Social media platforms such as Twitter have evolved into a vast information sharing platform, allowing people from a variety of backgrounds and expertise to share their opinions on numerous events such as terrorism, narcotics and many other social issues. People sometimes misuse the power of social media for their agendas, such as illegal trades and negatively influencing others. Because of this, sentiment analysis has won the interest of a lot of researchers to widely analyze public opinion for social media monitoring. Several benchmark datasets for sentiment analysis across a range of domains have been made available, especially for high-resource languages. A few datasets are available for low-resource Indian languages like Hindi, such as movie reviews and product reviews, which do not address the current need for social media monitoring. In this paper, we address the challenges of sentiment analysis in Hindi and socially relevant domains by introducing a balanced corpus annotated with the sentiment classes, viz. positive, negative and neutral. To show the effective usage of the dataset, we build several deep learning based models and establish them as the baselines for further research in this direction.
Due to the phenomenal growth of online content in recent time, sentiment analysis has attracted attention of the researchers and developers. A number of benchmark annotated corpora are available for domains like movie reviews, product reviews, hotel reviews, etc. The pervasiveness of social media has also lead to a huge amount of content posted by users who are misusing the power of social media to spread false beliefs and to negatively influence others. This type of content is coming from the domains like terrorism, cybersecurity, technology, social issues, etc. Mining of opinions from these domains is important to create a socially intelligent system to provide security to the public and to maintain the law and order situations. To the best of our knowledge, there is no publicly available tweet corpora for such pervasive domains. Hence, we firstly create a multi-domain tweet sentiment corpora and then establish a deep neural network based baseline framework to address the above mentioned issues. Annotated corpus has Cohen’s Kappa measurement for annotation quality of 0.770, which shows that the data is of acceptable quality. We are able to achieve 84.65% accuracy for sentiment analysis by using an ensemble of Convolutional Neural Network (CNN), Long Short Term Memory (LSTM), and Gated Recurrent Unit(GRU).
Emotion recognition is a very well-attended problem in Natural Language Processing (NLP). Most of the existing works on emotion recognition focus on the general domain and in some cases to specific domains like fairy tales, blogs, weather, Twitter etc. But emotion analysis systems in the domains of security, social issues, technology, politics, sports, etc. are very rare. In this paper, we create a benchmark setup for emotion recognition in these specialised domains. First, we construct a corpus of 18,921 tweets in English annotated with Paul Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise) and a non-emotive class Others. Thereafter, we propose a deep neural framework to perform emotion recognition in an end-to-end setting. We build various models based on Convolutional Neural Network (CNN), Bi-directional Long Short Term Memory (Bi-LSTM), Bi-directional Gated Recurrent Unit (Bi-GRU). We propose a Hierarchical Attention-based deep neural network for Emotion Detection (HAtED). We also develop multiple systems by considering different sets of emotion classes for each system and report the detailed comparative analysis of the results. Experiments show the hierarchical attention-based model achieves best results among the considered baselines with accuracy of 69%.