Sabit Hassan


2023

pdf
MedNgage: A Dataset for Understanding Engagement in Patient-Nurse Conversations
Yan Wang | Heidi Donovan | Sabit Hassan | Malihe Alikhani
Findings of the Association for Computational Linguistics: ACL 2023

Patients who effectively manage their symptoms often demonstrate higher levels of engagement in conversations and interventions with healthcare practitioners. This engagement is multifaceted, encompassing cognitive and social dimensions. Consequently, it is crucial for AI systems to understand the engagement in natural conversations between patients and practitioners to better contribute toward patient care. In this paper, we present a novel dataset (MedNgage), which consists of patient-nurse conversations about cancer symptom management. We manually annotate the dataset with a novel framework of categories of patient engagement from two different angles, namely: i) socio-affective engagement (3.1K spans), and ii) cognitive engagement (1.8K spans). Through statistical analysis of the data that is annotated using our framework, we show a positive correlation between patient symptom management outcomes and their engagement in conversations. Additionally, we demonstrate that pre-trained transformer models fine-tuned on our dataset can reliably predict engagement categories in patient-nurse conversations. Lastly, we use LIME (Ribeiro et al., 2016) to analyze the underlying challenges of the tasks that state-of-the-art transformer models encounter. The de-identified data is available for research purposes upon request.

pdf
D-CALM: A Dynamic Clustering-based Active Learning Approach for Mitigating Bias
Sabit Hassan | Malihe Alikhani
Findings of the Association for Computational Linguistics: ACL 2023

Despite recent advancements, NLP models continue to be vulnerable to bias. This bias often originates from the uneven distribution of real-world data and can propagate through the annotation process. Escalated integration of these models in our lives calls for methods to mitigate bias without overbearing annotation costs. While active learning (AL) has shown promise in training models with a small amount of annotated data, AL’s reliance on the model’s behavior for selective sampling can lead to an accumulation of unwanted bias rather than bias mitigation. However, infusing clustering with AL can overcome the bias issue of both AL and traditional annotation methods while exploiting AL’s annotation efficiency. In this paper, we propose a novel adaptive clustering-based active learning algorithm, D-CALM, that dynamically adjusts clustering and annotation efforts in response to an estimated classifier error-rate. Experiments on eight datasets for a diverse set of text classification tasks, including emotion, hatespeech, dialog act, and book type detection, demonstrate that our proposed algorithm significantly outperforms baseline AL approaches with both pretrained transformers and traditional Support Vector Machines. D-CALM showcases robustness against different measures of information gain and, as evident from our analysis of label and error distribution, can significantly reduce unwanted model bias.

pdf
DisCGen: A Framework for Discourse-Informed Counterspeech Generation
Sabit Hassan | Malihe Alikhani
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf
Multilingual Content Moderation: A Case Study on Reddit
Meng Ye | Karan Sikka | Katherine Atwell | Sabit Hassan | Ajay Divakaran | Malihe Alikhani
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Content moderation is the process of flagging content based on pre-defined platform rules. There has been a growing need for AI moderators to safeguard users as well as protect the mental health of human moderators from traumatic content. While prior works have focused on identifying hateful/offensive language, they are not adequate for meeting the challenges of content moderation since 1) moderation decisions are based on violation of rules, which subsumes detection of offensive speech, and 2) such rules often differ across communities which entails an adaptive solution. We propose to study the challenges of content moderation by introducing a multilingual dataset of 1.8 Million Reddit comments spanning 56 subreddits in English, German, Spanish and French1. We perform extensive experimental analysis to highlight the underlying challenges and suggest related research problems such as cross-lingual transfer, learning under label noise (human biases), transfer of moderation models, and predicting the violated rule. Our dataset and analysis can help better prepare for the challenges and opportunities of auto moderation.

