Yusuke Ide


2024

pdf
Arukikata Travelogue Dataset with Geographic Entity Mention, Coreference, and Link Annotation
Shohei Higashiyama | Hiroki Ouchi | Hiroki Teranishi | Hiroyuki Otomo | Yusuke Ide | Aitaro Yamamoto | Hiroyuki Shindo | Yuki Matsuda | Shoko Wakamiya | Naoya Inoue | Ikuya Yamada | Taro Watanabe
Findings of the Association for Computational Linguistics: EACL 2024

Geoparsing is a fundamental technique for analyzing geo-entity information in text, which is useful for geographic applications, e.g., tourist spot recommendation. We focus on document-level geoparsing that considers geographic relatedness among geo-entity mentions and present a Japanese travelogue dataset designed for training and evaluating document-level geoparsing systems. Our dataset comprises 200 travelogue documents with rich geo-entity information: 12,171 mentions, 6,339 coreference clusters, and 2,551 geo-entities linked to geo-database entries.

2023

pdf
Japanese Lexical Complexity for Non-Native Readers: A New Dataset
Yusuke Ide | Masato Mita | Adam Nohejl | Hiroki Ouchi | Taro Watanabe
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023)

Lexical complexity prediction (LCP) is the task of predicting the complexity of words in a text on a continuous scale. It plays a vital role in simplifying or annotating complex words to assist readers. To study lexical complexity in Japanese, we construct the first Japanese LCP dataset. Our dataset provides separate complexity scores for Chinese/Korean annotators and others to address the readers’ L1-specific needs. In the baseline experiment, we demonstrate the effectiveness of a BERT-based system for Japanese LCP.