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Introduction

Welcome to the ACL-IJCNLP 2021 Student Research Workshop!

The ACL-IJCNLP 2021 Student Research Workshop (SRW) is a forum for student researchers in
computational linguistics and natural language processing. The workshop provides a unique opportunity
for student participants to present their work and receive valuable feedback from the international
research community as well as from faculty mentors.

Following the tradition of the previous student research workshops, we have two tracks: research papers
and thesis proposals. The research paper track is a venue for Ph.D. students, Masters students, and
advanced undergraduates to describe completed work or work-in-progress along with preliminary results.
The thesis proposal track is offered for advanced Masters and Ph.D. students who have decided on a thesis
topic and are interested in feedback on their proposal and ideas about future directions for their work.

This year, the student research workshop has again received wide attention. We received 114 submissions
including 109 research papers and 5 thesis proposals. The submissions included 68 long papers and 46
short papers. Following withdrawals and desk rejects, 45 were accepted for an acceptance rate of 39%.
Excluding non-archival papers, 36 papers appear in these proceedings. All the accepted papers will be
presented virtually in three sessions during the course of August 3rd.

Mentoring is at the heart of the SRW. In keeping with previous years, we had a pre-submission mentoring
program before the submission deadline. A total of 36 papers participated in the pre-submission
mentoring program. This program offered students the opportunity to receive comments from an
experienced researcher to improve the writing style and presentation of their submissions.

We are deeply grateful to the Swiss National Science Foundation (SNSF) for providing funds that covered
student registrations. We thank our program committee members for their careful reviews of each paper
and all of our mentors for donating their time to provide feedback to our student authors. Thank you
to our faculty advisors, Jing Jiang, Rico Sennrich, Derek F. Wong and Nianwen Xue, for their essential
advice and guidance, and to the ACL-IJCNLP 2021 organizing committee for their support. Finally,
thank you to our student participants!
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Investigation on Data Adaptation Techniques
for Neural Named Entity Recognition

Evgeniia Tokarchuk® David Thulke', Weiyue Wang', Christian Dugast’, and Hermann Ney'

*Informatics Institute, University of Amsterdam
fHuman Language Technology and Pattern Recognition Group
Computer Science Department
RWTH Aachen University
e.tokarchuk@uva.nl
{thulke,wwang,dugast,ney}@cs.rwth—aachen.de

Abstract

Data processing is an important step in various
natural language processing tasks. As the com-
monly used datasets in named entity recogni-
tion contain only a limited number of samples,
it is important to obtain additional labeled data
in an efficient and reliable manner. A common
practice is to utilize large monolingual unla-
beled corpora. Another popular technique is to
create synthetic data from the original labeled
data (data augmentation). In this work, we in-
vestigate the impact of these two methods on
the performance of three different named en-
tity recognition tasks.

1 Introduction

Recently, deep neural network models have
emerged in various fields of natural language pro-
cessing (NLP) and replaced the mainstream posi-
tion of conventional count-based methods (Lample
et al., 2016; Vaswani et al., 2017; Serban et al.,
2016). In addition to providing significant perfor-
mance improvements, neural models often require
high hardware conditions and a large amount of
clean training data. However, there is usually only
a limited amount of cleanly labeled data available,
so techniques such as data augmentation and self-
training are commonly used to generate additional
synthetic data.

Significant progress has been made in recent
years in designing data augmentations for computer
vision (CV) (Krizhevsky et al., 2012), automatic
speech recognition (ASR) (Park et al., 2019), nat-
ural language understanding (NLU) (Hou et al.,
2018) and machine translation (MT) (Wang et al.,
2018) in supervised settings. In addition, semi-
supervised approaches using self-training tech-
niques (Blum and Mitchell, 1998) have shown

*Work completed while studying at RWTH Aachen Uni-
versity.

1

promising performance in conventional named en-
tity recognition (NER) systems (Kozareva et al.,
2005; Daumé III, 2008; Tackstrom, 2012). In this
work, the effectiveness of self-training and data
augmentation techniques on neural NER architec-
tures is explored.

To cover different data situations, we select
three different datasets: The English CoNLL 2003
(Tjong Kim Sang and De Meulder, 2003) dataset,
which is the benchmark on which almost all NER
systems report results, it is very clean and the base-
line models achieve an F1 score of around 92.6%;
The English W-NUT 2017 (Derczynski et al., 2017)
dataset, which is generated by users and contains
inconsistencies, baseline models get an F1 score
of around 52.7%; The GermEval 2014 (Benikova
et al., 2014) dataset, a fairly clean German dataset
with baseline scores of around 86.3%'. We observe
that the baseline scores on clean datasets such as
CoNLL and GermEval can hardly be improved by
data adaptation techniques, while the performance
on the W-NUT dataset, which is relatively small
and inconsistent, can be significantly improved.

2 Related Work
2.1 State-of-the-art Techniques in NER

Collobert et al. (2011) advance the use of neural net-
works (NN) for NER, who propose an architecture
based on temporal convolutional neural networks
(CNN) over the sequence of words. Since then,
many articles have suggested improvements to this
architecture. Huang et al. (2015) propose replacing
the CNN encoder in Collobert et al. (2011) with
a bidirectional long short-term memory (LSTM)
encoder, while Lample et al. (2016) and Chiu and
Nichols (2016) introduce a hierarchy into the archi-
tecture by replacing artificially designed features

"From here on, for the sake of simplicity, we omit the
annual information of the datasets.
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with additional bidirectional LSTM or CNN en-
coders. In other related work, Mesnil et al. (2013)
have pioneered the use of recurrent neural networks
(RNN) to decode tags.

Recently, various pre-trained word embedding
techniques have offered further improvements over
the strong baseline achieved by the neural architec-
tures. Akbik et al. (2018) suggest using pre-trained
character-level language models from which to ex-
tract hidden states at the start and end character
positions of each word to embed any string in a
sentence-level context. In addition, the embedding
generated by unsupervised representation learning
(Peters et al., 2018; Devlin et al., 2019; Liu et al.,
2019; Taillé et al., 2020) has been used success-
fully for NER, as well as other NLP tasks. In this
work, the strongest model for each task is used as
the baseline model.

2.2 Data Adaptation in NLP

In NLP, generating synthetic data using forward or
backward inference is a commonly used approach
to increase the amount of training data. In strong
MT systems, synthetic data that is generated by
back-translation is often used as additional training
data to improve translation quality (Sennrich et al.,
2016). A similar approach using backward infer-
ence is also successfully used for end-to-end ASR
(Hayashi et al., 2018). In addition, back-translation,
as observed by Yu et al. (2018), can create various
paraphrases while maintaining the semantics of the
original sentences, resulting in significant perfor-
mance improvements in question answering.

In this work, synthetic annotations, which are
generated by forward inference of a model that is
trained on annotated data, are added to the train-
ing data. The method of generating synthetic data
by forward inference is also called self-training
in semi-supervised approaches. Kozareva et al.
(2005) use self-training and co-training to recog-
nize and classify named entities in the news do-
main. Tackstrom (2012) uses self-training to adapt
a multi-source direct transfer named entity rec-
ognizer to different target languages, “relexical-
izing” the model with word cluster features. Clark
et al. (2018) propose cross-view training, a semi-
supervised learning algorithm that improves the
representation of a bidirectional LSTM sentence
encoder using a mixture of labeled and unlabeled
data.

In addition to the promising pre-trained embed-

ding that is successfully used for various NLP tasks,
the masked language modeling (MLM) can also
be used for data augmentation. Kobayashi (2018)
and Wu et al. (2019) propose to replace words with
other words that are predicted using the language
model at the corresponding position, which shows
promising performance on text classification tasks.
Recently, Kumar et al. (2020) discussed the effec-
tiveness of such different pre-trained transformer-
based models for data augmentation on text classi-
fication tasks. And for neural MT, Gao et al. (2019)
suggest replacing randomly selected words in a
sentence with a mixture of several related words
based on a distribution representation. In this work,
we explore the use of MLM-based contextual aug-
mentation approaches for various NER tasks.

3 Self-training

Though, the amount of annotated training data
is limited for many NLP tasks, additional unla-
beled data is available in most situations. Semi-
supervised learning approaches make use of this
additional data. A common way to do this is self-
training (Kozareva et al., 2005; Tackstrom, 2012;
Clark et al., 2018).

At a high level, it consists of the following steps:

1. An initial model is trained using the labeled
data.

2. This model is used to annotate the additional
unlabeled data.

3. A subset of this data is selected and used in ad-
dition to the labeled data to retrain the model.

For the performance of the method it is critical to
find a heuristic to select a good subset of the auto-
matically labeled data. The selected data should not
introduce too many errors, but at the same time they
should be informative, i.e. they should be useful to
improve the decision boundary of the final model.
One selection strategy (Drugman et al., 2016) is
to calculate a confidence measure for all unlabeled
sentences and to randomly sample sentences above
a certain threshold.

We consider two different confidence measures
in this work. The first, hereinafter referred to as cq,
is the posterior probability of the tag sequence y
given the word sequence x:

e5(@)
ci(y, ) =ply | z) = 5 (1)
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whereby s(z,y) is the unnormalized log score as-
signed by the model to the sequence, consisting of
an emission model qiE and transition model ¢”:

T
s(e,yl) =D af (il ) +q" (i | via)

i=1
For the second confidence measure, we take into
account the normalized tag scores at each position.
To get a confidence score for the entire sequence,
we take the minimum tag score of all positions.

Thus, ¢y is defined as follows:

E . T . )
eo(y, z) = min —& (yi | z) +q" (yi | yim1)

iy al Wil e) +q" (v yie)
(2)

4 MLM-based Data Augmentation

Instead of using additional unlabeled data, we ap-
ply MLM-based data augmentation specifically for
NER by masking and replacing original text tokens
while maintaining labels.

For each masked token z;:

%; = argmax p(x; = w|X) (3)

where Z; is the predicted token, w € V is the token
from the model vocabulary and X is the original
sentence with z; = [MASK].

There are several configurations that can affect
the performance of the data augmentation method:
Techniques of selecting the tokens to be replaced,
the order of token replacement in case of multi-
ple replacement and the criterion for selecting the
best tokens from the predicted ones. This section
studies the effect of these configurations.

4.1 Sampling

Entity spans (entities of arbitrary length) make the
training sentences used in NER tasks special. Since
there is no guarantee that a predicted token belongs
to the same entity type as an original token, it is
important to ensure that the masked token is not in
the middle of the entity span and that the existing
label is not damaged. In this work, we propose
three different types of token selection inside and
outside of entity spans:

 Entity replacement: Collect entity spans of
length one in the sentence and randomly select
the entity span to be replaced. In this case,
exactly one entity in the sentence is replaced.
The sentences without entities or with longer
entity spans are skipped.

* Context replacement: We consider tokens
with the label “O” as context and alternate
between two setups: (1) Select only context
tokens before and after entities, and (2) select
a random subset of context tokens among all
context tokens.

* Mixed: Select uniformly at random the num-
ber of masked tokens between two and the
sentence length among all tokens in the sen-
tence.

The first approach allows only one entity to be gen-
erated and thus benefits from conditioning to the
full sequence context. However, it does not guar-
antee the correct labeling for the generated token.
The disadvantage of the second approach is that
we do not generate new entity information, but
only generate a new context for the existing entity
spans. Even if a new entity type is generated, it
has the original “O” label without a NER classi-
fication pipeline. The disadvantage of the third
approach is that the token may be selected in the
middle of the entity span and the label is no longer
relevant. The sampling approaches depicted on the
Figure 1. In addition, the number of replaced to-
kens should be properly tuned to avoid inadequate
generation. In this work, we do not set any bound-
aries for maximum token replacement and leave
such investigation to future work.

4.2 Order of Generation

In our method, we predict exactly one mask token
per time. Our sampling approaches allow multi-
ple tokens to be replaced. Therefore we have two
possible options for the generation order:

* Independent: Each consecutive masking and
prediction is made on top of the original se-
quence.

* Conditional: Each consecutive masking and
prediction is made on top of the prediction of
the previous step.

4.3 Criterion

The criterion is an important part of the generation
process. On the one hand, we want our synthetic
sequence to be reliable (highest token probability),
on the other hand, it should differ as much as possi-
ble from the original sequence (high distance). We

’Given example is taken from
artificialintelligence—-news.com

https://



Y Y , Y
Elony Flon, Elony FElon, FElony Today,
Musks Musksy Musks Musksy Musks Musks

[ wantsg } { wantss ] [ wantsg J { decideds ] [ wantsg } { wantss ]
[ morey } { morey ] [ morey } { morey ] [ morey } { morey ]
[ stringents } { stringents ] [ stringents } { relazsy ] [ stringents } { stringents ]
[ Al } { Al ] [ Al } { Al ] [ Al } { privacys ]
[regulatimf J {regulatécmq ] [regulatimf J {regulatécm? ] [regulatirmf J {regulatéon7 ]
A N I T S B RN T
[includingg } {includingg ] [includingg } {includingg ] [includingg } {includingg ]
[ forin } { foryg ] [ fory ] { foryg ] [ foryg } { Joryg ]
| Teslay; ‘ ‘ Googley, | | Teslayq ‘ ‘ Teslay, | | Teslay; ‘ ‘ Teslay; |
Entity replacement Context replacement Mixed

Figure 1: Sampling approaches example?for the MLLM data augmentation. Gray color refers to the tokens with the
entity type ”O* (context), green color refers to the PER entity type and purple color refers to the ORG entity type.
Red square represents the subset of tokens which is used for replacement.

propose two criteria for choosing the best token
from the five-best predictions:

» Highest probability (top token): Choose the
target token only based on the MLM probabil-
ity for that token.

* Highest probability and distance (joint cri-
terion): Choose the target token based on the
product of the MLM probability for the to-
ken and Levenshtein distance (Levenshtein,
1966) between the original sentence and the
sentence with the new token.

Regardless of the combination of the parame-
ters, the sentences must be changed. As a result,
we guarantee that there is no duplication in our
synthetic data with the original dataset.

4.4 Discussion

The main disadvantage of using a language model
(LM) for the augmentation of NER datasets is that
the LM does not take into account the labeling
of the sequence and the prediction of the masked
token, which only depends on the surrounding to-
kens. As a result, we lose important information
for decision-making. Incorporating label informa-
tion as described in Wu et al. (2019) into the MLM
would be the way to tackle this problem.

Another way to reduce the noise in the generated
dataset is to apply a filtering step to the generation

pipeline. One way to incorporate filtering into the
augmentation process is to set the threshold for
the MLM token probabilities: If the probability
of the predicted token is less than a threshold, we
ignore such prediction. However, the problem of
misaligning token labels is not resolved. Therefore,
we adapt our proposed confidence measure from
Section 3 for filtering.

In this work, we do not discuss the selection of
the MLM itself as well as the effects of fine-tuning
on the specific task.

5 Experiments

5.1 Datasets

We test our data adaptation approaches with three
different NER datasets: CoNLL (Tjong Kim Sang
and De Meulder, 2003), W-NUT (Derczynski et al.,
2017) and GermEval (Benikova et al., 2014).

All datasets have the original labeling scheme
as BIO, but following Lample et al. (2016) we
convert it to the TOBES scheme for training and
evaluation. For our baseline models, we do not use
any additional data apart from the provided training
data. Development data is only used for validation.
For CoNLL we skip all document boundaries. The
statistics for the datasets are shown in Table 1.

3Further details on the used datasets can be found in Ap-
pendix A



Dataset train dev | test
CoNLL 14041 | 3250 | 3453
W-NUT 3394 | 1008 | 1287
GermEval | 24001 | 2199 | 5099

Table 1: Dataset sizes in number of sentences.

5.2 Model Description

The Bidirectional LSTM - Conditional Random
Field (BiLSTM-CRF) model (Lample et al., 2016)
is a widely used architecture for NER tasks. To-
gether with pre-trained word embeddings, it sur-
passes other neural architectures. We use the
BiLSTM-CRF model implemented in the Flair*
framework version 0.5, which delivers the state-of-
the-art performance.

The BiLSTM-CRF model consists of 1 hidden
layer with 256 hidden states. Following Reimers
and Gurevych (2017), we set the initial learning
rate to 0.1 and the mini-batch size to 32. For
each task, we select the best performing embed-
ding from all embedding types in Flair. For train-
ing models with CoNLL data, we use pre-trained
GloVE (Pennington et al., 2014) word embedding
(Grave et al., 2018) together with the Flair embed-
ding (Akbik et al., 2018) as input into the model.
For W-NUT experiments, we use roberta-large em-
bedding provided by Transformers library (Wolf
et al., 2019). German dbmdz/bert-base-german-
cased embedding is used for experiments with the
GermEval dataset.

5.3 Unlabeled Data

Additional unlabeled data is required for self-
training. To match the domain of the test data,
we collect the data from the sources mentioned in
the individual task descriptions.

W-NUT Like the test data, the data for W-NUT
consists of user comments from Reddit, which were
created in April 2017° (comments in the test data
were created from January to March 2017), as well
as titles, posts and comments from StackExchange,
which were created from July to December 2017°
(the content of the test data was created from Jan-
uary to May 2017). The documents are filtered

‘nttps://github.com/zalandoresearch/
flair/

Shttps://files.pushshift.io/reddit/
comments/

*https://archive.org/download/
stackexchange

according to length and community as described in
the task description paper and tokenized with the
TweetTokenizer from nltk’.

CoNLL The data was sampled from news ar-
ticles in the Reuters corpus from October and
November 1996. The sentences are tokenized using
spaCy® and filtered (by removing common patterns
like the date of the article, sentences that do not
contain words and sentences with more than 512
characters as this is the length of the longest sen-
tence in the CoNLL training data).

GermEval We randomly sampled additional
data from sentences extracted from news and
Wikipedia articles provided by the Leipzig Cor-
pora Collection’. In addition to tokenizing the
sentences using spaCy, we do not do any additional
preprocessing or filtering.

5.4 Self-training

Before applying the approach described in Sec-
tion 3, we need to find the thresholds ¢ for the
confidence measures ¢; and co for each corpus. We
evaluate both confidence measures on the develop-
ment sets of the three corpora. One way to evaluate
confidence measures is to calculate the confidence
error rate (CER). It is defined as the number of
misassigned labels (i.e. confidence is above the
threshold and the prediction of the model is incor-
rect or the confidence is below the threshold and the
prediction is correct) divided by the total number
of samples.

Figure 2 shows the CER of ¢; and ¢z on the
development set of W-NUT for different threshold
values ¢. For the threshold of 0.0 or 1.0 the CER
degrades to the percentage of incorrect or correct
predictions as either all or no confidence values are
above the threshold. For ¢ there is a clear optimum
at £ = 0.42 and for larger and smaller thresholds
the CER rises rapidly.

In contrast, the optimum for c; at t1 = 0.57 is
not as pronounced. This motivated us not only to
choose the best value in terms of CER, but also a
lower threshold ¢ = 0.42 with slightly worse CER.
In this way, we include more sentences where the
model is less confident without introducing too
many additional errors. The threshold values for

"Tnttps://www.nltk.org/api/nltk.
tokenize.html

8https://github.com/explosion/spaCy

’https://wortschatz.uni-leipzig.de/de/
download
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Figure 2: CERs for c; (orange) and cy (blue) with dif-
ferent threshold values on the W-NUT development set.
Vertical dashed lines represent {1 and £.

W-NUT | CoNLL | GermEval
11 0.57 0.83 0.63
t) 0.42 0.70 0.50
12 0.42 0.50 0.47

Table 2: Selected confidence threshold values.

CoNLL and GermEval are selected analogously.
Table 2 provides an overview of all threshold values
that are used in all subsequent experiments.

The unlabeled data is annotated using the base-
line models described in Section 3 (we choose the
best runs based on the score on the development
set) and is filtered based on the different confidence
thresholds. Then we sample a random subset of
size k from these remaining sentences. For tasks
where the data comes from different sources, e.g.
news and Wikipedia for GermEval, we uniformly
sample from the different sources to avoid that a
particular domain is overrepresented. The selected
additional sentences are then appended to the origi-
nal set of training sentences to create a new training
set that is used to retrain the model from scratch.

To validate our selection strategy, we test our
pipeline with different confidence thresholds for
both confidence measures. Figure 3 shows the re-
sults on the test set of W-NUT. For each threshold,
3394 sentences are sampled, i.e. the size of the
training set is doubled. The results confirm our se-
lection strategy. ] and ¢, give the best results of all
tested threshold values. In particular, ¢ performs
better than 7.

Table 3 shows the results of self-training on all
three datasets. For each of them, we test the three
selection strategies by sampling new sentences in
the size of 0.5 times, 1 times and 2 times the size of

0.54 ;
z
S
2052
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0.2 0.4 0.6 0.8

threshold

Figure 3: Average F1 scores and standard deviation
(shaded area) of 3 runs on the test set of W-NUT after
retraining the model on additional data selected using
different confidence measures (color) and thresholds.

the original training data. For W-NUT we get up to
2% of the absolute improvements in the F1 score
over the baseline. On larger datasets like CoONLL
and GermEval these effects disappear and we only
get improvements of up to 0.1% and in some cases
even deterioration.

5.5 MLM-based Data Augmentation

We follow the approach explained in Section 4
and generate synthetic data using pre-trained mod-
els from the Transformers library. We concatenate
original and synthetic data and train the NER model
on the new dataset. We test all possible combina-
tions of the augmentation parameters from Section
4 on the W-NUT dataset. Table 4 shows the re-
sult of the augmentation. When sampling with one
entity, there is no difference between independent
and conditional generation, since only one token
in a sentence is masked. We therefore only carry
out an independent generation for this type of sam-
pling. We report an average result among 3 runs
along with a standard deviation of the model with
different random seeds.

W-NUT and CoNLL datasets are augmented us-
ing a pre-trained English BERT model'® and Ger-
mEval with a pre-trained German BERT model!!
respectively. We do not fine-tune these models.

Sampling from the context of the entity spans
shows significant improvements on W-NUT test
set. First of all, it includes implicit filtering: Only
the sentences with the entities are selected and re-

Ohttps://huggingface.co/
bert-large-cased-whole-word-masking

"https://huggingface.co/
bert-base-german-cased



W-NUT CoNLL GermEval

A sen. F1 | Asen. F1 | Asen. F1
1 | baseline +0% | 52.7 - 2.48 +0% | 92.6 £0.18 +0% | 86.3 +0.06
2 >t +50% | 54.24+0.35 | +50% | 92.54+0.06 | +50% | 86.0 & 0.08
3 | e >t | +100% | 53.6 £1.41 | +100% | 92.5+0.12 | +100% | 86.1 4 0.26
4 | e >t | +200% | 53.54+0.53 | +200% | 92.4 +0.08 | +200% | 86.3 + 0.14
5 |la>t) +50% | 53.7+£1.95 | +50% | 92.54+0.02 | +50% | 86.1 £ 0.21
6 |c1>t) | +100% | 54.8 £0.33 | +100% | 92.6 +0.09 | +100% | 86.2 +0.12
7 | e >ty | +200% | 53.5£0.29 | +200% | 92.5+0.06 | +200% | 86.4 £ 0.03
8 | o>ty +50% | 54.6 +0.42 | +50% | 92.7 £0.04 | +50% | 86.0 £ 0.16
9 | o>ty | +100% | 54.24+0.98 | +100% | 92.6 +0.06 | +100% | 86.4 + 0.15
10 | cg >t | +200% | 54.54+0.43 | +200% | 92.7 +0.02 | +200% | 86.3 + 0.05

Table 3: Results of self-training.

placed. Therefore, compared to other methods, we
add less new sentences (except when replacing en-
tities). Second of all, since replacing tokens with
a language model should result in the substitution
with similar words, the label is less likely to be
destroyed while context tokens are replaced.

