Many annotation tasks in natural language processing are highly subjective in that there can be different valid and justified perspectives on what is a proper label for a given example. This also applies to the judgment of argument quality, where the assignment of a single ground truth is often questionable. At the same time, there are generally accepted concepts behind argumentation that form a common ground. To best represent the interplay of individual and shared perspectives, we consider a continuum of approaches ranging from models that fully aggregate perspectives into a majority label to “share nothing”-architectures in which each annotator is considered in isolation from all other annotators. In between these extremes, inspired by models used in the field of recommender systems, we investigate the extent to which architectures that predict labels for single annotators but include layers that model the relations between different annotators are beneficial. By means of two tasks of argument quality classification (argument concreteness and validity/novelty of conclusions), we show that recommender architectures increase the averaged annotator-individual F1-scores up to 43% over a majority-label model. Our findings indicate that approaches to subjectivity can benefit from relating individual perspectives.
Counterspeech on social media is rare. Consequently, it is difficult to collect naturally occurring examples, in particular for languages without annotated datasets. In this work, we study methods to increase the relevance of social media samples for counterspeech annotation when we lack annotated resources. We use the example of sourcing German data for counterspeech annotations from Twitter. We monitor tweets from German politicians and activists to collect replies. To select relevant replies we a) find replies that match German abusive keywords or b) label replies for counterspeech using a multilingual classifier fine-tuned on English data. For both approaches and a baseline setting, we annotate a random sample and use bootstrap sampling to estimate the amount of counterspeech. We find that neither the multilingual model nor the keyword approach achieve significantly higher counts of true counterspeech than the baseline. Thus, keyword lists or multi-lingual classifiers are likely not worth the added complexity beyond purposive data collection: Already without additional filtering, we gather a meaningful sample with 7,4% true counterspeech.
Many NLP tasks exhibit human label variation, where different annotators give different labels to the same texts. This variation is known to depend, at least in part, on the sociodemographics of annotators. Recent research aims to model individual annotator behaviour rather than predicting aggregated labels, and we would expect that sociodemographic information is useful for these models. On the other hand, the ecological fallacy states that aggregate group behaviour, such as the behaviour of the average female annotator, does not necessarily explain individual behaviour. To account for sociodemographics in models of individual annotator behaviour, we introduce group-specific layers to multi-annotator models. In a series of experiments for toxic content detection, we find that explicitly accounting for sociodemographic attributes in this way does not significantly improve model performance. This result shows that individual annotation behaviour depends on much more than just sociodemographics.
We propose to study the evolution of concepts by learning to complete diachronic analogies between lists of terms which relate to the same concept at different points in time. We present a number of models based on operations on word embedddings that correspond to different assumptions about the characteristics of diachronic analogies and change in concept vocabularies. These are tested in a quantitative evaluation for nine different concepts on a corpus of Dutch newspapers from the 1950s and 1980s. We show that a model which treats the concept terms as analogous and learns weights to compensate for diachronic changes (weighted linear combination) is able to more accurately predict the missing term than a learned transformation and two baselines for most of the evaluated concepts. We also find that all models tend to be coherent in relation to the represented concept, but less discriminative in regard to other concepts. Additionally, we evaluate the effect of aligning the time-specific embedding spaces using orthogonal Procrustes, finding varying effects on performance, depending on the model, concept and evaluation metric. For the weighted linear combination, however, results improve with alignment in a majority of cases. All related code is released publicly.