Vikram Pudi


2022

pdf
Multilinguals at SemEval-2022 Task 11: Complex NER in Semantically Ambiguous Settings for Low Resource Languages
Amit Pandey | Swayatta Daw | Narendra Unnam | Vikram Pudi
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

We leverage pre-trained language models to solve the task of complex NER for two low-resource languages: Chinese and Spanish. We use the technique of Whole Word Masking (WWM) to boost the performance of masked language modeling objective on large and unsupervised corpora. We experiment with multiple neural network architectures, incorporating CRF, BiLSTMs, and Linear Classifiers on top of a fine-tuned BERT layer. All our models outperform the baseline by a significant margin and our best performing model obtains a competitive position on the evaluation leaderboard for the blind test set.

pdf
Multilinguals at SemEval-2022 Task 11: Transformer Based Architecture for Complex NER
Amit Pandey | Swayatta Daw | Vikram Pudi
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

We investigate the task of complex NER for the English language. The task is non-trivial due to the semantic ambiguity of the textual structure and the rarity of occurrence of such entities in the prevalent literature. Using pre-trained language models such as BERT, we obtain a competitive performance on this task. We qualitatively analyze the performance of multiple architectures for this task. All our models are able to outperform the baseline by a significant margin. Our best performing model beats the baseline F1-score by over 9%.

pdf
CitRet: A Hybrid Model for Cited Text Span Retrieval
Amit Pandey | Avani Gupta | Vikram Pudi
Proceedings of the 29th International Conference on Computational Linguistics

The paper aims to identify cited text spans in the reference paper related to the given citance in the citing paper. We refer to it as cited text span retrieval (CTSR). Most current methods attempt this task by relying on pre-trained off-the-shelf deep learning models like SciBERT. Though these models are pre-trained on large datasets, they under-perform in out-of-domain settings. We introduce CitRet, a novel hybrid model for CTSR that leverages unique semantic and syntactic structural characteristics of scientific documents. This enables us to use significantly less data for finetuning. We use only 1040 documents for finetuning. Our model augments mildly-trained SBERT-based contextual embeddings with pre-trained non-contextual Word2Vec embeddings to calculate semantic textual similarity. We demonstrate the performance of our model on the CLSciSumm shared tasks. It improves the state-of-the-art results by over 15% on the F1 score evaluation.

pdf
Practice Makes a Solver Perfect: Data Augmentation for Math Word Problem Solvers
Vivek Kumar | Rishabh Maheshwary | Vikram Pudi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Existing Math Word Problem (MWP) solvers have achieved high accuracy on benchmark datasets. However, prior works have shown that such solvers do not generalize well and rely on superficial cues to achieve high performance. In this paper, we first conduct experiments to showcase that this behaviour is mainly associated with the limited size and diversity present in existing MWP datasets. Next, we propose several data augmentation techniques broadly categorized into Substitution and Paraphrasing based methods. By deploying these methods we increase the size of existing datasets by five folds. Extensive experiments on two benchmark datasets across three state-of-the-art MWP solvers shows that proposed methods increase the generalization and robustness of existing solvers. On average, proposed methods significantly increase the state-of-the-art results by over five percentage points on benchmark datasets. Further, the solvers trained on the augmented dataset performs comparatively better on the challenge test set. We also show the effectiveness of proposed techniques through ablation studies and verify the quality of augmented samples through human evaluation.

pdf
Academic Curriculum Generation using Wikipedia for External Knowledge
Anurag Reddy Muthyala | Vikram Pudi
Proceedings of the 20th Annual Workshop of the Australasian Language Technology Association

2021

pdf
Adversarial Examples for Evaluating Math Word Problem Solvers
Vivek Kumar | Rishabh Maheshwary | Vikram Pudi
Findings of the Association for Computational Linguistics: EMNLP 2021

Standard accuracy metrics have shown that Math Word Problem (MWP) solvers have achieved high performance on benchmark datasets. However, the extent to which existing MWP solvers truly understand language and its relation with numbers is still unclear. In this paper, we generate adversarial attacks to evaluate the robustness of state-of-the-art MWP solvers. We propose two methods, Question Reordering and Sentence Paraphrasing to generate adversarial attacks. We conduct experiments across three neural MWP solvers over two benchmark datasets. On average, our attack method is able to reduce the accuracy of MWP solvers by over 40% on these datasets. Our results demonstrate that existing MWP solvers are sensitive to linguistic variations in the problem text. We verify the validity and quality of generated adversarial examples through human evaluation.

