Post-editing has proven effective in improving the quality of text generated by large language models (LLMs) such as GPT-3.5 or GPT-4, particularly when direct updating of their parameters to enhance text quality is infeasible or expensive. However, relying solely on smaller language models for post-editing can limit the LLMs’ ability to generalize across domains. Moreover, the editing strategies in these methods are not optimally designed for text generation tasks. To address these limitations, we propose a neural programmer-interpreter approach that preserves the domain generalization ability of LLMs while editing their output. The editing actions in this framework are specifically devised for text generation. Extensive experiments demonstrate that the programmer-interpreter significantly enhances GPT-3.5’s performance in logical form-to-text conversion and low-resource machine translation, surpassing other state-of-the-art (SOTA) LLM post-editing methods in cross-domain settings.
Negotiation is a crucial ability in human communication. Recently, there has been a resurgent research interest in negotiation dialogue systems, whose goal is to create intelligent agents that can assist people in resolving conflicts or reaching agreements. Although there have been many explorations into negotiation dialogue systems, a systematic review of this task has not been performed to date. We aim to fill this gap by investigating recent studies in the field of negotiation dialogue systems, and covering benchmarks, evaluations and methodologies within the literature. We also discuss potential future directions, including multi-modal, multi-party and cross-cultural negotiation scenarios. Our goal is to provide the community with a systematic overview of negotiation dialogue systems and to inspire future research.
Previous studies have relied on existing question-answering benchmarks to evaluate the knowledge stored in large language models (LLMs). However, this approach has limitations regarding factual knowledge coverage, as it mostly focuses on generic domains which may overlap with the pretraining data. This paper proposes a framework to systematically assess the factual knowledge of LLMs by leveraging knowledge graphs (KGs). Our framework automatically generates a set of questions and expected answers from the facts stored in a given KG, and then evaluates the accuracy of LLMs in answering these questions. We systematically evaluate the state-of-the-art LLMs with KGs in generic and specific domains. The experiment shows that ChatGPT is consistently the top performer across all domains. We also find that LLMs performance depends on the instruction finetuning, domain and question complexity and is prone to adversarial context.
Social intelligence is essential for understanding and reasoning about human expressions, intents and interactions. One representative benchmark for its study is Social Intelligence Queries (Social-IQ), a dataset of multiple-choice questions on videos of complex social interactions. We define a comprehensive methodology to study the soundness of Social-IQ, as the soundness of such benchmark datasets is crucial to the investigation of the underlying research problem. We define a comprehensive methodology to study the soundness of Social-IQ, as the soundness of such benchmark datasets is crucial to the investigation of the underlying research problem. Our analysis reveals that Social-IQ contains substantial biases, which can be exploited by a moderately strong language model to learn spurious correlations to achieve perfect performance without being given the context or even the question. We introduce DeSIQ, a new challenging dataset, constructed by applying simple perturbations to Social-IQ. Our empirical analysis shows De-SIQ significantly reduces the biases in the original Social-IQ dataset. Furthermore, we examine and shed light on the effect of model size, model style, learning settings, commonsense knowledge, and multi-modality on the new benchmark performance. Our new dataset, observations and findings open up important research questions for the study of social intelligence.
Text-based games (TGs) are exciting testbeds for developing deep reinforcement learning techniques due to their partially observed environments and large action spaces. In these games, the agent learns to explore the environment via natural language interactions with the game simulator. A fundamental challenge in TGs is the efficient exploration of the large action space when the agent has not yet acquired enough knowledge about the environment. We propose CommExpl, an exploration technique that injects external commonsense knowledge, via a pretrained language model (LM), into the agent during training when the agent is the most uncertain about its next action. Our method exhibits improvement on the collected game scores during the training in four out of nine games from Jericho. Additionally, the produced trajectory of actions exhibit lower perplexity, when tested with a pretrained LM, indicating better closeness to human language.