Pinyin-to-character (P2C) conversion is the core component of pinyin-based Chinese input method engine (IME). However, the conversion is seriously compromised by the ambiguities of Chinese characters corresponding to pinyin as well as the predefined fixed vocabularies. To alleviate such inconveniences, we propose a neural P2C conversion model augmented by an online updated vocabulary with a sampling mechanism to support open vocabulary learning during IME working. Our experiments show that the proposed method outperforms commercial IMEs and state-of-the-art traditional models on standard corpus and true inputting history dataset in terms of multiple metrics and thus the online updated vocabulary indeed helps our IME effectively follows user inputting behavior.
Representation learning is the foundation of machine reading comprehension. In state-of-the-art models, deep learning methods broadly use word and character level representations. However, character is not naturally the minimal linguistic unit. In addition, with a simple concatenation of character and word embedding, previous models actually give suboptimal solution. In this paper, we propose to use subword rather than character for word embedding enhancement. We also empirically explore different augmentation strategies on subword-augmented embedding to enhance the cloze-style reading comprehension model (reader). In detail, we present a reader that uses subword-level representation to augment word embedding with a short list to handle rare words effectively. A thorough examination is conducted to evaluate the comprehensive performance and generalization ability of the proposed reader. Experimental results show that the proposed approach helps the reader significantly outperform the state-of-the-art baselines on various public datasets.
Traditional chatbots usually need a mass of human dialogue data, especially when using supervised machine learning method. Though they can easily deal with single-turn question answering, for multi-turn the performance is usually unsatisfactory. In this paper, we present Lingke, an information retrieval augmented chatbot which is able to answer questions based on given product introduction document and deal with multi-turn conversations. We will introduce a fine-grained pipeline processing to distill responses based on unstructured documents, and attentive sequential context-response matching for multi-turn conversations.
Chinese pinyin input method engine (IME) converts pinyin into character so that Chinese characters can be conveniently inputted into computer through common keyboard. IMEs work relying on its core component, pinyin-to-character conversion (P2C). Usually Chinese IMEs simply predict a list of character sequences for user choice only according to user pinyin input at each turn. However, Chinese inputting is a multi-turn online procedure, which can be supposed to be exploited for further user experience promoting. This paper thus for the first time introduces a sequence-to-sequence model with gated-attention mechanism for the core task in IMEs. The proposed neural P2C model is learned by encoding previous input utterance as extra context to enable our IME capable of predicting character sequence with incomplete pinyin input. Our model is evaluated in different benchmark datasets showing great user experience improvement compared to traditional models, which demonstrates the first engineering practice of building Chinese aided IME.
Chinese pinyin input method engine (IME) lets user conveniently input Chinese into a computer by typing pinyin through the common keyboard. In addition to offering high conversion quality, modern pinyin IME is supposed to aid user input with extended association function. However, existing solutions for such functions are roughly based on oversimplified matching algorithms at word-level, whose resulting products provide limited extension associated with user inputs. This work presents the Moon IME, a pinyin IME that integrates the attention-based neural machine translation (NMT) model and Information Retrieval (IR) to offer amusive and customizable association ability. The released IME is implemented on Windows via text services framework.