In this paper, we construct a Chinese literary grace corpus, CLGC, with 10,000 texts and more than 1.85 million tokens. Multi-level annotations are provided for each text in our corpus, including literary grace level, sentence category, and figure-of-speech type. Based on the corpus, we dig deep into the correlation between fine-grained features (semantic information, part-of-speech and figure-of-speech, etc.) and literary grace level. We also propose a new Literary Grace Evaluation (LGE) task, which aims at making a comprehensive assessment of the literary grace level according to the text. In the end, we build some classification models with machine learning algorithms (such as SVM, TextCNN) to prove the effectiveness of our features and corpus for LGE. The results of our preliminary classification experiments have achieved 79.71% on the weighted average F1-score.
Though existing researches have achieved impressive results in controlled text generation, they focus mainly on single-attribute control. However, in applications like automatic comments, the topic and sentiment need to be controlled simultaneously. In this work, we propose a new framework for multi-attribute controlled text generation. To achieve this, we design a contrastive-generator that can effectively generate texts with more attributes. In order to increase the convergence of the text on the desired attributes, we adopt an external-discriminator to distinguish whether the generated text holds the desired attributes. Moreover, we propose top-n weighted decoding to further improve the relevance of texts to attributes. Automated evaluations and human evaluations show that our framework achieves remarkable controllability in multi-attribute generation while keeping the text fluent and diverse. It also yields promising performance on zero-shot generation.
We propose a large margin criterion for training neural language models. Conventionally, neural language models are trained by minimizing perplexity (PPL) on grammatical sentences. However, we demonstrate that PPL may not be the best metric to optimize in some tasks, and further propose a large margin formulation. The proposed method aims to enlarge the margin between the “good” and “bad” sentences in a task-specific sense. It is trained end-to-end and can be widely applied to tasks that involve re-scoring of generated text. Compared with minimum-PPL training, our method gains up to 1.1 WER reduction for speech recognition and 1.0 BLEU increase for machine translation.