Songlin Hu


2023

pdf
QAP: A Quantum-Inspired Adaptive-Priority-Learning Model for Multimodal Emotion Recognition
Ziming Li | Yan Zhou | Yaxin Liu | Fuqing Zhu | Chuanpeng Yang | Songlin Hu
Findings of the Association for Computational Linguistics: ACL 2023

Multimodal emotion recognition for video has gained considerable attention in recent years, in which three modalities (i.e., textual, visual and acoustic) are involved. Due to the diverse levels of informational content related to emotion, three modalities typically possess varying degrees of contribution to emotion recognition. More seriously, there might be inconsistencies between the emotion of individual modality and the video. The challenges mentioned above are caused by the inherent uncertainty of emotion. Inspired by the recent advances of quantum theory in modeling uncertainty, we make an initial attempt to design a quantum-inspired adaptive-priority-learning model (QAP) to address the challenges. Specifically, the quantum state is introduced to model modal features, which allows each modality to retain all emotional tendencies until the final classification. Additionally, we design Q-attention to orderly integrate three modalities, and then QAP learns modal priority adaptively so that modalities can provide different amounts of information based on priority. Experimental results on the IEMOCAP and MOSEI datasets show that QAP establishes new state-of-the-art results.

pdf
PUNR: Pre-training with User Behavior Modeling for News Recommendation
Guangyuan Ma | Hongtao Liu | Xing W | Wanhui Qian | Zhepeng Lv | Qing Yang | Songlin Hu
Findings of the Association for Computational Linguistics: EMNLP 2023

News recommendation aims to predict click behaviors based on user behaviors. How to effectively model the user representations is the key to recommending preferred news. Existing works are mostly focused on improvements in the supervised fine-tuning stage. However, there is still a lack of PLM-based unsupervised pre-training methods optimized for user representations. In this work, we propose an unsupervised pre-training paradigm with two tasks, i.e. user behavior masking and user behavior generation, both towards effective user behavior modeling. Firstly, we introduce the user behavior masking pre-training task to recover the masked user behaviors based on their contextual behaviors. In this way, the model could capture a much stronger and more comprehensive user news reading pattern. Besides, we incorporate a novel auxiliary user behavior generation pre-training task to enhance the user representation vector derived from the user encoder. We use the above pre-trained user modeling encoder to obtain news and user representations in downstream fine-tuning. Evaluations on the real-world news benchmark show significant performance improvements over existing baselines.

pdf
Query-as-context Pre-training for Dense Passage Retrieval
Xing W | Guangyuan Ma | Wanhui Qian | Zijia Lin | Songlin Hu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recently, methods have been developed to improve the performance of dense passage retrieval by using context-supervised pre-training. These methods simply consider two passages from the same document to be relevant, without taking into account the potential negative impacts of weakly correlated pairs. Thus, this paper proposes query-as-context pre-training, a simple yet effective pre-training technique to alleviate the issue. Query-as-context pre-training assumes that the query derived from a passage is more likely to be relevant to that passage and forms a passage-query pair. These passage-query pairs are then used in contrastive or generative context-supervised pre-training. The pre-trained models are evaluated on large-scale passage retrieval benchmarks and out-of-domain zero-shot benchmarks. Experimental results show that query-as-context pre-training brings considerable gains for retrieval performances, demonstrating its effectiveness and efficiency.

pdf
TrojanSQL: SQL Injection against Natural Language Interface to Database
Jinchuan Zhang | Yan Zhou | Binyuan Hui | Yaxin Liu | Ziming Li | Songlin Hu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The technology of text-to-SQL has significantly enhanced the efficiency of accessing and manipulating databases. However, limited research has been conducted to study its vulnerabilities emerging from malicious user interaction. By proposing TrojanSQL, a backdoor-based SQL injection framework for text-to-SQL systems, we show how state-of-the-art text-to-SQL parsers can be easily misled to produce harmful SQL statements that can invalidate user queries or compromise sensitive information about the database. The study explores two specific injection attacks, namely boolean-based injection and union-based injection, which use different types of triggers to achieve distinct goals in compromising the parser. Experimental results demonstrate that both medium-sized models based on fine-tuning and LLM-based parsers using prompting techniques are vulnerable to this type of attack, with attack success rates as high as 99% and 89%, respectively. We hope that this study will raise more concerns about the potential security risks of building natural language interfaces to databases.

