This paper describes a method to enrich lexical resources with content relating to linguistic diversity, based on knowledge from the field of lexical typology. We capture the phenomenon of diversity through the notion of lexical gap and use a systematic method to infer gaps semi-automatically on a large scale, which we demonstrate on the kinship domain. The resulting free diversity-aware terminological resource consists of 198 concepts, 1,911 words, and 37,370 gaps in 699 languages. We see great potential in the use of resources such as ours for the improvement of a variety of cross-lingual NLP tasks, which we illustrate through an application in the evaluation of machine translation systems.
We introduce the IndoUKC, a new multilingual lexical database comprised of eighteen Indian languages, with a focus on formally capturing words and word meanings specific to Indian languages and cultures. The IndoUKC reuses content from the existing IndoWordNet resource while providing a new model for the cross-lingual mapping of lexical meanings that allows for a richer, diversity-aware representation. Accordingly, beyond a thorough syntactic and semantic cleaning, the IndoWordNet lexical content has been thoroughly remodeled in order to allow a more precise expression of language-specific meaning. The resulting database is made available both for browsing through a graphical web interface and for download through the LiveLanguage data catalogue.
Quality of a product is the degree to which a product meets the customer’s expectation, which must also be valid for the case of lexical semantic resources. Conducting a periodic evaluation of resources is essential to ensure if the resources meet a native speaker’s expectations and free from errors. This paper defines the possible mistakes in a lexical semantic resource and explains the steps applied to quantify Malayalam wordnet quality. Malayalam is one of the classical languages of India. We hope to subset the less quality part of the wordnet and perform crowdsourcing to make it better.