login

14. the researchers used cressida’s mass and orbit
to determine its possible doom. since uranus’ 27
moons are tightly packed together, the team posits
that in a million years, cressida will likely have
a deadly encounter with one of its neighboring
moons, called desdemona. previous research and
simulations suggest cupid and belinda will also
probably smack into each other some time between
1,000 and 10 million years from now.

15. puck, at 162 km, is the largest of the inner
moons of uranus and the only one imaged by
voyager 2 in any detail while puck and mab are
the two outermost inner satellites of uranus. all
inner moons are dark objects.

16. uranus, which takes its name from the greek
god of the sky, is a gas giant and the seventh
planet from our sun. it is also the third largest
planet in our solar system, ranking behind jupiter
and saturn. like its fellow gas giants, it has many
moons, a ring system, and is primarily composed
of gases that are believed to surround a solid core.

17. in 1986, the voyager 2 spacecraft hit the
Jjackpot while studying uranus and discovered 10
other moons, including desdemona and cressida.
since then, hubble observations have helped bring
that number up to 27 for now.

18. at an average distance of 3 billion km from the
sun, it takes uranus roughly 84 years (or 30,687
days) to complete a single orbit of the sun. 1 the
rotational period of the interior of uranus is 17
hours, 14 minutes. as with all giant planets, its
upper atmosphere experiences strong winds in the
direction of rotation.

19. uranus’ size, mass and orbit: with a mean



radius of approximately 25,360 km, a volume of
6.833—10"1 3 km3, and a mass of 8.68 — 1025
kg, uranus is approximately 4 times the sizes of
earth and 63 times its volume.

20. uranus has 27 known satellites, which are
divided into the categories of larger moons, inner
moons, and irregular moons (similar to other gas
giants). the largest moons of uranus are, in order
of size, miranda, ariel, umbriel, oberon and titania.

Appendix C. Retrieval Baselines

Top-TFIDF@K and Top-Frequent@K

The retrieval baselines are designed to give a rel-
ative insight into the performance between MSQG
in Cho et al. (2019b) and our novel coordinator
model. We use Lucene to retrieve questions in-
stead of documents from a corpus composed of
the 1,010,916 MS-MARCO questions. The re-
trieved questions from Top-TFIDF@K and Top-
Frequent@K baselines are evaluated in the same
manner as the generated ones.

For the intersection to be non-empty, k& should
be sufficiently large. However, even for k£ = 1000,
there were no intersecting subset questions for al-
most all cases. Therefore, we relax the intersection
among all 10 retrieved sets, into finding the most
frequently occurring question among the 10 top-k
retrieved sets. k& = 100 was an appropriate value
that is not too large to retrieve remotely relevant
questions, and not too small to yield vastly differ-
ent retrieval sets. If there are multiple questions
with the same count, we randomly choose one.

Algorithm 1 Top-TFIDF@K

Input: ©", Corpus C
For each d € D, retrieve top-K questions in C;
Using all unique questions @, compute TF-IDF;
Let U be the TF-IDF transform operator;
¢* =argmax »_ cossim (¥, Uy);

q€Q dept
Output: ¢*

Algorithm 2 Top-Frequent@K

Input: ©*, Corpus C
For each d € T, retrieve top-K questions in C;
Let Sy be the retrieved set for each d;
¢* =argmax ». lges,;
q€Q dept
Output: ¢*
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Appendix D. Experiment Configurations

Document-specific GPT-2 Generator: From
each document 4, the generator yields its final layer
hidden state h; € R (H = 768 is the hidden di-
mension) and a document-specific discrete output
distribution 7; € RY (V = 50257 is the vocabu-
lary dimension) from the learned language model
head.

Coordinator: The input size is 20 with the di-
mensionality of the embeddings and hidden states
as 768. The number of recurrent layers is 2, with 4
attention heads in each layer. The epsilon value
used in the layer normalization is set to le—5.
The number of cluster embeddings is 2 (positive
or negative). The standard deviation of the trun-
cated normal initializer for weight matrices is 0.02.
A1, A2, A3 = 1.0, 100.0,0.1. We performed coarse
hyper-parameter search for equidistant values in
log-scale for all A1, A2, A3, and use the best config-
uration. Maximum generation length is 20 tokens.
We use the BERT (Devlin et al., 2019) version
of Adam optimizer (Kingma and Ba, 2014) with
weight decay of 0.01 and learning rate of 1le—5.

We trained the coordinator model by maxi-
mizing Precision@ 10 with oracle questions as
the policy gradient baseline. It is reasonable to
weigh the documents unevenly because often
times not all the top-10 retrieved documents from
the Bing search engine share the same content.
Thus, we leave to the model to learn the optimal
attention weights among positive and negative
sets that produce a more grounded question.
Additional experiment results using a different
baseline - self-critic (Rennie et al., 2017) - is
shown in Table 4. This shows that our proposed
model framework is effective even with any of the
two policy gradient baselines. Conceptually, the
coordinator model would generate a question that
can better retrieve the documents from the positive
set, aided by the negative set.

Appendix E. Human Evaluation Details

We performed two human evaluations: In the
first experiment, we showed judges one randomly
selected positive document, which is about 300
words long, followed by a pair of questions from
the three sources. Judges were asked to evaluate
which one of the two questions is preferred based
on four criteria. For each pair of three sources, we



evaluated 200 same random samples for each judge
(or 600 samples for the 3 judges), totalling 1,800
samples.

In the second experiment, human annotators
evaluated contrastive ability from 1,800 samples
of one question, followed by two documents each
from the positive and negative sets. Note that our
model is trained to generate questions, accounting
for the negative set.

The results were averaged across all samples and
judges.

For computing the Pearson correlation between
the ranker and human evaluation results, we map
Option A preferred — 0, Same — 0.5, Option B
preferred — 1, accounting for the random assign-
ments between A and B. This projection ensures
that image of two metrics are the same (between
0 and 1). Then we compute the correlation value
between two results.
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Out-Sample IR Search-Engine Augmented IR
Model mAP RPrec MRR (=MRR@10) nDCG | mAP RPrec MRR MRR@10 nDCG
Top-TFIDF @100 0.416 0.533 0.696 0.545 [ 0.113 0.0588 0.0260  0.0050  0.181
Top-Frequent @100 0.680  0.742 0.921 0.779 | 0.171  0.129  0.0404  0.0119  0.204
MSQG (Cho et al. °19) - - - - - - 00704 00441 0234
MSQG¢pro 0.713  0.763 0.945 0.804 | 0.245 0217 0.0714  0.0400  0.240
MSCQGgcr 0.751  0.790 0.974 0.836 | 0.258 0.234 0.0745  0.0420  0.245
MSCQG G smen® | 0714 0.764 0.945 0.805 | 0.247 0.220 0.0724  0.0407  0.241
MSCQGSIeritic 0.762  0.798 0.982 0.845 | 0.259 0.237 0.0746  0.0420  0.244
MSCQGSETSE R 0.760  0.797 0.977 0.843 | 0260 0236 0.0744  0.0416  0.245
MSCQGSESte iy 0.760  0.797 0.977 0.843 | 0.262 0.238 0.0771  0.0444  0.247
MSCQGye emin® | 0717 0.766 0.950 0.808 | 0.246 0220 0.0722  0.0404  0.241
MSCQGg<ritie 0.753  0.791 0.978 0.838 | 0256 0.232 0.0742  0.0421  0.244
MSCQGHZmhis 0.767  0.803 0.981 0.849 | 0.265 0.242 0.0748  0.0420  0.245
MSCQGyastie . 0.765  0.800 0.976 0.847 | 0.262  0.239  0.0759  0.0434  0.246
Oracle Questions for ®* | 0.759  0.797 0.976 0.842 [ 0292 0.273 0.0846  0.0495  0.256

Table 4: Additional retrieval performance using self-critic (Rennie et al., 2017) baseline in the policy gradient,
applicable to datasets with no oracle questions. It shows that our framework is also effective using a different base-
line. The superscript null-neg denotes models that do not use negative attentions when generating questions. This
shows the importance of the negative set in promoting specificity in the generated question. It further corroborates
that the non-uniform weighted-sum scheme among ©* improves performance because not all documents in D+
revolve around the same topic, and the model learns to address this nature of the dataset through unequal weights
and generate a more representative question.
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Abstract

Psycholinguistic studies of human word pro-
cessing and lexical access provide ample ev-
idence of the preferred nature of word-initial
versus word-final segments, e.g., in terms of
attention paid by listeners (greater) or the
likelihood of reduction by speakers (lower).
This has led to the conjecture—as in Wedel
et al. (2019b), but common elsewhere—that
languages have evolved to provide more infor-
mation earlier in words than later. Information-
theoretic methods to establish such tendencies
in lexicons have suffered from several method-
ological shortcomings that leave open the ques-
tion of whether this high word-initial informa-
tiveness is actually a property of the lexicon
or simply an artefact of the incremental nature
of recognition. In this paper, we point out the
confounds in existing methods for comparing
the informativeness of segments early in the
word versus later in the word, and present sev-
eral new measures that avoid these confounds.
When controlling for these confounds, we still
find evidence across hundreds of languages
that indeed there is a cross-linguistic tendency
to front-load information in words.!

1 Introduction

The psycholinguistic study of human lexical access
is largely concerned with the incremental process-
ing of words—whereby, as individual sub-lexical
units (e.g., phones) are perceived, listeners up-
date their expectations of the word being spoken.
One common tenet of such studies is that the dis-
ambiguatory signal contributed by units early in
the word is stronger than that contributed later—
i.e. disambiguatory signals are front-loaded in
words. This intuition is derived from ample indi-
rect evidence that the beginnings of words are more
important for humans during word processing—
including, e.g., evidence of increased attention to
word beginnings (Nooteboom, 1981, inter alia) or

'0ur code is available at https://github.com/
tpimentelms/frontload-disambiguation.

ryan.cotterell@inf.ethz.ch,

roark@google.com
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Figure 1: Forward and Backward Surprisals with LSTM
model from Pimentel et al. (2020). The bottom plot has been
flipped horizontally such that it visually corresponds to the
normal string direction.

evidence of increased levels of phonological reduc-
tion in word endings (van Son and Pols, 2003b).

To analyse this front-loading effect, researchers
have investigated the information provided by seg-
ments in words. van Son and Pols (2003a,b)
showed that, in Dutch, a segment’s position in a
word is a very strong predictor of its conditional sur-
prisal, with later segments being more predictable
than earlier ones—a result which we show to arise
directly from its definition in §3.3.1. Recently King
and Wedel (2020) and Pimentel et al. (2020) con-
firmed the effect on many more languages.

Their analysis, however, presents an inherent
confound between the amount of conditional in-
formation available to a model and the surprisal
of the subsequent segment—see Fig. 1 for results
illustrating this. Using the LSTM training recipes
from Pimentel et al. (2020),> we calculated the con-
ditional surprisal at each segment position within
the words across all languages in three datasets.’
The top-half of Fig. 1 shows that, indeed, positions

Zhttps://github.com/tpimentelms/phonotactic-complexity

3See §3 and §5 for specifics on training and data. Each
segment corresponds to a single phone in CELEX and
NorthEuralex, and to a single grapheme in Wikipedia.
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earlier in the string have higher surprisal than po-
sitions later in the string, supporting the thesis of
higher informativity earlier in words. The bottom-
half shows that modelling the strings right-to-left
instead of left-to-right reverses the resulting effect.
This decouples conditional surprisal from the dis-
ambiguatory strength. To expose this decoupling,
consider an artificial language where every word
contains a copy of its first half, e.g., foofoo, barbar,
foobarfoobar, etc. The first and second halves of
these words have identical disambiguatory strength;
they are the same so one could disambiguate the
word as easily from its second half as from the first.
In contrast, conditional surprisal would be nearly
zero for the second halves of words because the sec-
ond half is perfectly predictable from the first half.
In natural languages, measuring conditional en-
tropy in a left-to-right fashion inherently forces a
reduction of conditional entropy in later segments
because of a language’s phonotactic constraints.
However, the disambiguatory strength of later seg-
ments is not inherently less than that of earlier
segments. For instance, in a language like Turkish,
which has vowel harmony, knowledge of any of the
vowels in a word will provide information about
the word’s other vowels in a similar way. As such,
knowledge of vowels towards the front of a word
is as disambiguating as of vowels towards its end.
The contributions of this paper are threefold.
First, we document and demonstrate the shortcom-
ings of existing methods for measuring the informa-
tiveness of individual segments in context, includ-
ing the confound with the amount of conditional
information discussed above. Second, we intro-
duce three surprisal-based measures that control
for this confound and enable comparison of word-
initial versus -final positions in this respect: uni-
gram, position-specific and cloze surprisal (see §3).
Finally, we find robust evidence across many lan-
guages of stronger disambiguatory signals in word
initial than word-final positions. Out of a total of
151 languages analysed across three separate col-
lections, 82 of them present a higher cloze surprisal
in word beginnings than in endings—with similar
patterns arising with the other two measures.

2 Background and Related Work

Psycholinguistic evidence. Lexical access has
long been a topic of interest for psycholinguists,
leading to many distinct models being proposed
for this process (Morton, 1969; Marcus, 1981;

32

Marslen-Wilson, 1987). Far earlier, though, Bagley
(1900) had already demonstrated that earlier seg-
ments in words were more important for word
recognition than later segments; specifically, they
found that, when exposed to words with word-
initial or word-final consonant deletions, listeners
found the word-initial deletions more disruptive.
Fay and Cutler (1977) showed mispronunciations
are more likely in word endings, while Bruner and
O’Dowd (1958) showed that recognizing written
words with flipped initial characters was harder
than with word final ones—demonstrating that the
initial part of the word was more “useful” for read-
ers. More recently, Wedel et al. (2019a) found
evidence in support of Houlihan (1975), showing
neutralizing rules tend to target word endings more
significantly than beginnings in both suffixing and
prefixing languages.

Nooteboom (1981) investigated the ease of re-
covering lexical items from either word beginnings
or endings, finding that people had an easier time
recovering words from their beginnings. For this,
he examined words for which the first and second
halves each completely identified them in a large
Dutch dictionary—controlling for both segments’
length and uniqueness. Later on, though, Noote-
boom and van der Vlugt (1988) showed this differ-
ence vanishes when priming people with the length
of the word—proposing the difference comes not
from how informative segments were, but from the
difficulty in time aligning later segments in men-
tal lexicons. Connine et al. (1993) also found no
difference in priming effects with non-words that
differed from real words in either word initial or
medial positions, suggesting initial positions have
no special status in word recognition.

Psycholinguistic evidence is key to understand-
ing how lexical access works in human language
processing, and can help us understand why lexi-
cons may evolve to provide more disambiguatory
signals earlier in words.* Given the incremental
nature of human lexical processing, however, such
evidence cannot provide direct evidence of the na-
ture of the lexicon uninfluenced by incrementality.

