Masaki Asada
2023
BioNART: A Biomedical Non-AutoRegressive Transformer for Natural Language Generation
Masaki Asada
|
Makoto Miwa
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks
We propose a novel Biomedical domain-specific Non-AutoRegressive Transformer model for natural language generation: BioNART. Our BioNART is based on an encoder-decoder model, and both encoder and decoder are compatible with widely used BERT architecture, which allows benefiting from publicly available pre-trained biomedical language model checkpoints. We performed additional pre-training and fine-tuned BioNART on biomedical summarization and doctor-patient dialogue tasks. Experimental results show that our BioNART achieves about 94% of the ROUGE score to the pre-trained autoregressive model while realizing an 18 times faster inference speed on the iCliniq dataset.
2018
Enhancing Drug-Drug Interaction Extraction from Texts by Molecular Structure Information
Masaki Asada
|
Makoto Miwa
|
Yutaka Sasaki
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
We propose a novel neural method to extract drug-drug interactions (DDIs) from texts using external drug molecular structure information. We encode textual drug pairs with convolutional neural networks and their molecular pairs with graph convolutional networks (GCNs), and then we concatenate the outputs of these two networks. In the experiments, we show that GCNs can predict DDIs from the molecular structures of drugs in high accuracy and the molecular information can enhance text-based DDI extraction by 2.39 percent points in the F-score on the DDIExtraction 2013 shared task data set.
2017
Extracting Drug-Drug Interactions with Attention CNNs
Masaki Asada
|
Makoto Miwa
|
Yutaka Sasaki
BioNLP 2017
We propose a novel attention mechanism for a Convolutional Neural Network (CNN)-based Drug-Drug Interaction (DDI) extraction model. CNNs have been shown to have a great potential on DDI extraction tasks; however, attention mechanisms, which emphasize important words in the sentence of a target-entity pair, have not been investigated with the CNNs despite the fact that attention mechanisms are shown to be effective for a general domain relation classification task. We evaluated our model on the Task 9.2 of the DDIExtraction-2013 shared task. As a result, our attention mechanism improved the performance of our base CNN-based DDI model, and the model achieved an F-score of 69.12%, which is competitive with the state-of-the-art models.
Search