Humans can effortlessly understand the coordinate structure of sentences such as “Niels Bohr and Kurt Cobain were born in Copenhagen and Seattle, *respectively*”. In the context of natural language inference (NLI), we examine how language models (LMs) reason with respective readings (Gawron and Kehler, 2004) from two perspectives: syntactic-semantic and commonsense-world knowledge. We propose a controlled synthetic dataset WikiResNLI and a naturally occurring dataset NatResNLI to encompass various explicit and implicit realizations of “respectively”. We show that fine-tuned NLI models struggle with understanding such readings without explicit supervision. While few-shot learning is easy in the presence of explicit cues, longer training is required when the reading is evoked implicitly, leaving models to rely on common sense inferences. Furthermore, our fine-grained analysis indicates models fail to generalize across different constructions. To conclude, we demonstrate that LMs still lag behind humans in generalizing to the long tail of linguistic constructions.
Semantic parsing (SP) allows humans to leverage vast knowledge resources through natural interaction. However, parsers are mostly designed for and evaluated on English resources, such as CFQ (Keysers et al., 2020), the current standard benchmark based on English data generated from grammar rules and oriented towards Freebase, an outdated knowledge base. We propose a method for creating a multilingual, parallel dataset of question-query pairs, grounded in Wikidata. We introduce such a dataset, which we call Multilingual Compositional Wikidata Questions (MCWQ), and use it to analyze the compositional generalization of semantic parsers in Hebrew, Kannada, Chinese, and English. While within- language generalization is comparable across languages, experiments on zero-shot cross- lingual transfer demonstrate that cross-lingual compositional generalization fails, even with state-of-the-art pretrained multilingual encoders. Furthermore, our methodology, dataset, and results will facilitate future research on SP in more realistic and diverse settings than has been possible with existing resources.
Abstract Meaning Representation (AMR) has been shown to be useful for many downstream tasks. In this work, we explore the use of AMR for legal and logical reasoning. Specifically, we investigate if AMR can help capture logical relationships on multiple choice question answering (MCQA) tasks. We propose neural architectures that utilize linearised AMR graphs in combination with pre-trained language models. While these models are not able to outperform text-only baselines, they correctly solve different instances than the text models, suggesting complementary abilities. Error analysis further reveals that AMR parsing quality is the most prominent challenge, especially regarding inputs with multiple sentences. We conduct a theoretical analysis of how logical relations are represented in AMR and conclude it might be helpful in some logical statements but not for others.
Logical approaches to representing language have developed and evaluated computational models of quantifier words since the 19th century, but today’s NLU models still struggle to capture their semantics. We rely on Generalized Quantifier Theory for language-independent representations of the semantics of quantifier words, to quantify their contribution to the errors of NLU models. We find that quantifiers are pervasive in NLU benchmarks, and their occurrence at test time is associated with performance drops. Multilingual models also exhibit unsatisfying quantifier reasoning abilities, but not necessarily worse for non-English languages. To facilitate directly-targeted probing, we present an adversarial generalized quantifier NLI task (GQNLI) and show that pre-trained language models have a clear lack of robustness in generalized quantifier reasoning.
Various efforts in the Natural Language Processing (NLP) community have been made to accommodate linguistic diversity and serve speakers of many different languages. However, it is important to acknowledge that speakers and the content they produce and require, vary not just by language, but also by culture. Although language and culture are tightly linked, there are important differences. Analogous to cross-lingual and multilingual NLP, cross-cultural and multicultural NLP considers these differences in order to better serve users of NLP systems. We propose a principled framework to frame these efforts, and survey existing and potential strategies.
Gender-neutral pronouns have recently been introduced in many languages to a) include non-binary people and b) as a generic singular. Recent results from psycholinguistics suggest that gender-neutral pronouns (in Swedish) are not associated with human processing difficulties. This, we show, is in sharp contrast with automated processing. We show that gender-neutral pronouns in Danish, English, and Swedish are associated with higher perplexity, more dispersed attention patterns, and worse downstream performance. We argue that such conservativity in language models may limit widespread adoption of gender-neutral pronouns and must therefore be resolved.
Logical approaches to representing language have developed and evaluated computational models of quantifier words since the 19th century, but today’s NLU models still struggle to capture their semantics. We rely on Generalized Quantifier Theory for language-independent representations of the semantics of quantifier words, to quantify their contribution to the errors of NLU models. We find that quantifiers are pervasive in NLU benchmarks, and their occurrence at test time is associated with performance drops. Multilingual models also exhibit unsatisfying quantifier reasoning abilities, but not necessarily worse for non-English languages. To facilitate directly-targeted probing, we present an adversarial generalized quantifier NLI task (GQNLI) and show that pre-trained language models have a clear lack of robustness in generalized quantifier reasoning.
Broad-coverage meaning representations in NLP mostly focus on explicitly expressed content. More importantly, the scarcity of datasets annotating diverse implicit roles limits empirical studies into their linguistic nuances. For example, in the web review “Great service!”, the provider and consumer are implicit arguments of different types. We examine an annotated corpus of fine-grained implicit arguments (Cui and Hershcovich, 2020) by carefully re-annotating it, resolving several inconsistencies. Subsequently, we present the first transition-based neural parser that can handle implicit arguments dynamically, and experiment with two different transition systems on the improved dataset. We find that certain types of implicit arguments are more difficult to parse than others and that the simpler system is more accurate in recovering implicit arguments, despite having a lower overall parsing score, attesting current reasoning limitations of NLP models. This work will facilitate a better understanding of implicit and underspecified language, by incorporating it holistically into meaning representations.
This paper describes the HUJI-KU system submission to the shared task on CrossFramework Meaning Representation Parsing (MRP) at the 2020 Conference for Computational Language Learning (CoNLL), employing TUPA and the HIT-SCIR parser, which were, respectively, the baseline system and winning system in the 2019 MRP shared task. Both are transition-based parsers using BERT contextualized embeddings. We generalized TUPA to support the newly-added MRP frameworks and languages, and experimented with multitask learning with the HIT-SCIR parser. We reached 4th place in both the crossframework and cross-lingual tracks.
Predicate-argument structure analysis is a central component in meaning representations of text. The fact that some arguments are not explicitly mentioned in a sentence gives rise to ambiguity in language understanding, and renders it difficult for machines to interpret text correctly. However, only few resources represent implicit roles for NLU, and existing studies in NLP only make coarse distinctions between categories of arguments omitted from linguistic form. This paper proposes a typology for fine-grained implicit argument annotation on top of Universal Conceptual Cognitive Annotation’s foundational layer. The proposed implicit argument categorisation is driven by theories of implicit role interpretation and consists of six types: Deictic, Generic, Genre-based, Type-identifiable, Non-specific, and Iterated-set. We exemplify our design by revisiting part of the UCCA EWT corpus, providing a new dataset annotated with the refinement layer, and making a comparative analysis with other schemes.