pdf
CT-GAT: Cross-Task Generative Adversarial Attack based on Transferability
Minxuan Lv | Chengwei Dai | Kun Li | Wei Zhou | Songlin Hu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Neural network models are vulnerable to adversarial examples, and adversarial transferability further increases the risk of adversarial attacks. Current methods based on transferability often rely on substitute models, which can be impractical and costly in real-world scenarios due to the unavailability of training data and the victim model’s structural details. In this paper, we propose a novel approach that directly constructs adversarial examples by extracting transferable features across various tasks. Our key insight is that adversarial transferability can extend across different tasks. Specifically, we train a sequence-to-sequence generative model named CT-GAT (Cross-Task Generative Adversarial Attack) using adversarial sample data collected from multiple tasks to acquire universal adversarial features and generate adversarial examples for different tasks.We conduct experiments on ten distinct datasets, and the results demonstrate that our method achieves superior attack performance with small cost.

pdf
UCAS-IIE-NLP at SemEval-2023 Task 12: Enhancing Generalization of Multilingual BERT for Low-resource Sentiment Analysis
Dou Hu | Lingwei Wei | Yaxin Liu | Wei Zhou | Songlin Hu
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

This paper describes our system designed for SemEval-2023 Task 12: Sentiment analysis for African languages. The challenge faced by this task is the scarcity of labeled data and linguistic resources in low-resource settings. To alleviate these, we propose a generalized multilingual system SACL-XLMR for sentiment analysis on low-resource languages. Specifically, we design a lexicon-based multilingual BERT to facilitate language adaptation and sentiment-aware representation learning. Besides, we apply a supervised adversarial contrastive learning technique to learn sentiment-spread structured representations and enhance model generalization. Our system achieved competitive results, largely outperforming baselines on both multilingual and zero-shot sentiment classification subtasks. Notably, the system obtained the 1st rank on the zero-shot classification subtask in the official ranking. Extensive experiments demonstrate the effectiveness of our system.

pdf
Supervised Adversarial Contrastive Learning for Emotion Recognition in Conversations
Dou Hu | Yinan Bao | Lingwei Wei | Wei Zhou | Songlin Hu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Extracting generalized and robust representations is a major challenge in emotion recognition in conversations (ERC). To address this, we propose a supervised adversarial contrastive learning (SACL) framework for learning class-spread structured representations in a supervised manner. SACL applies contrast-aware adversarial training to generate worst-case samples and uses joint class-spread contrastive learning to extract structured representations. It can effectively utilize label-level feature consistency and retain fine-grained intra-class features. To avoid the negative impact of adversarial perturbations on context-dependent data, we design a contextual adversarial training (CAT) strategy to learn more diverse features from context and enhance the model’s context robustness. Under the framework with CAT, we develop a sequence-based SACL-LSTM to learn label-consistent and context-robust features for ERC. Experiments on three datasets show that SACL-LSTM achieves state-of-the-art performance on ERC. Extended experiments prove the effectiveness of SACL and CAT.

2022

pdf
Multi-Granularity Semantic Aware Graph Model for Reducing Position Bias in Emotion Cause Pair Extraction
Yinan Bao | Qianwen Ma | Lingwei Wei | Wei Zhou | Songlin Hu
Findings of the Association for Computational Linguistics: ACL 2022