On the other hand, the mixed sampling strategy
performs the worst among all methods. We believe
that this is the effect when additional noise is in-
cluded in the dataset (by noise we mean all types of
noise, e.g. incorrect labeling, grammatical errors,
etc). Allowing masking of words up to sequence
in some cases destroys the sentence, e.g. incorrect
and multiple occurrences of the same words can
occur. In Appendix B we present the examples
of augmented sentences for each augmentation ap-
proach and each dataset. Additionally, we report
the average number of masked token.

To analyze the resulting models, we plot the
average confidence scores of the test set as well
as the number of errors per sentence for the best
baseline model and best augmented model. We use
the best baseline system with 54.6% F1 score and
the best model corresponding to the setup of line
8 in Table 4 with 57.4% F1 score. We count the
error every time the model predicts a correct label
with low confidence or an incorrect label with high
confidence. We set high and low confidence to be
0.6 and 0.4 respectively. Figure 4 shows that the
augmented model makes a more reliable prediction
than the best baseline system model.

We repeat the promising MLM generation
pipeline on the CoNLL and GermEval datasets.
These datasets contain more entities in the origi-
nal data. In addition, even though the entity re-
placement sampling did not work well on W-NUT

baseline
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Figure 4: Average confidence score and the error per
sentence on W-NUT test data. MLM DA refers to the
setup of line 8 in Table 4

dataset, we repeat these experiments, since gener-
ating new entities is the most interesting scenario
for using the MLM augmentation.

Although the MLM-based data augmentation
leads to improvements of up to 3.6% F1 score
on the W-NUT dataset, Table 5 shows that such
effect disappears when we apply our method to
larger and cleaner datasets such as CoNLL and
GermEval. We believe there are several reasons
for that. First, our MLM-based data augmentation
method does not guarantee the accuracy of the la-
beling after augmentation. So for larger datasets,
there are many more possibilities to increase the
noise of the corpus. Moreover, we do not study



sampling generation | criterion A sen. F1
1 | Dbaseline - - +0.0% | 52.7 +2.48
2 entity independent top token | +24.4% | 53.7 £ 0.91
3 joint +24.7% | 54.6 £ 0.50
4 .. top token | +98.7% | 52.3 +1.25
5 . conditional == =0 7% | 1.7 £ 1.36
6 mixed . top token | 198.6% | 53.7 £ 0.89
7 independent | =00 7% | 53.3 £ 0.61
8 .. top token | +33.8% | 56.3 +1.21
o | MLM DA conditional 1;oint 135.8% | 55.6 £ L.12
10 context I~ top token | +33.8% | 55.0 £ 1.16
1 independent I % 1 56.0 £ 0.06
12 conditional |-1P token | +96.8% | 54.9 £ 0.40
13 random context joint +99.7% | 54.5 £ 1.21
14 independent top token | +96.9% | 53.7 £ 0.93
15 joint +99.7% | 53.5 £ 2.40

Table 4: Results of the MLM-based augmentation on the W-NUT dataset.

entity refers to the sampling

tokens from entity spans of length one, mixed means sampling from the complete sequence, context indi-
cates sampling from the entity span context, random context denotes sampling from random context labels.
conditional refers to the conditional generation and independent refers to the independent generation type.
The top token criterion selects the token based on the highest probability, and the joint criterion takes into
account the token probability and the Levenshtein distance.

how well pre-trained models suit the specific task,
which might be crucial for the DA. Besides, for
GermEval augmentation, we use the BERT model
with three times fewer parameters than for W-NUT
and CoNLL.

5.5.1 Filtering of Augmented Data

As discussed in Section 4, an additional data filter-
ing step can be applied on top of the augmentation
process. We report results on two different filtering
methods: First, we set a threshold for the proba-
bility of the predicted token (in our experiments
we use the probability 0.5); Second, we filter sen-
tences by minimum confidence scores as discussed
in Section 3. We set the minimum confidence score
according to Table 2. We apply filtering to the
worst and best-performing model according to the
numbers in Table 4. The filtering results on W-NUT
are shown in Table 6.

In the case of the worst model, filtering based on
the token probability improve the performance of
the model by 2.6% compared to the unfiltered one.
Filtering by confidence score does not improve the
performance, but significantly reduces the standard
deviation of the score. The results are expected,
since by using token probability we increase the
sentence reliability and completely change the syn-
thetic data, while using the confidence score we

filter on the same synthetic data. In the case of
the better model, we see the opposite trend. Here
filtering leads to performance degradation and an
increase in the standard deviation.

We apply the same filtering techniques for
CoNLL and GermEval. Table 7 shows the results
for 3 different models. We choose the best, the
worst and the model with the highest number of
additional sentences for filtering. In the case of
the worst model, the performance is improved by
1.1% F1 score with the minimum confidence filter-
ing for CoNLL and 0.5% F1 score for GermEval
compared to the unfiltered version. However, for
the best model, the results remain at the same level
and the baseline systems are not improved.

Although we do not achieve significant improve-
ments compared to the baseline system, we see a
potential in the MLM-based augmentation with the
combination with filtering.

6 Discussion and Future Work

In this work, we present results of data adapta-
tion methods on various NER tasks. We show that
MLM-based data augmentation and self-training
approaches lead to improvements on the small and
noisy W-NUT dataset.

We propose two different confidence measures
for self-training and empirically estimate the best



CoNLL GermEval

sampling | generation | criterion A sen. F1 A sen. F1
1 | baseline - - - +0.0% | 92.6 +0.18 0.0% | 86.3 £+ 0.06
3 entity independent joint +57.9% | 91.5+£0.10 | +47.9% | 85.9 & 0.06
8 .. top token | +65.7% | 92.4 £0.12 | +51.4% | 86.1 +0.26

conditional —

9 MLM DA context joint +72.2% | 92.3+£0.06 | +58.5% | 86.0 £0.15
10 independent top token | +65.7% | 92.5 +0.06 | +51.4% | 86.1 £0.15
11 joint +72.2% | 92.2+0.17 | +58.5% | 86.0 £ 0.20
12 rand. cont. | conditional | top token | +85.1% | 92.1 £0.15 | +94.1% | 86.1 +0.10

Table 5: Results of the MLM-based data augmentation on CoNLL and GermEval datasets. The row numbers refer

to the row numbers of the Table 4.

A sen. | filtering F1
+99.7% - 51.7+1.36

5 | +86.3% | token prob. | 54.3 + 0.31
+59.5% | min. conf. | 51.2 & 0.60
+33.8% - 56.3 + 1.21

9 | +13.8% | token prob. | 53.3 & 2.00
+10.4% | min. conf. | 51.7 &+ 2.10

Table 6: F1 scores of using filtered augmented data on
W-NUT. The row numbers refer to the row numbers of
the Table 4.

CoNLL GermEval
filtering A sen. F1 A sen. F1
none +57.9% | 91.5+0.10 | +47.9% | 85.9 + 0.06
3 | tok. prob. +7.8% | 92.4+£0.15 | +13.1% | 86.1+0.29
min. conf. | +13.5% | 92.6 £0.15 | +13.9% | 86.4 +0.12
none +65.7% | 92.5+0.06 | +51.5% | 86.1 +0.15
10 | tok. prob. | +22.5% | 92.5+0.15 | +34.5% | 86.3 £ 0.21
min. conf. | +52.1% | 92.6 £0.20 | +23.9% | 86.1 +0.10
none +85.1% | 92.1£0.15 | +94.1% | 86.1 +0.10
12 | tok. prob. | +42.5% | 92.8 £0.06 | +76.1% | 86.1 & 0.00
min. conf. | +58.9% | 92.6 £0.12 | +62.3% | 86.0 £0.21

Table 7: F1 scores of using filtered augmented data on
CoNLL and GermEval. The first line represents the
augmentation method from Table 4.

thresholds. Our results on the W-NUT dataset show
the effectiveness of the selection strategies based
on those confidence measures.

For MLM-based data augmentation, we suggest
multiple ways of generating synthetic NER data.
Our results show that even without generating new
entity spans we are able to achieve better results.

For future work, we would like to incorporate
label information into the augmentation pipeline by
either conditioning the token predictions on labels
or adding additional classification steps on top of
the token prediction. Another important question
is the choice of the MLLM and the impact of task-
specific fine-tuning. Further investigations into the
filtering step should also be carried out.

For both self-training and MLM-based data aug-

mentation we would like to improve the integration
in the training process. The contribution of the
original training data to the loss function could
be increased or additional data could be weighted
by their confidence. Finally, we would like to
test whether we can combine the two methods to
achieve additional improvements.
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A Data Description

In our work we use three NER datasets:

* CoNLL 2003 (Tjong Kim Sang and De Meul-
der, 2003) contains news articles from the
Reuters!” corpus. The annotation con-
tains 4 entity types person, location,
organization, miscellaneous. We
remove the document boundary information
for our experiments.

e W-NUT 2017 (Derczynski et al., 2017)
contains texts from Twitter (training data),
YouTube (development data), StackExchange
and Reddit (test data). The annota-
tion contains 6 entity types:

corporation,

person,
location, product,

creative-work, group

e GermEval 2014 (Benikova et al., 2014): con-
tains the data from the German Wikipedia and
news Corpora. The annotation contains 12
entity types: location, organization,
person, other, location deriv,

location part,

deriv, organization part, person
deriv, person part, other deriv,

other part.

organization

Table 8 shows detailed statistics of those datasets.
Together with number of entities, tokens and sen-
tences we report the percentage of the labelled to-
kens among all the tokens.

Dataset train dev test
#sentences 14041 3250 | 3453
#entities 23500 | 5943 | 5649
CoNLL #tokf:ns 203621 | 51362 | 46435
#entity types 4 4 4
Ylabelled 16.7 16.8 17.5
#sentences 3394 1008 1287
#entities 1976 836 1080
W-NUT #tok§ns 62730 | 15723 | 23394
#entity types 6 6 6
%labelled 5.0 7.9 74
#sentences 24001 2199 | 5099
#entities 29077 | 2674 | 6178
GermEval #tok.ens 452790 | 41635 | 96475
#entity types 12 12 12
Yolabelled 9.3 9.5 9.3

Table 8: Dataset sizes in number of sentences, tokens

and entities. Here, entity means the entity span, e.g.

European Union is considered as one entity.

Phttps://trec.nist.gov/data/reuters/
reuters.html

12

B MLM-based Data Augmentation

B.1 Data statistics

The number of masked tokens solely depends on
the augmentation strategy discussed in section 4.
Table 9 reports the average number of masked to-
kens in the sentence on W-NUT dataset for each
augmentation strategy. Table 10 and Table 11 show
the average number of masked tokens in the sen-
tence for the most promising augmentation strate-

gies for CONLL and GermEval tasks.

sampling generation | criterion | A sen. | Masked

. . top token | +24.4% 1.2
entity independent foint LT i3
conditional |-1°P token | +98.7% 7.4
mixed joint +99.7% 8.8
independent P token | +98.6% 7.0
cpentent Mot [ 499.7% | 88
conditional |-°P token | +33.8% 44
joint +35.8% 45

context -
indenendent |t°P token | +33.8% 43
P joint | +35.8% | 45
.. top token | +96.8% 7.1

conditional —

random context Jomnt +99.7% 8.1
independent P token | +96.9% 6.9
P joint | 499.7% | 8.1

Table 9: Average number of masked tokens for each
augmentation strategy on W-NUT dataset.

sampling generation | criterion | A sen. | Masked
entity independent joint +57.9% 1.1
conditional |-2P*© ken | +65.7% 34
context joint +72.2% 6.4
independent top token | +65.7% 3.4
joint | +72.2% | 64
random context | conditional | top token | +85.1% 4.5
Table 10: Average number of masked tokens on
CoNLL dataset.
sampling generation | criterion | A sen. | Masked
entity independent joint +47.9% 1.0
conditional |-2P© ken | +51.4% 44
context joint +58.5% 5.7
independent top token | +51.4% 43
joint | +585% | 5.3
random context | conditional | top token | +94.1% 6.0

Table 11: Average number of masked tokens on Ger-

mkEval dataset.

B.2 Data Examples

We show the data examples on different dataset by
varying one augmentation parameter while keeping
others unchanged. Table 12 shows the examples
on W-NUT dataset. In Table 13 and Table 14 we
collect the examples for GermEval and CoNLL.



Parameter

Value

Example

Sampling

entity

context

random context

mixed

RT @Quotealicious: Today, I saw a guy
driving a <corporation>Pepsi</corporation>
truck, drinking a <product>Coke</product>.
MLIA #Quotealicious
RT @Quotealicious: Today, I saw a guy
driving a <corporation>Pepsi</corporation>
truck, drinking a <product>beer</product>
MLIA #Quotealicious
RT @Quotealicious Today, I saw a guy
driving a <corporation>Pepsi</corporation>
car, drinking a <product>Coke</product>.
MLIA #Quotealicious

Today,
<corporation>Pepsi</corporation> truck,
buying a <product>Coke</product>. MLIA
#Quotealicious

m @Quotealicious Earlier Today, I saw a guy
driving a <corporation>Pepsi</corporation>
truck, drinking a <product>Coke</product>.

MLIA #Quotealicious

m me: I saw a man driving a

Order

independent

conditional

What is everyone watching this weekend?
<group>Twins</group>?
<group>Vikings</group>? anyone going to see
<creativework>Friday Night
Lights</creativework>?

What is everyone watching this weekend?
<group>Twins</group>?
<group>Vikings</group>?
<creativework>the Night
Lights</creativework>?
What is he doing this weekend with
<group>the</group> ##ing
<group>Vikings</group>?

anyone going to see

anyone going to
install <creativework>Friday Night
lights</creativework>?

Criterion

top token

joint

<person>Oscar</person>’s new favorite pass
time is running as fast as he can from one
end of the house to another yelling
BuhBYYYYYE

<person>Jack</person>’s new favorite pass
time is running as fast as he can from one
end of the house to another yelling
BuhBYYYYYE

<person>Ben</person>’s new favorite pass time
is running as fast as he can from one end of
the house to another yelling BuhBYYYYYE

Table 12: Data examples of W-NUT augmentation.
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Parameter

Value

Example

Sampling

entity

context

random context

mixed

Zu einer Gebietsverdnderung kam es 1822, als
das vorher selbstdndige <LOC>Champsigna</LOC>
nach <LOC>Soucia</LOC> eingemeindet wurde.

Zu einer Gebietsverdnderung kam es 1822, als
das vorher selbstdndige <LOC>Champsigna</LOC>
nach <LOC>Paris</LOC> eingemeindet wurde.

Zu einer Gebietsverdnderung kam es 1822, als
das vorher selbstdndige <LOC>Champsigna</LOC>
nach <LOC>Soucia</LOC> verlegt wurde.

Zu einer Gebietsverdnderung kam es 1822, als
das damals selbstdndige <LOC>Champsigna</LOC>
nach <LOC>Soucia</LOC> eingemeindet wurde.

Zu einer Eingemeindung kam es 1822, als die
damals selbstdndige <LOC>Dorf</LOC> nach
<LOC>Turin</LOC> verlegt wurde.

Order

independent

conditional

Aus diesem Grund wurde er Anfang Januar auch
nach nur wenigen Tagen aus dem Klinikum
<LOC>Jena</LOC> in eine Reha-Einrichtung am
<LOC>Bodensee</LOC> verlegt.

Zu diesem Grund wurde er Anfang Januar und
nach nur zwei Tagen aus dem Klinikum
<LOC>Jena</LOC> in die Reha-Einrichtung am
<LOC> Boden </LOC> verlegt.

Aus diesem Grund wo ich Anfang Januar auch
nach nur wenigen Tagen aus dem Klinikum
<LOC>Jena</LOC> in die Reha-Einrichtung am
<LOC>Bodensee</LOC> verlegt.

Criterion

top token

joint

Mit ihm der gleichen Meinung sind
<PER>Pyrrhon</PER> und <PER>Erillus</PER> von
<LOC>Karthago</LOC>.

Mit ihm der gleichen Meinung sind
<PER>Pyrrhon</PER> und <PER>Gregor</PER> von
<LOC>Karthago</LOC>.

Mit ihm der gleichen Meinung sind
<PER>Alexander</PER> und <PER>Erillus</PER>
von <LOC>Karthago</LOC>.

Table 13: Data examples of GermEval augmentation.
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Parameter

Value

Example

Sampling

entity

context

random context

mixed

<PER>Christopher Reeve</PER> --—
<PER>Reeve</PER> was best known for playing
the comic book hero <PER>Superman</PER> in
four movies but his greatest heroics came in
real life.

<PER>Christopher Reeve</PER> —-—
<PER>Reeve</PER> was best known for playing
the comic book hero <PER>Batman</PER> in four
movies but his greatest heroics came in real
life

<PER>Christopher Reeve</PER> The
<PER>Reeve</PER> is best known for playing
the comic book superhero <PER>Superman</PER>
in four movies but his greatest heroics came
in real life.

<PER>Christopher Reeve</PER> ——
<PER>Reeve</PER> popular best known for
popular popular popular book hero
<PER>Superman</PER> in four movies but his
popular heroics came in real popular popular
<PER>Christopher Reeve</PER> The
<PER>He</PER> is best known for playing the
comic book superhero <PER>Superman</PER> in
the films but his greatest heroics came in
real life.

Order

independent

conditional

Four weeks ago <ORG>Stagecoach </ORG> said it
had agreed the deal in principle, and it
expected to pay 110 million stg-plus for the
firm, with <ORG>Swebus</ORG>’
the state railway company.
Four days ago <ORG>it</ORG> said it had made
the deal in principle, and it expected to
raise 110 million euros to the operation
contract including <ORG>Swebus</ORG> '/
current employer being the state railway
company.

Two years ago <ORG>Stagecoach</ORG> said it
had made the deal in principle,
expected to pay 110 million marks for the
operation, with <ORG>Swebus</ORG>’s owner,
the Swedish railway company.

current owner,

and was

Criterion

top token

joint

<ORG>ZDF</ORG> said <LOC> Germany </LOC>
imported 47,600 sheep from <LOC> Britain
</LOC> last year, nearly half of total
imports.

<ORG>He</ORG> said <LOC> they </LOC> imported
more goods from <LOC> Germany </LOC> that
year, nearly half of all number.
<ORG>ZDF</ORG> this <LOC> this </LOC> this
47,600 sheep this <LOC> this </LOC> this year
this nearly half of this imports.

Table 14: Data examples of CoNLL augmentation.
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Abstract

Graph-to-text generation has benefited from
pre-trained language models (PLMs) in achiev-
ing better performance than structured graph
encoders. However, they fail to fully utilize
the structure information of the input graph. In
this paper, we aim to further improve the per-
formance of the pre-trained language model
by proposing a structured graph-to-text model
with a two-step fine-tuning mechanism which
first fine-tunes the model on Wikipedia be-
fore adapting to the graph-to-text generation.
In addition to using the traditional token and
position embeddings to encode the knowl-
edge graph (KG), we propose a novel tree-
level embedding method to capture the inter-
dependency structures of the input graph. This
new approach has significantly improved the
performance of all text generation metrics for
the English WebNLG 2017 dataset.!

1 Introduction

In the graph-to-text generation task (Gardent et al.,
2017), the model takes in a complex KG (an exam-
ple is in Figure 1) and generates a corresponding
faithful natural language description (Table 1). Pre-
vious efforts for this task can be mainly divided
into two categories: sequence-to-sequence mod-
els that directly solve the generation task with
LSTMs (Gardent et al., 2017) or Transformer
(Castro Ferreira et al., 2019); and graph-to-text
models (Trisedya et al., 2018; Marcheggiani and
Perez-Beltrachini, 2018) which use a graph en-
coder to capture the structure of the KGs. Re-
cently, Transformer-based PLMs such as GPT-
2 (Radford et al., 2019), BART (Lewis et al., 2020),

*This research was conducted during the author’s intern-
ship at Salesforce Research.
'The programs, data and resources are publicly avail-
able for research purpose at: https://github.com/
EagleW/Stage-wise-Fine—tuning

International

Telangana Tennis
Federation
Northeast sports Governing Body
 S—
Acharya
Karnataka < state Institute of | -sports Offered’{ Tennis
Technology
West  was given the 'Technical Campus' by
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Education

Figure 1: Input RDF Knowledge Graph

and T5 (Raffel et al., 2020) have achieved state-
of-the-art results on WebNLG dataset due to fac-
tual knowledge acquired in the pre-training phase
(Harkous et al., 2020; Ribeiro et al., 2020b; Kale,
2020; Chen et al., 2020a).

Despite such improvement, PLMs fine-tuned
only on the clean (or labeled) data might be
more prone to hallucinate factual knowledge (e.g.,
“Visvesvaraya Technological University” in Table
1). Inspired by the success of domain-adaptive
pre-training (Gururangan et al., 2020), we propose
a novel two-step fine-tuning mechanism graph-to-
text generation task. Unlike (Ribeiro et al., 2020b;
Herzig et al., 2020; Chen et al., 2020a) which di-
rectly fine-tune the PLMs on the training set, we
first fine-tune our model over noisy RDF graphs
and related article pairs crawled from Wikipedia
before final fine-tuning on the clean/labeled train-
ing set. The additional fine-tuning step benefits
our model by leveraging triples not included in the
training set and reducing the chances that the model
fabricates facts based on the language model.

Meanwhile, the PLMs might also fail to cover all
relations in the KG by creating incorrect or miss-
ing facts. For example, in Table 1, although the
T5-large with Wikipedia fine-tuning successfully
removes the unwanted contents, it still ignores the
“sports Governing Body” relation and incorrectly

Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing: Student Research Workshop, pages 16-22
August 5-6, 2021. ©2021 Association for Computational Linguistics



Category

Output

Reference

The Acharya Institute of Technology in Karnataka state was given Technical Campus status by 'All
India Council for Technical Education in Mumbai . The school offers ' tennis which is governed by the
International Tennis Federation . Karnataka has the Arabian Sea to its west and in the northeastis Telangana .

