Weiqi Wang


2024

pdf
Exploring the Potential of ChatGPT on Sentence Level Relations: A Focus on Temporal, Causal, and Discourse Relations
Chunkit Chan | Cheng Jiayang | Weiqi Wang | Yuxin Jiang | Tianqing Fang | Xin Liu | Yangqiu Song
Findings of the Association for Computational Linguistics: EACL 2024

This paper aims to quantitatively evaluate the performance of ChatGPT, an interactive large language model, on inter-sentential relations such as temporal relations, causal relations, and discourse relations. Given ChatGPT’s promising performance across various tasks, we proceed to carry out thorough evaluations on the whole test sets of 11 datasets, including temporal and causal relations, PDTB2.0-based, and dialogue-based discourse relations. To ensure the reliability of our findings, we employ three tailored prompt templates for each task, including the zero-shot prompt template, zero-shot prompt engineering (PE) template, and in-context learning (ICL) prompt template, to establish the initial baseline scores for all popular sentence-pair relation classification tasks for the first time. Through our study, we discover that ChatGPT exhibits exceptional proficiency in detecting and reasoning about causal relations, albeit it may not possess the same level of expertise in identifying the temporal order between two events. While it is capable of identifying the majority of discourse relations with existing explicit discourse connectives, the implicit discourse relation remains a formidable challenge. Concurrently, ChatGPT demonstrates subpar performance in the dialogue discourse parsing task that requires structural understanding in a dialogue before being aware of the discourse relation.

2023

pdf
FolkScope: Intention Knowledge Graph Construction for E-commerce Commonsense Discovery
Changlong Yu | Weiqi Wang | Xin Liu | Jiaxin Bai | Yangqiu Song | Zheng Li | Yifan Gao | Tianyu Cao | Bing Yin
Findings of the Association for Computational Linguistics: ACL 2023

Understanding users’ intentions in e-commerce platforms requires commonsense knowledge. In this paper, we present FolkScope, an intention knowledge graph construction framework, to reveal the structure of humans’ minds about purchasing items. As commonsense knowledge is usually ineffable and not expressed explicitly, it is challenging to perform information extraction. Thus, we propose a new approach that leverages the generation power of large language models (LLMs) and human-in-the-loop annotation to semi-automatically construct the knowledge graph. LLMs first generate intention assertions via e-commerce specific prompts to explain shopping behaviors, where the intention can be an open reason or a predicate falling into one of 18 categories aligning with ConceptNet, e.g., IsA, MadeOf, UsedFor, etc. Then we annotate plausibility and typicality labels of sampled intentions as training data in order to populate human judgments to all automatic generations. Last, to structurize the assertions, we propose pattern mining and conceptualization to form more condensed and abstract knowledge. Extensive evaluations and study demonstrate that our constructed knowledge graph can well model e-commerce knowledge and have many potential applications.

pdf
Gold: A Global and Local-aware Denoising Framework for Commonsense Knowledge Graph Noise Detection
Zheye Deng | Weiqi Wang | Zhaowei Wang | Xin Liu | Yangqiu Song
Findings of the Association for Computational Linguistics: EMNLP 2023

Commonsense Knowledge Graphs (CSKGs) are crucial for commonsense reasoning, yet constructing them through human annotations can be costly. As a result, various automatic methods have been proposed to construct CSKG with larger semantic coverage. However, these unsupervised approaches introduce spurious noise that can lower the quality of the resulting CSKG, which cannot be tackled easily by existing denoising algorithms due to the unique characteristics of nodes and structures in CSKGs. To address this issue, we propose Gold (Global and Local-aware Denoising), a denoising framework for CSKGs that incorporates entity semantic information, global rules, and local structural information from the CSKG. Experiment results demonstrate that Gold outperforms all baseline methods in noise detection tasks on synthetic noisy CSKG benchmarks. Furthermore, we show that denoising a real-world CSKG is effective and even benefits the downstream zero-shot commonsense question-answering task. Our code and data are publicly available at https://github.com/HKUST-KnowComp/GOLD.

pdf
CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense Question Answering
Weiqi Wang | Tianqing Fang | Wenxuan Ding | Baixuan Xu | Xin Liu | Yangqiu Song | Antoine Bosselut
Findings of the Association for Computational Linguistics: EMNLP 2023