Computational evidence. To the best of our
knowledge, van Son and Pols (2003b,a) were the
first to use computational methods coupled with an

“Note that there are many possible reasons why the effects
we demonstrate in this paper may arise, from the demands of
lexical access to constraints on articulation. We provide no
evidence for any of the possible explanations, evolutionary or
otherwise, just methods for measuring the effect.



information theoretic definition of informativeness
to investigate this question. They showed that seg-
ments in the beginning of words carry most of a
word’s information, as measured by their contex-
tual surprisal using a plug-in tree structured proba-
bilistic estimator. Although assessing a less-biased
sample of words than Nooteboom (1981),> this
study is also limited to a single language (Dutch),
hence cannot assess whether this is a general phe-
nomenon or specific to that language.

Further, van Son and Pols (2003a,b) use absolute
word positions in their analysis. Word length corre-
lates strongly with frequency, hence while early po-
sitions are present in all words, later positions only
exist for a much smaller sample of typically lower
frequency words. Thus this comparison amounts
to asking if later positions in longer and infrequent
words have lower surprisal than earlier positions in
all (frequent or infrequent) words. We analyse this
confounding factor in §6.

Wedel et al. (2019b) and King and Wedel (2020)
applied a methodology similar to that of van Son
and Pols (2003a) to show, for many diverse lan-
guages, that more frequent words contain less in-
formative segments in word initial positions, while
less frequent types carry more informative ones.
They further showed that segments in later word
positions were less informative (given the previ-
ous ones) than average in rarer words. While con-
trolling for length, King and Wedel (2020) also
compared words’ forward and backward unique-
ness points—nodes in a trie from which only one
leaf node can be reached, i.e., where the word is
uniquely identified—showing they happened ear-
lier in forward strings.

While these studies provide evidence from more
diverse sets of languages, they follow van Son and
Pols (2003a) in studying closed lexicons.® As we
show in §3.3.1, the use of probabilistic trie models
on a closed lexicon yields a trivial effect of higher
informativity at word initial positions. Furthermore,
such studies cannot account for out-of-vocabulary
words (e.g., nonce, proper name or otherwise un-
known words) or derivational morphology, which
are key parts of lexical recognition. Lexical access

SNooteboom (1981) looked at words completely identi-
fiable by both their first and second halves in a large Dutch
dictionary—this resulted in a study with only 14 words.

8The closed lexicon assumption is incorporated implicitly
in the probabilistic trie models used by van Son and Pols
(2003a,b) and King and Wedel (2020)—i.e. they assign zero
probability to any form not in their training sets—and in the
uniqueness point analysis of King and Wedel (2020).
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is also somewhat robust to segmental misorder-
ing (Toscano et al., 2013) and sounds later in a
word help determine the perception of earlier ones
(Gwilliams et al., 2018). In contrast, a trie over a
closed lexicon is deterministic. Beyond this, Luce
(1986) showed in a corpus study that the proba-
bility of a word type being uniquely identifiable
before its last segment was only 41%—and 19% of
types were identified only by the end of word, be-
ing proper prefixes of other words, such as cat and
cats. They conclude that uniqueness point statistics
may only be useful for long word analysis.

In Pimentel et al. (2020), we analysed several
languages’ phonotactic distributions, focusing on
presenting a trade-off between phonotactic entropy
and word length across languages. As a control
experiment we analysed the correlation between
a segment’s surprisal and its word position across
106 languages. We did not control for word length
and did not run per-language experiments, though—
so we could have just been capturing the effect that
later positions will mostly be present in languages
with longer words (which, as we find, have lower
information on average).’

While this last work avoids many of the issues
raised earlier in this section, it fails to control the
key confound mentioned earlier: it relies on left-to-
right conditional probabilities to calculate surprisal.
Thus segments early in the word have less condi-
tional information and hence are generally of lower
probability—a trivial effect that does not indicate a
segment’s disambiguatory signal strength.

3 Measures of Disambiguatory Strength

3.1 A Lexicon Generating Distribution

In this work, instead of the lexicon itself, we inves-
tigate the probability distribution from which it is
sampled. The distribution is unobserved, but we
can get glimpses of it via the sampled lexicon:

()

The distribution p(w) is defined over the entire
space of possible phonological wordforms w € »*,
where Y is a language-specific alphabet and the
operator * indicates its Kleene closure.® This dis-

W]

~pw) =[] p(w |we) (D
t=1

n=1

"We note this issue only applies to the control experiment,
and has no bearing on the key findings of that paper.

8We pad all strings with the end-of-word (EOW) symbol.
For simplicity, we assume the alphabet includes EOW through-
out the rest of the paper.



tribution should assign high probability to likely
wordforms (attested or not) and low probability
to unlikely ones. Using Chomsky and Halle’s
(1965) classic example from English, brick (at-
tested) and blick (unattested) would have high prob-
ability, whereas *bnick (unattested) would have a
low probability.

3.2 Entropy and Conditional Entropy

Shannon’s entropy is a measure of how much in-
formation a random variable contains. Consider a
segment w; at word position ¢, which is a value of
the random variable W;. The average information
(surprisal) relayed per segment is:

HW) = Z p(wy) log 2)

1

wiEX p(wt)
A random variable is maximally entropic if it is
a uniform distribution, in which case H(})
log(|X]). Conditional entropy measures how much
information the knowledge of a variable conveys,
given some previous knowledge. The average infor-
mation transmitted per segment, given the previous
ones in a word, 18

H(Wt |W<t) =
Z p(w<¢)log

WStEE*

3)
1

p(wt | W<t)

where w<; = w; o w;. We note the conditional
entropy is always smaller or equal to the entropy,
i.e. H(Wt | W<t) < H(Wt)

3.3 Plug-in Estimators, Context Size, and
Disambiguatory Strength

Our criticism of previous work investigating the dis-
ambiguatory strength of word-initial vs. word-final
segments can be mainly divided in two parts: (i)
the use of maximum likelihood plug-in estimators
of the conditional entropy, by e.g. van Son and Pols
(2003Db); (ii) the use of left-to-right conditional en-
tropy in itself, by all previous information-theoretic
work in this vein.

3.3.1 A Critique of van Son and Pols (2003b)

We present a reductio ad absurdum which shows
that van Son and Pols’s (2003b) method will lead to
the conclusion that word-initial segments are more
informative even if all segments were equally en-
tropic and sampled independently—a nonsensical
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finding. Accordingly, assume the probability distri-
bution p(wy | w<), from which each segment in a
word is sampled, was independent, e.g. define

it [wl

pw) = [[plwe | wee) = [ pwr) @
t=1 t=1

Assume now that a large, but finite, lexicon is sam-
pled from it {w (") }7]:/:1 ~ p(w). Further consider
modelling this sampled lexicon with a probabilistic
trie structure, similarly to what was done by van
Son and Pols (2003a,b),” i.e.

,’U)O)
O U)O)

count (wy, w—1, . ..

)

Qtrie(wt \ W<t) = count(wt_l, -
where wy is the beginning-of-word symbol. Such a
model uses all N words to approximate the distri-
bution of the first segment—i.e. count(wg) = N.
Yet after ¢ — 1 segments, an exponentially smaller
sample is used to capture the distribution—i.e.
E[count(w;_1, .. .,wo)] = N/|Z|'~L. Using this
model as a plug-in estimator of the entropy will
lead to negatively biased estimates, where the error
is approximately (Basharin, 1959):

1 (%= 1) loge
H _1)—E |H| =~
(W [ Wia) [ } count(wy—1,. .., wo)
(2] - 1) loge
LIS D lege

N

where H is a plug-in estimate of the entropy. The
error grows exponentially in ¢ due to the |X|t!
factor. However, by assumption, H(W; | W;_1)
is constant—we have equally entropic and
independent segments. Thus, the only way for
this difference to increase is for the second term
to decrease as a function of ¢. It follows that the
estimated cross-entropies decrease as a function
of t due to a methodological technicality. Indeed,
in the extreme case, every position after a word’s
uniqueness point would be estimated to have zero
entropy. Thus, van Son and Pols’s (2003a) method
only reveals a trivial effect.

3.3.2 Conditional Entropy and Context Size

As previously mentioned, the conditional entropy
measures how much information the knowledge of
a variable conveys, given some previous informa-
tion, and it is always smaller or equal to the entropy.
For this reason, relying on left-to-right conditional

°This is in fact a simplification of van Son and Pols’s
(2003a) model, which in practice uses Katz smoothing.



entropies to estimate the strength of disambigua-
tory signals yields straightforward results; the avail-
ability of larger conditioning contexts in a word’s
final segments will naturally reduce its conditional
entropy. This will negatively skew the estimated
informativeness of the later parts of a word.
H(Wi) > H(Wy [ Wi1) 2 HWe | Wey)  (7)
This effect can also be easily demonstrated by

the symmetrical nature of mutual information (MI),
where the MI is defined as:

MI(Wt; Wt—l) = H(Wt) - H(Wt ‘ Wt—l)
=H(W;_1) —HW_1 | Wy)
= MI(W—1; Wy) ®)

If we assume both segments had the same uncon-
ditional entropy, i.e. H(W;) = H(W;_1), then
using left-to-right conditional entropies would sug-
gest the later segment was less informative, while
right-to-left conditioning would imply the opposite.
Nonetheless, both their contextual and uncontex-
tual disambiguatory strength would in fact be the
same, if we estimated it with equal-sized contexts:

HW,;) = HW;_1) = 9)
HW, | Wi—y) = HW—1 | WY)

3.4 Cross-Entropy and Entropy

As mentioned above, the distribution p(w) is not
directly observable. We can, however, approximate
it using character-level language models pg(w).
We are interested in the entropy of variable Wy, as
a proxy we measure its cross-entropy

1
Hy(Wi) = > p(wy)log (10)
WEL N p@(wt)/

isal
surprisa.

where the surprisal is the information provided by a
single segment instance w;. The cross-entropy is an
upper bound on the entropy, i.e. H(W;) < Hy(W,),
with their difference being the Kullback—Leibler
(KL) divergence between both distributions. Since
the KL-divergence is always positive, this upper-
bound holds. Furthermore, the closer py is to the
true distribution p, the smaller the divergence is,
and the tighter this bound. As such, the better our
model is at estimating the true distribution, the
better our estimates of the entropy will be.
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Calculating eq. (10) still requires knowledge of
the true p. We overcome this limitation by empiri-
cally estimating it on a held out part of the lexicon

o
po(wi™)

1 N
Ho (W) ~ NZlog (1)

n=1
3.5 Earlier vs. Later Word Entropy

For the remainder of this work, we will discuss
information in terms of surprisal, since the entropy
is its expected value. We analyse the distribution of
disambiguatory information across word positions
via three distinct measures—all of which control
for the amount of conditioning per position:

e Unigram Surprisal Hy(W,): the surprisal of
individual segments.

e Cloze Surprisal Hy(W; | W_.,): surprisal of
a segment given all others in the same word.

o Position-Specific Surprisal
Ho(W; | T = t,|W]): the surprisal of in-
dividual segments given their position in the
wordform and the word’s length.

The unigram surprisal captures the information
provided by each segment when considering no
context; while the cloze surprisal represents the in-
formation provided by a segment when one already
knows the rest of the word. The position-specific
surprisal represents a mid way between both, con-
ditioning each segment only on its position and the
word’s length—being inspired by Nooteboom and
van der Vlugt’s (1988) experiments. These three
measures of information control for the context
size considered at each position, being thus better
for an investigation of disambiguatory strength.

We used an unigram model (see §4) to estimate
the unigram surprisal, and transformers (Vaswani
et al., 2017) for cloze and position-specific sur-
prisals. We also use the LSTM (Long-Short
Term Memory, Hochreiter and Schmidhuber, 1997)
model from Pimentel et al. (2020) for two other en-
tropy measures which do not control for the amount
of conditional information:

e Forward Surprisal Hyg(WW; | W;): the sur-
prisal of a segment given the previous ones.

e Backward Surprisal Hy(1W; | W~,): the
surprisal of a segment given the future ones.

We include the beginning- and end-of-word sym-
bols in the forward and backward surprisal analy-
sis, respectively, following previous work (Wedel



et al.,, 2019b; Pimentel et al., 2020; King and
Wedel, 2020). However, we ignore them in the
unigram, position-specific and cloze surprisal anal-
yses. Position-specific and cloze surprisal are given
information about word length, hence these sym-
bols are unambiguously predictable. We analyse
the impact of these symbols in §6.

4 Character-Level Language Models

In this paper, we make use of character-level lan-
guage models to model the probability distributions
pp and approximate the relevant cross-entropies.

Unigram. This might be the simplest language
model still in use in Natural Language Processing.
We use its Laplace-smoothed variant

count(wy) + 1
wey count(c) + [X]

= 12

po(wt) 5 (12)
LSTM. This architecture is the state-of-the-art
for character-level language modelling (Melis et al.,
2020). Given a sequence of segments w € X%, we
use one hot lookup embeddings to transform each
of them into a vector z; € R%. We then feed these
vectors into a k-layer LSTM

ht == LSTM(Zt_l,ht_l) (13)

where h € R?, hy is a vector with all zeros and wy
is the beginning-of-word symbol. We then linearly
transform these vectors before feeding them into a
softmax non-linearity to obtain the distribution

po(wy | wey) = softmax(Why + b) (14)

in this equation, W & RIZIXd jg 2 weight matrix
and b € RI¥I a bias vector.

Backward LSTM. To get the backward sur-
prisals we use models with the same architecture,
but reverse all strings before feeding them to the
models. As such, we get the similar equations

ht = LSTM(ZH_l, ht+1)
po(wy | ws¢) = softmax(Wh, + b)

(15)
(16)

Transformer. Transformers allow a segment to
be conditioned on both future and previous sym-
bols. Our implementation starts similar to the
LSTM one, getting embedding vectors z; for each
segment in the string w € X%, except that we re-
place segment w; with a MASK symbol. We
then feed these vectors through £ multi-headed self-
attention layers, as defined by Vaswani et al. (2017).
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Finally, the representations from the last layer are
linearly transformed and fed into a softmax

po(wy | W) = softmax(Wh, +b)  (17)
Position-Specific Transformer. To get position-
specific surprisal values, we again use a transformer
architecture, but instead of replacing a single seg-
ment with a M ASK symbol, we replace all of
them. This is equivalent to conditioning each seg-
ment’s distribution on its position and the word
length—i.e., estimating py(w; | ¢, |W]).

5 Data

In order to estimate redundancy and informative-
ness of segments we use three different datasets,
each with its own pros and cons. We focus on
types instead of tokens—i.e., the datasets consist
of lexicons—for a few different reasons. First, it is
easier to get reliable samples of types than tokens
for a language, specially low-resource ones. Sec-
ond, it is a well known result that token frequency
correlates with both word length (Zipf, 1949) and
phonotactic probability (Mahowald et al., 2018;
Meylan and Griffiths, 2017), so that would be a
strong confound in the results. Third, morphology
is more easily modeled at the type level than at
token level (Goldwater et al., 2011).'0

CELEX (Baayen et al., 2015) allows us to ex-
periment exclusively on monomorphemic words,
but covers only three closely related languages. It
contains both morphological and phonetic annota-
tions for a large number of words in English, Dutch
and German. We follow Dautriche et al. (2017) in
using only words labeled as monomorphemic in
our study, leaving us with 4,810 words in German,
6,206 words in English and 7,045 words in Dutch.

NorthEuraLex (Dellert et al., 2019) spans 107
languages from 21 language families in a unified
IPA format. This database is composed of concept
aligned word lists for these languages, containing
1016 concepts, each of them translated in most lan-
guages. However, most of these languages are from
Eurasia, hence the collection lacks the typological
diversity we would ideally like.