It was given the Technical Campus status by the

T5-large  The state of Karnataka is located southwest of Telangana and east of the Arabian Sea . It is the lo-
cation of the Acharya Institute of Technology which was granted the Technical Campus status by the
All India Council for Technical Education in Mumbai . The Institute is affiliated with the Visvesvaraya Tech-
nological University and offers the sport of | tennis . [International Tennis Federation]
7 TSil;rge - 7T¥167Aich;1r§a71n7sti7tu¥e ;)fifgcl;n(;l(;g}j is located in the state of Karnataka . It was giiv;nithie feghgicialiC?mTpas Sta-
+ Wiki tus by the ' All India Council for Technical Education which is located in Mumbai . The institute offers | tennis
and has Telangana to its northeast and the Arabian Sea to its west. [International Tennis Federation]
7 E‘Silairgif; "The gcﬂa;y; TInstitute of i‘e;h;loio?g}j is located in the state of Karnataka which has :Faa;lgianiaitg 7
-'l;osition its northeast and the Arabian Sea to its west.
All India Council for Technical Education in Mumbai . The Institute offers | tennis which is governed by the
International Tennis Federation .
" T5-large  The Acharya Institute of Technology in Karnataka was given the *Technical Campus’ status by the
-'l;c:z/iitli(ci) ;’ All India Council for Technical Education in Mumbai . Karnataka has Telangana to its northeast and the

Arabian Sea to its west. One of the sports offered at the Institute is ' tennis which is governed by the

International Tennis Federation .

Table 1: Human and System Generated Description in Figure 1. We use the color box to frame each entity out
with the same color as the corresponding entity in Figure 1. We highlight fabricated facts, [missed relations], and

incorrect relations with different color.

links the university to both “Telangana” and “Ara-
bian Sea”. To better capture the structure and in-
terdependence of facts in the KG, instead of using
a complex graph encoder, we leverage the power
of Transformer-based PLMs with additional posi-
tion embeddings which have been proved effective
in various generation tasks (Herzig et al., 2020;
Chen et al., 2020a,b). Here, we extend the embed-
ding layer of Transfomer-based PLMs with two
additional triple role and tree-level embeddings to
capture graph structure.

We explore the proposed stage-wise fine-tuning
and structure-preserving embedding strategies for
graph-to-text generation task on WebNLG corpus
(Gardent et al., 2017). Our experimental results
clearly demonstrate the benefit of each strategy in
achieving the state-of-the-art performance on most
commonly reported automatic evaluation metrics.

2 Method

Given an RDF graph with multiple relations
G {(s1,71,01),(82,72,02), ..., (SpysTn,0n)},
our goal is to generate a text faithfully describing
the input graph. We represent each relation with
a triple (s;,73,0;) € G fori € {1,...,n}, where
Si, T3, and o; are natural language phrases that rep-
resent the subject, type, and object of the relation,
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respectively. We augment our model with addi-

Loken dings [cest] [ st ] [kamnataka] [ I | [Northeast] -
E‘rfgi%réings [Poso] [Pos¢] [ Pos, | [Poss] [ Poss | -
Ex’g‘:ﬁ:}zs [RoLg | [RoLs]| [ RoLy | [RoLq] [ROL; | -
E:g:‘é‘éigJ o | [ wvo | [ vy | ve || vy |-

Figure 2: Position Embeddings for the KG in Figure 1

tional position embeddings to capture the structure
of the KG. To feed the input for the large-scale
Transformer-based PLM, we flatten the graph as a
concatenation of linearized triple sequences:

IS s1|Pr1|Ooy...|S sp|Pry|O oy

following Ribeiro et al. (2020b), where |.S, | P, |O
are special tokens prepended to indicate whether
the phrases in the relations are subjects, relations,
or objects, respectively. Instead of directly fine-
tuning the PLM on the WebNLG dataset, we first
fine-tune our model on a noisy, but larger corpus
crawled from Wikipedia, then we fine-tune the
model on the training set.

Positional embeddings Since the input of the
WebNLG task is a small KG which describes prop-
erties of entities, we introduce additional positional



Model BLEU(%)1 METEOR?T TER|
Seen Unseen All Seen Unseen All Seen Unseen All
Without Gardent et al. (2017) 54.52 33.27 45.13 041 0.33 037 040 0.55 0.47
Pretrained Moryossef et al. (2019) > 53.30 3441 4724 0.44 0.34 0.39 047 0.56 0.51
LM Zhao et al. (2020) 64.42 38.23 52.78 0.45 0.37 041 033 0.53 0.42
" "With  Nanetal. (2021) 5286 3785 4589 042 037 040 044 059 051
Pretrained Kale (2020) 63.90 52.80 57.10 0.46 0.41 0.44 - - -
LM Ribeiro et al. (2020b) 64.71 53.67 59.70 0.46 0.42 0.44 - - -
" Ourmodel ~— T5-large + Wiki + Position ~ 66.07 53.87  60.56 0.46 042 044 032 041 036

Table 2: System Results on WebNLG Test Set Evaluated by BLEU, METEOR, and TER with Official Scripts

embeddings to enhance the flattened input of pre-
trained Transformer-based sequence-to-sequence
models such as BART and TaPas (Herzig et al.,
2020). We extend the input layer with two position-
aware embeddings in addition to the original posi-
tion embeddings? as shown in the Figure 2:

* Position ID, which is the same as the original
position ID used in BART, is the index of the
token in the flattened sequence |S s; |P 1 |O
01 . |S 8p |P 1y |O 0y, .

* Triple Role ID takes 3 values for a specific
triple (s;, 74, 0;): 1 for the subject s;, 2 for the
relation r;, and 3 for the object o;.

¢ Tree level ID calculates the distance (the num-
ber of relations) from the root which is the
source vertex of the RDF graph.

Two-step Fine-tuning To get better domain adap-
tation ability (Gururangan et al., 2020; Herzig et al.,
2020), following TaPas and Wikipedia Person and
Animal Dataset (Wang et al., 2018), we perform
intermediate pre-training by coupling noisy En-
glish Wikipedia data with Wikidata triples, both
of which are crawled in March 2020. We select
15 related categories (Astronaut, University, Monu-
ment, Building, ComicsCharacter, Food, Airport,
SportsTeam, WrittenWork, Athlete, Artist, City,
MeanOfTransportation, CelestialBody, Politician)
that appear in the WebNLG dataset (Gardent et al.,
2017) and collect 542,192 data pairs. For each
Wikipedia article, we query its corresponding Wiki-
Data triples and remove sentences which contain
no values in the Wikidata triples to form graph-text
pairs. Unlike (Chen et al., 2020a) which focuses on
individual entity-sentence pairs for distant super-
vision, our pre-training corpus, on the other hand,

ZFor this baseline, we use the results reported from Zhao
et al. (2020) who also use official evaluation scripts.

3For T5 models, we only keep the Triple Role and Tree-
level embeddings.
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is designed to better adapt to translating deeper
graph structure into text. We remove triples and
description pairs that have already appeared in the
WebNLG dataset. After intermediate pre-training
on this noisy corpus, we continue with fine-tuning
our model on the WebNLG dataset.

3 Experiments

3.1 Dataset and Implementation details

Model BLEU?T Pt Rt F17
BART-base 57.8 68.7 689 67.0
+ Wikipedia 59.7 69.6 70.7 684
+ Position 58.8 68.7 699 67.6
+ Wiki + Position 57.3 67.8 69.0 66.6

" BART-large 583 679 694 668
+ Wikipedia 59.0 68.0 704 67.4
+ Position 58.1 67.6 694 66.6
+ Wiki + Position 60.0 686 0692 67.1

" distill-BART-xsum ~ 59.1 = 699 70.6 685
+ Wikipedia 59.8 69.7 711 68.8
+ Position 59.2 69.8 70.2 68.3
+ Wiki + Position 59.9 70.1 70.1 68.7

" TS-base 6 61.2 723 720 706
+ Wikipedia 60.9 720 718 70.2
+ Position 60.8 724 724 708
+ Wiki + Position 60.3 722 720 70.5

" T5-large ¢ 60.0 716 721 702
+ Wikipedia 61.3 722 720 705
+ Position 60.6 72.1 724 70.6
+ Wiki + Position 61.9 728 735 71.6

Table 3: Results with both Wikipedia Fine-tuning and
Positional Embedding for Various Pre-trained Models
over All Categories on Development Set Evaluated by
average of PARENT4precision, recall, F1 and BLEU
(%)

We use the original version of English
WebNLG2017 (Gardent et al., 2017) dataset which
contains 18,102/2,268/4,928 graph-description
pairs for training, validation, and testing set re-
spectfully. For this task, we investigate a variety
of the BART and T5 models with our novel tree-

*https://github.com/KaijuML/parent



level embeddings. The statistics and more details
of those models are listed in Appendix A.

Model Pt Rt F11
Gardent et al. (2017) 88.35 90.22 89.23
Moryossef et al. (2019) 85.77 89.34 87.46

" Nanetal. 2021) 89.49 9233  90.83
Ribeiro et al. (2020b) 89.36  91.96 90.59

" T5-large + Wiki + Position 9636  96.13  96.21

Table 4: System Results on WebNLG Test Set Evalu-
ated by BERTScore precision, recall, F1 (%)

3.2 Results and Analysis

We use the standard NLG evaluation metrics to
report results: BLEU (Papineni et al., 2002),
METEOR (Lavie and Agarwal, 2007), and TER
(Snover et al., 2006) , as shown in Table 2. Be-
cause Castro Ferreira et al. (2020) has found that
BERTScore (Zhang* et al., 2020) correlates with
human evaluation ratings better, we use BERTscore
to evaluate system results® as shown in Table 4.
When selecting the best models, we also evaluate
each model with PARENT (Dhingra et al., 2019)
metric which measures the overlap between predic-
tions and both reference texts and graph contents.
Dhingra et al. (2019) show PARENT metric has
better human rating correlations. Table 3 shows
the pre-trained models with 2-step fine-tuning and
position embeddings achieve better results.® We
conduct paired t-test between our proposed model
and all the other baselines on 10 randomly sampled
subsets. The differences are statistically significant
with p < 0.008 for all settings.

Results with Wikipedia fine-tuning. The
Wikipedia fine-tuning helps the model handle
unseen relations such as “inOfficeWhileVicePresi-
dent”, and “activeYearsStartYear” by stating “His
vice president is Atiku Abubakar.” and “started
playing in 1995 respectively. It also combines
relations with the same type together with correct
order, e.g., given two death places of a person,
the model generates: “died in Sidcup, London”
instead of generating two sentences or placing the
city name ahead of the area name.

Results with positional embeddings. For the
KG with multiple triples, additional positional em-
beddings help reduce the errors introduced by pro-

>We only use BERTScore to evaluate baselines which have
results available online.

8For more examples, please check Appendix for reference.

19

noun ambiguity. For instance, for a KG which has

“leaderName” relation to both country’s leader and
university’s dean, position embeddings can distin-
guish these two relations by stating “Denmark’s
leader is Lars Lokke Rasmussen” instead of “its
leader is Lars Lokke Rasmussen”. The tree-level
embeddings also help the model arrange multiple
triples into one sentence, such as combining the
city, the country, the affiliation, and the affiliation’s
headquarter of a university into a single sentence:
“The School of Business and Social Sciences at the
Aarhus University in Aarhus, Denmark is affili-
ated to the European University Association in
Brussels”.

3.3 Remaining Challenges

However, pre-trained language models also gen-
erate some errors as shown in Table 5. Because
the language model is heavily pre-trained, it is bi-
ased against the occurrence of patterns that would
enable it to infer the right relation. For example,
for the “activeYearsStartYear” relation, the model
might confuse it with the birth year. For some
relations that do not have a clear direction, the lan-
guage model is not powerful enough to consider
the deep connections between the subject and the
object. For example, for the relation “doctoralStu-
dent”, the model mistakenly describes a professor
as a Ph.D. student. Similarly, the model treats an as-
teroid as a person because it has an epoch date. For
KGs with multiple triples, the generator still has a
chance to miss relations or mixes the subject and
the object of different relations, especially for the
unseen category. For instance, for a soccer player
with multiple clubs, the system might confuse the
subject of one club’s relation with another club.

4 Related Work

The WebNLG task is similar to Wikibio genera-
tion (Lebret et al., 2016; Wang et al., 2018), AMR-
to-text generation (Song et al., 2018) and RO-
TOWIRE (Wiseman et al., 2017; Puduppully et al.,
2019). Previous methods usually treat the graph-
to-text generation as an end-to-end generation task.
Those models (Trisedya et al., 2018; Gong et al.,
2019; Shen et al., 2020) usually first lineralize the
knowledge graph and then use attention mecha-
nism to generate the description sentences. While
the linearization of input graph may sacrifice the
inter-dependency inside input graph, some papers
(Ribeiro et al., 2019, 2020a; Zhao et al., 2020)



Category

Output

T5-large

T5-large

T5-large
+Wiki

T5-large
+Position

Andrew White (born in 2003) is a musician who is associated with the band Kaiser Chiefs and Marry Banilow.
He is also associated with the label Polydor Records and is signed to B-Unique Records. S| Aleksandra Kovac P|
activeYearsStartYear O| 1990

Walter Baade was born in the German Empire and graduated from the University of Gottingen. He was the
doctoral student of Halton Arp and Allan Sandage and was the discoverer of 1036 Ganymed. S| Walter
Baade P| doctoralStudent O| Halton Arp; S| Walter Baade P| doctoralStudent O| Allan Sandage

11264 Claudiomaccone was born on the 26th of November, 2005. He has an orbital period of 1513.722 days, a
periapsis of 296521000.0 kilometres and an apoapsis of 475426000.0 kilometres. S| 11264 Claudiomaccone P|
epoch O 2005-11-26; S| Aleksandr Prudnikov P| club O] FC Amkar Perm

The chairman of FC Spartak Moscow is Sergey Rodionov. Aleksandr Prudnikov plays for FC Spartak Moscow
and manages FC Amkar Perm. [ S| FC Amkar Perm P| manager O| Gadzhi Gadzhiyev; S| Aleksandr Prudnikov

P| club O] FC Amkar Perm |

Table 5: System Error Examples. We highlight fabricated facts, [missed relations], incorrect relations, and

ground truth relations with different color.

use graph encoder such as GCN (Duvenaud et al.,
2015) and graph transformer (Wang et al., 2020a;
Koncel-Kedziorski et al., 2019) to encode the in-
put graphs. Others (Shen et al., 2020; Wang et al.,
2020b) try to carefully design loss functions to con-
trol the generation quality. With the development
of computation resources, large scale PLMs such as
GPT-2 (Radford et al., 2019), BART (Lewis et al.,
2020) and T5 (Raffel et al., 2020) achieve state-of-
the-art results even with simple linearized graph in-
put (Harkous et al., 2020; Chen et al., 2020a; Kale,
2020; Ribeiro et al., 2020b). Instead of directly
fine-tuning the PLMs, we propose a two-step fine-
tuning mechanism to get better domain adaptation
ability. In addition, using positional embeddings as
an extension for PLMs has shown its effectiveness
in table-based question answering (Herzig et al.,
2020), fact verification (Chen et al., 2020b), and
graph-to-text generation (Chen et al., 2020a). We
capture the graph structure by enhancing the input
layer with the triple role and tree-level embeddings.

5 Conclusions and Future Work

We propose a new two-step structured generation
task for the graph-to-text generation task based on
a two-step fine-tuning mechanism and novel tree-
level position embeddings. In the future, we aim
to address the remaining challenges and extend the
framework for broader applications.
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Abstract

The neural hidden Markov model has been
proposed as an alternative to attention mecha-
nism in machine translation with recurrent neu-
ral networks. However, since the introduction
of the transformer models, its performance
has been surpassed. This work proposes to
introduce the concept of the hidden Markov
model to the transformer architecture, which
outperforms the transformer baseline. Inter-
estingly, we find that the zero-order model al-
ready provides promising performance, giving
it an edge compared to a model with first-order
dependency, which performs similarly but is
significantly slower in training and decoding.

1 Introduction

Recently, significant improvements have been
made to neural machine translations (NMT). Re-
gardless of whether a recurrent neural network with
long short-term memory (Hochreiter and Schmid-
huber, 1997) (LSTM-RNN) (Bahdanau et al., 2015)
or a convolutional neural network (CNN) (Gehring
et al., 2017) or a self-attentive transformer network
(Vaswani et al., 2017) is used, the attention mecha-
nism is always one of the key components that all
state-of-the-art NMT systems contain.

Several attempts have been made to explore al-
ternative architectures that do not use an attention
mechanism (Wang et al., 2017, 2018; Bahar et al.,
2018; Press and Smith, 2018). However, either the
performance of those systems is significantly worse
than that of the LSTM-RNN-based approaches, or
the time and memory complexity is much higher.
Since the transformer architecture has upgraded the
state-of-the-art to an even higher standard, fewer
studies are being carried out in this direction.

Despite the promising translation performance
of the transformer architecture, recent studies have
found that the quality of the word alignments pro-
duced by the multi-head cross-attention weights is

quite poor, and various techniques are proposed to
address this problem (Alkhouli et al., 2018; Garg
etal., 2019; Zenkel et al., 2020). While these works
focus on extracting promising alignment informa-
tion from the transformer architecture, we aim to
improve the translation performance of the baseline
model by introducing alignment components while
keeping the system monolithic. To this end, the pos-
sibilities are studied to apply the transformer archi-
tecture to the direct hidden Markov model (HMM),
which is not as straightforward as in the case of
LSTM-RNN due to the cross-attention through all
decoder layers. Experimental results show that the
zero-order direct HMM already outperforms the
baseline transformer model in terms of TER scores
(Snover et al., 2006), while the first-order depen-
dency with higher computational complexity offers
no further improvements.

2 Related Work

The attention component is introduced by Bah-
danau et al. (2015) in NMT to simulate the align-
ment between the source and target sentence, which
leads to significant improvements compared to the
pure sequence-to-sequence model (Sutskever et al.,
2014). Wang et al. (2018) present a LSTM-RNN-
based HMM that does not employ an attention
mechanism. This work aims to build a similar
model with the transformer architecture. While
they perform comparable to the LSTM-RNN-based
attention baseline with a much slower model, our
model outperforms the transformer baseline in
terms of TER scores.

The derivation of neural models for translation
on the basis of the HMM framework is also studied
in Yu et al. (2017) and Alkhouli et al. (2018). In
Yu et al. (2017), alignment-based neural models
are used to model alignment and translation from
the target to the source side (inverse direction), and
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a language model is included in addition. And
Alkhouli et al. (2018) rely on alignments generated
by statistical systems that serve as supervision for
the training of the neural systems. By contrast, the
model proposed in this work does not require any
additional language model or alignment informa-
tion and thus keeps the entire system monolithic.

Several works have been carried out to change
attention models to capture more complex depen-
dencies. Cohn et al. (2016) introduce structural
biases from word-based alignment concepts such
as fertility and Markov conditioning. Arthur et al.
(2016) incorporate lexical probabilities to influence
attention. These changes are based on the LSTM-
RNN-based attention model. Garg et al. (2019) and
Zenkel et al. (2020) try to generate translation and
high-quality alignment jointly using an end-to-end
neural training pipeline. By contrast, our work fo-
cuses more on improving the translation quality
using the alignment information generated by the
self-contained model.

3 Direct HMM

The goal of machine translation is to find the target
language sentence e{ = ey, e9, -, ey that is the
translation of a particular source language sentence
fi] = f1, fa, -+, f7 with the maximum likelihood
(arg max; 1 {Pr(ef|f{)}). In the direct HMM,
an alignment from target to source (i — j = b;) is
introduced into the translation probability:

Pr(ef|f{) ZPT er, bilfi) (D
bI
—ZHPr bi,eilb5 bt ) 2)
bI =1
—ZHPr ez\b’,eo £ -Pr(bi byt et £
bI =1

lexicon probablhty alignment probability

3)
The term “direct” refers to the modeling of p(e|f)
instead of p(f|e) as in the conventional HMM
(Vogel et al., 1996). In Wang et al. (2018), two
LSTM-RNN based neural networks are used to
model the lexicon and the alignment probability
separately. In this work they are modeled with a
single transformer-based network.

4 Direct HMM in Transformer

This section describes in detail how we modify the
transformer model so that both the alignment and
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the lexicon probability can be generated. While the
lexicon model in the direct HMM has a zero-order
dependency on the current alignment position b;:

Pr(eﬂbé,eo fl ) == pleilbi, g fl ) @4
we implement zero- and first-order dependencies
for the alignment model.

4.1 Zero-order Architecture

In the zero-order architecture, the alignment model
is defined as follows:

Pr(bilby ' eg ' f7) = p(bileg ' ) (5)
To obtain the alignment probability we change the
order of the weighted sum and the activation func-
tion at each decoder layer in the transformer:
C(l+1)

)
§ al+1

7=1

i) W1 max (0, Wah, + Was!")

(6)

: index of the decoder layer € {1,2.--- , L}
;: context vector, input to the next layer

i: source hidden state (key and value)

;. target hidden state (query)

: weight matrices
a(jli):
The arrow indicates that the weighted sum with
the cross-attention is moved outside of the ReLU
activation function. Before the ReLLU function is
employed, the target hidden state s;_; is projected
and added to the projected source hidden state /; in
order to include information from the target side to
the context vector, which can also be considered as
a substitution for the residual layer in the standard
transformer architecture. As the outputs of the last
decoder layer (and the entire network) we have a
lexicon probability:

softmax(A[s;, h;]) cross-attention weights

p<ei‘j7 66_1a fi])
= softmax (W4 - max (0, Ws - hj + Wg - SEL)>)
(N
and an alignment probability:
p(ley t f1) = P (i) ®)
The output probability for the current word is:
(6Z|60 ,fl )
J
Z Gleg™ /1) - pleili eg ™ f) 9
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Figure 1: Visualized comparison between the direct HMM and the standard transformer architecture.

And the sentence probability is then:

I
pletlf) =] pleles™ /) (10)
i=1

Due to the redefinition of the context vector, layer
normalization, residual connection and linear pro-
jection are also modified accordingly. Detailed
changes to the architecture are shown in Figure 1.
Note that all modifications are made to decoder
layers while encoder layers remain unchanged.

4.2 First-order Architecture

In the first-order architecture, the alignment model
is defined as follows:

Pr(bi|g " e f) = p(bilbi-r,eg ", f7)
(1D
The lexicon probability remains the same as in
the zero-order model (Equation 4). To consider
the dependency on the previous source position
(7' = b;—1), we change the cross-attention weights:
M (jli, )
= softmax (A |:SZ(L71), w- [hg“, hg,L)]])
(12)
where [h§L), h;,L)] denotes the concatenation of the
source hidden states at positions 7 and 7’
Changing the architecture from the zero-order
model to the first-order model is straightforward,
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but the main challenge is in the training process.
Due to the first-order dependency, the complexity
of the brute-force search (forward path) becomes
exponential (confirm Equation 3). To address this
problem, we apply a dynamic programming algo-
rithm to find the probability of the entire sentence:

QG 4) =Y plewli’s f{,e") - Qi — 1,5)
j/

13)
pleflfi) = Q) =>_Q(I,5) (14)
J
where () denotes the recursive function. For given
sentence pairs (Fy, E,), the training criterion is
then the maximization of the log-likelihood func-
tion arg maxy » ., log p(E, |F;., 0).