The emotion cause pair extraction (ECPE) task aims to extract emotions and causes as pairs from documents. We observe that the relative distance distribution of emotions and causes is extremely imbalanced in the typical ECPE dataset. Existing methods have set a fixed size window to capture relations between neighboring clauses. However, they neglect the effective semantic connections between distant clauses, leading to poor generalization ability towards position-insensitive data. To alleviate the problem, we propose a novel Multi-Granularity Semantic Aware Graph model (MGSAG) to incorporate fine-grained and coarse-grained semantic features jointly, without regard to distance limitation. In particular, we first explore semantic dependencies between clauses and keywords extracted from the document that convey fine-grained semantic features, obtaining keywords enhanced clause representations. Besides, a clause graph is also established to model coarse-grained semantic relations between clauses. Experimental results indicate that MGSAG surpasses the existing state-of-the-art ECPE models. Especially, MGSAG outperforms other models significantly in the condition of position-insensitive data.

pdf
RaP: Redundancy-aware Video-language Pre-training for Text-Video Retrieval
Xing Wu | Chaochen Gao | Zijia Lin | Zhongyuan Wang | Jizhong Han | Songlin Hu
Findings of the Association for Computational Linguistics: EMNLP 2022

Video language pre-training methods have mainly adopted sparse sampling techniques to alleviate the temporal redundancy of videos. Though effective, sparse sampling still suffers inter-modal redundancy: visual redundancy and textual redundancy. Compared with highly generalized text, sparsely sampled frames usually contain text-independent portions, called visual redundancy. Sparse sampling is also likely to miss important frames corresponding to some text portions, resulting in textual redundancy. Inter-modal redundancy leads to a mismatch of video and text information, hindering the model from better learning the shared semantics across modalities. To alleviate it, we propose Redundancy-aware Video-language Pre-training. We design a redundancy measurement of video patches and text tokens by calculating the cross-modal minimum dis-similarity. Then, we penalize the high-redundant video patches and text tokens through a proposed redundancy-aware contrastive learning. We evaluate our method on four benchmark datasets, MSRVTT, MSVD, DiDeMo, and LSMDC, achieving a significant improvement over the previous state-of-the-art results.

pdf
InfoCSE: Information-aggregated Contrastive Learning of Sentence Embeddings
Xing Wu | Chaochen Gao | Zijia Lin | Jizhong Han | Zhongyuan Wang | Songlin Hu
Findings of the Association for Computational Linguistics: EMNLP 2022

Contrastive learning has been extensively studied in sentence embedding learning, which assumes that the embeddings of different views of the same sentence are closer. The constraint brought by this assumption is weak, and a good sentence representation should also be able to reconstruct the original sentence fragments. Therefore, this paper proposes an information-aggregated contrastive learning framework for learning unsupervised sentence embeddings, termed InfoCSE.InfoCSE forces the representation of [CLS] positions to aggregate denser sentence information by introducing an additional Masked language model task and a well-designed network. We evaluate the proposed InfoCSE on several benchmark datasets w.r.t the semantic text similarity (STS) task. Experimental results show that InfoCSE outperforms SimCSE by an average Spearman correlation of 2.60% on BERT-base, and 1.77% on BERT-large, achieving state-of-the-art results among unsupervised sentence representation learning methods.

pdf
Text Smoothing: Enhance Various Data Augmentation Methods on Text Classification Tasks
Xing Wu | Chaochen Gao | Meng Lin | Liangjun Zang | Songlin Hu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Before entering the neural network, a token needs to be converted to its one-hot representation, which is a discrete distribution of the vocabulary. Smoothed representation is the probability of candidate tokens obtained from the pre-trained masked language model, which can be seen as a more informative augmented substitution to the one-hot representation. We propose an efficient data augmentation method, dub as text smoothing, by converting a sentence from its one-hot representation to controllable smoothed representation. We evaluate text smoothing on different datasets in a low-resource regime. Experimental results show that text smoothing outperforms various mainstream data augmentation methods by a substantial margin. Moreover, text smoothing can be combined with these data augmentation methods to achieve better performance.

pdf
Uncertainty-aware Propagation Structure Reconstruction for Fake News Detection
Lingwei Wei | Dou Hu | Wei Zhou | Songlin Hu
Proceedings of the 29th International Conference on Computational Linguistics