Wikipedia allows us to investigate a broader
and more diverse set of languages, but has no pho-
netic information (only graphemes) and lexicons

!0For each of the analysed datasets, we use 80% of the word
types for training, with the rest being equally split between
development and test sets; only test set surprisal and cross-
entropies are used in our analysis.



extracted from it may be “contaminated” with for-
eign words. We fetch the Wikipedia for a set of 41
diverse languages,!! and tokenise their text using
language-specific tokenisers from spaCy (Honni-
bal and Montani, 2017). When a language-specific
tokeniser was not available, we used a multilin-
gual one. We then filtered all non-word tokens—by
removing the ones with any symbol not in the lan-
guage’s scripts—and kept only the 10,000 most
frequent types in each language.

6 Experiments and Results

Forward Surprisal. We first replicate the results
from van Son and Pols (2003a,b), Wedel et al.
(2019b), and Pimentel et al. (2020), which show
that surprisal decreases with as the words posi-
tion advances. On average, forward surprisal, i.e.
Hy(Wy | W), could decrease for two reasons: (i)
words indeed front-load disambiguatory signals; or
(ii) the trivial fact that conditioning reduces entropy.
For each word, we first get the forward surprisal
for each segment in it. We then group surprisal
values in two groups: word initial (when they are
in the first half of its word) and final (when in the
second half), ignoring mid positions in words with
uneven lengths; we average these initial and final
surprisals per word, getting a single value of each
per word. This way we compare earlier vs. later
word positions while ignoring any length effect—
words with all lengths will possess segments in
both groups. For each analysed language, we then
use permutation tests (permuting word initial and
final surprisals) to evaluate if one group is statis-
tically larger than the other—using 100,000 per-
mutations. All but one language in three analysed
datasets had significantly larger surprisal in word
initial positions'>—the exception being Abkhaz in
NorthEuralex. These results can be seen in Tab. 1
and in Fig. 2 (left).

Backward Surprisal. If the result for forward
surprisal is largely due to the amount of condi-
tional information, then reversing the strings should
lead to a roughly opposite effect. With this in
mind, for each language, we again bin surprisals
in word initial vs. final position, but now we
evaluate languages using backward surprisal, i.e.,

"These languages were: af, ak, ar, bg, bn, chr, de, el, en,
es, et, eu, fa, fi, ga, gn, haw, he, hi, hu, id, is, it, kn, It, mr, no,
nv, pl, pt, ru, sn, sw, ta, te, th, tl, tr, tt, ur, zu.

12 All statistical significance results in this work have been

corrected for multiple tests with Benjamini and Hochberg
(1995) corrections and use a confidence value of p < 0.01.
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Figure 2: Word initial vs. final surprisals with: (left)
Forward; (right) Backward.

Ho(W; | W=¢).!> When using backward sur-
prisal, many of the analysed languages have signifi-
cantly higher surprisals in word final positions (see
Tab. 1 and the right graph in Fig. 2). However, 11
languages in the NorthEural.ex dataset still have
higher word initial surprisals, suggesting that ini-
tial positions in these languages are indeed largely
more informative than final ones.'* There does
seem to be a large effect of the amount of condi-
tional information and also some lexical effect of
front-loading disambiguatory signals, however it
is difficult to determine if there are cross-linguistic
tendencies with these measures.

Unigram Surprisal. To control for the condi-
tioning aspect of the question: do words front-load
their disambiguatory signals?, we can look at
unigram surprisal Hg(1W;). This value tells us
how uncommon the segments that appear in a
certain position are, when analysed in isolation
from the rest of the word—uncommon segments
are more informative and provide stronger signal
for disambiguation. In NorthEuralex, 71 of the
languages have significantly higher informativity
in word beginnings than in endings—nonetheless,
one language (Kildin Saami) has higher surprisals
in word endings. In CELEX, Dutch and German
have higher surprisals in initial positions, but
English does not. And in Wikipedia, all languages
but Hebrew and Bengali have higher surprisal
in initial positions—with Bengali having higher
surprisal in word endings. This experiment
suggests that indeed most languages are biased
towards providing stronger disambiguatory signals
in word beginnings, even when we control for the

3We note that King and Wedel (2020) also used backward
surprisal, although with a different objective in mind. In one
of their experiments, they presented aggregate results of a
comparison between the forward and backward surprisal.

“We also ran the same experiments with a probabilistic
trie model like the ones used in van Son and Pols (2003b) and
Wedel et al. (2019b), which showed an even stronger result
reversal when using backward surprisal.



Surprisal

Dataset # Languages Forward Backward Unigram Position-Specific Cloze
CELEX 3 310 013 210 211 211
NorthEuralex 107 106 | 0 11|31 711 24 | 4 45| 1
Wikipedia 41 4110 0139 391 3111 352

Table 1: Number of languages in the analysed datasets with significantly larger surprisals in initial | final positions.

amount of conditional information. Nonetheless,
this is not a universal characteristic which all
languages share and two analysed languages even
had a statistically significant inverse effect.

Position-Specific ~ Surprisal. While cloze
surprisal makes explicit the non-redundant
informativity a segment conveys, unigram surprisal
analyses the same segments in isolation. Position-
specific surprisal provides a midway analysis,
incorporating the position as some previously-
specified knowledge, but not conditioning on the
other segments in the word. The position-specific
surprisal is inspired by Nooteboom and van der
Vlugt (1988) experiments, which prime individuals
on word length and position. As can be seen in
Tab. 1, position-specific surprisal again seems to
favour initial positions over final, but only slightly.
Interestingly, most languages present no significant
difference and some the inverse effect (i.e. higher
surprisal in final positions).

Position-specific Unigram models. To better
understand the differences between the unigram
and position-specific surprisal results, we trained
position-specific unigram models—which count
each segment’s frequency per position—and then
calculated their Kullback-Leibler (KL) divergence
per position with the traditional unigram

KL(p(we | 1) || p(wt)) (18)
> | 1)1og 201D

wes P(wt)

We compare these KL divergences and find that, for
all but four languages, the KL is largest in either the
first or second segment positions.!> This suggests
that one of the reasons for higher unigram surprisal
in initial positions is that the first two segments usu-
ally differ from the rest of the positions, potentially
serving as markers for word segmentation.

'SWe use Laplacian smoothing in the position-specific uni-
grams and constrain the analysis to positions which appear in
at least 75% of the analysed words in that language.
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Figure 3: Word initial vs. final cloze surprisals.

Cloze Surprisal. When we condition a segment
on all others in the same word, we measure how
much uncertainty is left about that individual seg-
ment when considering everything else, or, in other
words, how much information is passed only by
that segment non-redundantly. Word initial sur-
prisal is higher in most analysed languages (see
Tab. 1). Nonetheless, two languages in Wikipedia,
Thai and Bengali, have significantly higher sur-
prisal in their final segments—while English in
CELEX and Hungarian in NorthEuralex also
present this same inverse effect. Front-loading dis-
ambiguatory information, thus, is not established to
be the linguistic universal it is believed to be, with
only roughly half the analysed languages show-
ing this property when we control for morphology
(CELEX and NorthEuralex). Fig. 3 plots the re-
sults for all languages analysed.

When we compare these results, we find an inter-
esting pattern. Morphology seems to reduce non-
redundant (cloze) information later in the words—
while only half of the languages had significant
surprisals in CELEX (which consists of monomor-
phemic words) and NorthEuralex (base forms),
most languages were significant in Wikipedia.
Furthermore, English and Hungarian had signifi-
cantly higher surprisals in word endings in CELEX
and NorthEural.ex, while the opposite trend in
Wikipedia—this is consistent with the fact that suf-
fix morphemes are present in more types than word
roots are, so morphology would make word end-
ings less surprising.



EOW  Non-EOW
Forward 1.14 3.55
Backward 0.89 3.61
Unigram 2.75 4.90
Position-specific ~ 0.00 4.36
Cloze 0.00 3.23

Table 2: Average surprisal (in bits) of EOW vs. non-EOW
segments averaged over all datasets.

Length as a Confounding Effect. We evaluate
the impact of length as a confounding effect on
previous methodologies. As mentioned in §2,
by directly analysing surprisal—position pairs (as
opposed to binning word initial vs. final po-
sitions), previous work confounds position and
word length—i.e., only long words will have later
word positions. In this study, we analyse forward
surprisal-length pairs; instead of pairing a seg-
ment’s surprisal with its position, we pair it with
its word length. We then get the slope formed by a
linear regression between these pairs of values and
test for its significance per language by using a per-
mutation test, in which we shuffle surprisal-length
values. On the three datasets, all languages have
statistically significant negative slopes, meaning
long words have smaller surprisals on average than
shorter ones.!® A caveat, though, is that now we
are confounding position into our length analysis.
Constraining our analysis only to the first two seg-
ments in each word, we still find the same effect—
though now one language (Hebrew) in Wikipedia
and seven in NorthEuralex are not significant. We
can thus conclude that longer words have smaller
surprisal values than shorter ones, even when con-
trolling for the same word positions. This implies
that directly using surprisal—position pairs for such
an analysis is not ideal.

The Effect of End of Word in Surprisal. The
end-of-word (EOW) symbol is a special “segment”
which symbolises the end of a string. It is neces-
sary when modelling the probability distribution
over strings w € X.*, to guarantee that the overall
distribution sums to 1. Nonetheless, it is expected
to behave in a different way from other segments.
If a speaker wants to reduce their production ef-
fort, although changing from one phone to another
may help, the most efficient way is usually just
ending the string earlier. Furthermore, since all
realisable strings must eventually end, it will be

16King and Wedel (2020) indeed present a similar correla-
tion in their Figure 2.
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EOW No Eow
Initial Final Diff (%) Initial Final Diff (%)
Forward 385 265 31.1% 383 3.00 21.6%
Backward 3.02 340 -113% 363 339 67%
Unigram - - - 485 440 93%
Position - - - 436 4.17 4.3 %
Cloze - - - 326 281 139%

Table 3: Average surprisal per segment in word initial and
final positions with and without EOW symbols.

present in all words, making it a very frequent
symbol—in fact, Tab. 2 shows its average surprisal
is much lower than that of other segments. As
such, it is only natural it should be analysed on its
own, separately from other segments. Through the
same logic, other segments should also be analysed
separately from EOwW—or else, lower word final
surprisals may be due to this symbol alone. As
such, we analyse the surprisal of LSTM “language
models” without the EOW symbol here.!”

Unsurprisingly, Tab. 3 shows the difference be-
tween word initial and final positions is consider-
ably reduced when we remove the EOW symbol
from the forward surprisal analysis. Surprisingly,
we see that when we remove the beginning-of-word
from the backward surprisal analysis, instead of a
larger word final surprisal, we get a larger word
initial value—even though we are still conditioning
the models right-to-left. This result further supports
the hypothesis that the disambiguatory signals are
on average stronger in word initial positions.

7 Conclusions

In this work, we analysed the distribution of dis-
ambiguatory information in word positions. We
present an in-depth critique of previous work, show-
ing several confounding effects in their analysis.
We then proposed the use of three new methods
which corrected for these biases—namely unigram,
position-specific and cloze surprisal. These models
controlled for the amount of conditional informa-
tion across word positions, allowing for an unbi-
ased analysis of the lexicon. Using these models
we show that the lexicons of most languages in-
deed front-load their disambiguatory signals. This
effect, though, is not universal and the difference in
disambiguatory information between word initial
and final positions is much lower than previously
estimated—ranging from 4% to 14%, depending
on the used metric, instead of 31%.

7To be more precise, we actually ignore the beginning-of-
word symbol when estimating backward surprisal.
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Abstract

Images are core components of multi-modal
learning in natural language processing (NLP),
and results have varied substantially as to
whether images improve NLP tasks or not.
One confounding effect has been that previous
NLP research has generally focused on sophis-
ticated tasks (in varying settings), generally ap-
plied to English only. We focus on text classi-
fication, in the context of assigning named en-
tity classes to a given Wikipedia page, where
images generally complement the text and the
Wikipedia page can be in one of a number of
different languages. Our experiments across a
range of languages show that images comple-
ment NLP models (including BERT) trained
without external pre-training, but when com-
bined with BERT models pre-trained on large-
scale external data, images contribute nothing.

1 Introduction

Combining data from multiple modalities (e.g.,
text, images, categorical metadata, or user inter-
action features) has become commonplace in artifi-
cial intelligence. In NLP, examples include multi-
modal machine translation (MMT) (Elliott et al.,
2016; Elliott, 2018), visual question answering
(VQA) (Goyal et al., 2017; Johnson et al., 2017), vi-
sual commonsense reasoning (VCR) (Zellers et al.,
2019; Geva et al., 2019), and multi-modal pre-
training (Lu et al., 2019; Chen et al., 2019).

While tasks such as VQA and VCR are multi-
modal in nature, there has been research on tradi-
tionally text-based tasks such as text classification
(Shen et al., 2020; Huang, 2018) and word em-
bedding learning (Bruni et al., 2014) which has
demonstrated that the addition of images boosts
performance. At the same time, however, there is
evidence of images providing no additional infor-
mation, e.g. Caglayan et al. (2019) show that MMT
models learn to ignore visual content when trained
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on a parallel corpus of image captions (Elliott et al.,
2016). These mixed findings raise the question of
when visual context is actually useful in NLP.

In this work, we take a first step towards an-
swering this question, in focusing on the task of
text classification, which has traditionally been ad-
dressed using textual data only. We identify two
gaps in the literature on multi-modal NLP: (1) no
results for pre-trained language models (LMs); and
(2) no results for languages other than English. The
first is important in terms of updating the research
relative to state-of-the-art approaches, while the
second relates to the question of how “language-
independent” systems actually are (Bender, 2011).
We fill these gaps via a text classification task over
Wikipedia articles (Sekine et al., 2019). Our main
findings are: (1) while images do help in a tradi-
tional supervised learning setting, their utility dis-
appears almost completely when combined with a
pre-trained LM; and (2) this phenomenon is not re-
stricted to English, and generalises across a variety
of languages from different families.

2 Task Description

This research is couched in the context of a
shared-task dataset released by the SHINRA
project (Sekine et al., 2019), aimed at classifying
Wikipedia pages into fine-grained entity classes.!
We chose this benchmark as many Wikipedia docu-
ments contain images, and data is provided for a to-
tal of 29 typologically-diverse languages.” The task
is not trivial as it involves classifying Wikipedia
documents into a set of 219 classes, with the possi-
bility of multiple labels for a given document.?

"http://shinra-project.info/
shinra2020ml/?lang=en

Data is also provided for Greek but we do not include it in
our experiments because there was no officially preprocessed
data available for this language.

3See: http://ene-project.info/ene8/
?lang=en

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 42-48
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hi th ar da bg ro he tr id vi
30,546 59,790 73,053 86,237 89,016 92,001 96,433 111,591 115,642 116,279
hu cs no ca fi uk fa sV ko nl
120,294 125,958 135,934 139,031 144,749 167,236 169,052 180,947 190,806 199,982
pt pl ru es zh it de fr en
217,895 225,551 253,011 257,834 267,106 270,192 274,731 318,827 439,351

Table 1: Statistics of annotated data for each language.