In previous work on the neural HMM, the
forward-backward algorithm is implemented to cal-
culate the posterior probability as the golden truth
to guide the training of the lexicon and the align-
ment models (referred to as “manual differentia-
tion”). But actually it is not necessary. As long
as the forward path is implemented according to
a recursive function of dynamic programming, as
shown in Equation 13, the frameworks can han-
dle the backward path automatically (referred to
as “automatic differentiation”). Intuitively, the re-
cursive equation is nothing more than a sum of
products that should be easy to work with the au-



tomatic differentiation toolkit. Theoretically, the
mathematical proof for this is presented in Eisner
(2016). And practically, our experimental results of
the automatic differentiation and the manual differ-
entiation are the same as long as label smoothing
(Szegedy et al., 2016) is not applied.

Without an explicitly implemented forward-
backward algorithm, applying label smoothing is
not straightforward as it should be applied to the
words while the automatic differentiation is per-
formed after the forward path has been done for
the entire sentence. To solve this problem, we
apply label smoothing to the lexicon probability
pleild, ey t, f{) at each step of the forward path.
Although in this case the type of label smoothing is
different for the automatic and manual differentia-
tion, experimental results are quite similar (< 0.1%
differences). The automatic differentiation has an
advantage in terms of memory and time complex-
ity and is therefore used for all subsequent experi-
ments.

5 Experiments

5.1 Translation Performance

In order to test the performance of the direct
HMM, we carry out experiments on the WMT
2019! German—English (de-en), WMT 2019
Chinese—English (zh-en) and WMT 2018
English—Turkish (en-tr) tasks. These three
tasks represent different amounts of training data,
from hundreds of thousands to tens of millions.
Detailed data statistics are shown in Appendix A.

The proposed approaches are completely imple-
mented in fairseq (Ott et al., 2019). The standard
transformer base model (Vaswani et al., 2017) im-
plemented in the fairseq framework is used as our
baseline and we follow the standard setup for hyper-
parameters. Translation performance is measured
by case-insensitive BLEU (Papineni et al., 2002)
and TER (Snover et al., 2006) scores with SACRE-
BLEU toolkit (Post, 2018). The results are shown
in Table 1.

The results show that the direct HMMs achieve
comparable performance to the transformer base-
lines in terms of BLEU scores and outperform the
baseline systems in terms of TER scores. The TER
metric is known to favor shorter hypotheses, but
from the length ratio results we can conclude that
the improvements are not due to it. In addition, it

'http://www.statmt.org/wmt19/
http://www.statmt.org/wmt18/
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BLEU [%] de—-en | zh-en | en-tr
transformer base 38.7 31.5 17.4
zero-order HMM 38.5 31.5 17.6
first-order HMM 38.7 31.3 17.7
TER [%] de—en | zh-en | en—-tr
transformer base 48.2 56.6 71.9
zero-order HMM 47.7 55.7 714
first-order HMM 47.9 554 71.2
length ratio [%] de—-en | zh—-en | en—tr
transformer base 97.3 94.1 99.7
zero-order HMM 97.7 94.0 99.7
first-order HMM 98.0 93.9 99.5

Table 1: Experimental results on the WMT news trans-
lation tasks.

can be seen that the first-order dependency could
not provide further improvements over the zero-
order model. To find the possible reasons for this,
we try to extract alignment heat maps with regard
to the dependencies between the current position j
and the predecessor position j'.

“ |
0 1 2 3 4 5 6 7

i dim

6

7

0.0

jdim

Figure 2: Alignment heat map for p(j|s’,ef ™", f{)
with fixed target position i. The heat map is extracted
when the training is almost converging.

As shown in Figure 2, the target position j with
the maximum probability is often the same for dif-
ferent predecessor positions j’, which indicates that
the training of the model tends to “forget” the ex-
plicit first-order dependency. We checked a lot of
heat maps and this happens quite often, in fact, for
short sentences it almost always happens. This es-
sentially explains why the first-order model fails to
make improvements. To benefit from the first-order
dependency, constraints or other techniques might
be used during training.

Here the results of the RNN-based direct HMM
are not included as one of the baselines, as the
performance of the RNN-based approaches is sig-
nificantly surpassed by the transformer-based ap-



proaches. We believe this work will outperform the
system proposed in (Wang et al., 2018), but that is
mainly due to the transformer architecture rather
than refinements we made.

Compared to the baseline transformer model,
the direct HMM only has about 2% more free pa-
rameters. While the first-order model has a clear
disadvantage in terms of training and decoding
speed compared to the baseline system due to the
inevitable loop over the target position ¢, the decod-
ing speed of the zero-order model is only slightly
slower than that of the transformer baseline. De-
tails of time usage are given in Appendix B.

5.2 Alignment Quality

In addition to improvements in the TER scores, we
believe that the direct HMM also provides better
alignment quality than the standard cross-attention.
To verify this assumption, we compute the align-
ment error rate (AER) (Och and Ney, 2000) on
the RWTH German-English Golden Alignments
corpus (Vilar et al., 2006), which provides 505
manually word-aligned sentence pairs extracted
from the Europarl corpus. We take the argmax
of the alignment probability output of our model
as an estimated alignment. In addition, as with
the conventional HMM, the argmax of the poste-
rior probability can also be used as an estimated
alignment, which explicitly includes the lexicon
information and should lead to a better quality. As
baselines, we take the argmax of the average of
the attention heads in the fifth and sixth decoder
layers, since Garg et al. (2019) claim that the cross-
attention weights in the fifth layer produce more
accurate alignment information than the last layer.
All models are trained in both directions to get
bidirectional alignments. These bidirectional align-
ments are then merged using the grow diagonal
heuristic (Koehn et al., 2005).

model alignment from | AER
transformer | fifth layer 39.1
sixth layer 55.7
direct HMM | alignment prob. | 31.8
posterior prob. | 27.4

Table 2: Experimental results on the German-English
alignment task in AER [%].

From the results shown in Table 2, we can ob-
serve that the alignment generated by the direct
HMM has a significantly better quality than that

extracted directly from the transformer attention
weights. The posterior probability that contains the
lexicon information indeed provides better align-
ments, which can be seen as a further advantage
of the direct HMM, since it cannot be calculated
in the standard transformer architecture without an
explicit alignment probability. In terms of AER
performance, our model stands behind GIZA++
(Och and Ney, 2003) as well as the approaches pro-
posed in Garg et al. (2019) and Zenkel et al. (2020).
Note, however, that our zero-order model does not
include the future target word information in esti-
mating alignments, and we do not use additional
loss for alignment training, since the original goal
of this work is to improve translation quality by
applying HMM factorization.

In addition to the AER results, Appendix C
shows heat maps extracted for the alignment prob-
ability from direct HMM compared to those ex-
tracted for cross-attention weights from the stan-
dard transformer model.

6 Conclusion

This work exhibits the use of the transformer archi-
tecture in a direct HMM for machine translation,
which significantly improves TER scores. In ad-
dition, we show that the proposed system tends
to “refuse” to learn first-order dependency during
training. The zero-order model achieves a good
compromise between performance and decoding
speed, which is much faster than previous work on
the direct HMM. In order to benefit from the pre-
decessor alignment information, further techniques
should be carried out. Another future work would
be to combine the attention mechanism with the
alignment information to further improve perfor-
mance.
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A Data Statistics

WMT 2019 train valid test
German—English source | target | source | target | source | target
# sentence pairs 5.9M 2169 2000

# original vocabulary 21M | 932k | 12.2k | 10.7k | 10.8k | 9.5k
# vocabulary after BPE 45.1k | 33.2k | 10.5k | 8.2k 9.3k | 7.3k
# running words 137M | 144M | 38.2k | 40.8k | 31.1k | 34.4k
# running BPE sub-words | 160M | 157M | 54.8k | 53.1k | 44.7k | 43.4k
WMT 2019 train valid test
Chinese—English source \ target | source \ target | source \ target
# sentence pairs 26.0M 2002 2000

# vocabulary 1.3M | 651k 9.2k | 8.7k 9.5k | 8.5k
# vocabulary after BPE 47.0k | 32.2k 9.2k | 9.2k 9.3k | 8.8k
# running words 555M | 606M | 53.7k | 59.8k | 62.7k | 82.2k
# running BPE sub-words | 588M | 658M | 58.7k | 65.1k | 69.2k | 87.2k
WMT 2018 train valid test
English— Turkish source | target | source | target | source | target
# sentence pairs 208k 3007 3000

# vocabulary 70.6k | 160k 8.7k | 15.1k 9.4k | 16.4k
# vocabulary after BPE 7280 | 7324 | 4944 | 5437 | 5093 | 5592
# running words 5.16M | 4.61M | 683k | 55.0k | 70.5k | 56.8k
# running BPE sub-words | 6.72M | 7.45M | 98.0k | 101k 101k | 107k

For the German—English task, joint byte
pair encoding (BPE) (Sennrich et al., 2016)
with 32k merge operations is used.
newstest2015 dataset is used as the validation
set and newstest2019 as the test set.

The Chinese data are segmented using the
pkuseg toolkit® (Luo et al., 2019). The vocabu-
lary size and number of running words are calcu-
lated after segmentation. Separate BPE with 32k
merge operations is used for Chinese and English
data. The newsdev2017 dataset is used as the
validation set and newstest 2019 as the test set.

For the English—Turkish task, separate BPE
with 8k merge operations is used.
newstest2017 dataset is used as the validation
set and newstest2018 as the test set.

*https://github.com/lancopku/

pkuseg-python

The

The
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B Training and Decoding Speed

Training and decoding are performed on one
NVIDIA GeForce RTX 1080 Ti with 11 GB of
GPU memory. Table 3 shows the training and de-
coding speed on the WMT 2019 German—English
dataset. Compared to the baseline system, the dis-
advantages of the zero-order HMM on training
speed are mainly due to the limited GPU memory.
Since the largest tensor of the proposed model has
a dimension of batch size x length of the source
sentence x length of the target sentence x vocabu-
lary size (in the standard transformer the dimension
of “length of the source sentence” is not required),
the batch size must be reduced to fit in the GPU
memory. Although gradient accumulation can be
used to guarantee performance, the reduced batch
size still linearly slows the training speed. The in-
fluence on the decoding speed is rather small. By
introducing the first-order dependency, however, a
for loop over every target position is inevitable,
so that the training and decoding speeds are greatly
slowed down. This is also reported by the previous
work.

model # parameters training decoding
tokens/sec | time | tokens/sec time
transformer baseline 84.2M 10.2k 5d 108.2 | 6.9min
zero-order HMM 86.1M 2.2k | 20d 84.0 | 8.9min
first-order HMM 88.0M 0.4k | 54d 31.7 | 23.5min

Table 3: Comparison of training and decoding speed.
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C Heat Maps of Attention Weights and
Alignments

Figure 3 demonstrates the heat maps of some sen-
tence pairs that are randomly selected from the
German—English training data after the training
has almost converged. Note that here the x and y
axes indicate the source and target positions (7 and
1), which differs from Figure 2, where they indicate
the current and previous source positions (j and j').
We can observe that the alignment paths are much
more focused than the attention weights. Since
our main goal is to propose an alternative tech-
nique to improve translation performance rather
than alignment quality, alignment error rates are
not calculated in this work.
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Figure 3: Heat maps of attention weights and align-
ments. The source sentence goes from left to right and
the target sentence goes from top to bottom. The first
column shows the attention weight heat maps (average
of the multi-head cross-attention) for the 4th decoder
layer. The second column shows the attention weight
heat maps (average of the multi-head cross-attention)
for the 6th (last) decoder layer. The third column shows
the alignment heat maps taken from the proposed direct
HMM.



AutoRC: Improving BERT Based Relation Classification Models via
Architecture Search

Wei Zhu' *
! East China Normal University, China

Abstract

Although BERT based relation classification
(RC) models have achieved significant im-
provements over the traditional deep learn-
ing models, it seems that no consensus can
be reached on what is the optimal architec-
ture, since there are many design choices avail-
able. In this work, we design a comprehen-
sive search space for BERT based RC model-
s and employ a modified version of efficien-
t neural architecture search (ENAS) method
to automatically discover the design choices
mentioned above. Experiments on eight bench-
mark RC tasks show that our method is effi-
cient and effective in finding better architec-
tures than the baseline BERT based RC mod-
els. Ablation study demonstrates the necessity
of our search space design and the effective-
ness of our search method. We also show that
our framework can also apply to other entity
related tasks like coreference resolution and s-
pan based named entity recognition (NER).

1 Introduction

The task of relation classification (RC) is to pre-
dict semantic relations between pairs of entities
inside a context. It is an important NLP task s-
ince it serves as an intermediate step in variety of
NLP applications. There are many works that apply
deep neural networks (DNN) to relation classifica-
tion (Socher et al., 2012; Zeng et al., 2014; Shen
and Huang, 2016). With the rise of pre-trained
language models (PLMs) (Devlin et al., 2018), a
series of literature have incorporated PLMs such
as BERT in RC tasks (Baldini Soares et al., 2019;
Wu and He, 2019; Eberts and Ulges, 2019; Peng
et al., 2019), and shows significant improvements
over the traditional DNN models.

Despite great success, there is yet no consensus
reached on how to represent the entity pair and their

Contact: 52205901018 @stu.ecnu.edu.cn.

contextual sentence for a BERT based RC model.
First, Baldini Soares et al. (2019) and Peng et al.
(2019) use different entity identification methods.
Second, Baldini Soares et al. (2019) and Wu and
He (2019) use different aggregation methods of en-
tity representations and contexts. Third, choosing
which features should be considered for the classfi-
cation layer should also be determined (Eberts and
Ulges, 2019). In addition, previous literature does
not consider the interactions between the feature
vectors.

In this work, we experiment on making the de-
sign choices in the BERT based RC model automat-
ically, so that one can obtain an architecture that
better suits the task at hand (Figure 1). Through-
out this work, we will refer to our framework as
AutoRC, which includes our search space and
search method. Firstly, a comprehensive search
space for the design choices that should be con-
sidered in a BERT based RC model is established.
Second, to navigate on our search space, we em-
ploy reinforcement learning (RL) strategy follow-
ing ENAS (Pham et al., 2018). That is, a controller
generates new RC architectures, receives rewards,
and updates its policy via policy gradient method.
To stabilize and improve the search results, three
non-trivial modifications to ENAS are proposed: a)
heterogeneous parameter sharing, which is to share
parameters more deeply than ENAS if the mod-
ules play similar role, and not to share if not; b)
maintain multiple copies of the shared parameters
which will be drawn randomly to the child models;
c¢) search warm-ups, which is to generate and up-
date child models without updating the controller
at the beginning of the search stage.

Experiments on eight benchmark RC tasks show
that our method can outperform the standard BERT
based RC models. Transfer of the learned archi-
tecture across different tasks is investigated, which
shows the transferred architectures can outperform
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the baseline models but cannot outperform the ar-
chitecture learned on this task. Ablation study of
the search space demonstrates the validity of the
search space design. In addition, ablation studies
on the search space show the validity of our search
space design, and experiments show that our pro-
posed modifications to ENAS are effective. We
also show our framework can work effectively on
other entity related tasks like coreference resolution
and span based NER.

The contributions of the paper can be summa-
rized as:

e We develop a comprehensive search space and
improve the BERT based RC models, in which
alternatives of the input formats and the ag-
gregation layers are applicable to other tasks.

e As far as we know, we are the first to introduce
NAS for BERT based models. Our proposed
methods for improving search results are ef-
fective and universally applicable.

2 Related Work

Our work is closely related to the literature on neu-
ral architecture search (NAS). The field of NAS
has attracted a lot of attentions in the recent years.
The goal is to find automatic mechanisms for gen-
erating new neural architectures to replace conven-
tional handcrafted ones, or automatically deciding
optimal design choices instead of manually tuning
(Bergstra et al., 2011). Recently, it has been widely
applied to computer vision tasks, such as image
classification (Cai et al., 2018), semantic segmen-
tation (Liu et al., 2019), object detection (Ghiasi
et al., 2019), super-resolution (Ahn et al., 2018),
etc. However, NAS is less well studied in the field
of natural language processing (NLP), especially
in information extraction (IE). Recent works (Zoph
and Le, 2017; Pham et al., 2018; Liu et al., 2018)
search new recurrent cells for the language model-
ing (LM) tasks. The evolved transformer (So et al.,
2019) employs an evolution-based search algorith-
m to generate better transformer architectures for
machine translation tasks. Zhu et al. (2021) de-
velops a novel search space which incorporates
cross-sentence attention mechanism and are able
to find novel architectures for natural language un-
derstanding (NLU) tasks. In this work, we design
a method that incorporate NAS to improve BERT
based relation extraction models.
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Figure 1: General architecture for a RC model.

Our work is closely related to literatures on re-
lation extraction, especially the recent ones that
take advantages of the pre-trained language models
(PLMs). In terms of entity span identification, Bal-
dini Soares et al. (2019) argues that adding entity
markers to the input tokens works best, while Peng
et al. (2019) shows that some RC tasks are in fa-
vor of replace entity mentions with special tokens.
For feature selection, Baldini Soares et al. (2019)
shows that aggregating the entity representations
via start pooling works best across a panel of R-
C tasks. Meanwhile, Wu and He (2019) chooses
average pooling for entity features. In addition,
it argues that incorporating the representation of
the [CLS] token is beneficial. Eberts and Ulges
(2019) shows that the context between two entities
serves as a strong signal on some RC task. Zhu
(2020) shows that pre-training with entity spans
can benefit the downstream tasks. In this work,
we provide a more comprehensive overview of the
design choices in BERT based RC models, and
provide a solution for efficient and task-specific
architecture discovery, thus alleviating NLP practi-
tioner in the field of RE from manually or simple
heuristic model tuning.

3 Search space for RC model

An overall architecture design for a RC model is
shown in Figure 1. Following its bottom-up work-
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Figure 2: How to make changes to the input sequence
for entity span identification.
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Figure 3: An example of the entity positional encod-
ing.

flow, we will define the search space for AutoRC.

3.1 Formal definition of task

In this paper, we focus on learning mappings from
relation statements to relation representations. For-
mally, let z = [z, ..., x,,] be a sequence of tokens,
and entity 1 (e1) and entity 2 (e2) to be the entity
mentions, which is depicted at the bottom of Fig-
ure 1. The position of e; in x is denoted by the
start and end position, s; = (ef,ef). A relation
statement is a triple » = (x, e1, 2). Our goal is to
learn a function fy that maps the relation statemen-
t to a fixed-length vector h, = fy(r) € R that
represents the relation expressed in 7.

Note that the two entities divide the sentence
into five parts, e; and e, as entity mentions, and
three contextual pieces, denoted as cg, ¢; and ca.

3.2 Entity span identification

In this work, we employ BERT (Devlin et al., 2018)
as the encoder for the input sentences. The BERT
encoder may need to distinguish the entity men-
tions from the context sentence to properly model
the semantic representations of a relation statement.
We present three different options for getting infor-
mation about the entity spans s; and so into our
BERT encoder, which are depicted in Figure 2.

standard, that is, not to make any change to the
input sentence (Figure 2(a)).
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entity_ markers. We add special tokens at the
start and end of the entities to inform BERT where
the two entities are in the sentence, as depict-
ed by Figure 2(b). Formally, the sentence =
becomes [[CLS], xo...[E1]...[/ E1]...[E2]...[/ E2]
iy, [SEP]].

entity_tokens. This approach (Figure 2(c))
replaces the entity mentions in the sentence
with special tokens.  Formally, x becomes
[[CLS)...[ENTITY 1]..[ENTITY
2]...[SEP]].

3.3 Entity positional encoding

To make up for the standard input’s lack of entity
identification, or to further address the position of
entities, one can add special entity positional en-
coding accompany input sequence x. As is shown
in Figure 3, for entity 1, the entity positional encod-
ing will be the distance to entity 1’s starting token.
1

Now there are two design choices. First is
whether to use entity positional encoding at all.
Second, as is shown in Figure 1 if using entity po-
sitional encoding, do we add this extra embedding
to the embedding layer of the BERT (denoted as
add_to_embedding), or do we concatenate this em-
bedding to the output of BERT encoder (denoted
as concat_to_output)?

3.4 Pooling layer

How to aggregate the entities’ and contexts’ hidden
representations into fixed length feature vectors,
i.e., what kind of poolers are used becomes the core
part of the RC model architecture. In this work,
we investigate 5 different poolers: average pooling
(avg_pool), max pooling (denoted as max_pool),
self-attention pooling (denoted as self_attn_pool),
dynamic routing pooling (dr_pool) (Gong et al.,
2018), and start pooling (start_pool), which is to
use the reprsentation of the starting token as in
Baldini Soares et al. (2019).

3.5 Output features

To select appropriate features for classifying rela-
tion types, there are many design choices. First,
whether the two entity vectors should be used as
features. Second, whether each contextual piece

"Entity positional encoding corresponds to two (one for
either entity) entity positional embedding modules in the RC
model, and they are randomly initialized and fine-tuned during
BERT fine-tuning.



(co, c1, c2) should be added as features (Eberts and
Ulges, 2019; Wu and He, 2019).

We notice that the literature does not consider
the interactions of the features from different parts
of the sentence, which proves to be useful in oth-
er tasks such as natural language inference (NLI)
(Chen et al., 2016). Here, we consider the interac-
tion between the two entities, and their interactions
with contextual pieces. The interaction can be dot
product (denoted as dot) or absolute difference (de-
noted as minus) between two feature vectors.

3.6 Search space

Now we are ready to define the search space for-
mally. The search space is as follows:

e entity span identification = entity_markers, en-
tity _tokens, standard;

e how to use entity positional embedding = null,
add_to_embedding, concat_to_output;

poolers for entity or contextual piece
avg_pool, max_pool, self_attn_pool, dr_pool,
start_pool;

whether to use the representation of entity e;
= True, False, where i = 1, 2;

whether to use the representation of context
¢; = True, False, where ¢« = 0, 1, 2;

Interaction between the two entities = dot, mi-
nus, null, where null means no interaction;

Interaction between entity and contextual
piece ¢; = dot, minus, null, where null means
no interaction, and ¢ = 0, 1, 2.

Our search space contains 1.64e+8 combination-
s of design choices, which makes manually fine-
tuning or random search impractical.

