Mokanarangan Thayaparan


2022

pdf
Diff-Explainer: Differentiable Convex Optimization for Explainable Multi-hop Inference
Mokanarangan Thayaparan | Marco Valentino | Deborah Ferreira | Julia Rozanova | André Freitas
Transactions of the Association for Computational Linguistics, Volume 10

This paper presents Diff-Explainer, the first hybrid framework for explainable multi-hop inference that integrates explicit constraints with neural architectures through differentiable convex optimization. Specifically, Diff- Explainer allows for the fine-tuning of neural representations within a constrained optimization framework to answer and explain multi-hop questions in natural language. To demonstrate the efficacy of the hybrid framework, we combine existing ILP-based solvers for multi-hop Question Answering (QA) with Transformer-based representations. An extensive empirical evaluation on scientific and commonsense QA tasks demonstrates that the integration of explicit constraints in a end-to-end differentiable framework can significantly improve the performance of non- differentiable ILP solvers (8.91%–13.3%). Moreover, additional analysis reveals that Diff-Explainer is able to achieve strong performance when compared to standalone Transformers and previous multi-hop approaches while still providing structured explanations in support of its predictions.

pdf
To be or not to be an Integer? Encoding Variables for Mathematical Text
Deborah Ferreira | Mokanarangan Thayaparan | Marco Valentino | Julia Rozanova | Andre Freitas
Findings of the Association for Computational Linguistics: ACL 2022

The application of Natural Language Inference (NLI) methods over large textual corpora can facilitate scientific discovery, reducing the gap between current research and the available large-scale scientific knowledge. However, contemporary NLI models are still limited in interpreting mathematical knowledge written in Natural Language, even though mathematics is an integral part of scientific argumentation for many disciplines. One of the fundamental requirements towards mathematical language understanding, is the creation of models able to meaningfully represent variables. This problem is particularly challenging since the meaning of a variable should be assigned exclusively from its defining type, i.e., the representation of a variable should come from its context. Recent research has formalised the variable typing task, a benchmark for the understanding of abstract mathematical types and variables in a sentence. In this work, we propose VarSlot, a Variable Slot-based approach, which not only delivers state-of-the-art results in the task of variable typing, but is also able to create context-based representations for variables.

pdf
Decomposing Natural Logic Inferences for Neural NLI
Julia Rozanova | Deborah Ferreira | Mokanarangan Thayaparan | Marco Valentino | Andre Freitas
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

In the interest of interpreting neural NLI models and their reasoning strategies, we carry out a systematic probing study which investigates whether these modelscapture the crucial semantic features central to natural logic: monotonicity and concept inclusion. Correctly identifying valid inferences in downward-monotone contexts is a known stumbling block for NLI performance,subsuming linguistic phenomena such as negation scope and generalized quantifiers. To understand this difficulty, we emphasize monotonicity as a property of a context and examine the extent to which models capture relevant monotonicity information in the vector representations which are intermediate to their decision making process. Drawing on the recent advancement of the probing paradigm,we compare the presence of monotonicity features across various models. We find that monotonicity information is notably weak in the representations of popularNLI models which achieve high scores on benchmarks, and observe that previous improvements to these models based on fine-tuning strategies have introduced stronger monotonicity features together with their improved performance on challenge sets.

pdf bib
Proceedings of TextGraphs-16: Graph-based Methods for Natural Language Processing
Dmitry Ustalov | Yanjun Gao | Alexander Panchenko | Marco Valentino | Mokanarangan Thayaparan | Thien Huu Nguyen | Gerald Penn | Arti Ramesh | Abhik Jana
Proceedings of TextGraphs-16: Graph-based Methods for Natural Language Processing

pdf
TextGraphs 2022 Shared Task on Natural Language Premise Selection
Marco Valentino | Deborah Ferreira | Mokanarangan Thayaparan | André Freitas | Dmitry Ustalov
Proceedings of TextGraphs-16: Graph-based Methods for Natural Language Processing

