Reports of human-like behaviors in foundation models are growing, with psychological theories providing enduring tools to investigate these behaviors. However, current research tends to directly apply these human-oriented tools without verifying the faithfulness of their outcomes. In this paper, we introduce a framework, RealBehavior, which is designed to characterize the humanoid behaviors of models faithfully. Beyond simply measuring behaviors, our framework assesses the faithfulness of results based on reproducibility, internal and external consistency, and generalizability. Our findings suggest that a simple application of psychological tools cannot faithfully characterize all human-like behaviors. Moreover, we discuss the impacts of aligning models with human and social values, arguing for the necessity of diversifying alignment objectives to prevent the creation of models with restricted characteristics.
Multi-hop question generation focuses on generating complex questions that require reasoning over multiple pieces of information of the input passage. Current models with state-of-the-art performance have been able to generate the correct questions corresponding to the answers. However, most models can not ensure the complexity of generated questions, so they may generate shallow questions that can be answered without multi-hop reasoning. To address this challenge, we propose the CQG, which is a simple and effective controlled framework. CQG employs a simple method to generate the multi-hop questions that contain key entities in multi-hop reasoning chains, which ensure the complexity and quality of the questions. In addition, we introduce a novel controlled Transformer-based decoder to guarantee that key entities appear in the questions. Experiment results show that our model greatly improves performance, which also outperforms the state-of-the-art model about 25% by 5 BLEU points on HotpotQA.
Question generation over knowledge bases (KBQG) aims at generating natural questions about a subgraph, which can be answered by a given answer entity. Existing KBQG models still face two main challenges: (1) Most models often focus on the most relevant part of the answer entity, while neglecting the rest of the subgraph. (2) There are a large number of out-of-vocabulary (OOV) predicates in real-world scenarios, which are hard to adapt for most KBQG models. To address these challenges, we propose LFKQG, a controlled generation framework for Question Generation over Knowledge Bases. (1) LFKQG employs a simple controlled generation method to generate the questions containing the critical entities in the subgraph, ensuring the question is relevant to the whole subgraph. (2) We propose an optimization strategy called local fine-tuning, which can make good use of the rich information hidden in the pre-trained model to improve the ability of the model to adapt the OOV predicates. Extensive experiments show that our method outperforms existing methods significantly on three widely-used benchmark datasets SimpleQuestion, PathQuestions, and WebQuestions.
Recently, more and more pre-trained language models are released as a cloud service. It allows users who lack computing resources to perform inference with a powerful model by uploading data to the cloud. The plain text may contain private information, as the result, users prefer to do partial computations locally and upload intermediate representations to the cloud for subsequent inference. However, recent studies have shown that intermediate representations can also be recovered to plain text with reasonable accuracy, thus the risk of privacy leakage still exists. To address this issue, we propose TextFusion, a novel method for preserving inference privacy. Specifically, we train a Fusion Predictor to dynamically fuse token representations, which hides multiple private token representations behind an unrecognizable one. Furthermore, an adversarial training regime is employed to privatize these representations. In this way, the cloud only receives incomplete and perturbed representations, making it difficult to accurately recover the complete plain text. The experimental results on diverse classification tasks show that our approach can effectively preserve inference privacy without significantly sacrificing performance in different scenarios.
Proof generation focuses on deductive reasoning: given a hypothesis and a set of theories, including some supporting facts and logical rules expressed in natural language, the model generates a proof tree indicating how to deduce the hypothesis from given theories. Current models with state-of-the-art performance employ the stepwise method that adds an individual node to the proof step-by-step. However, these methods actually focus on generating several proof paths rather than a whole tree. During generation, they focus on the most relevant areas of the currently generated node while neglecting the rest of the proof tree. To address this problem, we propose ProofInfer, which generates the proof tree via iterative hierarchical inference. At each step, ProofInfer adds the entire layer to the proof, where all nodes in this layer are generated simultaneously. Since the conventional autoregressive generation architecture cannot simultaneously predict multiple nodes, ProofInfer employs text-to-text paradigm. To this end, we propose a divide-and-conquer algorithm to encode the proof tree as the plain text without losing structure information. Experimental results show that ProofInfer significantly improves performance on several widely-used datasets. In addition, ProofInfer still performs well with data-limited, achieving comparable performance to the state-of-the-art model with about 40% of the training data.
Natural question generation (QG) aims to generate questions from a passage, and generated questions are answered from the passage. Most models with state-of-the-art performance model the previously generated text at each decoding step. However, (1) they ignore the rich structure information that is hidden in the previously generated text. (2) they ignore the impact of copied words on the passage. We perceive that information in previously generated words serves as auxiliary information in subsequent generation. To address these problems, we design the Iterative Graph Network-based Decoder (IGND) to model the previous generation using a Graph Neural Network at each decoding step. Moreover, our graph model captures dependency relations in the passage that boost the generation. Experimental results demonstrate that our model outperforms the state-of-the-art models with sentence-level QG tasks on SQuAD and MARCO datasets.
TextFlint is a multilingual robustness evaluation toolkit for NLP tasks that incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analyses. This enables practitioners to automatically evaluate their models from various aspects or to customize their evaluations as desired with just a few lines of code. TextFlint also generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model in terms of its robustness. To guarantee acceptability, all the text transformations are linguistically based and all the transformed data selected (up to 100,000 texts) scored highly under human evaluation. To validate the utility, we performed large-scale empirical evaluations (over 67,000) on state-of-the-art deep learning models, classic supervised methods, and real-world systems. The toolkit is already available at https://github.com/textflint with all the evaluation results demonstrated at textflint.io.
Conditional random fields (CRF) for label decoding has become ubiquitous in sequence labeling tasks. However, the local label dependencies and inefficient Viterbi decoding have always been a problem to be solved. In this work, we introduce a novel two-stage label decoding framework to model long-term label dependencies, while being much more computationally efficient. A base model first predicts draft labels, and then a novel two-stream self-attention model makes refinements on these draft predictions based on long-range label dependencies, which can achieve parallel decoding for a faster prediction. In addition, in order to mitigate the side effects of incorrect draft labels, Bayesian neural networks are used to indicate the labels with a high probability of being wrong, which can greatly assist in preventing error propagation. The experimental results on three sequence labeling benchmarks demonstrated that the proposed method not only outperformed the CRF-based methods but also greatly accelerated the inference process.