The number of annotated pages for each lan-
guage in the SHINRA dataset is shown in Table 1
(sorted according to the number of pages). In addi-
tion to these annotated datasets — which form the
basis of the experiments in this paper — there is a
large amount of evaluation data for each language.
In an evaluation campaign over these evaluation
datasets, we achieved first place across 4 languages:
English, Italian, Spanish and Catalan (Yoshikawa
et al., 2020).

The SHINRA dataset contains only textual in-
formation from the original documents. In order
to add images, we extract the image links from the
English Wikipedia dump of June 2020* using the
zim library.’ The extracted images are then linked
with image links in the source documents in the
SHINRA dataset,® resulting in about 88% pages
being augmented with images (noting that images
are generally shared across Wikipedia pages for
different languages other than English).

Out of the 30 languages in the original SHINRA
dataset, we experiment primarily with Arabic
(“ar”), English (“en”), Finnish (“fi”’), Hindi (“hi”),
and Mandarin Chinese (“zh”), selected to span five
different language families and where the dataset
size is relatively large. From the SHINRA data,
we randomly sample 30k documents for each lan-
guage, and construct a 80%/10%/10% fixed split
for training/development/test in each language. We
use a maximum of four images for each document.”

3 Baseline Experiments

Our first set of experiments is aimed at evaluating
the empirical utility of images in the absence of
pre-trained models. This is in line with previous

*nttps://dumps.wikimedia.org/other/
kiwix/zim/wikipedia/wikipedia_en_all_
maxi_2020-06.zim

Shttps://github.com/openzim/libzim

SBecause it is quite difficult to find correspondences be-
tween images and texts (Hessel et al., 2019), image links
extracted are “document-level”, instead of “sentence-level”.

"When a document has less than 4 images, we pad the
representation with blank images.
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work over similar text classification tasks (Shen
et al., 2020; Huang, 2018).

Model and Features As our basic learner, we
use a linear-kernel support vector machine (Cortes
and Vapnik, 1995, SVM). For the textual inputs,
we experiment with three representations: (1) a bi-
nary bag-of-words (“BOW”); (2) sent2vec (“S2V”:
Pagliardini et al. (2018)); and (3) BERT (Devlin
et al., 2019). In this set of experiments, we train
both S2V and BERT from scratch on the SHINRA
training data only. We simply use the suggested
configuration provided by developers, without any
task-specific hyperparameter tuning. For BERT,
we use the [CLS] token as the document represen-
tation. For each document, an image representation
for each of the (up to) four images is generated.
Specifically, following standard practice in the com-
puter vision community, we firstly use the SIFT
algorithm (Lowe, 1999) to extract hundreds of fea-
tures, then use the K-means algorithm to cluster
these features and generate frequency histograms,
which are so-called visual bag-of-words (VBoW),
and finally use an SVM to classify these histogram
features. We also experiment with Faster R-CNN
(Ren et al., 2015), pre-trained on Visual Genome
(Krishna et al., 2017), following the settings of An-
derson et al. (2018). We ensure the dimensionality
of input features for the SVM and Faster R-CNN
are the same (both are 1,024), to remove this pos-
sible representational confound. Note that this is
the externally pre-trained image model across all
experiments, and that none of the text models in
this first set of experiments involve pre-training
on external resources (something we return to in
Section 4).

Results and Analysis We report F; scores over
the test set in Table 2. The main finding is that
images improve performance in all settings, for all
languages and both image representations. S2V
and BERT both perform worse than the simple bag
of words, because of the limited training data in
each case. We would, of course, expect the models



Text Image Language
ar en fi hi zh
BOW — 65.1 723 721 671 747
Bow  SIFT+V 68.2 741 732 69.0 76.0
Bow R-CNN 67.1 73.0 727 68.7 753
S2v — 63.6 68.1 63.1 631 720
s2v  SIFT+V  66.0 702 663 669 729
s2v. R-CNN 654 690 650 652 723
BERT — 59.1 653 519 605 68.6
BERT SIFT+V 629 687 542 63.1 709
BERT R-CNN 614 673 527 629 700

Table 2: F; score of the SVM models without external
pre-training of the textual models, across the five lan-
guages. “SIFT+V” refers to the combination of SIFT
and Visual Bag-of-Words features. “R-CNN” corre-
sponds to features extracted from Faster R-CNN.

Classification

I

VL-BERT
[CLS] Tok 1 . Tok Nt [SEP] Tok 1 . Tok N, [IMG] ... [IMG]
N J “ AN y
Y Y
Title Opening Text Images
[OPTIONAL]
Figure 1: VL-BERT architecture applied to the

SHINRA2020-ML task. The “opening text” segment
are additional textual data obtained from the documents
that are optional in our experimental setting.

to perform better with more extensive pre-training,
as we return to explore in Section 4, but the focus
here is on training of the textual models within the
bounds of the training dataset.

Strikingly, the SIFT + Visual Bag-of-Words rep-
resentation results in better performance than the
pre-trained Faster R-CNN. A potential explanation
is that Faster R-CNN is trained in a supervised way
using Visual Genome (unlike the self-supervised
setting of pre-trained BERT, for instance), over a
set of labels that is not particularly well aligned
with SHINRA (SHINRA includes many abstract
classes such as RELIGION, NATIONALITY, and
OFFENCE, whereas Visual Genome is focused
on physical objects and attributes, and relations
between objects; even among physical objects,
SHINRA distinguishes between MEDICAL INSTI-
TUTION, PUBLIC INSTITUTION, and RESEARCH
INSTITUTE, most of which are represented simply
as BUILDING in Visual Genome).
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4 Adding a Pre-trained Textual Encoder

We next turn to a setting where we employ pre-
trained textual models. This not only better reflects
the state-of-the-art in text classification, but also
allows us to investigate the effect of images under
such conditions.

Model As the main backbone, we employ
VL-BERT (Su et al., 2020), which uses a trans-
former to combine textual inputs and image em-
beddings within a BERT-style transformer, and
has been shown to perform well on multimodal
tasks. The visual embeddings are obtained from
the combination of pre-trained Faster R-CNN and
ResNet-101 (He et al., 2016), as illustrated in Fig-
ure 1. For the text modality, the input consists of
two parts: the document title, and the opening text
of the Wikipedia page in the form of the first 300
tokens. The token embeddings are obtained from a
pre-trained BERT model, which is fine-tuned dur-
ing training.® The full model is plugged into a one-
layer feed-forward neural network (FFNN) with
a 1,024d hidden layer, and training is performed
by minimizing the cross-entropy over the SHINRA
category labels. The model predict one label for
each page. For the case of multi-label inputs, we
choose one randomly as the “correct” label.

Results and Analysis Table 3 shows the perfor-
mance of VL-BERT with different combinations
of textual (document title = “T”” and optionally the
document body = “B”’) and image inputs, based on
pre-trained BERT (“BERTpre”).

The first thing to notice is that the image-only
model is well above the majority baseline, but well
below the best multimodal model without an exter-
nally pre-trained text encoder from Table 2. This
shows that images provide useful information for
document classification, consistent with the earlier
finding that images enhance the various text-only
models. However, when combined with the ex-
ternally pre-trained BERT e (over either the title
only, or the title + document body), the utility of
images is marginal at best. That is, the large-scale
pre-training of BERT e both boosts overall perfor-
mance, but much more surprisingly, removes any
advantage from including images.

8We use bert-large—uncased for English, and
bert-base-multilingual-uncased for the other
languages, as obtained from https://huggingface.
co/transformers/pretrained_models.html



Text Image ar en fi hi zh Text Image ar en fi hi zh
— v 50.6  50.1 539 46.1 44.1 — v 852 612 724 456 58.6
T — 709 731 71.1 662 765 T — 844 774 7155 66.6 785
T v 70.8 732 712 66.7 76.7 T v 869 79.1 758 673 80.7
T+B — 82.8 88.7 87.7 85.0 88.6 T+B — 947 903 91.7 858 89.8
T+B v 82.6 88.8 88.0 848 88.0 T+B v 947 90.2 91.6 854 902
Best non pre-trained 682 74.1 732 69.0 76.0 )
Majority class 215 222 281 191 217 Table 4: Comparison of F; scores over the full
SHINRA dataset for BERTpre.
Table 3: F; scores for pre-trained VL-BERT. “T” =
document title, and “T+B” = document title + body. We Text Image  ar en fi hi zh
reproduce the best non-trained For comparison, we re- T+B — 567 618 498 572 661
state the result for the best non pre-trained model from T+B v 586 632 524 60.1 687

Table 2, along with the majority class baseline.

Influence of the size of training data One hy-
pothesis is that images are not useful due to the size
of the training data (24k instances), and in lower-
resource scenarios will improve performance. To
test this, we perform additional experiments vary-
ing the training data size, ranging from 4k to 24k
training instances, in steps of 4k.

Figure 2 plots the F; performance as the training
set size increases. While we observe substantial
improvements for the image-only approach (the
bottom curve), the differences in the models with
textual data are modest, and even in small-data
settings, there is no real advantage in including
images. We also separated the test data in terms
of the number of images, and found no differences.
See the Supplementary Material for details.

Results on the full SHINRA dataset In the pre-
vious experiments, we fixed the dataset size for
all languages to control for training data volume.
However, the SHINRA dataset includes many more
documents for many of the languages. As a final
experiment, we apply the VL-BERT models to the
full dataset available for each language. The de-
velopment and test data are also different in this
configuration, so the results are not directly compa-
rable with Tables 2 and 3.

In Table 4, we present results for BERTpre, and
mostly corroborate our earlier findings: while we
do see improvements when including images in the
case of the titles only, their utility decreases when
we add the body of text for each document.

What caused the difference? Comparing the re-
sults from Sections 3 and 4, we see two main differ-
ences: the presence of external pre-training (BERT
vs. BERTpre), and the model architecture. To de-
termine whether the model architecture is a cause
of the performance difference, we train VL-BERT
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Table 5: Comparison of F; scores for VL-BERT with-
out external pre-training of BERT.

from scratch, using only text and images from the
24k training set used in Section 3.

The results in Table 5 shows that even for
VL-BERT, a neural-based model that is much
more complex than the linear-kernel SVM, when
BERT e 18 not used, images provide a gain in per-
formance. Hence, having an externally pre-trained
text encoder is the predominant determinant of
whether visual content has utility in NLP tasks.

5 Discussion and Conclusion

We investigated the utility of images as a supple-
mentary input for a text classification task, and
found that although images have empirical utility
in traditional supervised learning, when externally
pre-trained language models are utilised, any ad-
vantage from the visual modality disappears. The
results were remarkably consistent across different
languages and different volumes of training data.
It is important to distinguish between “inher-
ently multi-modal tasks” (e.g. VQA) and “po-
tentially multi-modal tasks” (e.g. text classifica-
tion) in drawing any broader conclusions about the
(in)effectiveness of images. Here, a “potentially
multi-modal task” in NLP means that the primary
modality is text and the task is defined based on
that single data modality, but there is potentially the
option to include extra modalities such as images.
There remain a lot of open questions in more
fully determining the (in)effectiveness of images
for NLP tasks, even for text classification, such as:

e Due to the seeming redundancy between tex-
tual and visual representations of Wikipedia
pages, is there any utility in multi-modal in-
puts for simple NLP tasks such as text clas-
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Figure 2: Model performance with different sizes of training corpus, with and without images (+I) and with and
without text (in the form of the title [“T”’] and optionally document body [“B”]).

sification in the era of large-scale pre-trained
language models such as BERT and GPT-3
(Brown et al., 2020)?

What performances do humans achieve in the
single-modal setting and multi-modal setting?
Can we get some insights by comparing the
(potentially) different performances between
humans and computers?

Apart from images, what other modalities and
forms of input (e.g. audio) could be effective
in building better NLP models?

Although pre-trained image models (e.g.

Faster R-CNN) contribute a lot for vision
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tasks (e.g. object detection) and multi-modal
tasks (e.g. VQA), for “pure” NLP tasks (e.g.
text classification), they appear to work no
better than traditional image representation
feature extractors (e.g. SIFT). Why?

In our experiments, we use at most 4 images
for each page. Could instance selection en-
hance image utility?

We focused on the text classification task,
in classifying Wikipedia pages into differ-
ent entities. Are our observations NLP task-
independent?
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Abstract

Fine-grained sentiment analysis attempts to
extract sentiment holders, targets and polar ex-
pressions and resolve the relationship between
them, but progress has been hampered by the
difficulty of annotation. Targeted sentiment
analysis, on the other hand, is a more narrow
task, focusing on extracting sentiment targets
and classifying their polarity.

In this paper, we explore whether incorpo-
rating holder and expression information can
improve target extraction and classification
and perform experiments on eight English
datasets. We conclude that jointly predicting
target and polarity BIO labels improves target
extraction, and that augmenting the input text
with gold expressions generally improves tar-
geted polarity classification. This highlights
the potential importance of annotating expres-
sions for fine-grained sentiment datasets. At
the same time, our results show that perfor-
mance of current models for predicting polar
expressions is poor, hampering the benefit of
this information in practice.

1 Introduction

Sentiment analysis comes in many flavors, ar-
guably the most complete of which is what is of-
ten called fine-grained sentiment analysis (Wiebe
et al., 2005; Liu, 2015). This approach models the
sentiment task as minimally extracting all opinion
holders, targets, and expressions in a text and re-
solving the relationships between them. This com-
plex task is further complicated by interactions be-
tween these elements, strong domain effects, and
the subjective nature of sentiment. Take the anno-
tated sentence in Figure 1 as an example. Knowing
that the target “UMUC” is modified by the expres-
sion “5 stars” and not “don’t believe” is important
to correctly classifying the polarity. Additionally,
the fact that this is a belief held by “some others”
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as apposed to the author of the sentence can help
us determine the overall polarity expressed in the
sentence.

Compared to document- or sentence-level sen-
timent analysis, where distant labelling schemes
can be used to obtain annotated data, fine-grained
annotation of sentiment does not occur naturally,
which means that current machine learning mod-
els are often hampered by the small size of
datasets. Furthermore, fine-grained annotation is
demanding, leads to relatively small datasets, and
has low inter-annotator agreement (Wiebe et al.,
2005; Wang et al., 2017). This begs the question:
is it worth it to annotate full fine-grained senti-
ment?

Targeted sentiment (Mitchell et al., 2013; Zhang
et al., 2015) is a reduction of the fine-grained sen-
timent task which concentrates on extracting sen-
timent targets and classifying their polarity, effec-
tively ignoring sentiment holders and expressions.
The benefit of this setup is that it is faster to an-
notate and simpler to model. But would targeted
sentiment models benefit from knowing the sen-
timent holders and expressions?

In this work, we attempt to determine whether
holder and expression information is useful for
extracting and then classifying sentiment targets.
Specifically, we ask the following research ques-
tions:

RQ1: Given the time and difficulty required
to annotate opinion holders, expressions, and
polarity, is this information useful to extract
sentiment targets?

(a) Does augmenting the input text with
holders and expressions improve target
extraction?

(b) Do target extraction models benefit from
predicting holders and expressions?

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 49-62
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holder

Have seen some others  giving

UMUC

target

target

{Sstars } - {don’tbelieve } them.