2022

pdf
Modeling Intensification for Sign Language Generation: A Computational Approach
Mert Inan | Yang Zhong | Sabit Hassan | Lorna Quandt | Malihe Alikhani
Findings of the Association for Computational Linguistics: ACL 2022

End-to-end sign language generation models do not accurately represent the prosody in sign language. A lack of temporal and spatial variations leads to poor-quality generated presentations that confuse human interpreters. In this paper, we aim to improve the prosody in generated sign languages by modeling intensification in a data-driven manner. We present different strategies grounded in linguistics of sign language that inform how intensity modifiers can be represented in gloss annotations. To employ our strategies, we first annotate a subset of the benchmark PHOENIX-14T, a German Sign Language dataset, with different levels of intensification. We then use a supervised intensity tagger to extend the annotated dataset and obtain labels for the remaining portion of it. This enhanced dataset is then used to train state-of-the-art transformer models for sign language generation. We find that our efforts in intensification modeling yield better results when evaluated with automatic metrics. Human evaluation also indicates a higher preference of the videos generated using our model.

pdf
ArCovidVac: Analyzing Arabic Tweets About COVID-19 Vaccination
Hamdy Mubarak | Sabit Hassan | Shammur Absar Chowdhury | Firoj Alam
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The emergence of the COVID-19 pandemic and the first global infodemic have changed our lives in many different ways. We relied on social media to get the latest information about COVID-19 pandemic and at the same time to disseminate information. The content in social media consisted not only health related advice, plans, and informative news from policymakers, but also contains conspiracies and rumors. It became important to identify such information as soon as they are posted to make an actionable decision (e.g., debunking rumors, or taking certain measures for traveling). To address this challenge, we develop and publicly release the first largest manually annotated Arabic tweet dataset, ArCovidVac, for COVID-19 vaccination campaign, covering many countries in the Arab region. The dataset is enriched with different layers of annotation, including, (i) Informativeness more vs. less importance of the tweets); (ii) fine-grained tweet content types (e.g., advice, rumors, restriction, authenticate news/information); and (iii) stance towards vaccination (pro-vaccination, neutral, anti-vaccination). Further, we performed in-depth analysis of the data, exploring the popularity of different vaccines, trending hashtags, topics, and presence of offensiveness in the tweets. We studied the data for individual types of tweets and temporal changes in stance towards vaccine. We benchmarked the ArCovidVac dataset using transformer architectures for informativeness, content types, and stance detection.

pdf
Cross-lingual Emotion Detection
Sabit Hassan | Shaden Shaar | Kareem Darwish
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Emotion detection can provide us with a window into understanding human behavior. Due to the complex dynamics of human emotions, however, constructing annotated datasets to train automated models can be expensive. Thus, we explore the efficacy of cross-lingual approaches that would use data from a source language to build models for emotion detection in a target language. We compare three approaches, namely: i) using inherently multilingual models; ii) translating training data into the target language; and iii) using an automatically tagged parallel corpus. In our study, we consider English as the source language with Arabic and Spanish as target languages. We study the effectiveness of different classification models such as BERT and SVMs trained with different features. Our BERT-based monolingual models that are trained on target language data surpass state-of-the-art (SOTA) by 4% and 5% absolute Jaccard score for Arabic and Spanish respectively. Next, we show that using cross-lingual approaches with English data alone, we can achieve more than 90% and 80% relative effectiveness of the Arabic and Spanish BERT models respectively. Lastly, we use LIME to analyze the challenges of training cross-lingual models for different language pairs.

pdf
APPDIA: A Discourse-aware Transformer-based Style Transfer Model for Offensive Social Media Conversations
Katherine Atwell | Sabit Hassan | Malihe Alikhani
Proceedings of the 29th International Conference on Computational Linguistics