The task of zero-shot commonsense question answering evaluates models on their capacity to reason about general scenarios beyond those presented in specific datasets. Existing approaches for tackling this task leverage external knowledge from CommonSense Knowledge Bases (CSKBs) by pre-training the model on synthetic QA pairs constructed from CSKBs. In these approaches, negative examples (distractors) are formulated by randomly sampling from CSKBs using fairly primitive keyword constraints. However, two bottlenecks limit these approaches: the inherent incompleteness of CSKBs limits the semantic coverage of synthetic QA pairs, and the lack of human annotations makes the sampled negative examples potentially uninformative and contradictory. To tackle these limitations above, we propose Conceptualization-Augmented Reasoner (CAR), a zero-shot commonsense question-answering framework that fully leverages the power of conceptualization. Specifically, CAR abstracts a commonsense knowledge triple to many higher-level instances, which increases the coverage of the CSKB and expands the ground-truth answer space, reducing the likelihood of selecting false negative distractors. Extensive experiments demonstrate that CAR more robustly generalizes to answering questions about zero-shot commonsense scenarios than existing methods, including large language models, such as GPT3.5 and ChatGPT. Our code, data, and model checkpoints are available at https://github.com/HKUST-KnowComp/CAR.

pdf
QADYNAMICS: Training Dynamics-Driven Synthetic QA Diagnostic for Zero-Shot Commonsense Question Answering
Haochen Shi | Weiqi Wang | Tianqing Fang | Baixuan Xu | Wenxuan Ding | Xin Liu | Yangqiu Song
Findings of the Association for Computational Linguistics: EMNLP 2023

Zero-shot commonsense Question-Answering (QA) requires models to reason about general situations beyond specific benchmarks. State-of-the-art approaches fine-tune language models on QA pairs constructed from CommonSense Knowledge Bases (CSKBs) to equip the models with more commonsense knowledge in a QA context. However, current QA synthesis protocols may introduce noise from the CSKBs and generate ungrammatical questions and false negative options, which impede the model’s ability to generalize. To address these issues, we propose QADYNAMICS, a training dynamics-driven framework for QA diagnostics and refinement. Our approach analyzes the training dynamics of each QA pair at both the question level and option level, discarding machine-detectable artifacts by removing uninformative QA pairs and mislabeled or false-negative options. Extensive experiments demonstrate the effectiveness of our approach, which outperforms all baselines while using only 33% of the synthetic data, even including LLMs such as ChatGPT. Moreover, expert evaluations confirm that our framework significantly improves the quality of QA synthesis. Our code and model checkpoints are available at https://github.com/HKUST-KnowComp/QaDynamics.

pdf
StoryAnalogy: Deriving Story-level Analogies from Large Language Models to Unlock Analogical Understanding
Cheng Jiayang | Lin Qiu | Tsz Chan | Tianqing Fang | Weiqi Wang | Chunkit Chan | Dongyu Ru | Qipeng Guo | Hongming Zhang | Yangqiu Song | Yue Zhang | Zheng Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Analogy-making between narratives is crucial for human reasoning. In this paper, we evaluate the ability to identify and generate analogies by constructing a first-of-its-kind large-scale story-level analogy corpus, StoryAnalogy, which contains 24K story pairs from diverse domains with human annotations on two similarities from the extended Structure-Mapping Theory. We design a set of tests on StoryAnalogy, presenting the first evaluation of story-level analogy identification and generation. Interestingly, we find that the analogy identification tasks are incredibly difficult not only for sentence embedding models but also for the recent large language models (LLMs) such as ChatGPT and LLaMa. ChatGPT, for example, only achieved around 30% accuracy in multiple-choice questions (compared to over 85% accuracy for humans). Furthermore, we observe that the data in StoryAnalogy can improve the quality of analogy generation in LLMs, where a fine-tuned FlanT5-xxl model achieves comparable performance to zero-shot ChatGPT.

pdf bib
KnowComp at SemEval-2023 Task 7: Fine-tuning Pre-trained Language Models for Clinical Trial Entailment Identification
Weiqi Wang | Baixuan Xu | Tianqing Fang | Lirong Zhang | Yangqiu Song
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

In this paper, we present our system for the textual entailment identification task as a subtask of the SemEval-2023 Task 7: Multi-evidence Natural Language Inference for Clinical Trial Data. The entailment identification task aims to determine whether a medical statement affirms a valid entailment given a clinical trial premise or forms a contradiction with it. Since the task is inherently a text classification task, we propose a system that performs binary classification given a statement and its associated clinical trial. Our proposed system leverages a human-defined prompt to aggregate the information contained in the statement, section name, and clinical trials. Pre-trained language models are then finetuned on the prompted input sentences to learn to discriminate the inference relation between the statement and clinical trial. To validate our system, we conduct extensive experiments with a wide variety of pre-trained language models. Our best system is built on DeBERTa-v3-large, which achieves an F1 score of 0.764 and secures the fifth rank in the official leaderboard.Further analysis indicates that leveraging our designed prompt is effective, and our model suffers from a low recall. Our code and pre-trained models are available at [https://github.com/HKUST-KnowComp/NLI4CT](https://github.com/HKUST-KnowComp/NLI4CT).