Figure 1: An opinion annotation from the Darmstadt Review Corpus.

(c) Do target extraction models benefit from
predicting the polarity of targets and/or
expressions?

RQ2: Can holder and expression information
improve polarity classification on extracted
targets?

(a) Does augmenting the input text with
holders and expressions improve polar-
ity classification?

(b) Do potential benefits of augmenting the

input depend on how we model the tar-

get, i.e., using the [CLS] embeddings,
mean pooling the target embeddings,
etc.?

(c) Can sentiment lexicons provide enough

information on expressions to give im-

provements?

We conduct a series of experiments on eight
English sentiment datasets (three with full fine-
grained sentiment and five targeted) with state-of-
the-art models based on fine-tuned BERT models.
We show that (1) it is possible to improve target
extraction by also trying to predict the polarity,
and that (2) classification models benefit from hav-
ing access to information about sentiment expres-
sions. We also (3) release the code' to reproduce
the experiments, as well as the scripts to down-
load, preprocess, and collect the datasets into a
compatible JSON format, with the hope that this
allows future research on the same data.

2 Related work

Fine-grained approaches to sentiment analysis at-
tempt to discover opinions from text, where each
opinion is a tuple of (opinion holder, opinion tar-
get, opinion expression, polarity, intensity). An-
notation of datasets for this granularity requires
creating in-depth annotation guidelines, training

"https://github.com/ltgoslo/
finegrained_modelling
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annotators, and generally leads to lower inter-
annotator scores than other sentiment tasks, e.g.,
document- or sentence-level classification, as de-
ciding on the spans for multiple elements and their
relationships is undeniably harder than choosing a
single label for a full text. Targeted sentiment,
on the other hand, generally concentrates only on
target extraction and polarity classification. This
has the benefit of allowing non-experts and crowd-
sourcing to perform annotation, making it easier to
collect larger datasets for machine learning. This
simplified annotation can be crowd-sourced, lead-
ing to larger datasets for machine learning.

2.1 Datasets

The Multi-purpose Question Answering dataset
(MPQA) (Wiebe et al., 2005) is the first dataset
that annotated opinion holders, targets, expres-
sions and their relationships. The news wire data
leads to complex opinions and a generally diffi-
cult task for sentiment models. Normally, the full
opinion extraction task is modelled as extraction
of the individual elements (holders, targets, and
expressions) and the subsequent resolution of the
relationship between them.

The Darmstadt Review Corpora (Toprak et al.,
2010) contain annotated opinions for consumer re-
views of universities and services. The authors an-
notate holders, targets, expressions, polarity, mod-
ifiers, and intensity. They achieve between 0.5 and
0.8 agreement using the agr method (Wiebe et al.,
2005), with higher disagreement on what they call
“polar targets” — targets that have a polarity but no
annotated sentiment expression — holders, and ex-
pressions.

The Open Domain Targeted dataset (Mitchell
et al., 2013) makes use of crowd sourcing to anno-
tate NEs from scraped tweets in English and Span-
ish (Etter et al., 2013) with their polarities. The au-
thors use majority voting to assign the final labels
for the NEs, discarding tweets without sentiment
consensus on all NEs.



The 2014 SemEval shared task (Pontiki et al.,
2014) on aspect-based sentiment analysis include
labeled data from restaurant and laptop reviews for
two subtasks: 1) target extraction, which they call
“aspect term extraction” and 2) classification of
polarity with respect to targets (“‘aspect term po-
larity”).

As most targeted datasets only contain a single
target, or multiple targets with the same polarity,
sentence-level classifiers are strong baselines. In
order to mitigate this, Jiang et al. (2019) create
a Challenge dataset which has both multiple tar-
gets and multiple polarities in each sentence. Sim-
ilarly, Wang et al. (2017) also point out that most
targeted sentiment methods perform poorly with
multiple targets and propose TDParse, a corpus of
UK election tweets with multiple targets per tweet.

2.2 Modelling

Katiyar and Cardie (2016) explore jointly extract-
ing holders, targets, and expressions with LSTMs.
They find that adding sentence-level and relation-
level dependencies (IS-FROM or I1S-ABOUT) im-
prove extraction, but find that the LSTM models
lag behind CRFs with rich features.

Regarding modelling the interaction between
elements, there are several previous attempts to
jointly learn to extract and classify targets, using
factor graphs (Klinger and Cimiano, 2013), multi-
task learning (He et al., 2019) or sequence tagging
with collapsed tagsets representing both tasks (Li
et al., 2019). In general, the benefits are small and
have suggested that there is only a weak relation-
ship between target extraction and polarity classi-
fication (Hu et al., 2019).

3 Data

One of the difficulties of working with fine-
grained sentiment analysis is that there are only
a few datasets (even in English) and they come
in incompatible, competing data formats, e.g.,
BRAT or various flavors of XML. With the goal
of creating a simple unified format to work on
fine-grained sentiment tasks, we take the eight
datasets mentioned in Section 2 — MPQA (Wiebe
et al., 2005), Darmstadt Services and Universi-
ties (Toprak et al., 2010), TDParse (Wang et al.,
2017), SemEval Restaurant and Laptop (Pontiki
et al., 2014), Open Domain Targeted Sentiment
(Mitchell et al., 2013), and the Challenge dataset
from Jiang et al. (2019) — and convert them to
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a standard JSON format. The datasets are sen-
tence and word tokenized using NLTK (Loper and
Bird, 2002), except for MPQA, DS. Service and
DS. Uni, which already contain sentence and to-
ken spans. All polarity annotations are mapped
to positive, negative, neutral, and conflict?. As
such, each sentence contains a sentence id, the to-
kenized text, and a possibly empty set of opinions
which contain a holder, target, expression, polar-
ity, and intensity. We allow for empty holders and
expressions in order generalize to the targeted cor-
pora. Finally, we use 10 percent of the training
data as development and another 10 percent for
test for the corpora that do not contain a suggested
train/dev/test split. For training and testing mod-
els, however, we convert the datasets to CoNLL
format.

Table 1 presents an overview of the different
datasets and highlights important differences be-
tween them. The fully fine-grained sentiment
datasets (MPQA, DS. Services, and DS. Uni) tend
to be larger but have fewer targets annotated, due
to a larger number of sentences with no targets.
However, the MPQA dataset contains much longer
targets than the other datasets — an average of 6,
but a maximum of 56 tokens. It also contains
more opinion holders and expressions and these
also tend to be longer, all of which marks MPQA
as an outlier among the datasets. The distribu-
tion of polarity is also highly dependent on the
dataset, with DS. Services being the most skewed
and SemEval Laptop the least skewed. Finally, the
challenge dataset is by far the largest with over
11,000 training targets. Additionally, Table 6 in
Appendix A shows the percentage of unique tar-
gets per dataset, as well as the percentage of tar-
gets shared between the training set and the dev
and test sets. Again MPQA has the largest num-
ber of unique targets and the least overlap.’

4 Experimental Setup

We split the task of targeted sentiment analysis
into the extraction of sentiment targets and sub-
sequent polarity classification of extracted tar-
gets, given their context. Figure 2 shows the
two tasks and the eight models used in the ex-
periments. As a base model, we take the tar-

2We discard conflict during evaluation because there are
not enough examples to properly learn this class in most
datasets

3We do not, however, consider partial overlap which may
exaggerate the true uniqueness of targets.



domain sentences holders targets expressions polarity
# avg. # avg. max # avg. max # avg. max +  neu —
- MPQA newswire train 4500 25 1306 2.6 27 1382 6.1 56 1656 2.4 14 675 271 658
2 dev 1622 23 377 26 16 449 53 41 552 21 8§ 241 105 202
g test 1681 24 371 28 32 405 64 42 479 20 8 166 89 199
Q
g DS. Services service train 5913 16 18 1.2 2 2504 12 7 1273 12 10 1623 46 838
E reviews dev 744 18 1 17 3 288 1.2 4 144 14 5 103 1 104
a test 748 17 2 1 1 328 1.2 5 168 14 6 241 7 80
2 DS.Uni university train 2253 20 65 1.2 2 1252 12 5 837 19 9 495 149 610
= reviews dev 232 9 17 1.1 3 151 12 3 106 1.7 6 40 19 92
test 318 20 12 13 4 198 12 6 139 20 5 77 18 103
TDParse political ~ train 2889 6.9 - - - 9088 1.2 7 - - - 1238 3931 3919
tweets dev 321 6.6 - - - 1040 12 5 - - - 128 454 458
test 867 6.9 - - - 2746 12 6 - - - 378 1162 1206
. SemEvalR.  restaurant train 2740 13 - - - 3293 14 19 - - - 1902 574 734
5 reviews dev 304 113 - - - 350 14 5 - - - 226 54 63
‘E test 800 9.6 - - - 1128 14 8 - - - 724 195 195
= -
&  SemEval L. laptop train 2744 225 - - - 2049 15 6 - - - 870 402 747
E reviews dev 304 21.1 - - - 244 1.6 5 - - - 99 44 96
Eﬂ test 800 18.6 - - - 633 1.6 7 - - - 327 162 128
<
& Open tweets train 1903 12.8 - - - 2594 16 8 - - - 578 1801 215
dev 211 123 - - - 291 1.6 6 - - - 46 220 25
test 234 11.6 - - - 337 1.6 7 - - - 74 232 31
Challenge restaurant train 4297 8.8 - - - 11186 1.3 9 - - - 3380 5042 2764
reviews dev 500 8.9 - - - 1332 13 8 - - - 403 604 325
test 500 89 - - - 1336 13 8 - - - 400 607 329

Table 1: Stastistics of the datasets, including number of sentences, as well as average, and max lengths (in tokens)
for holder, target, and expression annotations. Additionally, we include the distribution of polarity — restricted to

positive, neutral, and negative — in each dataset.

get extraction and classification models from Xu
et al. (2019), which achieve state-of-the-art per-
formance on the SemEval task. The approach first
fine-tunes BERT (Devlin et al., 2019) on domain-
specific unlabeled data as a domain-adaptation
step. We use the datasets themselves to per-
form this step, except for the SemEval datasets.
For these, we follow Rietzler et al. (2020) and
instead use larger amounts of unlabeled data —
1,710,553 and 2,000,000 sentences for SemEval
Laptop and Restaurant respectively — taken from
Amazon Laptop reviews (He and McAuley, 2016)
and the Yelp Dataset Challenge.* We further de-
viate from Xu et al. (2019) by not pretraining
the models on the SQUAD question answering
dataset and in-domain sentiment questions which
they create, as this data is not publicly available.
Finally, a linear prediction is added after the BERT
model and the full model is updated on the senti-
ment task.

For target extraction, we use the contextual-
ized BERT embeddings as input to a softmax layer

*https://www.yelp.com/dataset/
challenge
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and predict the sequence of tags.
three prediction strategies:

We compare

1. TARG.: The model predicts the labels y €

{B,1,0} for the targets only.

PRED.: We additionally predict the la-

bels for holders and expressions and predict

y € {B-holder,I-holder, B-target, I-target,

B-expression, I-expression, O}.

. +POL.: Finally, we add the polarity (posi-
tive, negative, neutral) to the annotation spe-
cific BIO-tag, which leads to an inventory of
19 labels for the full fine-grained setup and 7
for the targeted setup.

2.

For polarity classification, we take as a base-
line the classification architecture from Xu et al.
(2019), which makes use of the two-sentence
training procedure for BERT, by prepending the
target before the sentence separation token, and
then adding the full sentence after. We compare
five strategies for producing the input to the soft-
max layer for predicting the sentiment of the tar-
get:

1. [CLS]: this model uses the [CLS] embed-
ding from the final BERT layer.
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Figure 2: Our BERT-based rfarget extraction and classification models, with the three strategies for extraction ((1)
predict only targets, (2) predict holders, targets and expressions, and (3) predict the polarity of the targets and
expressions as well) and five strategies for sentiment classification (passing to the softmax layer the contextualized
embedding from (1) the [CLS] embedding, (2) the first token in the target (3) averaging all embeddings in the
target phrase, (4) taking the max of the target embeddings, (5) concatenating the max, mean, and min).

2. FIRST: uses the contextualized BERT em-
bedding from the first token of the target in
context.

. MEAN: instead takes the average of the
BERT embeddings for the tokens in the tar-
get.

. MAX: uses the max of the contextualized
BERT embeddings for the tokens in the tar-
get.

. MAXMM: takes the max, min, and mean
pooled representations and passes the con-
catenation to the softmax layer, which has
shown to perform well for sentiment tasks
(Tang et al., 2014). However, this triples the
size of the input representation to the softmax
layer.

The TARG. and [CLS] models correspond to the
models used in Xu et al. (2019) and serve as base-
lines. The extraction and classification models are
fine-tuned for 50 epochs using Adam with an ini-
tial learning rate of 3e—>5, with a linear warmup
of 0.1 and all other hyperparameters are left at de-
fault BERT settings (further details in Appendix
B). The best model on the development set is used
for testing. Combined with the four input manip-
ulations (Table 2), this leads to eleven extraction
experiments — TARG. and PRED. on the original
data which only has annotated targets are the same
and for simplicity we only show the results from
TARG.— and twenty classification experiments per
dataset. In order to control for the effect of random
initialization, we run each experiment 5 times on
different random seeds and report the mean and
standard deviation.
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4.1 Training with gold annotations

Given that we are interested in knowing whether
it is beneficial to include information about ad-
ditional annotations (holder, expressions, polar-
ity), we perform experiments where we system-
atically include these. We do so by adding spe-
cial tags, e.g.,, [<E } , into the input text surround-
ing the annotated spans, as shown in Table 2. The
models then have access to this information both
during training and at test time, albeit in an in-
direct way. For the first set of experiments, we
perform controlled experiments under ideal condi-
tions, i.e., having gold annotations during testing.
This allows us to isolate the effects of incorporat-
ing the additional annotations, without worrying
about noisy predictions

4.2 Training with predicted expressions

It is equally important to know whether the mod-
els are able to use noisy predicted annotations. In
order to test this, we train expression prediction
models on the three full fine-grained sentiment
corpora. We use the same BERT-based model and
hyperparameters from the target extraction models
above and train five models with different random
seeds. Preliminary results suggested that these
models had high precision, but low recall. There-
fore, we take a simple ensemble of the five trained
models, where for each token, we keep labels pre-
dicted by at least one of the expression models in
order to increase recall.

We perform an additional set of experiments
where we use sentiment lexicons and assume any
word in these lexicons is a sentiment expres-



original

+ holders

+ expressions
+ full

[<H] Money Magazine [H>]

Money Magazine rated E-Trade highly .
[<H] Money Magazine [u>] rated E-Trade highly
Money Magazine [<e] rated [e>] E-Trade [<E] highly [E>]

[<e] rated [E>] E-Trade [<E] highly [E>]

Table 2: We inform our models regarding annotations other than targets by inserting special tags into the input text

before and after annotated holders and expressions .

sion. We use the Hu and Liu lexicon (Hu and
Liu, 2004), the SoCal and SoCal-Google lexicons
(Taboada et al., 2006) and the NRC emotion lex-
icon (Mohammad and Turney, 2013), which also
contains sentiment annotations. The lexicons con-
tain 6,789, 5,824, 2,142, and 5,474 entries, respec-
tively. The MPQA and Darmstadt experiments
show the effect of predicted vs. gold expressions,
as well as domain transfer. The experiments on
the targeted datasets, on the other hand, will show
us whether it is possible to improve the targeted
models with predicted expressions.

