Recent studies demonstrate that query expansions generated by large language models (LLMs) can considerably enhance information retrieval systems by generating hypothetical documents that answer the queries as expansions. However, challenges arise from misalignments between the expansions and the retrieval corpus, resulting in issues like hallucinations and outdated information due to the limited intrinsic knowledge of LLMs. Inspired by Pseudo Relevance Feedback (PRF), we introduce Corpus-Steered Query Expansion (CSQE) to promote the incorporation of knowledge embedded within the corpus. CSQE utilizes the relevance assessing capability of LLMs to systematically identify pivotal sentences in the initially-retrieved documents. These corpus-originated texts are subsequently used to expand the query together with LLM-knowledge empowered expansions, improving the relevance prediction between the query and the target documents. Extensive experiments reveal that CSQE exhibits strong performance without necessitating any training, especially with queries for which LLMs lack knowledge.
Dense retrievers have achieved impressive performance, but their demand for abundant training data limits their application scenarios. Contrastive pre-training, which constructs pseudo-positive examples from unlabeled data, has shown great potential to solve this problem. However, the pseudo-positive examples crafted by data augmentations can be irrelevant. To this end, we propose relevance-aware contrastive learning. It takes the intermediate-trained model itself as an imperfect oracle to estimate the relevance of positive pairs and adaptively weighs the contrastive loss of different pairs according to the estimated relevance. Our method consistently improves the SOTA unsupervised Contriever model on the BEIR and open-domain QA retrieval benchmarks. Further exploration shows that our method can not only beat BM25 after further pre-training on the target corpus but also serves as a good few-shot learner. Our code is publicly available at https://github.com/Yibin-Lei/ReContriever.
Generating high-quality textual adversarial examples is critical for investigating the pitfalls of natural language processing (NLP) models and further promoting their robustness. Existing attacks are usually realized through word-level or sentence-level perturbations, which either limit the perturbation space or sacrifice fluency and textual quality, both affecting the attack effectiveness. In this paper, we propose Phrase-Level Textual Adversarial ATtack (PLAT) that generates adversarial samples through phrase-level perturbations. PLAT first extracts the vulnerable phrases as attack targets by a syntactic parser, and then perturbs them by a pre-trained blank-infilling model. Such flexible perturbation design substantially expands the search space for more effective attacks without introducing too many modifications, and meanwhile maintaining the textual fluency and grammaticality via contextualized generation using surrounding texts. Moreover, we develop a label preservation filter leveraging the likelihoods of language models fine-tuned on each class, rather than textual similarity, to rule out those perturbations that potentially alter the original class label for humans. Extensive experiments and human evaluation demonstrate that PLAT has a superior attack effectiveness as well as a better label consistency than strong baselines.
Towards building intelligent dialogue agents, there has been a growing interest in introducing explicit personas in generation models. However, with limited persona-based dialogue data at hand, it may be difficult to train a dialogue generation model well. We point out that the data challenges of this generation task lie in two aspects: first, it is expensive to scale up current persona-based dialogue datasets; second, each data sample in this task is more complex to learn with than conventional dialogue data. To alleviate the above data issues, we propose a data manipulation method, which is model-agnostic to be packed with any persona-based dialogue generation model to improve their performance. The original training samples will first be distilled and thus expected to be fitted more easily. Next, we show various effective ways that can diversify such easier distilled data. A given base model will then be trained via the constructed data curricula, i.e. first on augmented distilled samples and then on original ones. Experiments illustrate the superiority of our method with two strong base dialogue models (Transformer encoder-decoder and GPT2).
Pre-Training (PT) of text representations has been successfully applied to low-resource Neural Machine Translation (NMT). However, it usually fails to achieve notable gains (some- times, even worse) on resource-rich NMT on par with its Random-Initialization (RI) counterpart. We take the first step to investigate the complementarity between PT and RI in resource-rich scenarios via two probing analyses, and find that: 1) PT improves NOT the accuracy, but the generalization by achieving flatter loss landscapes than that of RI; 2) PT improves NOT the confidence of lexical choice, but the negative diversity by assigning smoother lexical probability distributions than that of RI. Based on these insights, we propose to combine their complementarities with a model fusion algorithm that utilizes optimal transport to align neurons between PT and RI. Experiments on two resource-rich translation benchmarks, WMT’17 English-Chinese (20M) and WMT’19 English-German (36M), show that PT and RI could be nicely complementary to each other, achieving substantial improvements considering both translation accuracy, generalization, and negative diversity. Probing tools and code are released at: https://github.com/zanchangtong/PTvsRI.