4 Search method

In this section, we first formally formulate the prob-
lem of architecture search with reinforcement learn-
ing. Then, , we discuss the search algorithm based
on policy gradient. At the last part, we discuss our
modifications to stabilize the search outputs.

4.1 Problem formulation

Given a search space M of neural architectures,
and a dataset split into train set Dy,.qi, and Dyaiid,
we aim to find the best architecture m* € M that
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Figure 4: An illustration of the RL mechanism for ar-
chitecture search.

maximizes the expected reward E[Rp,,,,(m)] on
the validation set D,,qyi4, 1.€.,
m* = arg 71516%\}5[ E[RDvalid (m)] . (1)

Figure 4 shows the reinforcement learning frame-
work used to solve Eq 1 by continuously sampling
architectures m € M and evaluating the reward
(performance score) R on the validation set D,,q;4.
First, the recurrent network generates a network de-
scription m € M that corresponds to a RC model.
Then, the generated model m is trained on Dypqin
and tested on the validation set D,,;;4. The test
result is taken as a reward signal R to update the
controller.

4.2 Search and evaluation

The whole procedure for model search can be di-
vided into the search phase and evaluation phase.
The search phase updates the shared parameters
and the parameters for the controller in an inter-
leaving manner, while the evaluation phase obtains
multiple top-ranked models from the controller and
train them till convergence on the task dataset for
proper evaluations of the learned architectures.
Parameter sharing. In order to avoid training
from scratch to obtain reward signals, parameter
sharing is applied. The same operator is re-used
for a child model if it is chosen. Specific to our
architecture, the BERT encoder and the final classi-
fier are shared for all child models. We denote the
collection of all the parameters shared as .
Search phase. Now we describe the interleav-
ing optimization procedure. First, an architecture is
sampled by the controller, and its network parame-
ters are initialized with ®. It is trained for n. steps



(which is usually a small integer), during which
® is updated. Then, the reward of this model is
obtained on D,,;;4. With n reward signals receive,
O is updated using policy gradients following RE-
INFORCE (Williams, 1992):

Vol (0) = L 3" Vologn(a,,0)(R(6) - 1)

i=1

2)
where b denotes a moving average of the past re-
wards and it is used to reduce the variance of gra-
dient approximation. In this work, we find n = 1
already works quite well. Repeating this interleav-
ing optimization procedure for IV times till the con-
troller is well trained, then we generate k candidate
architectures, evaluate them using the shared pa-
rameters, and then select the top-ranked k. models
for architecture evaluation.

Evaluation phase. In this phase, the top-ranked
models are trained with the whole train set, and
validated on the dev set to select the best check-
point for prediction on the test set. Note that the
shared parameters ¢ are discarded in this phase,
and the learned architecture is trained from scratch.
To fully evaluate each architecture, we run a grid
search for the optimal hyper-parameters including
learning rate, batch size and warm-up steps. After
the optimal combination of hyper-parameters is s-
elected, the model is run several times to ensure
replication.

4.3 Improving search

Now we propose a few methods to stabilize the
search results and improve the search performance.

Heterogeneous parameter sharing. First, the
reward signals directly relies on the parameter shar-
ing mechanism, thus we should think deeper into
how to design proper parameter sharing strategies
for RC model search. Parameter sharing in ENAS
is unconditional. Note that to much or too little
parameter sharing can generate un-reliable reward
signals, guiding the controller to wrong directions.
Thus based on our extensive experiments, we now
present our parameter sharing strategies, which we
will call heterogeneous parameter sharing, since
our idea is to share parameters among modules
that plays similar roles in the model architectures.
The details are as follows: (a) first, note that the
entity span identification method entity_tokens sig-
nificantly alter the original sentence, thus, it is nat-
ural for it to use a different BERT encoder in the
child models. (b) since entities and contexts play

37

quite different roles in the RC tasks, the aggregators
for entities and contexts will not share parameters.
Note that start_pooler and dr_pooler have a com-
mon component, which is a linear layer followed
by a non-linear module, thus the linear layer will
be shared in these two aggregators for entities or
for contexts. However, we will use the linear layer
of the BERT pooler to initialize all the linear layers
of start_pooler and dr_pooler.

Multiple copies of shared parameters. Note
that all child models have a BERT encoder and a
classifier layer, thus parameters in these modules
may over-fit quickly. Thus, during search training,
we maintain multiple copies of these modules, and
each time we initialize a child model, a copy of
BERT encoder and classifier layer will be randomly
selected from shared parameters ®. After updating,
these copies will be stored back to .

Search warm-ups At the beginning of training,
the shared parameters are not trained, thus reward
signals generated are unreliable. Thus, at the first
few epochs, the controller will generate child mod-
els to train on the dataset, but it will not be updated.

5 Experiments

Due to resource limitations, we assign up to 2 N-
VIDIA V100 GPU cards to each tasks.

5.1 Datasets

We run experiments on 8 different benchmark
datasets, semeval10 (Hendrickx et al., 2009),2 ta-
cred (Zhang et al., 2017), kbp37 (Zhang and Wang,
2015), wiki80 (Han et al., 2019), deft2020 (Spala
et al., 2019), i2b2 (zlem et al., 2011), ddi (Herrero-
Zazo et al., 2013), chemprot (Krallinger et al.,
2017). These tasks are from various domains and
are different in the respects of dataset sizes, sen-
tence length, entity mention length, etc, to demon-
strate that our method is robust for various RC tasks.
Detailed descriptions and statistics are provided in
the Appendix.

5.2 Search protocol

During search phase, the interleaving optimization
process is run 100 epochs. Throughout this work,
we use the base uncased version of BERT (De-
vlin et al., 2018) as the sentence encoder, and its

This dataset does not establish a default split for devel-
opment, so for this work we adopt the same train/dev split
with that provided by OpenNRE (Han et al., 2019). Thus, we
cannot adopt the reported results for semevall0 on Table 1 of
Baldini Soares et al. (2019).



parameters are fine-tuned to better adjust to down-
stream tasks. During search, 4 copies of BERT
model checkpoints are maintained, 2 for method
entity_tokens and 2 for the other two entity span
identifiers, so each time we initialize a child model,
a BERT checkpoint is randomly selected and its
parameters can be updated. If the entity position
embedding is concatenated after the BERT output,
its size is set to be 12.

During search, each child model is trained with
4 batches of training data and evaluated on a single
batch of valid data, and the evaluation batch size is
4 times the training batch size. The learning rate
for the controller is set at 1e-4, and the learning
rate and batch size for the sampled architectures
are manually tuned to obtain better search results.
During search, the number of warm-up steps for
the BERT encoders is set to be equal to 0.8 of a
epoch, and the warm-up steps for search is set to
be 1.5 epochs.

5.3 Architecture evaluation protocol

In this work, we differentiate between a NAS
method’s performance and that of a learned mod-
el. We obtain the former by running architecture
search 5 times. The best learned model’s perfor-
mance will be regarded as the NAS method’s per-
formance in each run. The best learned model in
each search is also run for 10 times.

To make our results more reproducible, each
learned model or each baseline model is trained
for 10 times, and the mean and variance of the
performance will be reported. And for evaluating
the search method, after the search phase, 30 mod-
el architectures are sampled from the trained con-
troller, and they are ranked via their performance
on the valid data when they are initialized using the
shared parameters. Then the top-ranked 5 models
are trained from scratch till convergence on the w-
hole training data of the task to formally evaluate
their performances. The best learned model’s per-
formance of a search run is regarded as the search
method’s performance. In this work, we will re-
port the mean and standard deviation of the search
method performances in 5 independent runs.

To compare our methods with random search,
for each task, we randomly samples 10 different
models with a randomly initialized controller, since
the GPU time for training 10 models is guaranteed
to be larger than an entire search and evaluation
process described above.
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To thoroughly evaluate a learned model or a base-
line model, we run a random search of 10 times on
the following space for the optimal combination of
the following key hyper-parameters:

e learning rate = le-4, 5e-5, 2e-5, le-5;
e training batch size = 128, 64, 32;

e warm-up steps = 0.8, 1.0 of the number of
steps in an epoch.

The hyper-params for the baseline models are re-
ported in the Appendix.

5.4 Baseline models

In this work, we select two strong baselines for
comparison. The first one is BERT-entity, the best
model from Baldini Soares et al. (2019). The sec-
ond is R-BERT by Wu and He (2019). BERT-
entity and R-BERT are implemented by Open-
NRE (Han et al., 2019). The two models are special
cases in our search space. The baseline models also
have to go through the above reproducibility pro-
tocols. We will not compare with traditional deep-
learning based model in the pre-BERT era, since
BERT-entity significantly outperforms them.?

5.5 Results on Benchmark datasets

The results on the 8 benchmarks RC datasets are re-
ported in Table 1. We report both the performance
of the search methods and the performance of the
best model learned on each task using AutoRC.
For all eight tasks, AutoRC' successfully obtains
higher average scores than the baseline models. In
addition, we find that AutoRC outperforms naive
ENAS and random search and its results are more
stable. In addition, we can see that the best learned
model outperforms the baseline models significant-
ly. One observation can be made is that the test
results of the search architectures are consistently
stable than the baseline, which also validates that
our method are efficient in finding a task-specific
model for the task at hand.

Figure 5, 6 and 7 report the best searched ar-
chitectures for the deft2020, i2b2 and kbp37 tasks.
We can see that learned architectures can be quite

3This work only considers the effects of architecture de-
sign, thus some of the SOTAs may not provide fair comparison.
KnowBert (Peters et al., 2019) explicitly incorporates external
KGs. Tao et al. (2019) take advantage of syntactic priors. Be-
fore submission, we run the REDN (Li and Tian, 2020) model
(by using their code and re-implement by our self), but the
results are not comparable to the results in their paper.



Model semevall0 tacred kbp37 wiki80 deft2020 i2b2 ddi chemprot
R-BERT 88.19+0.234  69.63+0.178  64.15+£0.285 85.38+0.158 60.12+0.875 81.88+0.547 75.73+0.786 66.77+0.336
BERT-entity ~ 88.354+0.159 69.97 £0.198 64.20+£0.273 85.35£0.141 60.19£0.723 81.94+0.691 75.66+0.712 66.861+0.393
random search  87.61+£0.316  69.15+0.376  63.90+£0.516 83.46+0.378 58.194+1.968 81.33+1.364 74.23+0.653 66.04+0.873
naive ENAS  88.23+0.256  69.984+0.267 64.25+0.412 85.3840.286 61.574+0.727 82.1840.632 75.57+0.598 66.94+0.453
AutoRC 88.53+0.212  70.06+0.242  64.32+0.414 85.46+0.143 62.87+£0.632 82.76+0.587 75.7240.532 67.154+0.367
ARsemevaiio  88.89+0.165 - - - - - - -
ARyacred - 70.87+0.167 - - - - - -
ARppp3r - 64.96+0.185 85.63+0.175 - 81.87£0.778  75.5840.704 -
ARyikiso - - 64.58+0.169 85.98+0.134 - 82.324+0.604 75.8940.633 -
ARge 12020 - - - - 63.82+0.593 - - -
ARjope - - 64.43+0.166  85.46+0.164 83.59+0.478 76.05+0.658 -
ARqai - - 64.37+0.172  85.39+0.159 - 82.924+0.454 76.731+0.475 -
AR chemprot - - - - - 67.95+0.283

Table 1: Test results for eight relation classification tasks. The performance metric is micro F1 for all tasks except
for deft2020 which uses macro F1. Results from the baseline model are obtained with the help of OpenNRE (Han

et al., 2019).
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Figure 5: AR f+2020, the best learned architecture on
deft2020.
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Figure 6: AR;o2, the best learned architecture on

i2b2.

different, thus validating the necessity of task speci-
ficity. The learned models are different in the fol-
lowing three aspects. First, AR 12020 choose to
replace entity mentions with entity tokens. We hy-
pothesis that in deft-2020, the entities are often
quite long, thus replacing entity mentions with en-
tity tokens is beneficial for the model to understand
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Figure 7:  ARppp37, the best learned architecture on
kbp37.

the contexts’ structural patterns. Second, note that
ARy, ft2020 USES start_pool to aggregate context
piece cg, which is the representation of [CLS] to-
ken. In addition, it includes the representation of
context ¢y, which is also used in ARjyyp37. Third,
ARgeri2020 incorporates the interaction between
context ¢y and the two entities, while AR;o59 and
ARjpp37 include the interaction between the two
entities. Differences in the learned architectures
for different tasks indicate the necessity of task spe-
cific architectures, which is challenging without
the help of NAS. We believe there are two aspects
that can affect the learned models. First, different
domains have different contexts, which may lead
to different models. Second, the formulation of
data. For example, in deft-2020, some extended
definitions of scientific concepts are annotated as
entities. Thus, the avg entity mention length (18.5)
is quite different from other tasks (2.3 in ”ddi”).
In Table 1, we also study how does an archi-
tecture learned on one task performs on another.



Search space deft2020 i2b2
M 63.82 £ 0.593 83.59 £ 0.478
My 63.45+0.698 8322+ 0514
Ma 62.31 +0.423 82.68 + 0.483
M3 61.78 +0.893  82.35 +0.558
BERT-entity 60.19 £ 0.723 81.94 4+ 0.691

Table 2: Results of ablation study on the search space.

Note that when evaluated on a different task, an ar-
chitecture’s hyper-parameters are tuned again, fol-
lowing the procedure described in subsection 5.3.
The architecture learned on kbp37, which is an
open-domain dataset, ARyy,37, transfer well on
wiki80. But it does not perform well on the two
tasks of medical domain, i2b2 and ddi. However,
the learned architectures learned on i2b2 and ddi
transfer well on each other and perform compara-
bly well. The above results demonstrate that the
learned models have certain ability for task trans-
fer, but its suitability is significantly affected by the
domains of the tasks.

5.6 Ablation study on the search space

We further investigate the specific contributions
by the different components of the search space.
For this purpose, we create three smaller search
space. The first one, denoted as M, which does
not allow any interactions among entity features
and context features. The second one, M further
reduce M by limiting that the pooling operation
available is the start pooling operation. The third
one, Mg, further forbid contextual features. If
further limit the entity span identification method
to be entity markers, the search space is reduced to
the baseline BERT-entity model. The search and
evaluation protocols on the reduced search space
strictly follow the previous subsections.

Ablation study for the search space is done on
deft2020 and i2b2. Results are reported in Table 2.
For deft2020, alternating the method for span iden-
tification provides significant performance gain on
deft2020, and interaction among features is also im-
portant. For i2b2, the most significant performance
drop occurs when the pooling operations are limit-
ed, indicating that even for powerful bi-directional
context encoder like BERT, considering different
pooling operations are beneficial.

5.7 Ablations on the modifications for search
method

In this subsection, we will show that our modi-
fications to the search method, i.e., the naive E-
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Search Method deft2020 i2b2
naive ENAS 61.57 +0.727 82.18 +0.632
AutoRC 62.87 +0.632 82.76 + 0.587
AutoRCH 62.38 + 0.689 82.42 +0.616
AutoRCo 62.53 +0.672 82.56 £ 0.595
AutoRCs 62.49 +0.708 82.61 +£0.614

Table 3: Ablation study on the search methods.

Method  OntoNotes CoNLL04
SpanBERT 85.3 -
SpERT - 88.94
AutoRC 86.1 89.87

Table 4: Experiments on the coreference resolution
and span based NER.

NAS, are indeed effective and necessary. Here we
use AutoRC to denote our method, which is the
combination of ENAS and our proposed modifi-
cations. We now experiment on three variations
to AutoRC'. First, AutoRC' drops heterogeneous
parameter sharing, that is, all input formats share
the same BERT encoder, and all context and all
entity representations share the same aggregators.
The second variant, AutoRRC5, is to maintain sin-
gle copies of shared weights. The third variant,
AutoR(S, is the one that drops search warm-ups.

The average search performance, which is the
average score of the best learned model at each
search run, and their standard deviations are report-
ed on Table 3. From the results, dropping any of
three strategies we propose results in performance
drop and increased variance in results. And chang-
ing the parameter sharing strategies cause the most
significant performance drops on both tasks. The
above results demonstrate that our proposed modifi-
cations make the reward signal during search more
reliable, thus resulting in better searched architec-
tures.

5.8 Applications to other entity related tasks

In Table 4, we apply our AutoRC' framework to the
other two entity related tasks, i.e., coreference reso-
lution and span based NER. AutoRC can directly
apply to coreference resolution since it essentially
asks the model to determine whether an expression
refers to an entity. It can also be applied to span
based NER since it asks the model to determine
whether a span in the sentence is an entity.

We experiment on the OntoNotes coreference
resolution benchmark (Pradhan et al., 2012). The
metric is MUC F1 and we choose the state-of-the-
art (SOTA) SpanBERT (Joshi et al., 2019) as base-



line. The results show that our AutoRC' frame-
work can effectively improve the performances of
the SpanBERT checkpoint.

We experiment on the NER task of CoNLL04
(Roth and tau Yih, 2004), which uses entity level
F1 as metric. Eberts and Ulges (2020) provides a
SOTA baseline. The results show that performance
improves via AutoRC'.

6 Conclusion

In this work, we first construct a comprehensive
search space to include many import design choic-
es for a BERT based RC model. Then we design
an efficient search method with the help of RL
to navigate on this search space. To improve the
search results, parameter sharing strategies differ-
ent from ENAS are designed. To avoid over-fitting,
we maintain multiple copies of shared weights dur-
ing search. To stabilize the reward signal, search
warm-ups are applied. Experiments on eight bench-
mark RC tasks show that our method can outperfor-
m the standard BERT based RC model significantly.
Ablation study shows our search space design and
proposed modifications are effective.
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A Benchmark datasets

Here we include introductions to the benchmark
datasets we investigate. And the basic statistics and
performance metrics are included in Table 5.
SemEval-2010 Task 8 (Hendrickx et al., 2009)
(denoted as semeval10) This dataset does not es-
tablish a default split for development, so for this
work we adopt the same train/dev split with that
provided by OpenNRE (Han et al., 2019).



Dataset #1labels Train Dev Test sentlength Metrics
semeval2010 19 6508 1494 2718 19.09 micro F1
tacred 42 75,050 25,764 18,660 36.2 micro F1
kbp37 37 15917 1724 3405 31.09 micro F1
wiki80 80 40320 10080 5600 24.93 micro F1
deft2020 6 16727 963 1139 72.11 macro F1
i2b2 8 2496 624 6293 24.33 micro F1
ddi 5 18779 7244 5761 45.03 micro F1
chemprot 6 19460 11820 16943 49.69 micro F1
Table 5: Overview of datasets in experiments.

Wiki80 (denoted as wiki80) This dataset (Han Dataset model Ir  bsz warm-up
et al., 2019) is derived from FewRel (Han et al., semevall0 R'BERT 2e-5 64 0.8
2018), a large scale few-shot dataset. Since Wiki80 BERT-entity 5e-5 64 1.0
only has a train/val split, we randomly split the ARsemevanio e 64 0.8

. . . . . tacred R-BERT le-4 128 0.8
train set into a train set and val set (with 8:2 ratio), .

L. L BERT-entity 5e-5 128 0.8
and treat the original validation set as the test set. ARppmeq 55 128 08

KBP-37 (Zhang and Wang, 2015) (denoted as Kkbp37 R-BERT 15 64 0.8
kbp37). This dataset is a revision of MIML-RE BERT-entity 2¢-5 64 0.8
annotation dataset, provided by Gabor Angeli et al. ARppp3r S5e-5 64 1.0
(2014). They use both the 2010 and 2013 KBP of- wiki80 R-BERT S5e-5 128 0.8
ficial document collections, as well as a July 2013 BERT-entity =~ 2e-5 64 1.0
dump of Wikipedia as the text corpus for annota- ARyikiso  2e-5 64 1.0
tion. deft2020 R-BERT le-4 64 0.8

DEFT-2020 Subtask 3 (denoted as deft2020) BERT-entity Se-5 64 1.0
This dataset also serves as the task 6 of SemEval ARacjizoz  1e-d 64 08

. i2b2 R-BERT 2e-5 32 0.8
2020 shared tasks. This RQ task ha\.le to overcome BERT.entity 5e-5 32 08
longer contexts, longer entity mentions, and more AR le-5 132 0.8
imbalanced relation types. (Spala et al., 2019) ddi R-BERT  5e¢5 64 08

i2b2 2010 (denoted as i2b2) shared task collec- BERT-entity 2e-5 32 0.8
tion consists of 170 medical documents for training ARgq; 5e-5 64 1.0
and 256 documents for testing, which is the subset chemprot ~ R-BERT  5e-5 64 0.8
of the original dataset (zlem et al., 2011). BERT-entity le-5 128 0.8

ChemProt (denoted as chemprot) consists of ARchemprot  5e-5 64 1.0
1,820 PubMed abstracts with chemical-protein in- Table 6

teractions annotated by domain experts and was
used in the BioCreative VI text mining chemical-
protein interactions shared task (Krallinger et al.,
2017) 4.

DDI extraction 2013 corpus (denoted as ddi) is a
collection of 792 texts selected from the DrugBank
database and other 233 Medline abstracts (Herrero-
Zazo et al., 2013).°

B Hyper-params for models on different
tasks

Now we report the hyper-parameters for the base-
line models and the learned models (for architec-
ture evaluation phase). The main hyper-parameters

*https://biocreative.bioinformatics.udel.edu/news/corpora/
>http://labda.inf.uc3m.es/ddicorpus
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are learning rate (Ir), batch size (bsz) and warm-
up steps (warm-up) for finetuning. Warm-up is
reported as the proportion of steps in one epoch.
One common hyper-parameter is the max sequence
length, which is set as 256.
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Abstract

Despite the recent advancements of attention-
based deep learning architectures across a ma-
jority of Natural Language Processing tasks,
their application remains limited in a low-
resource setting because of a lack of pre-
trained models for such languages. In this
study, we make the first attempt to investigate
the challenges of adapting these techniques to
an extremely low-resource language — Sume-
rian cuneiform — one of the world’s oldest writ-
ten language attested from at least the begin-
ning of the 3rd millennium BC. Specifically,
we introduce the first cross-lingual informa-
tion extraction pipeline for Sumerian, which
includes part-of-speech tagging, named entity
recognition, and machine translation. We in-
troduce InterpretLR, an interpretability toolkit
for low-resource NLP and use it alongside hu-
man evaluations to gauge the trained models.
Notably, all our techniques and most compo-
nents of our pipeline can be generalised to any
low-resource language. We publicly release
all our implementations including a novel data
set with domain-specific pre-processing to pro-
mote further research in this domain.

1 Introduction

Sumerian is one of the oldest written languages,
attested in the cuneiform texts from around 2900
BC and possibly the language of even older proto-
cuneiform texts from the second half of the 4th
millennium BC (Englund, 2009). Specialists in As-
syriology have recently worked to digitize Sume-
rian scripts, annotate, and translate a part of them
to modern-day languages like English and German.

