Srikanth Tamilselvam


2023

pdf
Prompting with Pseudo-Code Instructions
Mayank Mishra | Prince Kumar | Riyaz Bhat | Rudra Murthy | Danish Contractor | Srikanth Tamilselvam
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Prompting with natural language instructions has recently emerged as a popular method of harnessing the capabilities of large language models (LLM). Given the inherent ambiguity present in natural language, it is intuitive to consider the possible advantages of prompting with less ambiguous prompt styles, like pseudo-code. In this paper, we explore if prompting via pseudo-code instructions helps improve the performance of pre-trained language models. We manually create a dataset of pseudo-code prompts for 132 different tasks spanning classification, QA, and generative language tasks, sourced from the Super-NaturalInstructions dataset. Using these prompts along with their counterparts in natural language, we study their performance on two LLM families - BLOOM, CodeGen. Our experiments show that using pseudo-code instructions leads to better results, with an average increase (absolute) of 7-16 points in F1 scores for classification tasks and an improvement (relative) of 12-38% in aggregate ROUGE-L scores across all tasks. We include detailed ablation studies which indicate that code comments, docstrings, and the structural clues encoded in pseudo-code all contribute towards the improvement in performance. To the best of our knowledge, our work is the first to demonstrate how pseudo-code prompts can be helpful in improving the performance of pre-trained LMs.

2017

pdf
Graph Based Sentiment Aggregation using ConceptNet Ontology
Srikanth Tamilselvam | Seema Nagar | Abhijit Mishra | Kuntal Dey
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The sentiment aggregation problem accounts for analyzing the sentiment of a user towards various aspects/features of a product, and meaningfully assimilating the pragmatic significance of these features/aspects from an opinionated text. The current paper addresses the sentiment aggregation problem, by assigning weights to each aspect appearing in the user-generated content, that are proportionate to the strategic importance of the aspect in the pragmatic domain. The novelty of this paper is in computing the pragmatic significance (weight) of each aspect, using graph centrality measures (applied on domain specific ontology-graphs extracted from ConceptNet), and deeply ingraining these weights while aggregating the sentiments from opinionated text. We experiment over multiple real-life product review data. Our system consistently outperforms the state of the art - by as much as a F-score of 20.39% in one case.