Using style-transfer models to reduce offensiveness of social media comments can help foster a more inclusive environment. However, there are no sizable datasets that contain offensive texts and their inoffensive counterparts, and fine-tuning pretrained models with limited labeled data can lead to the loss of original meaning in the style-transferred text. To address this issue, we provide two major contributions. First, we release the first publicly-available, parallel corpus of offensive Reddit comments and their style-transferred counterparts annotated by expert sociolinguists. Then, we introduce the first discourse-aware style-transfer models that can effectively reduce offensiveness in Reddit text while preserving the meaning of the original text. These models are the first to examine inferential links between the comment and the text it is replying to when transferring the style of offensive Reddit text. We propose two different methods of integrating discourse relations with pretrained transformer models and evaluate them on our dataset of offensive comments from Reddit and their inoffensive counterparts. Improvements over the baseline with respect to both automatic metrics and human evaluation indicate that our discourse-aware models are better at preserving meaning in style-transferred text when compared to the state-of-the-art discourse-agnostic models.

2021

pdf
ASAD: Arabic Social media Analytics and unDerstanding
Sabit Hassan | Hamdy Mubarak | Ahmed Abdelali | Kareem Darwish
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

This system demonstration paper describes ASAD: Arabic Social media Analysis and unDerstanding, a suite of seven individual modules that allows users to determine dialects, sentiment, news category, offensiveness, hate speech, adult content, and spam in Arabic tweets. The suite is made available through a web API and a web interface where users can enter text or upload files.

pdf bib
QADI: Arabic Dialect Identification in the Wild
Ahmed Abdelali | Hamdy Mubarak | Younes Samih | Sabit Hassan | Kareem Darwish
Proceedings of the Sixth Arabic Natural Language Processing Workshop

Proper dialect identification is important for a variety of Arabic NLP applications. In this paper, we present a method for rapidly constructing a tweet dataset containing a wide range of country-level Arabic dialects —covering 18 different countries in the Middle East and North Africa region. Our method relies on applying multiple filters to identify users who belong to different countries based on their account descriptions and to eliminate tweets that either write mainly in Modern Standard Arabic or mostly use vulgar language. The resultant dataset contains 540k tweets from 2,525 users who are evenly distributed across 18 Arab countries. Using intrinsic evaluation, we show that the labels of a set of randomly selected tweets are 91.5% accurate. For extrinsic evaluation, we are able to build effective country level dialect identification on tweets with a macro-averaged F1-score of 60.6% across 18 classes.

pdf
Adult Content Detection on Arabic Twitter: Analysis and Experiments
Hamdy Mubarak | Sabit Hassan | Ahmed Abdelali
Proceedings of the Sixth Arabic Natural Language Processing Workshop

With Twitter being one of the most popular social media platforms in the Arab region, it is not surprising to find accounts that post adult content in Arabic tweets; despite the fact that these platforms dissuade users from such content. In this paper, we present a dataset of Twitter accounts that post adult content. We perform an in-depth analysis of the nature of this data and contrast it with normal tweet content. Additionally, we present extensive experiments with traditional machine learning models, deep neural networks and contextual embeddings to identify such accounts. We show that from user information alone, we can identify such accounts with F1 score of 94.7% (macro average). With the addition of only one tweet as input, the F1 score rises to 96.8%.

pdf
UL2C: Mapping User Locations to Countries on Arabic Twitter
Hamdy Mubarak | Sabit Hassan
Proceedings of the Sixth Arabic Natural Language Processing Workshop

Mapping user locations to countries can be useful for many applications such as dialect identification, author profiling, recommendation system, etc. Twitter allows users to declare their locations as free text, and these user-declared locations are often noisy and hard to decipher automatically. In this paper, we present the largest manually labeled dataset for mapping user locations on Arabic Twitter to their corresponding countries. We build effective machine learning models that can automate this mapping with significantly better efficiency compared to libraries such as geopy. We also show that our dataset is more effective than data extracted from GeoNames geographical database in this task as the latter covers only locations written in formal ways.

pdf bib
ArCorona: Analyzing Arabic Tweets in the Early Days of Coronavirus (COVID-19) Pandemic
Hamdy Mubarak | Sabit Hassan
Proceedings of the 12th International Workshop on Health Text Mining and Information Analysis

Over the past few months, there were huge numbers of circulating tweets and discussions about Coronavirus (COVID-19) in the Arab region. It is important for policy makers and many people to identify types of shared tweets to better understand public behavior, topics of interest, requests from governments, sources of tweets, etc. It is also crucial to prevent spreading of rumors and misinformation about the virus or bad cures. To this end, we present the largest manually annotated dataset of Arabic tweets related to COVID-19. We describe annotation guidelines, analyze our dataset and build effective machine learning and transformer based models for classification.