In this work, we attempt to create the first in-
formation extraction and translation pipeline for

Data sets and training subroutines are available at
linktr.ee/rachitbansal

tWork was done prior to joining Amazon at Goethe Uni-
versity Frankfurt

obverse.

1.1 (disz) kusz udu niga
1 hide, grain-fed sheep;

2.1 (disz) kusz masz2 niga
1 hide, grain-fed goat;

3. kusz udu sa2-dull
sheep hides, regular offerings,

4.ki {d}iszkur-illat-ta
from Adda-illat,

reverse.
1.a-na-ah-i3-1i2
Anah-ili;

2.szu ba-an-ti
| did receive.

3.iti ezem-an-na
Month: An-festival,

4.mu na-ru2-a-mah
mu-ne-du3

Year: He erected the great stele
for them.

Figure 1: Tablets inscribed with Sumerian cuneiform
script, their corresponding digitized transliterations,
and human-translated English text for each line.

Sumerian. Specifically, we focus on machine trans-
lation from Sumerian to English, and sequence
labeling tasks of Named Entity Recognition (NER)
and Part of Speech (POS) Tagging.

Figure 1 shows a sample of our raw data where
the Sumerian text has been derived from the tablet-
inscribed cuneiform script along with its human-
interpreted English translations. Creating an an-
notated corpus for such a language is a tedious
task. We obtain our data from openly available
sources and corpora, painstakingly annotated and
translated by human experts. Yet, for languages
like Sumerian, which are not fully-understood by
humans themselves, transferring knowledge and
patterns to learning algorithms from this limited
data becomes extremely difficult. The consequent
challenge posed for NER and POS tagging is evi-
dent. Lack of annotated data and fuzzy character-
level text makes it hard for a model to generalise,
irrespective of its size.

Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing: Student Research Workshop, pages 44-59
August 5-6, 2021. ©2021 Association for Computational Linguistics



In case of machine translation, the labeled data is
composed of incomplete and short phrase-like sen-
tences, especially on the target side. This makes the
context largely ambiguous. Moreover, we find that
for a majority of medieval and ancient languages
the target-side translated text is highly incoherent
with modern-day English language text, making it
impossible to use the latter in semi-supervised and
unsupervised settings.

Throughout this study, we elaborate on such
challenges faced when working with low-resource
languages, and talk about what makes some of
these languages like Sumerian ‘extremely’ low-
resource. Through extensive experimentation, eval-
uation, and analysis we further introduce specific
algorithms and modifications to work around them.

In all, our contribution is three-fold:

1. Building and analyzing a variety of algorithms
on the unexplored human-annotated Sumerian
dataset for sequence labeling tasks of POS
Tagging and NER. (§3)

. Introducing the problem of
Target-side Incoherence for low-resource
settings and its effect on semi-supervised
and unsupervised machine translation (§4.2).
Further investigating specific modifications
and methodologies to cope-up with these
constraints. (§4)

. Introducing InterpretLR, a generalisable
toolkit to interpret low-resource NLP. We ap-
ply it to further study, compare, and evaluate
all of our proposed techniques for machine
translation and sequence labeling. (§7)

Throughout this work, we have conducted human

studies and evaluation for our models, in addition

to automated metrics. For gauging our models with

InterpretLR, we have made use of human annota-

tions.

2 Background
2.1 Data

Sumerian is an ancient language from Iraq that
was written using the cuneiform script. While
Basque and Turkish display some similarities (split-
ergativity, agglutinativity), it is a language isolate
(Englund, 2009). We have found artifacts dating
to around 2900 BC with Sumerian texts inscribed
until the first century AD. Most of the Sumerian
texts found to this day are administrative in nature
as, during the third dynasty of the Ur III Period,
the state administration swell to an unprecedented
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level of activity which was not seen again later in
the history of Mesopotamian culture. All through
this study, our evaluation sets are composed of Ur
IIT Admin text only and it acts as our in-domain
data.

Part of the datasets we used were assem-
bled from the Cuneiform Digital Library Ini-
tiative (CDLI)!, Machine Translation and Auto-
mated Analysis of Cuneiform languages (MTAAC)
project (Pagé-Perron et al., 2017)? and The Elec-
tronic Text Corpus of Sumerian Literature (ETCSL)
dataset®. CDLI and MTAAC datasets contain the
Ur II Administrative (Admin) texts* which are
preserved by the CDLI°. The MTAAC and ETCSL
corpora were both manually annotated for morphol-
ogy by cuneiform linguistics.

We divided the data between training and testing
sets, and then to reduce the data sparsity, we per-
formed text augmentation using a set of labeled
named entities for these sets separately. This in-
creased our combined number of phrases from
25,000 to 48,000, representing our final dataset
for sequence labeling. Figures 2 and 3 provide
the distribution of word tokens in our final pre-
annotated dataset. The corpus consists of phrases
with lengths ranging from 1 to 19 words. These
phrases are small since they are translated line by
line from the scripts. Around 2,500 phrases were
used for testing, while the 45,500 were employed
for training purposes.

For machine translation, the final dataset summa-
rizes as (i) 10,520 parallel phrases from the Ur III
administrative corpus; (ii) 88,460 parallel phrases,
all genres combined; and (iii) all monolingual
Sumerian data (1.43 million phrases). In all cases,
phrases are short, generally ranging from 1 to 5-
word tokens.

2.2 Related Work

Past work aimed at machine translation of
Sumerian-English (Pagé-Perron et al., 2017; Punia
et al., 2020a) have used the minimal bitext upon a
variety of general statistical and neural supervised
techniques. However, they do not handle the text-
level peculiarities any differently than one would

"https://cdli.ucla.edu
https://cdli-gh.github.io/mtaac/
*http://http://etcsl.orinst.ox.ac.uk/
*The Third Dynasty of Ur is a cultural and temporal period
ranging in ~2112 — 2004 BC, in Mesopotamia
Shttps://github.com/cdli-gh/data,
https://github.com/cdli-gh/mtaac_gold_
corpus/tree/workflow/morph/to_dict



do for a high-resource language, thus, often failing
to capture context, resulting in poor and inconsis-
tent translations. Techniques, learning algorithms,
and architectures that optimally use the vast mono-
lingual data and parallel sentences while keeping
in mind the several linguistic limitations are mo-
tivated in such a scenario. Thus, we experiment
on semi-supervised and unsupervised techniques
across the three categories of data augmentation
(Sennrich et al., 2016; He et al., 2016), knowledge
transfer (Zoph et al., 2016), and pre-training (Con-
neau and Lample, 2019; Song et al., 2019).

In the past, Pagé-Perron et al. (2017) applied
statistical models for morphological analysis and
information extraction for Sumerian. Although,
due to the unavailability of annotated data, these
models could not generalise well. Liu et al. (2015)
and Luo et al. (2015) used an unsupervised ap-
proach for NER with the help of domain experts
and used contextual and spelling rules to build the
model. They also post-processed their outputs au-
tomatically, which enhanced their results. In this
work, we thoroughly investigate a wide range of
algorithms for these sequence labeling tasks and
consequently take a first step towards effective in-
formation extraction for Sumerian.
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Figure 2: Composition of the POS tagging dataset.
Here, “NE” stands for named entities, “O” stands for
unstructured words. Other tags are in accordance with
ORACC.

3 Part of Speech Tagging and Named
Entity Recognition

In this section, we talk about the various algorithms
that we investigated to carry out the sequence
labeling tasks of POS tagging and NER for
Sumerian. The subsequent experimental results are
described and discussed in Section 6.

46

AN | L

DN [ 6187
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TH | 796
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Figure 3: Composition of our NER dataset. Tags are in
accordance with ORACC.

Conditional Random Fields CRF (Lafferty
et al., 2001) is a discriminative probabilistic
classifier, which optimises the weights or pa-
rameters in order to maximize the conditional
probability distribution P(y | ). They take set
of input features (language or domain specific)
into account, using the learned weights associated
with these features and previous labels to predict
the current label. Since CRFs use feature sets
(rules) which are language-specific, it makes the
model more robust specially for very low-resource
languages. In our case we developed domain
specific rules with the help of previous studies (Liu
et al., 2015; Luo et al., 2015) and language experts.
A set of these rules are mentioned in the Appendix.

Bi-directional LSTM We also experiment
across Recurrent Neural Networks (RNNs) to
deal with the sequential text input. We employ
Bi-LSTM (Hochreiter and Schmidhuber, 1997,
Schuster and Paliwal, 1997) in particular. As
in Huang et al. (2015), an additional CRF layer
is used for efficient usage of sentence level tag
information and past input features by LSTM cells.

FLAIR Akbik et al. (2018) introduced a
Contextual String Embedding for Sequence
Labeling, FLAIR, which has shown great promise
for NER across various languages (Akbik et al.,
2019b). We make use of the two distinct properties
of its embeddings: (i) training without any explicit
notion of words and fundamentally modeling the
words as a sequence of characters, and (ii) deriving
and using the context from surrounding tokens.
We train the bi-directional character language
model using the Sumerian monolingual phrases
and retrieve the contextual embedding for each
word which we then pass into the vanilla Bi-LSTM
CRF model.



RoBERTa We also investigate the transformer-
based language model, RoBERTa (Liu et al., 2019).
The encoder is first pre-trained on our Sumerian
monolingual data, and then fine-tuned on our
downstream sequence labeling tasks using the
labeled data.

4 Machine Translation

In this section, we present our experiments for
machine translation, primarily focusing on spe-
cific data and algorithmic modeling techniques
which may be generalised for any extremely low-
resource language that may or may not suffer from
Target-side Incoherence, a phenomenon which we
also introduce herein. All results are summarised
in Table 1.

4.1 Supervised NMT

In order to create a benchmark for the semi-
supervised and unsupervised approaches, we per-
form supervised machine translation using the lim-
ited bitext available (~10,000 phrases). We per-
form experiments on a variety of data configura-
tions which are given by:

1. UrIIISeqg: Follows the format as present
in the original texts provided by Assyriol-
ogists and used in the past attempts for
Sumerian-English machine translation (Pagé-
Perron et al., 2017; Punia et al., 2020b). It
contains only in-domain Ur III Admin text
with line-by-line translated segments, each of
1-5 words. Amounts to total 10528 segments.
UrIIIComp: Also contains the in-domain
data only, but multiple segments are concate-
nated together to form complete sentences.
The ‘completeness’ of a sentence is ensured
through punctuation marks. Since multiple
segments are combined, it amounts to only
4792 sentences.

AllSeqg: Contains all of out-of-domain
Sumerian text segments in addition to in-
domain Ur III Admin text alone. The addi-
tional text varies across a wide range of genres
such as literary, lexical, ritual, and legal, re-
sulting into a corpus size of 88466 segments.
. Al1Comp: Combines the additional features

of 2. and 3., thus comprising of a total of

32694 complete text sentences from all out-

of-domain as well as in-domain genres.

We make use of the vanilla transformer encoder
and decoder architecture (Vaswani et al., 2017) for
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all our supervised machine translation experiments
over these three different bitext configurations.
Noting the supervised MT results from Table 1, the
AllComp text configuration is used for all further
experiments. The computational configurations are
mentioned in Section 5.

4.2 Semi-Supervised and Unsupervised NMT

We observed that one of the primary reasons for
the lack of success of semi-supervised and unsu-
pervised algorithms for low-resource settings, spe-
cially for ancient languages, is the lack of coher-
ence between monolingual texts for the target-side
language in the modern-day corpora and the target-
side text in the available bitext. We refer to this as
the Target-side Incoherence (TSIC) problem for
such languages.

Specifically, as can be seen from Figure 1, the
transliterated English text in our parallel corpora is
vastly different from general modern-day English
texts. In Sumerian, this is because the text has been
human-translated to English on the level of words
and small segments due to insufficient knowledge
of the language. This results into a contextually dis-
torted English language text, as compared what we
see in general corpora. This leads to multiple pit-
falls. Most significantly, the colossal monolingual
data available for a data-rich target-side language
(i.e., English in this case) can no longer be used.
This Target-side Incoherence holds true for most
ancient language texts like Sumerian, which makes
them ‘extremely’ low-resource.

In this section, we elaborate on the problems
caused due to TSIC and further present findings
on adapting various semi-supervised and unsuper-
vised NMT techniques to deal with them.

Forward Translation Back-translation (BT)
(Sennrich et al., 2016) has been widely used and
analysed for NMT across a large set of language
pairs. BT uses a reverse model, Sumerian <—
English trained on the existing parallel corpora,
when the task is to translate from Sumerian — En-
glish, and applies it on the target-side monolingual
corpus. The synthetic samples thus generated are
added to the source-side corpus and a new reverse
model is trained on the augmented dataset. It has
been shown to outperform its forward counterpart,
Forward Translation (FT) (Zhang and Zong, 2016;
Burlot and Yvon, 2018), which instead uses a
forward (Sumerian — English) model to augment



the target-side of the bitext.

However, due to TSIC, the target-side monolingual
data falls into a completely different distribution
than what a Sumerian <— English model is trained
on. Using back-translation in such a scenario
results into a poor source-side augmentation, doing
more harm than good. Keeping this in mind, we
rely on forward-translation (FT), thus using the
Sumerian monolingual text.

We divide the Sumerian monolingual data into
8 shards, each containing ~100,000 monolingual
AllComp sentences each. The FT process takes
place for each shard and the Transformer model is
trained after each shard is forward-translated.

Large scale studies (Edunov et al., 2018; Wu
et al., 2019) have shown the heavy dependency
of BT and FT on aspects like sampling methods
and the amount of parallel data. The performance
with non-MAP (where, MAP stands for maximum
a posteriori) estimation methods like nuclear
sampling (Holtzman et al., 2018) and beam search
with noise improves almost-linearly with the
amount of bitext, and thus, for low-resource
settings (~80,000 sentence pairs), MAP methods
have been shown to give better results. This was
also observed in our experiments and the reported
results are obtained using beam search (§5).

Cross-Lingual Language Model Pre-training
We further make use of XLM (Conneau and
Lample, 2019) to carry out a wide range of experi-
ments for both unsupervised and semi-supervised
fine-tuning techniques. Considering the lack of
original target-side monolingual text due to 7SIC,
the following target data configurations were used
for pre-training the XLM:

1. WMT: This configuration ignores 7SIC and
composes the entire text with the WMT ’18
English corpora. This amounts to a large set of
20M sentences, which are however incoherent
with our parallel training + evaluation set.

. Orig: Composed of all the English side
texts in UrIIISeqg, UrIIIComp, AllSeg
and Al1Comp bitext configurations com-
bined. Contains only ~60,000 sentences.

. Mixed: This combines all of Orig with a
set of WMT, such that the net size of the corpus
equalizes the Sumerian monolingual corpus,
i.e., 1.5M sentences.

In the pre-training phase, we perform various
experiments over different combinations of MLM
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and TLM objectives. The XLLM is, then, fine-tuned
on a denoising auto-encoding objective for unsu-
pervised while cross-reference machine translation
objective over the parallel data for semi-supervised
training. BT steps are also performed in both cases.

Data Augmentation In order to further re-
duce the effect of TSIC on the model performance
and to allow the model to attend to a larger
and more diverse volume of target text during
pre-training, we make use of the following data
augmentation techniques:

1. BERT: Replacing words by the spatially clos-

est words measured using cosine similarity
over BERT (Devlin et al., 2019) embeddings.
A threshold of 0.8 is used.

. WordNet : Replacing words with WordNet
(Miller et al., 1990) synonyms.

. CharSwap: Introduces certain character-
level perturbations in the text by substituting,
deleting, inserting, or swapping adjacent char-
acter tokens.

Different combinations of these techniques have
been used to augment the Orig type target mono-
lingual data. The resultant target-side corpora sizes
are summarised in Figure 4.

WordNet | 247 |

Charswap

BERT I
+WaordNet 967 |
BERT
+ CharSwap

BERT

+WaordNet 1920

+ CharSwap

967 |

Data Augmentation Technique(s)

o 500 1000 1500 2000

Augmented Size (in thousands)

Figure 4: Effective size of the target monolingual cor-
pora with different combinations of augmentation.

5 Experimental Setup

All our experiments have been implemented in Py-
Torch, except for the Bi-LSTM and CRF which
were done in Tensorflow. In addition to this, we
used FairSeq (Ott et al., 2019), FLAIR (Akbik et al.,
2019a), HuggingFace Transformers (Wolf et al.,
2019), and Open-NMT (Klein et al., 2017) frame-
works in Python. Nvidia Apex was used for mem-
ory optimisation using fp-16 training. Experiments
related to Bi-LSTM, CRF, vanilla transformers,
and FT were performed on a single 8GB Nvidia



.;"echmque ‘ S US SS HE Fl-Score
Vanilla Transformer MM 0.815
UrIIISeg 36.32 2.202
Rules +
UrIIIComp 33.45 2.242 CRF 0.991
AllSeg 37.01 2.360 Bi-LSTM +
AllComp 42.23 2.431 CRF 0.763
+3xFT* 41.98 2.358 FLAIR 0.499
+7xFT 42.95 2.367
XILM Table 2: POS Tagging for Sumerian.
. CRF with rules outperform large mod-
MLM, Orig 449 15.04 els like FLAIR and RoBERTa.
MLM + TLM, WMT 0.94 -
Mixed 13.08 21.23 1.104, -
i 1273 2464 1294 Fl-Score
orig : : 2% HMM | 0656
XLM + Data Augmentation
Rules +
BERT 13.06 29.50 1.320, 1.704 CRF 0.913
WordNet 13.08 28.57 1.269, 1.690 Bi-LSTM + 0775
CharSwap 12.92 29.04 CRF :
BERT+WordNet 13.34  26.57 1.460, 1.666 FLAIR 0.187
BERT+CharSwap 1323 3010 -, 1.757 RoBERTa | 0953
+WordNet
Table 3: NER for Sumerian.

Table 1: Sumerian-English Machine Translation. Here, S: Supervised,
US: Unsupervised, SS: Semi-Supervised and HE: Human Evaluation.
Each of the available values for the first three columns (BLEU) is com-

RoBERTa performs best among
others. Due to high character-level
noise, FLAIR fails to generalise well.

pared with a value under HE (out of 3). *Number of shards used for FT.

GeForce RTX 2070 GPU, while the pre-training
and fine-tuning of FLAIR, RoBERTa, and XLLM on
various data configurations were performed on 2
16 GB Nvidia V100 GPUs. We used development
sets to tune the hyper-parameters for all our models,
especially those for POS and NER. For RoBERTa
and vanilla transformer, N = 6 encoder layers with
h = 16 attention heads were used, while N = 4
and h = 12 was used for XLM. A beam-size of 5
was used for our FT experiments. Adam (Kingma
and Ba, 2015) optimiser with a learning rate of
0.001, 51 = 0.90, B = 0.98 and a decay factor of
0.5 was used. Additional regularisation was done
via Dropout and Attention Dropout (wherever ap-
plicable) layers with pg;.,, = 0.1. We used a batch
size of 32 or 64 and an early stopping criteria based
on the validation loss.

6 Results and Analysis

Sequence Labeling Tables 2 and 3 represent the
metric scores of our different models for POS and
NER tasks, respectively. CRF with domain-specific
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rules gives the best F1-score for the POS tagging
task, even better than the complex RoOBERTa and
FLAIR language models which are the current
state-of-the-art techniques for most languages. The
prevalence of distorted words and short phrases
in the corpora makes context learning difficult, al-
though the domain-specific rules help learn short-
term dependencies by learning feature weights.

RoBERTa performs well for both of the tasks,
while being the best among others for NER
(95.37 F1 score). To make the most out of
the limited vocabulary and noisy text, we used
Byte-Level BPE (Radford et al., 2019) to train
the language model and further fine-tuned it on
our POS and NER dataset with a batch size of
128. We also tried FLAIR language model across
various word embeddings (character, Word2vec,
FastText, GloVe) along with an additional CRF
layer for both of the tasks. Although a high
precision is observed using this approach, the
F1 scores is seen to be significantly low due to
low recall. In addition to the F1 metric we also



conducted human evaluation by language expert
for the best performing models, out of randomly
selected 76 (496 words) phrases, only 8 and 6
words were misclassified by NER and POS mod-
els, giving an error of 1.20 and 1.61%, respectively.

Machine Translation Table 1 summarises
our results for all supervised, semi-supervised,
and unsupervised techniques. Forward translation
on vanilla transformer outperforms all other
techniques by at least 2 BLEU. The variation of
its performance with more monolingual source
text is shown. The superior performance of
AllComp over the other configurations in vanilla
transformer signifies the value of both context
and out-of-domain data together. Even though the
XLM-based models show lower performance, it
could be attributed to the lesser number of encoder
layers and attention heads used for them. What
is interesting to note, though, is the variation of
its performance across various training strategies.
We experiment across MLM and TLM (+ MLM)
initialization for XILM, where the latter comfort-
ably outperforms the former. We do not test with
random initialization and CLM, following up
from the conclusions made for NMT in Conneau
and Lample (2019). Pre-training the XLM on
augmented target-side text works surprisingly
well. We note that using pre-training on BERT
and WordNet augmentations results in better
Unsupervised performance while introducing
CharSwap improves the semi-supervised models.
The human evaluation presented in the table was
made by three Assyriologists, who rated 100
output examples for each model, on a scale of 3.
A pairwise inter-annotator agreement of 0.673
(Cohen’s Kappa) was observed.®

7 Interpretability Analysis

Oftentimes in case of Deep Learning Architectures,
metric scores like Accuracy, F1 and BLEU are un-
able to portray the true behavior of the models. For
languages like Sumerian, the human-understanding
itself is scarce. Visualizing the representations and
correlations made by the model could provide in-
sights into which elements of the context can give
additional information to support semantic analysis
of the terms. Thus, we herein introduce a gen-
eralisable interpretability toolkit, InterpretLR, to
interpret algorithms for Low-Resource NLP and

®Elaborate evaluation criteria mentioned in the Appendix.
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further apply it for the aforementioned tasks and
models.

InterpretLR is primarily aimed at fabricating at-
tribution saliency maps, i.e., tracing back the model
output so as to assign an importance score to each
input token, based on its ‘influence’ on that out-
put. We do this using two kinds of interpretability
techniques— gradient-based (Sundararajan et al.,
2017; Simonyan et al., 2014; Shrikumar et al.,
2017), and perturbation-based (Zeiler and Fergus,
2014; Castro et al., 2009).

Due to the inherently discrete nature of natu-

ral language text, the starting point for all our ap-
proaches is the embedding of the input sentence
across the model to interpret. Most of our analysis
is done for the encoder of the network architecture,
thus analyzing the effect of different pre-training
and fine-tuning techniques on how the model even-
tually represents the language attributes. We use
the word ‘Attribution’ as a better-defined substitute
for the ‘Influence’ measure of an input span of text
on the output.
A part of our visual analysis is shown and elabo-
rated here, while a complete analysis with all our
models and layer-wise heat-maps is presented in
the Appendix.

