Yuanye He
2017
YZU-NLP at EmoInt-2017: Determining Emotion Intensity Using a Bi-directional LSTM-CNN Model
Yuanye He
|
Liang-Chih Yu
|
K. Robert Lai
|
Weiyi Liu
Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
The EmoInt-2017 task aims to determine a continuous numerical value representing the intensity to which an emotion is expressed in a tweet. Compared to classification tasks that identify 1 among n emotions for a tweet, the present task can provide more fine-grained (real-valued) sentiment analysis. This paper presents a system that uses a bi-directional LSTM-CNN model to complete the competition task. Combining bi-directional LSTM and CNN, the prediction process considers both global information in a tweet and local important information. The proposed method ranked sixth among twenty-one teams in terms of Pearson Correlation Coefficient.
Search