The widespread of fake news has detrimental societal effects. Recent works model information propagation as graph structure and aggregate structural features from user interactions for fake news detection. However, they usually neglect a broader propagation uncertainty issue, caused by some missing and unreliable interactions during actual spreading, and suffer from learning accurate and diverse structural properties. In this paper, we propose a novel dual graph-based model, Uncertainty-aware Propagation Structure Reconstruction (UPSR) for improving fake news detection. Specifically, after the original propagation modeling, we introduce propagation structure reconstruction to fully explore latent interactions in the actual propagation. We design a novel Gaussian Propagation Estimation to refine the original deterministic node representation by multiple Gaussian distributions and arise latent interactions with KL divergence between distributions in a multi-facet manner. Extensive experiments on two real-world datasets demonstrate the effectiveness and superiority of our model.

pdf
A Unified Propagation Forest-based Framework for Fake News Detection
Lingwei Wei | Dou Hu | Yantong Lai | Wei Zhou | Songlin Hu
Proceedings of the 29th International Conference on Computational Linguistics

Fake news’s quick propagation on social media brings severe social ramifications and economic damage. Previous fake news detection usually learn semantic and structural patterns within a single target propagation tree. However, they are usually limited in narrow signals since they do not consider latent information cross other propagation trees. Motivated by a common phenomenon that most fake news is published around a specific hot event/topic, this paper develops a new concept of propagation forest to naturally combine propagation trees in a semantic-aware clustering. We propose a novel Unified Propagation Forest-based framework (UniPF) to fully explore latent correlations between propagation trees to improve fake news detection. Besides, we design a root-induced training strategy, which encourages representations of propagation trees to be closer to their prototypical root nodes. Extensive experiments on four benchmarks consistently suggest the effectiveness and scalability of UniPF.

pdf
ESimCSE: Enhanced Sample Building Method for Contrastive Learning of Unsupervised Sentence Embedding
Xing Wu | Chaochen Gao | Liangjun Zang | Jizhong Han | Zhongyuan Wang | Songlin Hu
Proceedings of the 29th International Conference on Computational Linguistics

Contrastive learning has been attracting much attention for learning unsupervised sentence embeddings. The current state-of-the-art unsupervised method is the unsupervised SimCSE (unsup-SimCSE). Unsup-SimCSE takes dropout as a minimal data augmentation method, and passes the same input sentence to a pre-trained Transformer encoder (with dropout turned on) twice to obtain the two corresponding embeddings to build a positive pair. As the length information of a sentence will generally be encoded into the sentence embeddings due to the usage of position embedding in Transformer, each positive pair in unsup-SimCSE actually contains the same length information. And thus unsup-SimCSE trained with these positive pairs is probably biased, which would tend to consider that sentences of the same or similar length are more similar in semantics. Through statistical observations, we find that unsup-SimCSE does have such a problem. To alleviate it, we apply a simple repetition operation to modify the input sentence, and then pass the input sentence and its modified counterpart to the pre-trained Transformer encoder, respectively, to get the positive pair. Additionally, we draw inspiration from the community of computer vision and introduce a momentum contrast, enlarging the number of negative pairs without additional calculations. The proposed two modifications are applied on positive and negative pairs separately, and build a new sentence embedding method, termed Enhanced Unsup-SimCSE (ESimCSE). We evaluate the proposed ESimCSE on several benchmark datasets w.r.t the semantic text similarity (STS) task. Experimental results show that ESimCSE outperforms the state-of-the-art unsup-SimCSE by an average Spearman correlation of 2.02% on BERT-base.

pdf
Smoothed Contrastive Learning for Unsupervised Sentence Embedding
Xing Wu | Chaochen Gao | Yipeng Su | Jizhong Han | Zhongyuan Wang | Songlin Hu
Proceedings of the 29th International Conference on Computational Linguistics