The Shared Task on Natural Language Premise Selection (NLPS) asks participants to retrieve the set of premises that are most likely to be useful for proving a given mathematical statement from a supporting knowledge base. While previous editions of the TextGraphs shared tasks series targeted multi-hop inference for explanation regeneration in the context of science questions (Thayaparan et al., 2021; Jansen and Ustalov, 2020, 2019), NLPS aims to assess the ability of state-of-the-art approaches to operate on a mixture of natural and mathematical language and model complex multi-hop reasoning dependencies between statements. To this end, this edition of the shared task makes use of a large set of approximately 21k mathematical statements extracted from the PS-ProofWiki dataset (Ferreira and Freitas, 2020a). In this summary paper, we present the results of the 1st edition of the NLPS task, providing a description of the evaluation data, and the participating systems. Additionally, we perform a detailed analysis of the results, evaluating various aspects involved in mathematical language processing and multi-hop inference. The best-performing system achieved a MAP of 15.39, improving the performance of a TF-IDF baseline by approximately 3.0 MAP.

pdf
Case-Based Abductive Natural Language Inference
Marco Valentino | Mokanarangan Thayaparan | André Freitas
Proceedings of the 29th International Conference on Computational Linguistics

Most of the contemporary approaches for multi-hop Natural Language Inference (NLI) construct explanations considering each test case in isolation. However, this paradigm is known to suffer from semantic drift, a phenomenon that causes the construction of spurious explanations leading to wrong conclusions. In contrast, this paper proposes an abductive framework for multi-hop NLI exploring the retrieve-reuse-refine paradigm in Case-Based Reasoning (CBR). Specifically, we present Case-Based Abductive Natural Language Inference (CB-ANLI), a model that addresses unseen inference problems by analogical transfer of prior explanations from similar examples. We empirically evaluate the abductive framework on commonsense and scientific question answering tasks, demonstrating that CB-ANLI can be effectively integrated with sparse and dense pre-trained encoders to improve multi-hop inference, or adopted as an evidence retriever for Transformers. Moreover, an empirical analysis of semantic drift reveals that the CBR paradigm boosts the quality of the most challenging explanations, a feature that has a direct impact on robustness and accuracy in downstream inference tasks.

2021

pdf
Unification-based Reconstruction of Multi-hop Explanations for Science Questions
Marco Valentino | Mokanarangan Thayaparan | André Freitas
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

This paper presents a novel framework for reconstructing multi-hop explanations in science Question Answering (QA). While existing approaches for multi-hop reasoning build explanations considering each question in isolation, we propose a method to leverage explanatory patterns emerging in a corpus of scientific explanations. Specifically, the framework ranks a set of atomic facts by integrating lexical relevance with the notion of unification power, estimated analysing explanations for similar questions in the corpus. An extensive evaluation is performed on the Worldtree corpus, integrating k-NN clustering and Information Retrieval (IR) techniques. We present the following conclusions: (1) The proposed method achieves results competitive with Transformers, yet being orders of magnitude faster, a feature that makes it scalable to large explanatory corpora (2) The unification-based mechanism has a key role in reducing semantic drift, contributing to the reconstruction of many hops explanations (6 or more facts) and the ranking of complex inference facts (+12.0 Mean Average Precision) (3) Crucially, the constructed explanations can support downstream QA models, improving the accuracy of BERT by up to 10% overall.

pdf
Supporting Context Monotonicity Abstractions in Neural NLI Models
Julia Rozanova | Deborah Ferreira | Mokanarangan Thayaparan | Marco Valentino | André Freitas
Proceedings of the 1st and 2nd Workshops on Natural Logic Meets Machine Learning (NALOMA)

Natural language contexts display logical regularities with respect to substitutions of related concepts: these are captured in a functional order-theoretic property called monotonicity. For a certain class of NLI problems where the resulting entailment label depends only on the context monotonicity and the relation between the substituted concepts, we build on previous techniques that aim to improve the performance of NLI models for these problems, as consistent performance across both upward and downward monotone contexts still seems difficult to attain even for state of the art models. To this end, we reframe the problem of context monotonicity classification to make it compatible with transformer-based pre-trained NLI models and add this task to the training pipeline. Furthermore, we introduce a sound and complete simplified monotonicity logic formalism which describes our treatment of contexts as abstract units. Using the notions in our formalism, we adapt targeted challenge sets to investigate whether an intermediate context monotonicity classification task can aid NLI models’ performance on examples exhibiting monotonicity reasoning.