5 Results

In this section we describe the main results from
the extraction and two classification experiments
described in Section 4.

5.1 Target extraction

Table 3 shows the results for the extraction exper-
iment, where token-level F; is measured only on
targets. The models perform poorer than the state-
of-the-art, as we did not finetune on the SQUAD
question answering dataset and in-domain senti-
ment questions or perform extensive hyperparam-
eter tuning. The average F; score depends highly
on the dataset — MPQA is the most difficult dataset
with 13.1 F; on the original data, while the Darm-
stadt Universities corpus is the easiest for target
extraction with 84.6. Augmenting the input text
with further annotations, but predicting only sen-
timent targets (TARG. in Table 3) hurts the model
performance in all cases. Specifically, adding
holder tags leads to an average drop of 1.3 per-
centage points (pp), expressions 1.2 and full 1.5.
Attempting to additionally predict these annota-
tions (PRED. in Table 3) leads to mixed results
— the model leads to improvements on MPQA +
exp. and Darmstadt Services + holders, no notable
difference on MPQA + full and Darmstadt Univer-
sities + exp., and a loss on the rest.
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Adding the polarity to the target BIO tags (orig-
inal +PoOL. in Table 3) leads to the most consistent
improvements across experiments — an average of
0.5 pp — with the largest improvement of 1.5 pp
on the TDParse dataset. This suggests a weak-
to-moderate relationship between polarity and ex-
traction, which contradicts previous conclusions
(Hu et al., 2019). Finally, further adding the holder
and expression tags (+POL. in Table 3) tends to
decrease performance.

5.2 Polarity classification with gold
annotations

Table 4 shows the macro F; scores for the po-
larity classification task on the gold targets. The
model performs better than the best reported re-
sults on Challenge (Jiang et al., 2019), and similar
to previous results on the SemEval corpora. Re-
garding the choice of target representation, FIRST
is the strongest overall, with an average of 64.7
F; across the original eight datasets, followed by
MAX (64.6), MEAN (64.4), MAXMM (64.2), and
finally [CLS] (64.1). It is, however, unclear ex-
actly which representation is the best, as it dif-
fers for each dataset. But we can conclude that
[CLs] is in general the weakest model, while ei-
ther FIRST or MAX provide good starting points.

Adding holder annotations to the input text de-
livers only small improvements on four of the fif-
teen experiments, and has losses on seven. The
+exp. model, however, leads to significant im-
provements on 10 experiments. The outlier seems
to be Darmstadt Services, which contains a large
number of “polar targets” in the data, which do
not have polar expressions. This may explain why
including this information has less effect on this
dataset. Finally, +full performs between the origi-
nal input and +exp.



MPQA DS. Services DS. Unis Challenge SemEvalR. SemEvalL. Open TDParse

Xu et al. (2019) n/a n/a n/a n/a 78.0 84.3 n/a n/a

BiLSTM-CRF 12.2 (1) 85.0 (1) 84.4 (1) 73.4 (1) 72.5 (1) 74.0 1) 6221 82.6

original 14.1 2 85.9 (1) 84.6 (0) 75.8 (1) 51.9 () 7131 6204 81.7(3)

¢+ holders 11.9 () 84.3 (1) 83.6 (1) - - - - -

E +exp. 11.6 (1) 85.0(0)  83.4(0) - - - - -

+ full 10.5 (2) 84.8 (1) 83.8 (1) - - - - -

~ +holders 12.1 @) 86.2 (0) 84.6 (0) - - - - -

é + exp. 14.9 1) 84.7 (1) 84.5 (1) - - - - -

A+ full 13.0 3) 85.5 (1) 84.3 (1) - - - - -

BiLSTM-CRF 13.9 (1) 85.2 (1) 83.7 (1) 73.6 (1) 73.7 (1) 7451 623() 81.8()

. original 13.8 (1) 85.4 (1 84.3 (1) 76.9 (1) 52.5 (1) 71.6 1) 6291 83.2 ()
-

éf: + holders 138 2) 85.6(1) 8441 - - - - -

+ exp. 13.5 2 85.4 (1) 84.3 (0) - - - - -

+ full 12.0 (1) 86.0 (1) 84.6 (0) - - - - -

Table 3: Average token-level F1 scores for the target extraction task across five runs, (standard deviation in paren-

thesis). Bold numbers indicate the best model per dataset, while blue and pink highlighting indicates an

improvement or loss in performance compared to the original data, respectively.

5.3 Polarity classification with predicted
annotations

The expression models achieve modest F; scores
when trained and tested on the same dataset —
between 15.0 and 47.9 —, and poor scores when
transferred to a different dataset — between 0.9 and
14.9 (further details shown in Table 7 in Appendix
A). The lexicons often provide better cross-dataset
F; than the expression models trained on another
dataset, as they have relatively good precision on
general sentiment terms.

Figure 3 shows a heatmap of improvements
(blue) and losses (red) on the eight datasets (x-
axis) when augmenting the input text with expres-
sion tags from the expression models and lexicons
(y-axis). We compare the expression augmented
results to the original results for each pooling tech-
nique and take the average of these improvements
and losses. For a full table of all results, see Table
5 in Appendix A.

Augmenting the input text with predicted sen-
timent expressions leads to losses in 41 out of
averaged 56 experiments shown in Figure 3 (or
in 173 out of 280 experiments in Table 5). Cu-
riously, the experiments that use an expression
model trained on the same dataset as the classifica-
tion task, e.g., MPQA predicted expressions on the
MPQA classification task, have the largest losses
— the largest of which is MPQA (-2.78 on aver-
age). This seems to indicate that the mismatch be-
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tween the train prediction, which are near perfect,
and the rather poor test predictions is more prob-
lematic than cross-dataset predictions, which are
similar on train and test.

The best expression prediction model is the
one trained on MPQA, improving the performance
on Darmstadt Universties, Open, and SemEval
Restaurants. This is likely due to the fact that
MPQA has the largest number of annotated ex-
pressions, and that the domain is more general,
leading to expression predictions that generalize
better. The expression models trained on Darm-
stadt Services leads to small benefits on two cor-
pora and the expression model trained on Darm-
stadt Universities only leads to losses

The datasets that receive the most benefit from
expression annotations are Darmstadt Universi-
ties (6/7 experiments) and the TDParse dataset
(8/7). 1In both cases, the lexicon-based expres-
sion models provide more consistent benefits than
the trained expression prediction models. The
fact that the dataset that benefits most is the TD-
Parse dataset suggests that expression information
is most useful when there are multiple targets with
multiple polarities.

There is no significant correlation between the
performance of the expression prediction model
and the performance on the classification task on
the three fine-grained datasets. In fact, there is a
small but insignificant negative correlation (-0.33



MPQA DS. Services DS. Unis Challenge SemEvalR. SemEval L. Open TDParse

Previous Results n/a n/a n/a 70.3 80.1 78.3
original 63.5(2) 57.3 (1) 57.6 4) 84.3 (0) 74.1 (2) 72.8 (1) 54.6(1) 488 (1)
4+ holders 63.1 (2) 57.1 ) 60.5 ©) - - - - -
©  texp. 64.0 (3) 5640)  62.9 @4 - - - - -
+ full 61.9 2) 56.6 (1) 62.8(2) - - - - -
. original 64.3 (2) 57.8 (1) 58.7 (4) 84.4 (1) 75.6 (1) 743 (1) 5562 46.6(1)
z + holders 63.4 (2 5772  60.5@3) - - - - -
 +exp. 64.8 (2) 5701  63.7 @ - - - - -
+ full 64.0 (1) 55.2 (1) 65.7 4) - - - - -
. original 63.5(2) 57.3 (1) 60.2 4) 84.4 (1) 74.1 (2) 72.8(1) 56.83) 46.1 (1
g + holders 63.1(2) 57.8 (1) 56.7 (5) - - - - -
= +exp. 64.3 (2) 56.2(1) 64.13) - - . ; i}
+ full 64.2 (2) 56.3 (1) 63.7 2) - - - - -
original 60.8 (4) 582() 57.8(3) 81.4 (1) 73.9 2) 7452 61.45) 49.03)
% +holders 61.9 4) 5791 53.9 1) - - - - -
= texp. 64.3 2) 5741) 6156 - - - - -
+ full 62.7 3) 579 (1) 5452 - - - - -
S original 59.3 (2 57.8(1)  55.20) 81.3 (1) 77.2 (1) 7451) 60.2(5) 48.5(5)
E + holders 61.3 (1) 578 (1) 547 3) . . . . .
§ + exp. 64.1 2) 59.8 3) 54.0 (2) - - - - -
+ full 63.9 (1) 577 () 544 @) - - - - -

Table 4: Average macro Fy scores for polarity classification across five runs (standard deviation in parenthesis) on

gold targets, also adding information about holders and expressions. Bold indicates the best model per dataset,
while blue and pink highlighting indicates an improvement or loss in performance compared to the original

(targets only) data, respectively.

p=0.13, -0.16 p=0.48, -0.26 p=0.25 for macro
Precision, Recall, or F; respectively, as measured
by Pearson’s correlation between the expression
performances and the F; of the classification mod-
els augmented with these predicted expressions).
It seems that the possible benefits depends more
on the target dataset than the actual expression
model used.

6 Conclusion

In this work we have explored the benefit of aug-
menting targeted sentiment models with holder
and sentiment expressions. The experiments have
shown that although augmenting text with holder
and expression tags (RQ1 a) or simultaneously
predicting them (RQ1 b) have no benefit for tar-
get extraction, predicting collapsed BIO + po-
larity tags consistently improves target extraction
(RQ1 ¢). Furthermore, augmenting the input text
with gold expressions generally improves targeted
polarity classification (RQ2 a), although it is not
clear which target representation strategy is best
(RQ2 b). Furthermore, we have found benefits of

including lexicon-based expressions for the more
complex targeted datasets (RQ2 c).

The rather poor performance of the learned ex-
pression models and the difference between aug-
menting with gold or predicted expressions re-
veals the need to improve expression prediction
approaches, both by creating larger corpora an-
notated with sentiment expressions, as well as
performing further research on the modeling as-
pect. Any future work interested in modelling
more complex sentiment phenomena should there-
fore be aware that we may first require more high-
quality annotated data if we wish to do so with cur-
rent state-of-the-art machine learning approaches.

Furthermore, we introduce a common format
for eight standard English datasets in fine-grained
sentiment analysis and release the scripts to down-
load and preprocess them easily. We plan to in-
clude further datasets in our script in the future,
as well as extending our work to other languages
with available fine-grained corpora.
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Figure 3: Heatmap of average improvements (blue) and losses (red) on the target classification tasks (x-axis) when
augmenting the input text with predicted sentiment expressions from the expression prediction models (y-axis).
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MPQA DS. Services DS. Unis Challenge Open SemEvalR. SemEvalL. TDParse

[CLS] 63.5 (2) 57.3 (1) 57.6 4) 84.30) 54.6(1 74.1 2) 72.8 (1) 48.8(1)

Té FIRST 64.3 (2) 57.8 (1) 58.7 4) 8441 5562 75.6 (1) 743 (1) 46.6(1)

& MEAN 63.5(2) 57.3 (1) 60.2 (4) 844 (1) 56.803) 74.1 2) 72.8 (1)  46.1 (1)

S Max 60.8 (4) 58.2 (1) 57.8 3) 814 1) 6145 73.9 (2) 7452 49003

MAXMM 59.3 (2) 57.8 (1) 55.23) 81.3(1) 60.2(5) 77.2 (1) 74.51) 4855

[CLS] 60.3 (2) 57.0 (1) 61.3 (5) 83.1 (1) 57.5 4) 74.2 (2) 72.2 (1) 47.5 (2)

é FIRST 61.6 (2) 57.0 2) 59.8 (3) 83.5(1) 55203 77.1 (1) 7392 4521

% MEAN 60.3 (2) 57.0 (1) 61.3 (5) 83.1(1) 5751 74.2 (2) 722 1) 4750

MAX 59.1 2) 58.10) 57.0) 8230 63.7 ) 75.0 2) 74.7 (1) 4852

g MAXMM  56.2 (5) 58.1 (1) 52.7 2) 81.3(1) 61.903) 75.6 (2) 752 1) 458 @)

g § [CLS] 63.6 (1) 56.3 (1) 60.6 (1) 82.4 (1) 5344 72.1 2) 722 (1) 494

& & Frst 61.3 (2) 54.5 (0) 59.4 (3) 82.6(1) 56.2(9) 76.3 (1) 748 (1) 454

fj &%  MEAN 64.1 (2) 56.0 (0) 60.15 8241  56.103) 73.0 @ 7241 4982

{-‘3 8 MAX 61.4 (1) 56.7 (1) 55.2 (2) 80.3 (1) 63.0 (2) 76.5 (1) 74.5 1) 48.1(3)

E MAXMM  58.5(2) 57.1 (1) 54.8 (5) 804 1) 59.02 75.9 2) 7322 49.5 @)

[CLs] 63.1 (1) 57.0 (1) 60.3 (3) 82.8 (1) 54.7 2) 73.6 (3) 72.8 (1) 48.13)

E FIRST 64.1 (2) 56.9 (1) 58.2 (2) 82.6 (1) 55.2 (3) 70.8 (3) 72.9 2) 44.4 (1)

v MEAN 62.3 (1) 57.0 (1) 59.7 3) 82.8(1) 547 73.6 3) 72.8 (1) 48.13)

A Max 59.6 (4) 57.8 (1) 53.4 (1) 80.5(1)  62.0(1) 74.8 (2) 71.01) 469

MAXMM  59.8 3) 57.5 (1) 52.3 4) 80.5 (0) 59.9 @) 74.8 (1) 742 1) 47.014

[CLS] 60.3 (2) 56.2 (1) 60.8 (3) 82.8(1) 54.003) 73.6 (1) 732 1)  50.6 (1)

5 FIRST 61.2 (2) 55.0 (1) 61.2 (1) 82.3(1) 46503 74.8 (1) 742 (1) 43.8 (1)

E MEAN 60.3 (2) 56.2 (1) 60.8 (3) 82.8 (1) 54.003) 73.6 (1) 7321  50.6 (1)

MAX 59.7 3) 57.2 (1) 56.4 (2) 81.0 (1) 61.1 ) 75.5 (2) 7373 472@3)

MAXMM  60.8 (3) 57.1 (1) 55.2(2) 80.8(1) 61.3(3) 73.8 3) 739 1) 49.2 4

2 [CLs] 64.0 (2) 56.9 (1) 63.0 2) 83.1 (1) 54.8 (3) 72.0 (1) 73.0(1) 494 )

% w FIRST 63.7 (2) 56.9 (1) 61.1 (2) 83.3 () 49.1(5 74.9 (3) 74.9 (0) 46.1 (2)

g % MEAN 64.0 (2) 56.9 (1) 63.0 2 83.1 (1 54.8 3) 72.0 (1) 73.0(1) 494 1)