Unsupervised contrastive sentence embedding models, e.g., unsupervised SimCSE, use the InfoNCE loss function in training. Theoretically, we expect to use larger batches to get more adequate comparisons among samples and avoid overfitting. However, increasing batch size leads to performance degradation when it exceeds a threshold, which is probably due to the introduction of false-negative pairs through statistical observation. To alleviate this problem, we introduce a simple smoothing strategy upon the InfoNCE loss function, termed Gaussian Smoothed InfoNCE (GS-InfoNCE). In other words, we add random Gaussian noise as an extension to the negative pairs without increasing the batch size. Through experiments on the semantic text similarity tasks, though simple, the proposed smoothing strategy brings improvements to unsupervised SimCSE.

pdf
AMOA: Global Acoustic Feature Enhanced Modal-Order-Aware Network for Multimodal Sentiment Analysis
Ziming Li | Yan Zhou | Weibo Zhang | Yaxin Liu | Chuanpeng Yang | Zheng Lian | Songlin Hu
Proceedings of the 29th International Conference on Computational Linguistics

In recent years, multimodal sentiment analysis (MSA) has attracted more and more interest, which aims to predict the sentiment polarity expressed in a video. Existing methods typically 1) treat three modal features (textual, acoustic, visual) equally, without distinguishing the importance of different modalities; and 2) split the video into frames, leading to missing the global acoustic information. In this paper, we propose a global Acoustic feature enhanced Modal-Order-Aware network (AMOA) to address these problems. Firstly, a modal-order-aware network is designed to obtain the multimodal fusion feature. This network integrates the three modalities in a certain order, which makes the modality at the core position matter more. Then, we introduce the global acoustic feature of the whole video into our model. Since the global acoustic feature and multimodal fusion feature originally reside in their own spaces, contrastive learning is further employed to align them before concatenation. Experiments on two public datasets show that our model outperforms the state-of-the-art models. In addition, we also generalize our model to the sentiment with more complex semantics, such as sarcasm detection. Our model also achieves state-of-the-art performance on a widely used sarcasm dataset.

pdf
Supervised Prototypical Contrastive Learning for Emotion Recognition in Conversation
Xiaohui Song | Longtao Huang | Hui Xue | Songlin Hu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Capturing emotions within a conversation plays an essential role in modern dialogue systems. However, the weak correlation between emotions and semantics brings many challenges to emotion recognition in conversation (ERC). Even semantically similar utterances, the emotion may vary drastically depending on contexts or speakers. In this paper, we propose a Supervised Prototypical Contrastive Learning (SPCL) loss for the ERC task. Leveraging the Prototypical Network, the SPCL targets at solving the imbalanced classification problem through contrastive learning and does not require a large batch size. Meanwhile, we design a difficulty measure function based on the distance between classes and introduce curriculum learning to alleviate the impact of extreme samples. We achieve state-of-the-art results on three widely used benchmarks. Further, we conduct analytical experiments to demonstrate the effectiveness of our proposed SPCL and curriculum learning strategy.

2021

pdf
Towards Propagation Uncertainty: Edge-enhanced Bayesian Graph Convolutional Networks for Rumor Detection
Lingwei Wei | Dou Hu | Wei Zhou | Zhaojuan Yue | Songlin Hu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Detecting rumors on social media is a very critical task with significant implications to the economy, public health, etc. Previous works generally capture effective features from texts and the propagation structure. However, the uncertainty caused by unreliable relations in the propagation structure is common and inevitable due to wily rumor producers and the limited collection of spread data. Most approaches neglect it and may seriously limit the learning of features. Towards this issue, this paper makes the first attempt to explore propagation uncertainty for rumor detection. Specifically, we propose a novel Edge-enhanced Bayesian Graph Convolutional Network (EBGCN) to capture robust structural features. The model adaptively rethinks the reliability of latent relations by adopting a Bayesian approach. Besides, we design a new edge-wise consistency training framework to optimize the model by enforcing consistency on relations. Experiments on three public benchmark datasets demonstrate that the proposed model achieves better performance than baseline methods on both rumor detection and early rumor detection tasks.