In Table 4a, we apply InterpretLR on 3 different
configurations of XLLM for a randomly chosen sen-
tence from NMT’s evaluation set. A human expert
was asked to annotate the source sentence in accor-
dance with the expected reference for each output
token in the actual English translation, as shown
in the first column. The highlighted visualizations
for each of the 3 models were obtained using Inte-
grated Gradients (Sundararajan et al., 2017) across
the three input embeddings- token, position, and
language. A lot of interesting observations could
be made from these attributions.

Firstly, the named entity in the sentence ur-
{d}asznan (UrAnan) has been wrongly translated
by all the three models. Although this behavior is
expected (learning the context of a named entity is
extremely difficult without excessive supervision
around the same, which is largely absent our train-
ing text) the models even largely fail to attend to
the right words in the input.

Secondly, words like rations, weavers and seal
which appear frequently in the parallel Ur III Ad-
min corpora and have a contextual meaning at-
tached to them, are translated perfectly by the mod-
els, this property is observed among these models



Actual Human Expert Model-1 Semi-Supervised DataAug XLM Model-2 Unsupervised DataAug XLM Model-3 Unsupervised Orig TLM XLM

Output Word Annotations Output Word Visualisations Output Word Visualisations Output Word  Visualisations

barley #s sze-ba geme2 usz-bar kiszib3 barley #s sze-ba geme2 usz-bar kiszib3 Monthy #s sze-ba geme2 usz-bar kiszib3 Basketoftablets #s sze-ba geme2 usz-bar kiszib3
ur-{d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula #e

rations #s szezba geme2 usz-bar kiszib3 rations #s sze-ba geme2 usz-bar kiszib3 rations #s sze-ba geme2 usz-bar kiszib3 rations #s sze-ba geme2 usz-bar kiszib3
ur-{d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula #e

weavers #s sze-ba geme2 usz=bar kiszib3 weavers #s sze-ba geme2 usz-bar kiszib3 weavers #s sze-ba geme2 usz-bar kiszib3 weavers #s sze-ba geme2 usz-bar kiszib3
ur-{d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula #e

under #s sze-ba geme2 usz-bar kiszib3 under #s sze-ba geme2 usz-bar kiszib3 from #s sze-ba geme2 usz-bar kiszib3 255 #s sze-ba geme2 usz-bar kiszib3
ur-{d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula #e

seal #s sze-ba geme2 usz-bar kiszib3 seal #s sze-ba geme2 usz-bar kiszib3 seal #s sze-ba geme2 usz-bar kiszib3 seal #s sze-ba geme2 usz-bar kiszib3
ur-{d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula

of #s sze-ba geme2 usz-bar kiszib3 of #s sze-ba geme2 usz-bar kiszib3 of #s sze-ba geme2 usz-bar kiszib3 of #s sze-ba geme2 usz-bar kiszib3
ur-{d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula #e

UrAnan #s sze-ba geme2 usz-bar kiszib3 Lugalniglagare #s sze-ba geme2 usz-bar kiszib3 Ninlil #s sze-ba geme2 usz-bar kiszib3 weavers #s sze-ba geme2 usz-bar kiszib3
ur={d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula #e

foreman #s sze-ba geme2 usz-bar kiszib3 foreman #s sze-ba geme2 usz-bar kiszib3 foreman #s sze-ba geme2 usz-bar kiszib3 female #s sze-ba geme2 usz-bar kiszib3
ur-{d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula #e ur-{d}asznan ugula

(a) MT- Selected output tokens for Sumerian Input text of “sze-ba geme?2 usz-bar kiszib3 ur-dasznan ugula”, which translates to

“barley rations of the female weavers under seal of UrAnan the foreman”.”

Actual  Human Expert Model  RoBERTa Actual  Human Expert Model  RoBERTa
N 5(disz) gin2 ku3-babbar N 5(disz) gin 2 kU= 3 - babbar GN mu ur=bi2-lum{ki} ba-hul = GN mu Ul - bi 2-lum {ki}ba - hul
(b) POS- With tagged word “ku3-babbar” (c) NER- With tagged word “ur-bi2-lumki”
Table 4: Highlighted attributions for randomly selected examples. and Red represent correct and wrong

predictions, respectively, while Gfééfl and [Rll highlights represent positive and negative attributions, respectively.

in general. Even the unsupervised models that do  as a Noun (N), whereas in Table 4c the sub-words
not have access to the one-to-one mapping of the  ur, hul and ki are contributing ur-bi2-lum{ki} to
translation during training manage to infer these = be tagged as the label GN (Geographical Name).
words from the appropriate context. It can be as-  As observed from the corresponding human anno-
sumed that they learn the right representations of  tation, ur and ki are the most associated for Geo-
such tokens. But at the same time, there are in-  graphical names and GNs are mostly followed by
stances like sze-ba (barley), which the two unsu-  a verb part, which is hul (destroy) in this case. It
pervised models rightly refer to but do not give the  can thus be inferred that RoBERTa identifies this
right translations, which thus is a direct result of  correspondence well and makes the decision ac-
the absence of supervision. cordingly.

Lastly, English words like under, of and from do

not have any direct translations in Sumerian and 8  Conclusion

are mostly inferred from the context, even by the

human annotators. At such places, againzhsupervi— In this work, we introduced the first information
sion might play a critical role as in the 4™ row of  ex(raction and translation pipeline for Sumerian
Table 4a. There are also instances like the 6! row cuneiform. We first undertook the tasks of POS
where the supervised model fails to attend to the Tagging and NER, where we observed that deeper
right words, and the correct output word could very s nof necessarily better. A simple CRF model with
well be out of memorisation. well-defined rules outperformed the large language

Tables 4b and 4c represent visualizations for  30de] RoBERTa for POS Tagging. Further, for
two randomly selected phrases for our sequence  machine translation we overcame unprecedented
labeling tasks, indicating the attributions for each challenges pertaining to lack of in-domain text,
sub-word for tagging the corresponding target word  gparse sentence formation, and incoherence. We
with their predicted labels. It can be observed from  found that using out-of-domain text along with spe-
Table 4b that word gin (unit) and sub-word ku, are  ¢jfic data-augmentation can have huge impacts in a
contributing to the attribution score positively, de-  Jow-resource setting. All components of this work
picting positive model attribution to tag ku3-babbar  are generalisable to other low-resource languages,

"The left-out tokens were rightly predicted by all the three including InterpretLR, and we open way to future
models, with almost the same attributions. research in this direction.
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A Detailed Evaluation and Analysis

BLEU Scores across Forward Translation
[ ]

BLEU Scores
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Figure 5

Forward Translation with Vanilla Transformer
gave the best results for Sumerian-English Neural
Machine Translation. Figure 5 shows the varia-
tion of the BLEU score with the amount of source
monolingual data used. Here, the X-Axis repre-
sents the number of shards used, with each shard
consisting of 80K sentences. It can be observed
that the translation accuracy is not linear with the
amount of text used.

Figure 6 shows the variation of several perfor-
mance metrics during the Unsupervised fine-tuning
of various XLM configurations. The comparison
is made between XLLM pre-training without any
data augmentation (MLM_TLM), with one aug-
mentation (Aug) and with all three augmentations
(Aug_12x). It can be seen from Figure 6a that an
XLM pre-trained on the Aug_12x configuration
converges the fastest among the others, in terms
of the main Denoising Auto-encoding Loss. It can
also be observed that the curve corresponding to
this configuration is much smoother than the oth-
ers, which shows a positive regularizing effect of
a better weight initialisation (through appropriate
pre-training). A similar pattern is observed for the
validation accuracy across the epochs as shown
in Figure 6c, although, the trend of Back Transla-
tion loss remains mostly inseparable for the three
configurations.

Table 5 depicts the net percentage error found by
an human expert on the POS and NER results for
the entire evaluation set across the best performing
model. Table 6 and 7 represents the detailed results
of POS and NER models. It can be observed from
the tables, that although CRF and RoBERTa mod-
els gave the best results, FLAIR language model
along with character embeddings also gave high
precision for both of the tasks.
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Figure 6: Quantitative comparison of various models
during Unsupervised MT fine-tuning

POS error | NER error
(in %) (in %)
Human Evaluation | 1.61 1.20

Table 5: Human Evaluation for POS and NER

B Extended Interpretations

Here we present the interpretability analysis across
a larger set of models and visualisations. We use
and compare the different algorithms across layer-
level, gradient-based, and perturbation-based tech-
niques to obtain the attributions.

Figure 7 visualises the Multi-head Self Atten-
tion (MHSA) using Layer Conductance Dhamd-
here, Sundararajan, and Yan 2018) across the 4
encoder layers we employ in XLMs®. The first
two output tokens barley and female are known to
be one-on-one mapping between the input words
of sze-ba and geme?2 respectively. While the third
output token barley is not a direct translation and

8The supervised version of the augmented pre-training is
used here.



Part of Speech Tagging
Precision | Recall | F1-Score

HMM 0.857 0.794 0.815
Rules +

CRF 0.994 0.989 0.991

BBi-LSTM

+ CRF 0.852 0.710 0.7631

FLAIR 0.9323 0.4766 | 0.4999

RoBERTa 0.9500 | 0.9489 | 0.9495

Table 6: POS Tagging Models for Ur III Sumerian Text

Named Entity Recognition
Precision | Recall | F1-Score
HMM 0.810 0.599 0.656
Rules +
CRF 0.916 0.910 0.913
Bi-LSTM
+ CRF 0.864 0.704 0.775
FLAIR 0.9562 0.1817 0.1873
RoBERTa | 0.9540 0.9534 | 0.9537

Table 7: NER Models for Ur III Sumerian Text

is needed to be inferred from context.

Figure 9a represents the attribution heat-map
when gradient-normalisation saliency (Simonyan,
Vedaldi, and Zisserman 2013) is used. Being one
of the most conventional techniques for finding at-
tribution, it is more prone to inconsistent interpreta-
tions. Whereas, the attribution heat-map in Figure
9b represents the Integrated Gradients (IG) (Sun-
dararajan, Taly, and Yan512017) approach. Being a
path-based technique, which measures the gradient
attribution relation using a straight-line path from
a baseline (usually all-zeros), to the given input, it
is much more robust and stable.

Even though the gradient-based methods are
much faster than perturbation-based methods, we
observe that the heavy dependency of IG on hyper-
parameters like the number of input steps to be con-
sidered when going from a baseline to the actual
input, n_steps, to be a major setback. The final at-
tribution is generally found out after integrating (or
summing) over the attributions of these sub-steps.
We found that the attributions do not change when
going beyond n_steps = 250, thus, we experiment
by varying it between 10 to 250. We observe that
there is no ideal value of n_steps, IG’s faithfulness
to the model varies largely over this range. For
some inputs, the best value is n_steps = 50 while
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for others n_steps = 250 is the most ideal. We
judge this by considering how much the attribution
is given to sos and eos tokens for each output token.
Thus, based on both plausibility and faithfulness.
We use n_steps = 50 for obtaining the heat-maps
in Figure 9b.

Figure 10 represents the visualization for our
sequence labeling tasks. It indicates two major
things, 1) the effect of words, sub-words (depends
on tokenization) on tagging the target word and
2) the effect of 6 transformer encoder layers. We
created the hook on embeddings of RoBERTa with
layer 1G and obtained the visualizations for how
each sub-word is contributing to tag the target word.
Similarly, to obtain the heat-map we created the
hook on RoOBERTa embeddings and used the Layer
Conductance.

From Figure 10a it can be observed that ku and
du contribute the most to the attribution scores for
tagging ku3-babbar and ba-du3 as a Noun (N) and
Verb (V), respectively. From the heat-maps it is
also noted that ku shows the effect on all 6 layers
whereas in second example effects are majorly due
to the initial transformer layers. Similarly in the
Figure 10b ur and lugal are the most effective sub-
words to tag ur-bi2-lumki and lugal-tesz2-mu as
GN (Geographical Name) and PN (Personal Name)
respectively. It is also interesting to note that both
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of these sub-words have a very positive impact in
the initial layers but are contributing oppositely in
the last layer.

B.1 Human Evaluation

The scoring by human experts was done indepen-
dently for each result according to the following
criterion:

* 3 (good): interpretable in the correct mean-
ing by a native speaker of English; (almost) no
incorrectly translated content word (e.g., tolerant
against some errors in word order, but not in incor-
rect words).

* 2 (helpful): partially distorted, but inter-
pretable with some context information (tolerant
against errors in word order and against incorrect
function words).

* 1 (incorrect): contains incorrectly translated
content words and/or is un-interpretable.

C Rules for POS Tagging and NER

We used certain language-specific rules to assist
CREF for the sequence labeling tasks. The rules
were identified by human experts and some of them
are as mentioned here:

* A word starting with “ur-", “lu2-”, or “dumu”
is most likely to be a personal name.

* If a word is followed by “mu”, then the next
phrase denotes a year name.

* If a word is followed by “iti”
month name.

, it denotes a

* Words containing “ki” are mostly associated
with geographical names (GN).

57

* Words ending with part “~hul” majorly denotes
verbs.

* Words containing “{d}” denotes either per-
sonal name (PN) or divine name (DN).

* A word followed by “gin” (unit) majorly repli-
cate a noun.
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- ------ - i

N N (0.99) N

Visualizations For " ba-du3 "

True Label Predicted Label Attribution Label ~Attribution Score Word Importance
v v (0.5 v 071 [CLS] mu us 2 - sa bad 3 - gal b du 3 [SEP]
. B
. B

-02

§

) 04

o
0.6
08
’ ’ ) ’ " ’ ’ ’ " " . . -10
s omoos 2z o= wa 3 w3 [sen
Thens

(a) POS Tagging

Visualizations For " ur-bi2-lum{ki} "

True Label Predicted Label Attribution Label Al

bution Score ‘Word Importance

GN GN(0.57) GN -0.25 [cLs] mu iil]- bi 2 - wm { ki } ba Elhul [SEP]
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Abstract

This paper studies whether emergent lan-
guages in a signaling game follow Zipf’s law
of abbreviation (ZLA), especially when the
communication ability of agents is limited be-
cause of interfering noises. ZLA is a well-
known tendency in human languages where
the more frequently a word is used, the shorter
it will be. Surprisingly, previous work demon-
strated that emergent languages do not obey
ZLA at all when neural agents play a signal-
ing game. It also reported that a ZLA-like ten-
dency appeared by adding an explicit penalty
on word lengths, which can be considered
some external factors in reality such as artic-
ulatory effort. We hypothesize, on the other
hand, that there might be not only such exter-
nal factors but also some internal factors re-
lated to cognitive abilities. We assume that
it could be simulated by modeling the effect
of noises on the agents’ environment. In our
experimental setup, the hidden states of the
LSTM-based speaker and listener were added
with Gaussian noise, while the channel was
subject to discrete random replacement. Our
results suggest that noise on a speaker is one
of the factors for ZLA or at least causes emer-
gent languages to approach ZLA, while noise
on a listener and a channel is not.

1 Introduction

There has recently been a growing interest in sim-
ulating languages spontaneously emerging among
artificial agents, by training them to solve some
tasks requiring communications. A primary mo-
tivation in this area is to pursue the development
of artificial intelligence that can interact or com-
municate with human beings (e.g., Havrylov and
Titov, 2017; Lazaridou et al., 2017, 2018; Lee
et al., 2018). In addition to this line of research,
some studies have investigated the characteristics
of emergent languages, mainly concerned with to

what extent they are similar to human languages or
what kind of factor forms language-like protocols
(e.g., Kottur et al., 2017; Harding Graesser et al.,
2019; Chaabouni et al., 2020; Kharitonov et al.,
2020).

Chaabouni et al. (2019), for example, studied
the relationship between emergent languages and
Zipf’s law of abbreviation (ZLA), which is a univer-
sal tendency in human languages, where frequent
words tend to be shorter (Zipf, 1935; Kanwal et al.,
2017). To see whether emergent languages follow
ZLA, they performed experiments in which agents
played a signaling game. Their results suggested
that emergent languages have an opposite tendency
against ZLA. In other words, more frequent inputs
are encoded into longer messages. They also re-
ported that by giving an additional penalty on mes-
sage lengths (Eq. 6), the emergence of a ZLLA-like
tendency was observed.

Zipf (1935) hypothesized that ZLLA comes about
between two conflicting pressures: one for accu-
racy and the other for efficiency. In a paradigm
with human subjects using a simple artificial lan-
guage, Kanwal et al. (2017), for instance, intro-
duced some external factors for simulating the
competing pressures, namely, money reward for
precise and quick communications. In emergent-
language simulations, the explicit penalty on mes-
sage lengths (Eq. 6) of Chaabouni et al. (2019) can
also be considered an external factor for ZLA.

However, we speculate that there might be not
only such external factors but also internal factors
(or implicit penalties) related to the cognitive abili-
ties of human beings such as memory. Inspired by
some concepts in psychology, we hypothesize at
first in the following way:

Hypothesis 1. ZLA appears due to some internal
factors from the cognitive abilities of human beings,
as well as external factors. In other words, human

Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
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beings assign shorter codes to frequent words so
that they can avoid difficulty in their internal pro-
cesses as much as possible.

Some studies in psychology suggested that in
human beings, there is an output buffer of some
sort that temporarily reserves some words to be
spoken (Baddeley et al., 1975; Baddeley, 2003;
Meyer et al., 2003; Damian et al., 2010; Baddeley
and Hitch, 2019). The output buffer might decay
over time, be overwhelmed by incoming inputs one
after another, or be exposed to other disturbances.
Such pressures, we thought, could be factors to
shorten frequent words.

But how should they be modeled in the simu-
lations of language emergence? Since artificial
agents in simulations are not humans but often (re-
current) neural networks, it is not trivial to define
equivalent pressures for them. To adopt such pres-
sures into a signaling game, we propose modeling
them into noise that interferes with the states of
agents. Although the potential factors described
above might be the matter of a speaker in a sig-
naling game, we also propose adding noise to a
listener for comprehensive research. The listener’s
short-term memory might also be limited due to
similar reasons as the speaker. Besides, we try
adding noise to a channel that spans the speaker
and the listener, referring to a noisy-channel model
(Shannon, 1948). Although a noisy channel is not
probably pressure for efficiency but for accuracy,
the assumption that redundancy contributes to ac-
curacy seems to think implicitly of a listener as
capable enough of correcting errors while main-
taining necessary information, which is not trivial
for neural agents. Therefore it is worth a try.

By the modeling and for the comprehensiveness,
hypothesis 1 is revised as follows:

Hypothesis 2. ZLA appears due to some of the
three types of noises: noise on a speaker, noise on
a listener, and noise on a channel.

In our experimental setup, speaker and listener
agents are exposed to Gaussian noise since they
have continuous vectors as their states. On the other
hand, the channel is exposed to discrete random
replacements, as messages passing through it have
discrete variables.

Our experiments suggest that noise on a speaker
is one factor for ZLA or at least causes emergent
languages to be closer to ZLA, whereas noise on
a listener and a channel is not in our signaling
game. Rather, the noise on a channel strengthened

redundancy.

Our analysis reveals the following things. First,
when noise interferes with a speaker agent, noise
accumulation can make it difficult to generate long
consistent messages. Second, when noise interferes
with a listener agent, on the other hand, noise accu-
mulation does not affect the overall tendency cru-
cially: even if the listener agent “forgets” the prefix
of a message, the suffix is sufficient for communi-
cations. Third, noise on a channel can be thought
of as a pressure for accuracy rather than efficiency,
which is consistent with an information-theoretic
point of view and Zipf’s hypothesis.

2 Background

Chaabouni et al. (2019) studied whether emergent
languages follow ZLLA when neural agents play a
signaling game. As we largely refer to, we review
their setups, methods, and results in this section.

2.1 Signaling Game with a Power-law
distribution

They extended a signaling game (Lewis, 1969) by
making inputs be sampled from a power-law dis-
tribution. In the power-law distribution, the n-th
most frequent input is sampled from a finite input
space I at the probability < 1/n. Thus, if agents
learned to assign frequent inputs to shorter mes-
sages, their communication protocol could be said
to obey ZLA.

Let S and L be a speaker and a listener. Formally,
the game procedure is as follows:

1. Aninput ¢ € I is sampled from a power-law
distribution. Let 7, be the r-th most frequent
input. Then i, is sampled at the probability
oL

2. Given i, the speaker S generates a message
m,ie., m = S(i). m = x1...7y is astring
over an alphabet A = {aq, ... s QA1 eos}
s.t. z; # eos (1 <1 < |ml), T|yy| = €0s,
and 0 < |m| < max_len, where |m/| is the
length of m and max_len is a hyperparam-
eter. Note that eos € A stands for “end-of-
sentence,” and it is guaranteed to be attached
to the end of each message'.

3. Given m, the listener L generates an output,
ie., 0= L(m).
'One might think that eom (end-of-message) is better, but

we follow the convention in the literature of neural language
modeling.



4. The procedure is successful if i = o.

2.2 Training Method

Since players in a signaling game are neural net-
works, each input i € I is represented as a |[|-
dimensional one-hot vector ¢. Likewise, an output
o is represented as a |/|-dimensional vector o s.t.
() > 0 (k =1,...,I]) and 3} (o) = 1.
Let £(¢,0) = L(¢, L(S(¢)) be the cross-entropy
error between ¢ and o = L(S(2)):

]

L(i,0) = = (i)rlog(0),

k=1

(1)

where S is a speaker and L is a listener. Our pur-
pose is to minimize its expectation E[L], but the
simple backpropagation algorithm is not applicable
due to discrete messages m = 1 ... Ty, sampled
from a speaker. Chaabouni et al. (2019) used the
following surrogate function, the gradient of which
is an unbiased gradient estimator, with an auxiliary
loss entropy regularizer ER:

E[Ls + L1 + ER] 2
Im|
Ls = SG(L(i,0) — ) Y Jlog Ps(x:) (3)
t=1
['L = ﬁ(,l’v 0) (4)
Ay
ER = ~°2 ; H(Psy), (5)

where b is a mean baseline added to reduce the
estimate variance, SG(-) denotes the stop-gradient
operation?, Ps 1 1s the speaker’s output layer at time
step t defining a categorical distribution over an al-
phabet A, Pg(z;) is the probability of z; € A
being sampled at time step ¢, and #(-) is the en-
tropy function. Eq. 3 and Eq. 4 are derived by
the approach of Schulman et al. (2015), which can
be seen as the combination of REINFORCE-like
method (Williams, 1992) and standard backprop-
agation. ER (Eq. 5) is added to encourage the
exploration during training (Williams and Peng,
1991).