LE MAX 61.1 (3) 58.0(1) 55602 80.4 (1) 62.01) 75.3 ) 74.6 2) 49.7 3)

§ MAXMM 59.5 (3) 57.6 (1) 56.9 4) 80.8(1) 613 75.4 (2) 748 (1) 49.8 @
>

3 [CLs] 63.2 (2) 56.6 (1) 60.5 4) 83.00) 515 69.8 (1) 71.0)  50.0 (1)

= FIRST 61.8 (2) 53.7 (2) 59.9 4) 81.8(0) 51.4() 72.8 (2) 73.001) 4542

% MEAN 63.2 (2) 56.6 (1) 60.5 (4) 83.00) 5151 69.8 (1) 71.0 1)  50.0 (1)

MAX 59.2 2) 57.8 (1) 54.5 (2) 793 (1) 62.32) 71.5 @) 71.82) 49.5 4

MAXMM  59.7 2 56.5 (2) 55.6 (1) 79.1 (1)  60.9 3) 73.4 (3) 73.01) 514

%’0 [CLS] 62.6 (3) 56.5 (1) 60.0 (3) 83.0(1) 53203 71.5 (1) 729 (1) 50.2 (1)

€  FIRST 62.1 (1) 56.2 (1) 60.8 (5) 82.5(1) 49.7 (6) 74.9 2) 74.0 (1) 46.2 (0)

% MEAN 62.6 (3) 56.5 (1) 60.0 (3) 83.0(1) 53.203) 71.5 (1) 729 (1) 50.2 (1)

¥ Max 60.0 (3) 57.8 (0) 55.5 (5) 80.9 (1) 61.5(3) 74.8 (2) 7452 495

“ MaxMM 606 4) 57.1 (1) 54.6 (3) 80.5(1) 60.5(3) 73.5 @) 72.72) 4585

Table 5: Macro F; scores for polarity classification of gold targets. Bold numbers indicate the best model per

dataset, while blue and pink highlighting indicates an improvement or loss in performance compared to the
original data (gold targets only), respectively.
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% Unique % Overlap

train dev test train-dev train-test

MPQA 85.7 88.5 89.2 15 19
DS. Services 36.2 48.6 47.5 45.0 35.6
DS. Uni 352 529 450 58.5 47.6
TDParse 33 51.8 41.7 57.4 47.3
SemEvalR. 36.3 59.8 494 56.4 33.8
SemEval L. 455 71.77 64.38 48.9 33.7
Open 85 924 §7.1 23 24
Challenge 23.1 39.0 39.7 54.1 52

Table 6: Analysis of targets in the datasets. % Unique describes the number of targets that are found only in that
split. % Overlap describes the percentage of dev/test targets that are found in the train set. We disregard partial
matches, e.g., “chinese food” and “food”.

MPQA DS. Services DS. Unis

° MPQA 15.0 (1.7) 1.0 08 2212
£ DS. Services  0.9(03) 479 (73) 149012
5 DS. Unis 1.4 (0.6) 109 (1.5 18.5(1.5)
2 HuLiu 4.7 17.9 16.0
S NRC 3.3 74 9.0
5 SoCal 2.4 13.2 13.8
™ SoCal Google 1.0 13.2 114

Table 7: Token-level macro Fy scores for expression prediction models (trained) and lexicon expressions (lexicons)
when tested on the three fine-grained datasets (x-axis). The trained model scores are the average and standard
deviation across five runs with different random seeds. The lexicon models are deterministic and therefore only
have a single score.
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Appendix B Training details

GPU Infrastructure 1 NVIDIA P100, 16 GiB RAM
CPU Infrastructure Intel Xeon-Gold 6126 2.6 GHz
Number of search trials 50
Domain training duration 2580 sec
Extraction fine-tuning duration 15381 sec
Classification fine-tuning duration 9080 sec
Model implementation https://github.com/blinded/for/review
Hyperparameter Assignment
number of epochs 50
max. sequence length 128

metric early stopping
monitored

validation loss

batch size 32
sentiment dropout 0.3
learning rate optimiser Bert Adam
fine-tuning learning rate  3e-5
learning rate warmup 0.1
proportion

regularisation type L2
regularisation value 0.01
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Abstract

A common approach in many machine learn-
ing algorithms involves self-supervised learn-
ing on large unlabeled data before fine-tuning
on downstream tasks to further improve per-
formance. A new approach for language
modelling, called dynamic evaluation, fur-
ther fine-tunes a trained model during infer-
ence using trivially-present ground-truth la-
bels, giving a large improvement in perfor-
mance. However, this approach does not
easily extend to classification tasks, where
ground-truth labels are absent during infer-
ence. We propose to solve this issue by uti-
lizing self-training and back-propagating the
loss from the model’s own class-balanced pre-
dictions (pseudo-labels), adapting the Reptile
algorithm from meta-learning, combined with
an inductive bias towards pre-trained weights
to improve generalization. Our method im-
proves the performance of standard backbones
such as BERT, Electra, and ResNet-50 on a
wide variety of tasks, such as question answer-
ing on SQuAD and NewsQA, benchmark task
SuperGLUE, conversation response selection
on Ubuntu Dialog corpus v2.0, as well as im-
age classification on MNIST and ImageNet
without any changes to the underlying mod-
els. Our proposed method outperforms previ-
ous approaches, enables self-supervised fine-
tuning during inference of any classifier model
to better adapt to target domains, can be easily
adapted to any model, and is also effective in
online and transfer-learning settings.

1 Introduction

It is a common consensus that the performance of
Machine Learning algorithms improves with in-
creasing data. However, due to the difficulty of
obtaining large quantities of labelled data, many
models (particularly in Natural Language Process-
ing domain) such as BERT (Devlin et al., 2019),
GPT (Radford et al., 2018) and UniLM (Dong
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et al., 2019) rely on unsupervised pre-training on
unlabelled data to learn useful features which are
then fine-tuned for other downstream tasks. While
this approach leads to large gains in performance,
it leads to a mismatch between a network’s pre-
training and final fine-tuning. Some approaches
such as pseudo-labelling (Lee, 2013) have pro-
posed utilizing data-augmentation of unlabelled
data with the model’s own predictions to better
pre-train a model.

While these methods are limited to the training
phase, Krause et al. (2018) proposed to continue
training a language modeling model (which is the
task of predicting the next token in a sequence of
tokens) during the evaluation stage, achieving sig-
nificant improvements as the model learns to better
adapt to the inference data, without any modifica-
tions to the model architecture or any access to
training data. For language modeling, the ground
truth labels are the next input token, which are
trivially accessible to the model to facilitate this
learning. However, this method does not easily
generalize to standard classification tasks due to
the unavailability of labels during inference. This
is the setting which we further explore in this pa-
per, in which we are provided with a classification
model already trained on training data, but with no
access to the training data, and the aim is to further
improve the performance of the model by utilizing
self-training on the inference data.

To solve the above problem, we propose a
method to train any classifier model during infer-
ence, utilizing methods used in domain adaptation,
noisy-label learning, and multi-task meta-learning.
With ground truth labels being absent, we utilize
the model’s own predictions as the pseudo-labels
for those samples and utilize Class Balanced Self
Training (CBST) (Zou et al., 2018) to filter samples
based on the model’s confidence while retaining
class balance. However, naive online learning or
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re-training on the inference data is not optimal due
to the noise in the labels biasing the network, as
well as the small size of the inference set. We solve
this issue by leveraging the Reptile Meta Learning
Algorithm (Nichol et al., 2018) to improve gener-
alization, supplemented with an explicit inductive
bias towards the model’s pre-trained weights.

Our experimental results and ablation studies
show that our method improves the performance of
standard backbones such as BERT, Electra (Clark
et al., 2020) and ResNet (He et al., 2016) on
a wide variety of tasks, such as question an-
swering on SQuAD (Rajpurkar et al., 2018) and
NewsQA (Trischler et al., 2017), benchmark task
SuperGLUE (Wang et al., 2019), and conversation
re-ranking on Ubuntu Dialog corpus v2.0 (Lowe
et al., 2017) for NLP, as well as object classifica-
tion on MNIST (Deng, 2012) and ImageNet (Deng
et al., 2009) without any changes to the underlying
models, while outperforming previous approaches.
Our method can also be utilized for continual self-
supervised fine-tuning of classifiers on target do-
mains, as well as in transfer-learning settings, with-
out any model-level modifications.

2 Proposed Method

Our proposed technique is the self-supervised train-
ing of a classifier model during inference, consist-
ing of three parts — using confident predictions as
pseudo-labels, utilizing the Reptile algorithm to
improve generalization, and an explicit inductive
bias to minimize the effect of noisy labels.

2.1 Class Balanced Pseudo-labels

We utilize our classifier’s most likely predicted
class during inference as hard ground truth labels
(pseudo-labels). Hendrycks and Gimpel (2017)
show that using a model’s own softmaxed proba-
bility values, max{p(y = k|z)}, where k are the
classes, x is the input, and y is the predicted class
is a reasonable proxy for its expected accuracy. To
filter out samples with low maximum probabili-
ties, one can simply threshold the output with some
fixed value p;. As proposed by Zou et al. (2018), a
separate threshold p; (k4. ) for each class, where
kmaz 18 the class with the maximum predicted prob-
ability, works better by reducing skewing in favour
of easier classes.

In CBST p¢(k) are automatically selected for
each k such that a fixed fraction f of examples
of each predicted-class are filtered out from the
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inference set, i.e.,
P* = {p(y = k|z)|Argmax,p(y = k|z) = k},

i k

(k) = max((i | PR < gy,
X, = { | maz{ply = klz)} > pi(h)),
Y, = (k| maz{p(y = k) > pi(k))

These thresholds p;(k) can be kept fixed based on
the validation set, or can be a running estimate in
an online setting. Unlike the original CBST, we do
not further normalize the class probabilities with
these thresholds, as that led to a drastic reduction
in the accuracy of pseudo-label classification. X,
inputs with hard pseudo-labels Y; are used as a
training set to further fine-tune the model, using
the Reptile Algorithm below. This approach is also
unaffected by a lack of model calibration, as long
as the model’s accuracy on Xy is acceptably high.

2.2 Reptile Algorithm, but for Single Task

Naively using the confident inferred labels for fine-
tuning the model is not optimal due to small size of
the test set compared to the train set as well as label
noise, lowering generalization, and reducing the
gains that can be achieved using the pseudo-labels.
Since aligned gradients between samples improve
a model’s generalization, as shown in Chatterjee
(2020) and Fort et al. (2019), we leverage the Rep-
tile Meta-Learning Algorithm to this end. The
meta-gradient for the Reptile algorithm contains as
a component the gradient for maximizing the inner
product between different mini-batches from the
same task, as we prove in Section 3.

Algorithm 1: REPTILE + [sp
Input: Batches B = {bg, b1,...,bn}
W = 0p,0 < Initial network params
Output: Final fine-tuned 6
fori < Oto |n/k| do
for j <~ Otok —1do
Vinner < grad from 6; ; (b ;)
vLR — LRinner * vinner
I2sp < decay = (0; j — W)
0ij1 < 0ij — Vir —sp
vouter — (ei,O - gz,k)
L 92’—&—1,0 <~ 91’,0 - LRouter * vouter

return 6|, /x| 110

The Reptile Algorithm is a batched First-Order
MAML (FO-MAML) Algorithm, originally in-



reptile

Figure 1: Overview of Reptile with /2sp update for 4 inner steps.

tended for multi-task meta-learning. We use this
algorithm in a single-task setting, as shown in Al-
gorithm 1. The Reptile algorithm consists of £ > 1
inner steps of standard SGD updates with learning
rate L Rinner. The difference between original net-
work weights 6); o and the final network weights 6; ;.
is used as a meta-gradient for SGD for updating the
network parameters with a learning rate L Royser,
where ¢ is the outer step. The SGD optimizer can
be replaced with any other, such as Adam.

The Reptile algorithm for this single task setting
is First Order, requiring little extra compute com-
pared to standard optimization, and can be plugged
in to any model with ease. Some other multi-task al-
gorithms with Experience-Replay, such as Riemer
et al. (2018), may exhibit better learning but are
computationally orders of magnitude more expen-
sive and are hence infeasible for large datasets and
models.

2.3 Explicit Inductive Bias

While all the models we use employ a weight de-
cay towards 0 in their training phase, given the
usually smaller size of the inference set, we regu-
larize the model by biasing the network towards
its pre-trained weights instead. For this, we use
the I2sp decay (Li et al., 2018), slowly decaying
the model weights between updates towards the
initial trained model weights. An example of the
update steps involved for £ = 4 is shown in Fig.1.
We conjecture that this will also make the learning
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more stable to the noisy pseudo-labels.

Some recent works such as Goldblum et al.
(2020) also show that standard [?> weight decay
towards 0 may not be ideal and recommend biasing
weights towards some model-dependent non-zero
norm value instead. [2sp can be seen as a general-
ization of the same, while simultaneously taking
advantage of the pre-training.

3 Theoretical Analysis

In this section, we provide a theoretical analysis of
the meta update of Reptile + [2sp. We generalize
the Taylor expansion approach for Reptile as used
in (Nichol et al., 2018) to accommodate [?sp, and
show how our approach maximizes the inner prod-
uct of gradients between different mini-batches.

We consider one set of £ inner updates. For
i € [0, k], we define -

0; = network weights before i step,

b; = input batch for i'" step,

L; = loss function corresponding to b;,

W = pre-trained network weights for I%sp,

B = 1%2sp weight decay rate,

a = LRinner,

gi = L(6;), (gradient of i"*batch)
gi = L(00), (gradient at initial point)
H; = L!0,), (Hessian of i*"batch)



H; = L/ (6y), (Hessian at initial point)

Then, our update rule is -
0 = (1—B)0i—1 —agi1+ W (1)

In the following analysis, to keeps the analysis
tractable, we assume both « and 3 are small and
comparable, and ignore terms involving O(a?),
O(?) and O(af). Using the first order Taylor
expansion of g;, we get -

gi = gi + Hi(0; — 6p) (2)

The following equations can be proved using sim-
ple induction on Eq (1) and (2) -

1—1
0; = 0p +iB(W — 6p) — > _ 75, 3)
j=0
o o i—1
9i = Gi +iBH;(W — 60) — oH; Y 75, (4)

j=0
By summing up the displacements from all variable

updates, the expectation of the meta-gradient from
Reptile + I2sp under mini-batch sampling is -

k—1 k—1
E[—(0x — 00)] =Ela> gi— > _ B(W — 0;)]
=0 =0

When expanding the terms above with Eq (3) and
(4) and simplifying, we get -

E[—(0 — 60)] = c1E[Gi] + c2(60 — W)

—c3B[H;gi] — caE[H;(00 — W)],  (5)

where each c; is a positive constant, dependent on
k, o and S.

The first term in R.H.S. of Eq (5) is the gradi-
ent which takes us to the minimum of the training
problem. For the third term, note that -

E[H;g] =

B[fig5) = JEH;g: + Fig]

- SEl (@ 7

Therefore the third term maximizes the dot product
between the gradients of the batches for improved
generalization, as in the original Reptile algorithm.

For the second and fourth terms, note that (6 —
W) is the direction of the gradient of the /2sp, and
hence can be interpreted similar to the first and
third term, but with training gradients replaced by
this [? gradient.