pdf
KnowComp Submission for WMT23 Sign Language Translation Task
Baixuan Xu | Haochen Shi | Tianshi Zheng | Qing Zong | Weiqi Wang | Zhaowei Wang | Yangqiu Song
Proceedings of the Eighth Conference on Machine Translation

Sign Language Translation (SLT) is a complex task that involves accurately interpreting sign language gestures and translating them into spoken or written language and vice versa. Its primary objective is to facilitate communication between individuals with hearing difficulties using deep learning systems. Existing approaches leverage gloss annotations of sign language gestures to assist the model in capturing the movement and differentiating various gestures. However, constructing a large-scale gloss-annotated dataset is both expensive and impractical to cover multiple languages, and pre-trained generative models cannot be efficiently used due to the lack of textual source context in SLT. To address these challenges, we propose a gloss-free framework for the WMT23 SLT task. Our system primarily consists of a visual extractor for extracting video embeddings and a generator responsible for producing the translated text. We also employ an embedding alignment block that is trained to align the embedding space of the visual extractor with that of the generator. Despite undergoing extensive training and validation, our system consistently falls short of meeting the baseline performance. Further analysis shows that our model’s poor projection rate prevents it from learning diverse visual embeddings. Our codes and model checkpoints are available at https://github.com/HKUST-KnowComp/SLT.

pdf
KnowComp Submission for WMT23 Word-Level AutoCompletion Task
Yi Wu | Haochen Shi | Weiqi Wang | Yangqiu Song
Proceedings of the Eighth Conference on Machine Translation

The NLP community has recently witnessed the success of Large Language Models (LLMs) across various Natural Language Processing (NLP) tasks. However, the potential of LLMs for word-level auto-completion in a multilingual context has not been thoroughly explored yet. To address this gap and benchmark the performance of LLMs, we propose an LLM-based system for the WMT23 Word-Level Auto-Completion (WLAC) task. Our system utilizes ChatGPT to represent LLMs and evaluates its performance in three translation directions: Chinese-English, German-English, and English-German. We also study the task under zero-shot and few-shot settings to assess the potential benefits of incorporating exemplars from the training set in guiding the LLM to perform the task. The results of our experiments show that, on average, our system attains a 29.8% accuracy on the test set. Further analyses reveal that LLMs struggle with WLAC in the zero-shot setting, but performance significantly improves with the help of additional exemplars, though some common errors still appear frequently. These findings have important implications for incorporating LLMs into computer-aided translation systems, as they can potentially enhance the quality of translations. Our codes for evaluation are available at https://github.com/ethanyiwu/WLAC.

pdf
TILFA: A Unified Framework for Text, Image, and Layout Fusion in Argument Mining
Qing Zong | Zhaowei Wang | Baixuan Xu | Tianshi Zheng | Haochen Shi | Weiqi Wang | Yangqiu Song | Ginny Wong | Simon See
Proceedings of the 10th Workshop on Argument Mining

A main goal of Argument Mining (AM) is to analyze an author’s stance. Unlike previous AM datasets focusing only on text, the shared task at the 10th Workshop on Argument Mining introduces a dataset including both texts and images. Importantly, these images contain both visual elements and optical characters. Our new framework, TILFA (A Unified Framework for Text, Image, and Layout Fusion in Argument Mining), is designed to handle this mixed data. It excels at not only understanding text but also detecting optical characters and recognizing layout details in images. Our model significantly outperforms existing baselines, earning our team, KnowComp, the 1st place in the leaderboard of Argumentative Stance Classification subtask in this shared task.

pdf
COLA: Contextualized Commonsense Causal Reasoning from the Causal Inference Perspective
Zhaowei Wang | Quyet V. Do | Hongming Zhang | Jiayao Zhang | Weiqi Wang | Tianqing Fang | Yangqiu Song | Ginny Wong | Simon See
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Detecting commonsense causal relations (causation) between events has long been an essential yet challenging task. Given that events are complicated, an event may have different causes under various contexts. Thus, exploiting context plays an essential role in detecting causal relations. Meanwhile, previous works about commonsense causation only consider two events and ignore their context, simplifying the task formulation. This paper proposes a new task to detect commonsense causation between two events in an event sequence (i.e., context), called contextualized commonsense causal reasoning. We also design a zero-shot framework: COLA (Contextualized Commonsense Causality Reasoner) to solve the task from the causal inference perspective. This framework obtains rich incidental supervision from temporality and balances covariates from multiple timestamps to remove confounding effects. Our extensive experiments show that COLA can detect commonsense causality more accurately than baselines.