pdf
Label-Specific Dual Graph Neural Network for Multi-Label Text Classification
Qianwen Ma | Chunyuan Yuan | Wei Zhou | Songlin Hu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Multi-label text classification is one of the fundamental tasks in natural language processing. Previous studies have difficulties to distinguish similar labels well because they learn the same document representations for different labels, that is they do not explicitly extract label-specific semantic components from documents. Moreover, they do not fully explore the high-order interactions among these semantic components, which is very helpful to predict tail labels. In this paper, we propose a novel label-specific dual graph neural network (LDGN), which incorporates category information to learn label-specific components from documents, and employs dual Graph Convolution Network (GCN) to model complete and adaptive interactions among these components based on the statistical label co-occurrence and dynamic reconstruction graph in a joint way. Experimental results on three benchmark datasets demonstrate that LDGN significantly outperforms the state-of-the-art models, and also achieves better performance with respect to tail labels.

2020

pdf
Integrating External Event Knowledge for Script Learning
Shangwen Lv | Fuqing Zhu | Songlin Hu
Proceedings of the 28th International Conference on Computational Linguistics

Script learning aims to predict the subsequent event according to the existing event chain. Recent studies focus on event co-occurrence to solve this problem. However, few studies integrate external event knowledge to solve this problem. With our observations, external event knowledge can provide additional knowledge like temporal or causal knowledge for understanding event chain better and predicting the right subsequent event. In this work, we integrate event knowledge from ASER (Activities, States, Events and their Relations) knowledge base to help predict the next event. We propose a new approach consisting of knowledge retrieval stage and knowledge integration stage. In the knowledge retrieval stage, we select relevant external event knowledge from ASER. In the knowledge integration stage, we propose three methods to integrate external knowledge into our model and infer final answers. Experiments on the widely-used Multi- Choice Narrative Cloze (MCNC) task show our approach achieves state-of-the-art performance compared to other methods.

pdf
Early Detection of Fake News by Utilizing the Credibility of News, Publishers, and Users based on Weakly Supervised Learning
Chunyuan Yuan | Qianwen Ma | Wei Zhou | Jizhong Han | Songlin Hu
Proceedings of the 28th International Conference on Computational Linguistics

The dissemination of fake news significantly affects personal reputation and public trust. Recently, fake news detection has attracted tremendous attention, and previous studies mainly focused on finding clues from news content or diffusion path. However, the required features of previous models are often unavailable or insufficient in early detection scenarios, resulting in poor performance. Thus, early fake news detection remains a tough challenge. Intuitively, the news from trusted and authoritative sources or shared by many users with a good reputation is more reliable than other news. Using the credibility of publishers and users as prior weakly supervised information, we can quickly locate fake news in massive news and detect them in the early stages of dissemination. In this paper, we propose a novel structure-aware multi-head attention network (SMAN), which combines the news content, publishing, and reposting relations of publishers and users, to jointly optimize the fake news detection and credibility prediction tasks. In this way, we can explicitly exploit the credibility of publishers and users for early fake news detection. We conducted experiments on three real-world datasets, and the results show that SMAN can detect fake news in 4 hours with an accuracy of over 91%, which is much faster than the state-of-the-art models.

2019

pdf
Multi-hop Selector Network for Multi-turn Response Selection in Retrieval-based Chatbots
Chunyuan Yuan | Wei Zhou | Mingming Li | Shangwen Lv | Fuqing Zhu | Jizhong Han | Songlin Hu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Multi-turn retrieval-based conversation is an important task for building intelligent dialogue systems. Existing works mainly focus on matching candidate responses with every context utterance on multiple levels of granularity, which ignore the side effect of using excessive context information. Context utterances provide abundant information for extracting more matching features, but it also brings noise signals and unnecessary information. In this paper, we will analyze the side effect of using too many context utterances and propose a multi-hop selector network (MSN) to alleviate the problem. Specifically, MSN firstly utilizes a multi-hop selector to select the relevant utterances as context. Then, the model matches the filtered context with the candidate response and obtains a matching score. Experimental results show that MSN outperforms some state-of-the-art methods on three public multi-turn dialogue datasets.