Xiutian Zhao


2023

pdf
PROSE: A Pronoun Omission Solution for Chinese-English Spoken Language Translation
Ke Wang | Xiutian Zhao | Yanghui Li | Wei Peng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Neural Machine Translation (NMT) systems encounter a significant challenge when translating a pro-drop (‘pronoun-dropping’) language (e.g., Chinese) to a non-pro-drop one (e.g., English), since the pro-drop phenomenon demands NMT systems to recover omitted pronouns. This unique and crucial task, however, lacks sufficient datasets for benchmarking. To bridge this gap, we introduce PROSE, a new benchmark featured in diverse pro-drop instances for document-level Chinese-English spoken language translation. Furthermore, we conduct an in-depth investigation of the pro-drop phenomenon in spoken Chinese on this dataset, reconfirming that pro-drop reduces the performance of NMT systems in Chinese-English translation. To alleviate the negative impact introduced by pro-drop, we propose Mention-Aware Semantic Augmentation, a novel approach that leverages the semantic embedding of dropped pronouns to augment training pairs. Results from the experiments on four Chinese-English translation corpora show that our proposed method outperforms existing methods regarding omitted pronoun retrieval and overall translation quality.

pdf
M3Seg: A Maximum-Minimum Mutual Information Paradigm for Unsupervised Topic Segmentation in ASR Transcripts
Ke Wang | Xiutian Zhao | Yanghui Li | Wei Peng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Topic segmentation aims to detect topic boundaries and split automatic speech recognition transcriptions (e.g., meeting transcripts) into segments that are bounded by thematic meanings. In this work, we propose M3Seg, a novel Maximum-Minimum Mutual information paradigm for linear topic segmentation without using any parallel data. Specifically, by employing sentence representations provided by pre-trained language models, M3Seg first learns a region-based segment encoder based on the maximization of mutual information between the global segment representation and the local contextual sentence representation. Secondly, an edge-based boundary detection module aims to segment the whole by topics based on minimizing the mutual information between different segments. Experiment results on two public datasets demonstrate the effectiveness of M3Seg, which outperform the state-of-the-art methods by a significant (18%–37% improvement) margin.

pdf
ORCHID: A Chinese Debate Corpus for Target-Independent Stance Detection and Argumentative Dialogue Summarization
Xiutian Zhao | Ke Wang | Wei Peng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Dialogue agents have been receiving increasing attention for years, and this trend has been further boosted by the recent progress of large language models (LLMs). Stance detection and dialogue summarization are two core tasks of dialogue agents in application scenarios that involve argumentative dialogues. However, research on these tasks is limited by the insufficiency of public datasets, especially for non-English languages. To address this language resource gap in Chinese, we present ORCHID (Oral Chinese Debate), the first Chinese dataset for benchmarking target-independent stance detection and debate summarization. Our dataset consists of 1,218 real-world debates that were conducted in Chinese on 476 unique topics, containing 2,436 stance-specific summaries and 14,133 fully annotated utterances. Besides providing a versatile testbed for future research, we also conduct an empirical study on the dataset and propose an integrated task. The results show the challenging nature of the dataset and suggest a potential of incorporating stance detection in summarization for argumentative dialogue.