pdf
A Strong Baseline for Query Efficient Attacks in a Black Box Setting
Rishabh Maheshwary | Saket Maheshwary | Vikram Pudi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Existing black box search methods have achieved high success rate in generating adversarial attacks against NLP models. However, such search methods are inefficient as they do not consider the amount of queries required to generate adversarial attacks. Also, prior attacks do not maintain a consistent search space while comparing different search methods. In this paper, we propose a query efficient attack strategy to generate plausible adversarial examples on text classification and entailment tasks. Our attack jointly leverages attention mechanism and locality sensitive hashing (LSH) to reduce the query count. We demonstrate the efficacy of our approach by comparing our attack with four baselines across three different search spaces. Further, we benchmark our results across the same search space used in prior attacks. In comparison to attacks proposed, on an average, we are able to reduce the query count by 75% across all datasets and target models. We also demonstrate that our attack achieves a higher success rate when compared to prior attacks in a limited query setting.

pdf
Cross-lingual Alignment of Knowledge Graph Triples with Sentences
Swayatta Daw | Shivprasad Sagare | Tushar Abhishek | Vikram Pudi | Vasudeva Varma
Proceedings of the 18th International Conference on Natural Language Processing (ICON)

The pairing of natural language sentences with knowledge graph triples is essential for many downstream tasks like data-to-text generation, facts extraction from sentences (semantic parsing), knowledge graph completion, etc. Most existing methods solve these downstream tasks using neural-based end-to-end approaches that require a large amount of well-aligned training data, which is difficult and expensive to acquire. Recently various unsupervised techniques have been proposed to alleviate this alignment step by automatically pairing the structured data (knowledge graph triples) with textual data. However, these approaches are not well suited for low resource languages that provide two major challenges: (1) unavailability of pair of triples and native text with the same content distribution and (2) limited Natural language Processing (NLP) resources. In this paper, we address the unsupervised pairing of knowledge graph triples with sentences for low resource languages, selecting Hindi as the low resource language. We propose cross-lingual pairing of English triples with Hindi sentences to mitigate the unavailability of content overlap. We propose two novel approaches: NER-based filtering with Semantic Similarity and Key-phrase Extraction with Relevance Ranking. We use our best method to create a collection of 29224 well-aligned English triples and Hindi sentence pairs. Additionally, we have also curated 350 human-annotated golden test datasets for evaluation. We make the code and dataset publicly available.

2019

pdf bib
Scalable, Semi-Supervised Extraction of Structured Information from Scientific Literature
Kritika Agrawal | Aakash Mittal | Vikram Pudi
Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications

As scientific communities grow and evolve, there is a high demand for improved methods for finding relevant papers, comparing papers on similar topics and studying trends in the research community. All these tasks involve the common problem of extracting structured information from scientific articles. In this paper, we propose a novel, scalable, semi-supervised method for extracting relevant structured information from the vast available raw scientific literature. We extract the fundamental concepts of “aim”, ”method” and “result” from scientific articles and use them to construct a knowledge graph. Our algorithm makes use of domain-based word embedding and the bootstrap framework. Our experiments show that our system achieves precision and recall comparable to the state of the art. We also show the domain independence of our algorithm by analyzing the research trends of two distinct communities - computational linguistics and computer vision.

2017

pdf
Semisupervied Data Driven Word Sense Disambiguation for Resource-poor Languages
Pratibha Rani | Vikram Pudi | Dipti M. Sharma
Proceedings of the 14th International Conference on Natural Language Processing (ICON-2017)

pdf
Injecting Word Embeddings with Another Language’s Resource : An Application of Bilingual Embeddings
Prakhar Pandey | Vikram Pudi | Manish Shrivastava
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Word embeddings learned from text corpus can be improved by injecting knowledge from external resources, while at the same time also specializing them for similarity or relatedness. These knowledge resources (like WordNet, Paraphrase Database) may not exist for all languages. In this work we introduce a method to inject word embeddings of a language with knowledge resource of another language by leveraging bilingual embeddings. First we improve word embeddings of German, Italian, French and Spanish using resources of English and test them on variety of word similarity tasks. Then we demonstrate the utility of our method by creating improved embeddings for Urdu and Telugu languages using Hindi WordNet, beating the previously established baseline for Urdu.