We present IBR, an Iterative Backward Reasoning model to solve the proof generation tasks on rule-based Question Answering (QA), where models are required to reason over a series of textual rules and facts to find out the related proof path and derive the final answer. We handle the limitations of existed works in two folds: 1) enhance the interpretability of reasoning procedures with detailed tracking, by predicting nodes and edges in the proof path iteratively backward from the question; 2) promote the efficiency and accuracy via reasoning on the elaborate representations of nodes and history paths, without any intermediate texts that may introduce external noise during proof generation. There are three main modules in IBR, QA and proof strategy prediction to obtain the answer and offer guidance for the following procedure; parent node prediction to determine a node in the existing proof that a new child node will link to; child node prediction to find out which new node will be added to the proof. Experiments on both synthetic and paraphrased datasets demonstrate that IBR has better in-domain performance as well as cross-domain transferability than several strong baselines. Our code and models are available at https://github.com/find-knowledge/IBR.
We present Twin Answer Sentences Attack (TASA), an adversarial attack method for question answering (QA) models that produces fluent and grammatical adversarial contexts while maintaining gold answers. Despite phenomenal progress on general adversarial attacks, few works have investigated the vulnerability and attack specifically for QA models. In this work, we first explore the biases in the existing models and discover that they mainly rely on keyword matching between the question and context, and ignore the relevant contextual relations for answer prediction. Based on two biases above, TASA attacks the target model in two folds: (1) lowering the model’s confidence on the gold answer with a perturbed answer sentence; (2) misguiding the model towards a wrong answer with a distracting answer sentence. Equipped with designed beam search and filtering methods, TASA can generate more effective attacks than existing textual attack methods while sustaining the quality of contexts, in extensive experiments on five QA datasets and human evaluations.
Current approaches to empathetic response generation focus on learning a model to predict an emotion label and generate a response based on this label and have achieved promising results. However, the emotion cause, an essential factor for empathetic responding, is ignored. The emotion cause is a stimulus for human emotions. Recognizing the emotion cause is helpful to better understand human emotions so as to generate more empathetic responses. To this end, we propose a novel framework that improves empathetic response generation by recognizing emotion cause in conversations. Specifically, an emotion reasoner is designed to predict a context emotion label and a sequence of emotion cause-oriented labels, which indicate whether the word is related to the emotion cause. Then we devise both hard and soft gated attention mechanisms to incorporate the emotion cause into response generation. Experiments show that incorporating emotion cause information improves the performance of the model on both emotion recognition and response generation.
Recent QA with logical reasoning questions requires passage-level relations among the sentences. However, current approaches still focus on sentence-level relations interacting among tokens. In this work, we explore aggregating passage-level clues for solving logical reasoning QA by using discourse-based information. We propose a discourse-aware graph network (DAGN) that reasons relying on the discourse structure of the texts. The model encodes discourse information as a graph with elementary discourse units (EDUs) and discourse relations, and learns the discourse-aware features via a graph network for downstream QA tasks. Experiments are conducted on two logical reasoning QA datasets, ReClor and LogiQA, and our proposed DAGN achieves competitive results. The source code is available at https://github.com/Eleanor-H/DAGN.
Large-scale pretrained language models have achieved outstanding performance on natural language understanding tasks. However, it is still under investigating how to apply them to dialogue generation tasks, especially those with responses conditioned on multiple sources. Previous work simply concatenates all input sources or averages information from different input sources. In this work, we study dialogue models with multiple input sources adapted from the pretrained language model GPT2. We explore various methods to fuse multiple separate attention information corresponding to different sources. Our experimental results show that proper fusion methods deliver higher relevance with dialogue history than simple fusion baselines.
Multi-hop reasoning question answering requires deep comprehension of relationships between various documents and queries. We propose a Bi-directional Attention Entity Graph Convolutional Network (BAG), leveraging relationships between nodes in an entity graph and attention information between a query and the entity graph, to solve this task. Graph convolutional networks are used to obtain a relation-aware representation of nodes for entity graphs built from documents with multi-level features. Bidirectional attention is then applied on graphs and queries to generate a query-aware nodes representation, which will be used for the final prediction. Experimental evaluation shows BAG achieves state-of-the-art accuracy performance on the QAngaroo WIKIHOP dataset.
Though state-of-the-art sentence representation models can perform tasks requiring significant knowledge of grammar, it is an open question how best to evaluate their grammatical knowledge. We explore five experimental methods inspired by prior work evaluating pretrained sentence representation models. We use a single linguistic phenomenon, negative polarity item (NPI) licensing, as a case study for our experiments. NPIs like any are grammatical only if they appear in a licensing environment like negation (Sue doesn’t have any cats vs. *Sue has any cats). This phenomenon is challenging because of the variety of NPI licensing environments that exist. We introduce an artificially generated dataset that manipulates key features of NPI licensing for the experiments. We find that BERT has significant knowledge of these features, but its success varies widely across different experimental methods. We conclude that a variety of methods is necessary to reveal all relevant aspects of a model’s grammatical knowledge in a given domain.