pdf
CAT: A Contextualized Conceptualization and Instantiation Framework for Commonsense Reasoning
Weiqi Wang | Tianqing Fang | Baixuan Xu | Chun Yi Louis Bo | Yangqiu Song | Lei Chen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Commonsense reasoning, aiming at endowing machines with a human-like ability to make situational presumptions, is extremely challenging to generalize. For someone who barely knows about “meditation,” while is knowledgeable about “singing,” he can still infer that “meditation makes people relaxed” from the existing knowledge that “singing makes people relaxed” by first conceptualizing “singing” as a “relaxing event” and then instantiating that event to “meditation.”This process, known as conceptual induction and deduction, is fundamental to commonsense reasoning while lacking both labeled data and methodologies to enhance commonsense modeling. To fill such a research gap, we propose CAT (Contextualized ConceptuAlization and InsTantiation),a semi-supervised learning framework that integrates event conceptualization and instantiation to conceptualize commonsense knowledge bases at scale. Extensive experiments show that our framework achieves state-of-the-art performances on two conceptualization tasks, and the acquired abstract commonsense knowledge can significantly improve commonsense inference modeling. Our code, data, and fine-tuned models are publicly available at [https://github.com/HKUST-KnowComp/CAT](https://github.com/HKUST-KnowComp/CAT).

2021

pdf bib
Negation Scope Resolution for Chinese as a Second Language
Mengyu Zhang | Weiqi Wang | Shuqiao Sun | Weiwei Sun
Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications

This paper studies Negation Scope Resolution (NSR) for Chinese as a Second Language (CSL), which shows many unique characteristics that distinguish itself from “standard” Chinese. We annotate a new moderate-sized corpus that covers two background L1 languages, viz. English and Japanese. We build a neural NSR system, which achieves a new state-of-the-art accuracy on English benchmark data. We leverage this system to gauge how successful NSR for CSL can be. Different native language backgrounds of language learners result in unequal cross-lingual transfer, which has a significant impact on processing second language data. In particular, manual annotation, empirical evaluation and error analysis indicate two non-obvious facts: 1) L2-Chinese, L1-Japanese data are more difficult to analyze and thus annotate than L2-Chinese, L1-English data; 2) computational models trained on L2-Chinese, L1-Japanese data perform better than models trained on L2-Chinese, L1-English data.

pdf
Benchmarking Commonsense Knowledge Base Population with an Effective Evaluation Dataset
Tianqing Fang | Weiqi Wang | Sehyun Choi | Shibo Hao | Hongming Zhang | Yangqiu Song | Bin He
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Reasoning over commonsense knowledge bases (CSKB) whose elements are in the form of free-text is an important yet hard task in NLP. While CSKB completion only fills the missing links within the domain of the CSKB, CSKB population is alternatively proposed with the goal of reasoning unseen assertions from external resources. In this task, CSKBs are grounded to a large-scale eventuality (activity, state, and event) graph to discriminate whether novel triples from the eventuality graph are plausible or not. However, existing evaluations on the population task are either not accurate (automatic evaluation with randomly sampled negative examples) or of small scale (human annotation). In this paper, we benchmark the CSKB population task with a new large-scale dataset by first aligning four popular CSKBs, and then presenting a high-quality human-annotated evaluation set to probe neural models’ commonsense reasoning ability. We also propose a novel inductive commonsense reasoning model that reasons over graphs. Experimental results show that generalizing commonsense reasoning on unseen assertions is inherently a hard task. Models achieving high accuracy during training perform poorly on the evaluation set, with a large gap between human performance. We will make the data publicly available for future contributions. Codes and data are available at https://github.com/HKUST-KnowComp/CSKB-Population.

2019

pdf
Cross-Sentence Grammatical Error Correction
Shamil Chollampatt | Weiqi Wang | Hwee Tou Ng
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Automatic grammatical error correction (GEC) research has made remarkable progress in the past decade. However, all existing approaches to GEC correct errors by considering a single sentence alone and ignoring crucial cross-sentence context. Some errors can only be corrected reliably using cross-sentence context and models can also benefit from the additional contextual information in correcting other errors. In this paper, we address this serious limitation of existing approaches and improve strong neural encoder-decoder models by appropriately modeling wider contexts. We employ an auxiliary encoder that encodes previous sentences and incorporate the encoding in the decoder via attention and gating mechanisms. Our approach results in statistically significant improvements in overall GEC performance over strong baselines across multiple test sets. Analysis of our cross-sentence GEC model on a synthetic dataset shows high performance in verb tense corrections that require cross-sentence context.