Nicolas Wagner


2022

pdf
ProDial – An Annotated Proactive Dialogue Act Corpus for Conversational Assistants using Crowdsourcing
Matthias Kraus | Nicolas Wagner | Wolfgang Minker
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Robots will eventually enter our daily lives and assist with a variety of tasks. Especially in the household domain, robots may become indispensable helpers by overtaking tedious tasks, e.g. keeping the place tidy. Their effectiveness and efficiency, however, depend on their ability to adapt to our needs, routines, and personal characteristics. Otherwise, they may not be accepted and trusted in our private domain. For enabling adaptation, the interaction between a human and a robot needs to be personalized. Therefore, the robot needs to collect personal information from the user. However, it is unclear how such sensitive data can be collected in an understandable way without losing a user’s trust in the system. In this paper, we present a conversational approach for explicitly collecting personal user information using natural dialogue. For creating a sound interactive personalization, we have developed an empathy-augmented dialogue strategy. In an online study, the empathy-augmented strategy was compared to a baseline dialogue strategy for interactive personalization. We have found the empathy-augmented strategy to perform notably friendlier. Overall, using dialogue for interactive personalization has generally shown positive user reception.

2018

pdf
Utilisation de Représentations Distribuées de Relations pour la Désambiguïsation d’Entités Nommées (Exploiting Relation Embeddings to Improve Entity Linking )
Nicolas Wagner | Romaric Besançon | Olivier Ferret
Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN

L’identification des entités nommées dans un texte est une étape fondamentale pour de nombreuses tâches d’extraction d’information. Pour avoir une identification complète, une étape de désambiguïsation des entités similaires doit être réalisée. Celle-ci s’appuie souvent sur la seule description textuelle des entités. Or, les bases de connaissances contiennent des informations plus riches, sous la forme de relations entre les entités : cette information peut également être exploitée pour améliorer la désambiguïsation des entités. Nous proposons dans cet article une approche d’apprentissage de représentations distribuées de ces relations et leur utilisation pour la tâche de désambiguïsation d’entités nommées. Nous montrons le gain de cette méthode sur un corpus d’évaluation standard, en anglais, issu de la tâche de désambiguïsation d’entités de la campagne TAC-KBP.