Hence, we have shown that the Reptile algo-
rithm maximizing product of gradients for improv-
ing generalization holds true in our extension as
well.
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Corpus | Task | |Train| | [Dev|
BoolQ QA 9427 3270
CB NLI | 250 57
COPA QA | 400 100
MultiRC | QA 5100 953
ReCoRD | QA 101K 10K
RTE NLI | 2500 278
WiC WSD | 6000 638

Table 1: Description of datasets in SuperGLUE.

Corpus Model |Train| | |Test|
MNIST MLP 60K 10K
ImageNet ResNet-50 | 1.2M 50K
SQuAD v2.0 | Electra 130K 12K
Ubuntu Diag. | BERT M 18K
NewsQA BERT-trans | 97K 5.4K

Table 2: Description of NLP and image datasets. For
SQuAD and ImageNet, column 4 refers to validation.
Bert-trans is as described in Section 5.3.

4 Experimental Setup

4.1 Benchmark Datasets

SuperGLUE A popular NLP benchmark, which
attempts to test various capabilities of language
understanding. It itself consists of 8 datasets -
Boolean Questions (Clark et al., 2019), Commit-
ment Bank (De Marneffe et al., 2019), Choice of
Possible Alternative (Gordon et al., 2012), Multi-
Sentence Reading Comprehension (Khashabi et al.,
2018), Reading Comprehension with Common-
sense Reasoning (Zhang et al., 2018), Recogniz-
ing Textual Entailment (a combination of datasets
from Dagan et al., 2005; Haim et al., 2006; Gi-
ampiccolo et al., 2007; Bentivogli et al., 2009; Po-
liak et al., 2018), Word-in-Context (Pilehvar and
Camacho-Collados, 2019) and Winograd Schema
Challenge (Levesque, 2011).

SQuAD v2.0 A popular span-style QA dataset,
consisting of passages from Wikipedia, with ques-
tions and corresponding answer spans and unan-
swerable questions.

Ubuntu Dialog Corpus v2.0 A large-scale cor-
pus of multi-turn conversations mined from Ubuntu
IRC chat logs, and the task is to select the best re-
sponse given a list of possible distractor responses.

NewsQA A span-style QA dataset, consisting
of crowd-sourced questions and answers on CNN
news articles, along with unanswerable questions.



Model Params | Speed Corpus | Metric | BERT | BERT + ours
Electra-large-cased 340M 8 BoolQ Acc 76.4 76.6 + 0.01
BERT-large-cased 340M 8 CB F1 88.1 89.4 +0.01
BERT-base-uncased 110M 36 Acc 91.1 92.9 + 0.01
ResNet-50 23M 146 COPA Acc 71.0 72.0 + 0.01
MLP (128H, 2L) 120K | ~IM . Fla 69.5 70.0 + 0.01
. 5 MultiRC | gy 264 | 268+001
able 5: odels, number of networ parameters, an
- . Fl 72.5 73.0 + 0.09
training speeds in examples/second on a V100 GPU. ReCoRD EM 71.8 724+ 0.03
RTE Acc 74.0 75.1 + 0.01
MNIST Animage classification dataset of 28x28 WiC Acc 73.8 74.3 + 0.02

scans of handwritten digits. While the dataset has
long been solved, it nevertheless serves as a useful
dataset to compare simpler architectures.

ImageNet A large-scale dataset for image classi-
fication, consisting of 1.2M training samples along
with their corresponding class labels.

4.2 Models

BERT BERT is a transformer (Vaswani et al.,
2017) model, and its derivative models are the
backbone of most state-of-the-art models in NLP.
We use the official implementation and pre-trained
models of BERT-large-cased for SuperGLUE tasks,
and BERT-base-uncased for Ubuntu Dialog Corpus,
NewsQA, and for our ablation tests on SQuAD.

Electra Electra is a BERT-derived state-of-the-
art model in many NLP tasks, with a discriminative
pre-training task. We use the official pre-trained
Electra-large model, and we implement our own
classifier for SQuUAD v2.0.

ResNet Residual blocks and their variants are the
backbone of most image classification models to-
day. We use Tensorflow Model Garden’s implemen-
tation and pre-trained ResNet-50 for ImageNet.

MLP While models made of only simple Multi
Layer Perceptrons have largely fallen out of favour,
fully connected layers are often a part of larger
architectures. We use an MLP with 2 Layers and
128 Hidden units as the model for MNIST.

4.3 Implementation Details

Fine-tuning on inference data is extremely quick
as our method is first order, taking less than 15
minutes on a V100 for all datasets except ReCoRD
and Ubuntu-Dialog, for which it takes a few hours.
We use the Adam optimizer, and we disable our
model’s [? weight decay, if any. Batch-norm vari-
ables, if any, are also kept fixed.
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Table 4: Results on the validation set of SuperGLUE
benchmark dataset, with Bert-large-cased model.

For each dataset, we train one model on the train-
ing set, followed by five runs on the pseudo-labeled
thresholded inference set with varying seeds, and
report the mean and standard deviation of the
scores. As the test set for SuperGLUE and SQuAD
are hidden, we provide results on the development
set instead.

All default/official model hyper-parameters were
used for each model/dataset, which can be found
in their official source codes linked in the supple-
mental material, except we use le™® as LR for
Electra as we observed divergence with standard
LR. We linearly decay LR except in the online case,
where it is kept fixed. The hyper-parameters for
Reptile and I2sp are provided in the supplemental
material. A reasonable set of hyper-params, that
works across a range of datasets and models we
tested, is 0.01 for LR,yzter, 4 for inner_step, and
0.1 for lQSp, while LR;;ner depends on the origi-
nal model’s LR. RTE, BoolQ, and WiC filter out f
as 70% of data, while all other datasets filter 50%.

5 Results
5.1 Results on SuperGLUE benchmark

As shown in Table 4, our method consistently im-
proves the performance on all the tasks in Super-
GLUE, with very little extra compute, with upto
1.8 increase in accuracy. The gains tend to be larger
on smaller datasets, but we observe significant im-
provement even with the largest task ReCoRD, with
over 100K examples.

5.2 Results on other NLP datasets

Our method achieves gains of 0.68/0.72 F1/EM on
SQuAD v2.0 with BERT-base, as shown in Table 7.
Even when using a state-of-the-art Electra model



Method F1 EM
BERT 76.14 73.14
BERT + CBST (Zou et al., 2018) 76.22 +0.02 | 73.35 £0.02
BERT + Disagreement (Malach and Shalev-Shwartz, 2017) | 76.23 £+ 0.03 | 73.27 = 0.06
BERT + Uncertainty Estimation (Zheng and Yang, 2020) 76.25 £0.05 | 73.29 £ 0.04
BERT + Mutual Mean-Teaching (Ge et al., 2020) 76.28 £0.04 | 73.23 £ 0.05
BERT + Co-teaching (Han et al., 2018) 76.28 +£0.02 | 73.29 + 0.04
BERT + Ours 76.82 + 0.04 | 73.86 + 0.04

Table 5: Comparison of our method to existing method, on SQuAD v2.0 corpus, using BERT-base-uncased.

Corpus Metric | Base | Base + ours
MNIST Acc 98.11 | 98.38 + 0.02
ImageNet Acc 76.53 | 76.69 + 0.01

F1 90.13 | 90.25 + 0.01
SQUAD V2.0 | by 87.44 | 87.67 +0.01
Ubuntu Diag. | R10@1 | 76.79 | 76.89 + 0.01

Fl1 44.79 | 49.36 + 0.05
NewsQA EM 32.48 | 38.71 +0.11
NewsQA F1 4479 | 47.49 + 0.01
(online) EM 32.48 | 34.11 + 0.04

Table 6: Results on other NLP and Image datasets.

with SQuAD, we still observe consistent improve-
ments in performance, as shown in Table 6. Even
in the presence of large training-set sizes such as
that of Ubuntu Dialog Corpus v2.0 with 1M train-
ing samples, we still observe consistent increase in
performance with the BERT model.

5.3 Results in a Transfer Learning Setting

We also evaluate our approach in a transfer-learning
setting on NewsQA, using a BERT-base-uncased
model, which was pre-trained on SQuAD v2.0, by
self-training on NewsQA train set, followed by
evaluation on the test set. Our approach is espe-
cially effective in this setting, out-performing the
original model by 4.57/6.23 F1/EM respectively,
as shown in Table 6. This experiment demonstrates
that our approach is effective for unsupervised do-
main adaptation to a target domain even in the
absence of source domain data.

5.4 Results on Image Classification

To demonstrate that our method also works in non-
NLP domains, on ImageNet with ResNet-50, we
report an increase in accuracy of 0.16. On MNIST
dataset, the improvement in accuracy of our simple
MLP model is 0.27.
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5.5 Comparison with Existing Methods

We compare our method with several existing
approaches for Self-Training, Zou et al. (2018),
Malach and Shalev-Shwartz (2017), Malach and
Shalev-Shwartz (2017), Ge et al. (2020) and Han
et al. (2018), on SQuAD v2.0 dataset.

As shown in Table 5 our method greatly outper-
forms the existing approaches, giving 4 to 5 times
the relative improvement compared to other meth-
ods, improving performance by 0.68/0.82 FI/EM
compared to 0.14/0.15 F1/EM of the best perform-
ing existing approach.

5.6 Online Variant

Our approach can also be used effectively without
any modifications in an online setting, where the
model keeps learning continuously as inference
data is fed to the model. We use a trained model to
make predictions on the input inference data, and
at the same time, we use the model’s predictions
to finetune the model. For this kind of learning,
we use a constant learning rate, as the total size of
inference data is unavailable. As a baseline, we use
BERT + CBST (trained on SQuAD-v2.0 data) with
a constant learning rate. BERT + CBST + Reptile
+ [2sp (Online) clearly outperforms BERT + CBST
(Online) by 0.38/0.37 F1/EM as shown in Table 7.
We also compare the performance of our method
when running in online mode for a long time on
NewsQA dataset, as shown in Table 6. The perfor-
mance improvement is not as large as with decreas-
ing LR, but still results in significant performance
improvements of 2.70/1.63 F1/EM, respectively.

6 Ablation Studies

We conduct extensive ablation studies to test the
effectiveness of all parts of our approach. We per-
form these ablations on SQuAD v2.0 with BERT-
base model.



Method F1 EM
BERT 76.14 73.14
BERT + CBST 76.22 4+ 0.02 | 73.35 + 0.02
BERT + CBST + [2sp 76.24 4 0.04 | 73.49 + 0.04
BERT + CBST + Reptile 76.61 4 0.02 | 73.60 + 0.03
BERT + Reptile + [%sp 76.47 £ 0.07 | 73.63 & 0.08
BERT + CBST + Reptile + I2sp 76.82 4 0.04 | 73.86 + 0.04
BERT + CBST (Online) 76.20 4 0.01 | 73.28 + 0.01
BERT + CBST + Reptile + [?sp (Online) | 76.58 + 0.02 | 73.65 + 0.01

Table 7: Ablation Study of our method on SQuAD v2.0 corpus, using the BERT-base-uncased model.
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Figure 2: Ablation study of varying the thresholding
percentage on NewsQA. The Y axis is F1 score, the X
axis is the percentage of data left after thresholding.

6.1 Thresholding

In Table 7, we compare using CBST thresholding
of model outputs to fine-tune the model vs. using
all the data. Using CBST + Reptile + [?sp increases
scores by 0.35/0.23 F1/EM respectively compared
to using all the pseudo-labels with Reptile + [%sp.

We further study the effect of the thresholding
fraction f used to select the subset of confident
data. We use the pre-trained Bert-base-uncased
model, self-trained on the training set of NewsQA
data with pseudo-labels, while varying f, and then
evaluate on the dev set. As can be seen in Fig.2,
the optimal value for thresholding is around 50%,
decreasing slowly as more data (but with less con-
fident labels) is used, and decreasing more sharply
as the total filtered data used decreases.

6.2 Reptile Algorithm

Compared to using just CBST, using the Reptile
Algorithm to finetune results in more performance
gains of 0.58/0.37 F1/EM, as we can see in Table 7.
This effect persists irrespective of whether [?sp or
the model’s default weight decay towards O is used.
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Figure 3: Effect of varying total size of Inference data
on our method on SQuAD v2.0. The Y axis is F1 score,
the X axis is the total amount of Inference data used.

This demonstrates that the increased generalization
from Reptile’s meta-gradients is indeed effective
in increasing model performance and robustness.

We also conduct an ablation study on the choice
of number of inner steps k£ on the performance of
our model. As shows in Table 8, the number of
inner updates does not have a major impact on the
results, but we advise it be kept less than or equal
to 4 as higher inner steps reduce the number of
outer updates (as the total number of epochs is kept
constant).

6.3 Inductive Bias towards pre-trained
weights

We can also see in Table 7 that [%sp is indeed effec-
tive, and by simply biasing the model towards the
pre-trained weights, we can achieve better results.
This effect becomes more pronounced when the
Reptile algorithm is used, with 0.21/0.26 FI/EM
improvement of CBST + Reptile + [2sp compared
to CBST + Reptile.

We also conduct an ablation study on the choice
of this bias, by transfer learning on NewsQA



Num Updates F1 EM
Baseline 76.24 +0.04 | 73.49 £ 0.04
2 76.79 £ 0.02 | 73.87 £ 0.02
4 76.82 + 0.01 | 73.86 £ 0.02
6 76.80 £ 0.01 | 73.74 £ 0.02
8 76.71 £0.01 | 73.68 £ 0.03

Table 8: Ablation of choice of hyper-parameter num-
ber of inner steps k for our method CBST + Reptile +

12sp on SQUAD with BERT-base.

1% sp decay F1 EM
Baseline 76.14 73.14
0 76.38 £0.00 | 69.87 + 0.21
6e-4 76.54 £0.02 | 70.74 £ 0.15
2e-3 76.10 £ 0.01 | 73.74 £0.12

Table 9: Performance of BERT-base on SQuAD, af-
ter self-training on NewsQA with transfer learning with
our method, for varying choices of hyper-parameter de-
cay for [2sp.

dataset using our method with a model trained
on SQuAD, and measuring the performance on
SQuAD thereafter. As shows in Table 9, I2sp pre-
vents the model from forgetting its performance on
SQuAD. However, higher values prevent it from
improving its performance on the original squad by
minimizing learning on NewsQA.

6.4 Effect of Inference Data Size

In Figure 3, we vary the amount of inference data
available for our model to learn from, by training
a BERT-base model on varying sizes of pseudo-
labelled SQuAD v2.0 dev set, while keeping f
fixed at 50%. The largest increase occurs early on
in the training. However, even on using the full dev
set, the performance keeps improving, giving an
improvement in F1 of 0.68.

7 Related Works

7.1 Pseudo-labeling

Lee (2013) proposed a simple and efficient method
of semi-supervised learning for deep neural net-
works, in which the proposed network is trained
in a supervised fashion with labeled and unlabeled
data simultaneously, using pseudo-labels created
by selecting the classes which have the highest pre-
dicted probabilities as ground truth labels for unla-
beled data. CBST (Zou et al., 2018) used different
thresholds for pseudo-labels of different classes.
Mutual Mean-teaching (Ge et al., 2020) used a
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moving 