We present the joint contribution of IST and Unbabel to the WMT 2021 Shared Task on Quality Estimation. Our team participated on two tasks: Direct Assessment and Post-Editing Effort, encompassing a total of 35 submissions. For all submissions, our efforts focused on training multilingual models on top of OpenKiwi predictor-estimator architecture, using pre-trained multilingual encoders combined with adapters. We further experiment with and uncertainty-related objectives and features as well as training on out-of-domain direct assessment data.
We present the joint contribution of IST and Unbabel to the WMT 2020 Shared Task on Quality Estimation. Our team participated on all tracks (Direct Assessment, Post-Editing Effort, Document-Level), encompassing a total of 14 submissions. Our submitted systems were developed by extending the OpenKiwi framework to a transformer-based predictor-estimator architecture, and to cope with glass-box, uncertainty-based features coming from neural machine translation systems.
We introduce OpenKiwi, a Pytorch-based open source framework for translation quality estimation. OpenKiwi supports training and testing of word-level and sentence-level quality estimation systems, implementing the winning systems of the WMT 2015–18 quality estimation campaigns. We benchmark OpenKiwi on two datasets from WMT 2018 (English-German SMT and NMT), yielding state-of-the-art performance on the word-level tasks and near state-of-the-art in the sentence-level tasks.
We present the contribution of the Unbabel team to the WMT 2019 Shared Task on Quality Estimation. We participated on the word, sentence, and document-level tracks, encompassing 3 language pairs: English-German, English-Russian, and English-French. Our submissions build upon the recent OpenKiwi framework: We combine linear, neural, and predictor-estimator systems with new transfer learning approaches using BERT and XLM pre-trained models. We compare systems individually and propose new ensemble techniques for word and sentence-level predictions. We also propose a simple technique for converting word labels into document-level predictions. Overall, our submitted systems achieve the best results on all tracks and language pairs by a considerable margin.