2.3 Anti-ZLA Emergent Languages

Chaabouni et al. (2019) reported, somewhat surpris-
ingly, that the communication protocols had a clear
anti-ZLA tendency when agents play a signaling

*When we write SG/(z) instead of bare x, we regard x as
a constant with respect to any parameters.
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game described in section 2.1. They also reported
that a ZLLA-like tendency appeared when they ad-
ditionally imposed an artificial length pressure on
messages:

L' (i, L(m),m) = L(3, L(m)) + a x |m|, (6)

where m is a message, | - | denotes length, and
a > 01is a hyperparameter.

Rita et al. (2020) took a quite similar approach
and observed the emergence of ZLA. As well as
imposing a length pressure on a speaker agent, they
re-designed the architecture of a listener agent so
that the listener would be impatient to recover 2 as
soon as possible.

Note that both the length pressure (Eq. 6) and
the architecture re-design in Rita et al. (2020) can
be regarded as somewhat explicit losses, whereas
we try to impose an implicit pressure on agents.

3 Setup

3.1 Game with Noise

For a game, we take almost the same design as
Chaabouni et al. (2019), which was introduced in
section 2.1. We additionally introduce a channel C'
over which messages move from speaker to listener:
A listener L obtains a message m = C(m) through
achannel C, instead of receiving directly m = S(7)
from a speaker. Also, there are several differences
in hyperparameter settings.

3.2 Architectures

As speaker and listener agents have continuous vec-
tors as their states, they are added with continuous
noise. For simplicity, we choose a Gaussian noise
sampled at each time step with replacement. Chan-
nels, on the other hand, are exposed to discrete
noise, since they convey discrete symbols. We take
a random replacement operation for the channel
noise.

3.2.1 Speaker and Listener

The architectures of speaker and listener agents
are based on a single-layer LSTM, following
Chaabouni et al. (2019).

At training time, we add Gaussian noise to the
cell states of the LSTM of each agent’. Formally,

3We also tried simply shrinking the size of the agents’
hidden layers to restrict their capacity, but it made it difficult
to train the agents successfully. We leave it for future work



fort > 0,

(Piy1,cie1) = LSTM(2411, (he, &) ()
ét =cC; + € (8)
et~ N(-|0,0°E) 9)

where o > 0 is a standard deviation (SD), E is
the identity matrix, N'(- | 0,02FE) is a Gaussian
distribution with a mean vector 0 and a variance-
covariance matrix o> E, and €; is a sampled value
from N (- | 0,0%F) at time step t. We denote by
os,o0r, the SDs for the speaker and listener archi-
tecture respectively.

At test time, we do not add noise for determinis-
tic evaluation.

3.2.2 Channel

At training time, we think of a channel as being
exposed to some noise so that the messages can
be degraded during transportation. Such degrada-
tion is modeled as replacement: each symbol in a
message is probabilistically replaced with another
one. Note that each message is attached with eos,
which is exceptionally protected from the replace-
ment, since the effect of the insertion or deletion of
eos is too strong for our purpose.

Formally, let A be an alphabet, m = a1 ...a,
be an original message generated by the speaker,
and m = a; ...a, be transformed one. Then the
probability distribution over a; # eos given a; #
eos (t=1,...,n— 1)is as follows:

(@ | as) { ge
pla; | a;) = il P AN
A\{ar, c05)] 7 )
(10)

where m¢ is a hyperparameter s.t. 0 < ¢ < 1.

Let us call m¢ a channel replacement probability.
At test time, the channel is free from noise so

that we can perform deterministic examinations.

3.3 Optimization
3.3.1 Design and Estimation of Loss Function

We use almost the same loss function as Eq. 2. We
modify ER (Eq. 5) into Decayed Entropy Regular-
izer (DER) and we define an additional auxiliary
loss Soft Max Length (SML) in the following sec-
tions. Both DER and SML are introduced to pre-
vent messages from being unnaturally long. Note
that they themselves are not factors for ZLA in our
assumption.
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3.3.2 Decayed Entropy Regularizer

Chaabouni et al. (2019) used ER (Eq. 5) to en-
courage the exploration. However, ER might have
an unexpected side-effect: They could lead mes-
sages to be unnecessarily long. We give an intu-
itive explanation as shown in Figure 1. Suppose
that a speaker agent has learned a message pattern
M = Z1...Z}, foraninputi. By the definition
of the message, x|,y = eos, indicating that the
probability that eos is sampled is relatively higher
at time step |m|. Then, the speaker’s output layer
Pg |, at time step |m| is updated so that the en-
tropy H(P,,) will be larger. It means that the
probability of eos being sampled becomes lower,
which might lead the message to be longer. Such
an effect can cause an undesirable bias in emer-
gent languages. Thus, we modify ER into Decayed
Entropy Regularizer (DER) as:

N
Ay t—1
DER = -2 ;H(Pt) x pht, an

N
z2=3 o, (12)

t=1
where py is a hyperparameter s.t. 0 < py < 1.
DER is a weighted mean that puts a higher priority
on the entropy at earlier time steps but lower on
those at later. Therefore, it is expected to cancel
the unnecessary effect of hindering eos emission
at later time steps.

3.3.3 Soft Max Length

Each message m is generated by sampling a sym-
bol x; at each time step ¢ and concatenating them
until either eos is sampled (self-termination) or
the time step reaches max_len — 1 (forced ter-
mination). In the forced termination case, eos is
attached to the end of the sequence. However, this
generating procedure may cause a speaker agent
to fail to learn to emit eos for some inputs, since
message lengths are bounded regardless of the eos
emission. To handle this problem, we introduce an



additional auxiliary loss Soft Max Length (SML)
defined as:

SML = Ay max(0, |m| — eff_max_len),
(13)

where m is a message, | - | denotes length, A,
is the coefficient of this term, and eff _ max_len
is a hyperparameter s.t. 0 < eff max_len <
max_len.

3.3.4 Training and Implementation

We follow Chaabouni et al. (2019) on the rest of
the training method: Agents are trained for 2500
episodes, each of which contains 100 mini-batches.
Each mini-batches are made of 5120 inputs sam-
pled from the power-law distribution with replace-
ment. When the accuracy at test time reaches 0.99
or more, the training stops early. Note that we do
not add any noise at test time.

The game and the training are implemented us-
ing the EGG toolkit (Kharitonov et al., 2019)*.

3.4 Evaluating Communicative Effectiveness

As Lowe et al. (2019) pointed out, emergent com-
munications have to be carefully examined in terms
of effectiveness: even if something like communi-
cation emerges, agents might act without referring
to signals from others. Since message lengths can
vary in our signaling game, it is doubtful that every
single symbol in a message conveys essential infor-
mation. For example, it is not trivial whether eos
is really end-of-sentence, since agents can use other
symbols as “punctuations” or meaningless “blanks.”
The effective position of beginning-of-sentence is
not trivial, either. Thus, apparent message lengths
may differ from actual ones.

To evaluate effectiveness, we introduce
position-wise symbol effectiveness and then
head/intermediate/tail effectiveness to cover a
weak point in the former.

Position-wise Symbol Effectiveness

First, to evaluate how informative symbols are dis-
tributed across positions, we introduce position-
wise symbol effectiveness, which is a quite sim-
ilar notion to positional encoding in Rita et al.
(2020). Suppose a symbol xj in a message m =

Tl Tho o Ty is informative enough. Then, a

“The code for the EGG toolkit is found at https:
//github.com/facebookresearch/EGG. Our code

is available at https://github.com/wedddy0707/
noisyEGG.git.
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listener L is expected to fail to recover an input
¢ correctly if xj is replaced with another sym-
bol y, ie., i # L(z1...y...7),,). Based on
this intuition, the symbol effectiveness e(m, k)
at position k € {1,...,max_len} in a message
M = Z1...T)y s defined as follows:

1
T AN ]li m|Ti=a (k < m|)
e(m, k) = { 4] ; Anlewi=a) (<]
0 (k> |ml)
(14)
A" = A\{xy, eos}, (15)
where A is an alphabet, m[x; := a] denotes

Tl Tp—1ATfA1 - - - Ty and 1 is defined as

-

By definition, 0 < e(m,k) < 1. Low e(m,k)
means that symbol zj, is redundant, since the lis-
tener L can recover ¢ from most of m[z = a]
(a € A’). Otherwise, zj is considered neces-
sary for successful communications. Note that
€05 = I, is prevented from being replaced.

The value of e(m, k) (Eq. 14) may vary de-
pending on messages and speaker agents. That
would make it difficult to perform straightforward
evaluations for position-wise symbol effectiveness.
To handle this problem, we also define €, mean
e(m, k) across messages and across speaker agents.
Formally, let S = {S1,..., S5} be a set of |S]
speaker agents trained with different random seeds.
Then €, is defined as:

(¢ is true.)

(¢ is false.) (16)

_ 1
€k = oo
[SI1]

D> e(S6), k).

SeS iel

A7)

Head, Intermediate, and Tail Effectiveness

One may be interested in detecting whether the ef-
fectiveness is concentrated in the prefixes, infixes,
or suffixes of messages. However, €, (Eq. 17) do
not seem good for this purpose: Since message
lengths can vary, the effectiveness of infixes and
suffixes can scatter across €. Thus, we addition-
ally introduce head effectiveness epeqq, intermedi-
ate effectiveness €04, and tail effectiveness €;q;;.
Intuitively, €,¢,4 1S mean effectiveness across the
heads of messages (i.e., zyinm =7 ... x|m|) and
across speaker agents. Similarly, €,,.q (resp. €:q;1)
is mean effectiveness across the intermediate posi-
tions (resp. tails) of messages and across speaker
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# successful runs
ER (baseline) 16
DER 7
SML 6
DER+SML 11

Table 1: The number of successful runs out of 16.

agents. Formally, let S = {S1,..., 5|5/} be as
above. Then €pecqd, Emed, and €;4;; are defined as
follows:

Chead = DY eS6), 1) =2  (18)
|5‘| | S iet
_ 15(2)]
e =S \SZSZ < { 2 D
(19)
7az' -1 20
Ctail = |S|I‘s§sze; (@) —1), (20)

where |-] is a floor function.

4 Experiments

4.1 Hyperparameter Setting

In all our experiments, the size || of an input space
was set to 256, the size | A| of an alphabet was 40,
the size of hidden layers was 100 for both agents,
and the entropy regularizer coefficient Ay was 1.
The hyperparameters og, or,, and 7 for noise var-
ied through sections.

We define a training run ending with an accuracy
higher than 0.99 as a successful run.

4.2 Effects of DER and SML

Before conducting the main experiments, we show
the effect of DER (Eq. 11) and SML (Eq. 13). For a
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setting

no noise

noise og = 1/4
noise og = 1/2
noise og = 1
noise oy, = 1/4
noise oy, = 1/2
noise oy, = 1
noise m¢o = 0.01
noise mc = 0.05
noise m¢ = 0.1

Spearman p

0.327 (p = 5.9 x 10~
0.113 (p = 1.5 x 107%)
0.109 (p = 6.9 x 1077)
0.008 (p = 7.7 x 1071
0.273 (p = 6.6 x 1073?)
0.280 (p = 5.9 x 10729)
0.268 (p = 1.4 x 10~2?)
0.261 (p = 3.3 x 107°7)
0.236 (p = 6.3 x 10721)
0.249 (p = 8.6 x 10727)

Table 2: Spearman correlations between input fre-
quency ranks and message length ranks in successful
runs in various noise conditions.

baseline model, we used the existing entropy regu-
larizer ER (Eq. 5), setting Ay = 1 andmax_len =
30. For a model with DER, (Ay, py) = (1,1/2).
For a model with SML (and ER), A\yy = 1 and
(max_len,eff max_len) (40,30). For a
model with DER+SML, (Ay, py) = (1,1/2) and
(max_len,eff max_len) = (40, 30).

To see the overall tendency, we show the mean
message lengths across successful runs for each
model in Figure 2. The mean lengths are longer
when ER is used. In particular, the ones of the
baseline model are near max_len = 30. On the
other hand, the mean lengths are shorter when DER
is used. That suggests that DER prevents messages
from being unnecessarily longer.

To check the effects on learning, in addition,
Table 1 shows the number of successful runs out
of 16 for each model. Although apparent tenden-
cies in Figure 2 are similar between the DER and
DER+SML model, Table 1 suggests that it is easier
to learn with the DER+SML model which has 5
more successful runs than the SML model.

4.3 Effects of Noise

In this section, we show the influence of noise
on a speaker, listener, and channel. We used the
DER+SML model with the same hyperparameters
as in the previous section. We examined the effect
of each noise by varying o, o, and . Note that
og is the standard deviation of noise on a speaker,
oy, is the one on a speaker, and 7¢ is the channel
replacement probability.

4.3.1 Noise on a Speaker

To examine the effect of noise on a speaker,
(0s,0L,mc) was set to (1/4,0,0,0), (1/2,0,0),
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Figure 3: Mean message lengths across successful
runs as a function of inputs sorted by frequency, when
(0s,0n,m¢) = (0,0,0), (1/4,0,0), (1/2,0,0), and
(1,0,0) respectively.
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Figure 4: €, in successful runs, when (og,0r,7c) =
(0,0,0), (1/4,0,0), (1/2,0,0), and (1,0,0) respec-

tively.

and (1,0,0). 7 out of 16, 8 out of 16, and 6 out of
32 runs were successful for each setting.

To see the overall tendency, we show mean mes-
sage lengths for each model in Figure 3°. The
tendency shifts from anti-ZLA to the one between
ZLA and anti-ZLA as og gets bigger.

In addition, we show Spearman correlations be-
tween input frequency ranks and message length
ranks in Table 2. Intuitively, p < 0 implies ZLA
and p > 0 implies anti-ZLA. According to Table 2,
p gets smaller as og gets bigger, which is consistent
with the observation in Figure 3.

To check the symbol effectiveness, we show €y,
(Eq. 17) in Figure 4. Judging from Figure 4, the
effectiveness at an earlier position becomes higher

SThere are some messages of length max_1en =40 while
other messages are much shorter. We excluded the former
in Figure 3 because otherwise the mean lines would have
unnatural peaks and impair readability. As a result, 4 out of
1792, 30 out of 2048, and 7 out of 1526 data points were
removed for og = 1/4, 1/2, and 1 respectively.
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Figure 5: Mean message lengths across successful
runs as a function of inputs sorted by frequency, when
(0s,0n,7c) = (0,0,0), (0,1/4,0), (0,1/2,0), and
(0, 1,0) respectively.
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Figure 6: €, in successful runs, when (og, 0, 7c) =
(0,0,0), (0,1/4,0), (0,1/2,0), and (0,1,0) respec-
tively.

as og gets bigger. We also show €j¢qd, Emed, and
et (Eq. 18, Eq. 19, and Eq. 20) in Figure 9. In
Figure 9, the bigger og is, the higher €¢.q and
€med are, indicating that the former halves of mes-
sages become more informative by the effect of
noise on a speaker.

These results suggest that noise on a speaker is a
factor for ZLA, or at least causes message lengths
to be closer to ZLLA. One possible reason is that
noise accumulation over time made it difficult for a
speaker agent to generate long consistent messages.

4.3.2 Noise on a Listener

Next, to investigate the effect of noise on a listener,
(0g,0L,mc) was setto (0,1/4,0), (0,1/2,0), and
(0,1,0). 7 out of 16, 4 out of 32, and 5 out of 16
runs were successful for each setting.

To see the overall tendency, mean message
lengths are shown in Figure 5. The apparent ten-
dencies are quite similar among all the settings
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Figure 7: Mean message lengths across successful
runs as a function of inputs sorted by frequency, when
(05,0, m¢) = (0,0,0), (0,0,0.01), (0,0,0.05), and
(0,0,0.1) respectively.

including ‘no noise,” showing clear anti-ZLA ten-
dencies. Spearman correlations in Table 2 also
suggest anti-ZLA tendencies.

To check the symbol effectiveness, we show ¢y,
(Eq. 17) in Figure 6. In Figure 6, € for or, > 0
shows similar tendencies to those for ‘no noise,’
although the peak of € for o, = 1/2 is lower than
the other results.. €peqd, €med> and ey (Eq. 18,
Eq. 19, and Eq. 20) are shown in Figure 9. Ac-
cording to Figure 9, €peqq for o > 0 tends to be
smaller than the one for ‘no noise,” but the over-
all tendencies seem similar (€.g., €pead < Emed <
Etail)-

These results suggest that noise on a listener is
not a crucial factor for changing a tendency in emer-
gent languages. The listener’s short-term memory
is thought to have been limited due to noise accu-
mulation over time, as €j.,q got smaller. However,
even if there was no noise, informative symbols
tended to be located in the latter half of messages,
1.8, Ehead < Emed < €tqil, Which is one possible
reason why noise on a listener did not crucially
affect the overall tendency.

4.3.3 Noise on a Channel

Finally, to check the effect of noise on a channel,
(05,01, mc) was set to (0,0,0.01), (0,0,0.05),
and (0,0,0.1). 9 out of 16, 6 out of 32, and 7
out of 32 runs were successful for each setting.

To see the overall tendency, mean message
lengths are shown in Figure 7. The apparent re-
sults for mo > 0 are similar to the one for ‘no
noise,” showing clear anti-ZLA tendencies. Spear-
man correlations in Table 2 also suggest anti-ZLA
tendencies.
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Figure 8: meaneffr in successful runs, when

(05,01, m¢) = (0,0,0), (0,0,0.01), (0,0,0.05), and
(0,0,0.1) respectively.

To check the symbol effectiveness, we show ey
(Eq. 17) in Figure 8. In Figure 8, €; becomes lower
entirely as m¢ gets bigger. €neqds> Emed> and €iq;;
(Eq. 18, Eq. 19, and Eq. 20) are shown in Figure 9.
In Figure 9, €jc0d, €med, and €;4;; become lower
as mc gets bigger. Remember that low e(m, k)
(Eq. 14) means that the symbol at position k in m
is redundant. Thus, lower €, €5ead> Emed> aNd €441
indicate that symbols are redundant on the whole.

These results suggest that redundancy was facili-
tated due to the noise on a channel. It is consistent
with Zipf’s hypothesis and a noisy-channel model.

5 Discussion

Our experiments suggest that noise on a speaker is
a factor for ZLLA, while noise on a listener and a
channel is not in our signaling game.

One possible reason for the noise on a speaker
is that noise accumulation matters as time goes.
At each trial, the speaker agent gets an input 2
and transforms it into an initial hidden state hy.
The hidden states need to maintain the input ¢ in
some way for emitting consistent symbols. But
noise accumulates over time and is harmful to their
memory, which may cause frequent messages to be
shorter. However, the result per se shows a neutral
tendency between ZLA and anti-ZLA. Our implicit
length pressure might not have been strong enough,
or there might have been some problems with the
agents’ architectures.

Noise on a listener is not a crucial factor for
ZLA in our setting. Judging from symbol effec-
tiveness, the latter halves of messages tend to be
more informative than the former when noise in-
terferes with the listener. It means that the listener
could “forget” the former halves of messages. In
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Figure 9: €j,cqd, €med, and €:4;; in successful runs under various noise conditions.

the first place, however, the former halves are less
informative even if there is no noise. That may be
why noise on a listener did not affect the overall
tendency. Noise on a channel seems to facilitate
the redundancy of messages, which is consistent
with Zipf’s hypothesis and a noisy-channel model.

To help agents with learning, we used the two
auxiliary loss DER (Eq. 11) and SML (Eq. 13)
which are somewhat artificial. In particular, the
usage of SML conflicts a bit with our original goal
to give rise to ZLA by an implicit penalty, as SML
is similar to an artificial length pressure (Eq. 6).

6 Conclusion

In this paper, we simulated the emergence of lan-
guage and checked whether the emergent languages
follow Zipf’s law of abbreviation (ZLA). Inspired
by some psychological concepts, we proposed ex-
posing architectures to some noise during train-
ing. Our experiments were conducted under several
noise conditions. The results suggested that noise
on a speaker agent is one factor for ZLA, whereas
neither noise on a listener nor noise on a channel is
in our signaling game.

Our main contribution is to propose a potential
factor for ZLA instead of an external length pres-
sure and to demonstrate that noise imposing inter-
nal difficulty on a speaker agent may cause ZLA.

However, there are several problems and limita-
tions in addition to what is discussed in section 5.
First, we could not try the combination of noises.
One might be interested in combining the noises
on a speaker, listener, and channel, but we failed
to train agents stably under such conditions. It is
simply because it became much more difficult for
agents to learn under several noises.

Second, our signaling game did not contain any
contexts. As an input space was no more complex

68

than having the order by frequency, emergent lan-
guages could only have a unigram-like structure.
However, according to Piantadosi et al. (2011),
word predictability considering contexts is a better
predictor of word length than unigram probabili-
ties. From a more realistic point of view, therefore,
contexts should be considered in some ways. More-
over, if agents are forced to remember contexts,
noise on a listener may also be a factor for ZLA,
making the listener impatient.
We leave these issues for future work.
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Abstract

Abstractive summarization is the task of com-
pressing a long document into a coherent short
document while retaining salient information.
Modern abstractive summarization methods
are based on deep neural networks which of-
ten require large training datasets. Since col-
lecting summarization datasets is an expensive
and time-consuming task, practical industrial
settings are usually low-resource. In this pa-
per, we study a challenging low-resource set-
ting of summarizing long legal briefs with
an average source document length of 4268
words and only 120 available (document, sum-
mary) pairs. To account for data scarcity,
we used a modern pretrained abstractive sum-
marizer BART (Lewis et al., 2020), which
only achieves 17.9 ROUGE-L as it struggles
with long documents. We thus attempt to
compress these long documents by identify-
ing salient sentences in the source which best
ground the summary, using a novel algorithm
based on GPT-2 (Radford et al., 2019) lan-
guage model perplexity scores, that operates
within the low resource regime. On feeding the
compressed documents to BART, we observe a
6.0 ROUGE-L improvement. Our method also
beats several competitive salience detection
baselines. Furthermore, the identified salient
sentences tend to agree with an independent
human labeling by domain experts.

1 Introduction and Related Work

Text summarization is the task of generating a
smaller coherent version of a document preserv-
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ing key information. Typical abstractive summa-
rization algorithms use seq2seq models with atten-
tion (Chopra et al., 2016), copy mechanisms (Gu
et al., 2016), content selection (Cheng and Lapata,
2016), pointer-generator methods (See et al., 2017)
and reinforcement learning (Wu and Hu, 2018).
These methods perform well in high resource sum-
marization datasets with small documents such
as CNN/DailyMail (Nallapati et al., 2016), Gi-
gaword (Rush et al., 2015), etc. However, sum-
marization over long documents with thousands
of tokens is a more practically relevant problem.
Existing solutions focus on leveraging document
structure (Cohan et al., 2018) or do mixed model
summarization involving compression or selection
followed by abstractive summarization (Liu et al.,
2018; Gehrmann et al., 2018). However, these
methods require large amounts of training data.
Low resource settings 