Meihuizi Jia


2022

pdf
E-ConvRec: A Large-Scale Conversational Recommendation Dataset for E-Commerce Customer Service
Meihuizi Jia | Ruixue Liu | Peiying Wang | Yang Song | Zexi Xi | Haobin Li | Xin Shen | Meng Chen | Jinhui Pang | Xiaodong He
Proceedings of the Thirteenth Language Resources and Evaluation Conference

There has been a growing interest in developing conversational recommendation system (CRS), which provides valuable recommendations to users through conversations. Compared to the traditional recommendation, it advocates wealthier interactions and provides possibilities to obtain users’ exact preferences explicitly. Nevertheless, the corresponding research on this topic is limited due to the lack of broad-coverage dialogue corpus, especially real-world dialogue corpus. To handle this issue and facilitate our exploration, we construct E-ConvRec, an authentic Chinese dialogue dataset consisting of over 25k dialogues and 770k utterances, which contains user profile, product knowledge base (KB), and multiple sequential real conversations between users and recommenders. Next, we explore conversational recommendation in a real scene from multiple facets based on the dataset. Therefore, we particularly design three tasks: user preference recognition, dialogue management, and personalized recommendation. In the light of the three tasks, we establish baseline results on E-ConvRec to facilitate future studies.

2021

pdf
Modularized Interaction Network for Named Entity Recognition
Fei Li | Zheng Wang | Siu Cheung Hui | Lejian Liao | Dandan Song | Jing Xu | Guoxiu He | Meihuizi Jia
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Although the existing Named Entity Recognition (NER) models have achieved promising performance, they suffer from certain drawbacks. The sequence labeling-based NER models do not perform well in recognizing long entities as they focus only on word-level information, while the segment-based NER models which focus on processing segment instead of single word are unable to capture the word-level dependencies within the segment. Moreover, as boundary detection and type prediction may cooperate with each other for the NER task, it is also important for the two sub-tasks to mutually reinforce each other by sharing their information. In this paper, we propose a novel Modularized Interaction Network (MIN) model which utilizes both segment-level information and word-level dependencies, and incorporates an interaction mechanism to support information sharing between boundary detection and type prediction to enhance the performance for the NER task. We have conducted extensive experiments based on three NER benchmark datasets. The performance results have shown that the proposed MIN model has outperformed the current state-of-the-art models.