2020

pdf
ALT at SemEval-2020 Task 12: Arabic and English Offensive Language Identification in Social Media
Sabit Hassan | Younes Samih | Hamdy Mubarak | Ahmed Abdelali
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes the systems submitted by the Arabic Language Technology group (ALT) at SemEval-2020 Task 12: Multilingual Offensive Language Identification in Social Media. We focus on sub-task A (Offensive Language Identification) for two languages: Arabic and English. Our efforts for both languages achieved more than 90% macro-averaged F1-score on the official test set. For Arabic, the best results were obtained by a system combination of Support Vector Machine, Deep Neural Network, and fine-tuned Bidirectional Encoder Representations from Transformers (BERT). For English, the best results were obtained by fine-tuning BERT.

pdf
ALT Submission for OSACT Shared Task on Offensive Language Detection
Sabit Hassan | Younes Samih | Hamdy Mubarak | Ahmed Abdelali | Ammar Rashed | Shammur Absar Chowdhury
Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection

In this paper, we describe our efforts at OSACT Shared Task on Offensive Language Detection. The shared task consists of two subtasks: offensive language detection (Subtask A) and hate speech detection (Subtask B). For offensive language detection, a system combination of Support Vector Machines (SVMs) and Deep Neural Networks (DNNs) achieved the best results on development set, which ranked 1st in the official results for Subtask A with F1-score of 90.51% on the test set. For hate speech detection, DNNs were less effective and a system combination of multiple SVMs with different parameters achieved the best results on development set, which ranked 4th in official results for Subtask B with F1-macro score of 80.63% on the test set.

pdf
Constructing a Bilingual Corpus of Parallel Tweets
Hamdy Mubarak | Sabit Hassan | Ahmed Abdelali
Proceedings of the 13th Workshop on Building and Using Comparable Corpora

In a bid to reach a larger and more diverse audience, Twitter users often post parallel tweets—tweets that contain the same content but are written in different languages. Parallel tweets can be an important resource for developing machine translation (MT) systems among other natural language processing (NLP) tasks. In this paper, we introduce a generic method for collecting parallel tweets. Using this method, we collect a bilingual corpus of English-Arabic parallel tweets and a list of Twitter accounts who post English-Arabictweets regularly. Since our method is generic, it can also be used for collecting parallel tweets that cover less-resourced languages such as Serbian and Urdu. Additionally, we annotate a subset of Twitter accounts with their countries of origin and topic of interest, which provides insights about the population who post parallel tweets. This latter information can also be useful for author profiling tasks.

2019

pdf
The MADAR Shared Task on Arabic Fine-Grained Dialect Identification
Houda Bouamor | Sabit Hassan | Nizar Habash
Proceedings of the Fourth Arabic Natural Language Processing Workshop

In this paper, we present the results and findings of the MADAR Shared Task on Arabic Fine-Grained Dialect Identification. This shared task was organized as part of The Fourth Arabic Natural Language Processing Workshop, collocated with ACL 2019. The shared task includes two subtasks: the MADAR Travel Domain Dialect Identification subtask (Subtask 1) and the MADAR Twitter User Dialect Identification subtask (Subtask 2). This shared task is the first to target a large set of dialect labels at the city and country levels. The data for the shared task was created or collected under the Multi-Arabic Dialect Applications and Resources (MADAR) project. A total of 21 teams from 15 countries participated in the shared task.