pdf bib
Explainable Inference Over Grounding-Abstract Chains for Science Questions
Mokanarangan Thayaparan | Marco Valentino | André Freitas
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Does My Representation Capture X? Probe-Ably
Deborah Ferreira | Julia Rozanova | Mokanarangan Thayaparan | Marco Valentino | André Freitas
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

Probing (or diagnostic classification) has become a popular strategy for investigating whether a given set of intermediate features is present in the representations of neural models. Naive probing studies may have misleading results, but various recent works have suggested more reliable methodologies that compensate for the possible pitfalls of probing. However, these best practices are numerous and fast-evolving. To simplify the process of running a set of probing experiments in line with suggested methodologies, we introduce Probe-Ably: an extendable probing framework which supports and automates the application of probing methods to the user’s inputs.

pdf bib
Switching Contexts: Transportability Measures for NLP
Guy Marshall | Mokanarangan Thayaparan | Philip Osborne | André Freitas
Proceedings of the 14th International Conference on Computational Semantics (IWCS)

This paper explores the topic of transportability, as a sub-area of generalisability. By proposing the utilisation of metrics based on well-established statistics, we are able to estimate the change in performance of NLP models in new contexts. Defining a new measure for transportability may allow for better estimation of NLP system performance in new domains, and is crucial when assessing the performance of NLP systems in new tasks and domains. Through several instances of increasing complexity, we demonstrate how lightweight domain similarity measures can be used as estimators for the transportability in NLP applications. The proposed transportability measures are evaluated in the context of Named Entity Recognition and Natural Language Inference tasks.

pdf
TextGraphs 2021 Shared Task on Multi-Hop Inference for Explanation Regeneration
Mokanarangan Thayaparan | Marco Valentino | Peter Jansen | Dmitry Ustalov
Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)

The Shared Task on Multi-Hop Inference for Explanation Regeneration asks participants to compose large multi-hop explanations to questions by assembling large chains of facts from a supporting knowledge base. While previous editions of this shared task aimed to evaluate explanatory completeness – finding a set of facts that form a complete inference chain, without gaps, to arrive from question to correct answer, this 2021 instantiation concentrates on the subtask of determining relevance in large multi-hop explanations. To this end, this edition of the shared task makes use of a large set of approximately 250k manual explanatory relevancy ratings that augment the 2020 shared task data. In this summary paper, we describe the details of the explanation regeneration task, the evaluation data, and the participating systems. Additionally, we perform a detailed analysis of participating systems, evaluating various aspects involved in the multi-hop inference process. The best performing system achieved an NDCG of 0.82 on this challenging task, substantially increasing performance over baseline methods by 32%, while also leaving significant room for future improvement.

2019

pdf
Identifying Supporting Facts for Multi-hop Question Answering with Document Graph Networks
Mokanarangan Thayaparan | Marco Valentino | Viktor Schlegel | André Freitas
Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)

Recent advances in reading comprehension have resulted in models that surpass human performance when the answer is contained in a single, continuous passage of text. However, complex Question Answering (QA) typically requires multi-hop reasoning - i.e. the integration of supporting facts from different sources, to infer the correct answer. This paper proposes Document Graph Network (DGN), a message passing architecture for the identification of supporting facts over a graph-structured representation of text. The evaluation on HotpotQA shows that DGN obtains competitive results when compared to a reading comprehension baseline operating on raw text, confirming the relevance of structured representations for supporting multi-hop reasoning.

2018

pdf
Graph Based Semi-Supervised Learning Approach for Tamil POS tagging
Mokanarangan Thayaparan | Surangika Ranathunga | Uthayasanker Thayasivam
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)