This paper summarizes the second edition of the shared task on multilingual coreference resolution, held with the CRAC 2023 workshop. Just like last year, participants of the shared task were to create trainable systems that detect mentions and group them based on identity coreference; however, this year’s edition uses a slightly different primary evaluation score, and is also broader in terms of covered languages: version 1.1 of the multilingual collection of harmonized coreference resources CorefUD was used as the source of training and evaluation data this time, with 17 datasets for 12 languages. 7 systems competed in this shared task.
In ParlaMint I, a CLARIN-ERIC supported project in pandemic times, a set of comparable and uniformly annotated multilingual corpora for 17 national parliaments were developed and released in 2021. For 2022 and 2023, the project has been extended to ParlaMint II, again with the CLARIN ERIC financial support, in order to enhance the existing corpora with new data and metadata; upgrade the XML schema; add corpora for 10 new parliaments; provide more application scenarios and carry out additional experiments. The paper reports on these planned steps, including some that have already been taken, and outlines future plans.
The paper introduces the environment for detecting and correcting various kinds of errors in the Polish Parliamentary Corpus. After performing a language model-based error detection experiment which resulted in too many false positives, a simpler rule-based method was introduced and is currently used in the process of manual verification of corpus texts. The paper presents types of errors detected in the corpus, the workflow of the correction process and the tools newly implemented for this purpose. To facilitate comparison of a target corpus XML file with its usually graphical PDF source, a new mechanism for inserting PDF page markers into XML was developed and is used for displaying a single source page corresponding to a given place in the resulting XML directly in the error correction environment.
This article presents the current outcomes of the CURLICAT CEF Telecom project, which aims to collect and deeply annotate a set of large corpora from selected domains. The CURLICAT corpus includes 7 monolingual corpora (Bulgarian, Croatian, Hungarian, Polish, Romanian, Slovak and Slovenian) containing selected samples from respective national corpora. These corpora are automatically tokenized, lemmatized and morphologically analysed and the named entities annotated. The annotations are uniformly provided for each language specific corpus while the common metadata schema is harmonised across the languages. Additionally, the corpora are annotated for IATE terms in all languages. The file format is CoNLL-U Plus format, containing the ten columns specific to the CoNLL-U format and three extra columns specific to our corpora as defined by Varádi et al. (2020). The CURLICAT corpora represent a rich and valuable source not just for training NMT models, but also for further studies and developments in machine learning, cross-lingual terminological data extraction and classification.
This paper presents an overview of the shared task on multilingual coreference resolution associated with the CRAC 2022 workshop. Shared task participants were supposed to develop trainable systems capable of identifying mentions and clustering them according to identity coreference. The public edition of CorefUD 1.0, which contains 13 datasets for 10 languages, was used as the source of training and evaluation data. The CoNLL score used in previous coreference-oriented shared tasks was used as the main evaluation metric. There were 8 coreference prediction systems submitted by 5 participating teams; in addition, there was a competitive Transformer-based baseline system provided by the organizers at the beginning of the shared task. The winner system outperformed the baseline by 12 percentage points (in terms of the CoNLL scores averaged across all datasets for individual languages).
The work in progress on the CEF Action CURLICA T is presented. The general aim of the Action is to compile curated datasets in seven languages of the con- sortium in domains of relevance to Euro- pean Digital Service Infrastructures (DSIs) in order to enhance the eTransla- tion services.
Multilingualism is a cultural cornerstone of Europe and firmly anchored in the European treaties including full language equality. However, language barriers impacting business, cross-lingual and cross-cultural communication are still omnipresent. Language Technologies (LTs) are a powerful means to break down these barriers. While the last decade has seen various initiatives that created a multitude of approaches and technologies tailored to Europe’s specific needs, there is still an immense level of fragmentation. At the same time, AI has become an increasingly important concept in the European Information and Communication Technology area. For a few years now, AI – including many opportunities, synergies but also misconceptions – has been overshadowing every other topic. We present an overview of the European LT landscape, describing funding programmes, activities, actions and challenges in the different countries with regard to LT, including the current state of play in industry and the LT market. We present a brief overview of the main LT-related activities on the EU level in the last ten years and develop strategic guidance with regard to four key dimensions.
This article presents the current outcomes of the MARCELL CEF Telecom project aiming to collect and deeply annotate a large comparable corpus of legal documents. The MARCELL corpus includes 7 monolingual sub-corpora (Bulgarian, Croatian, Hungarian, Polish, Romanian, Slovak and Slovenian) containing the total body of respective national legislative documents. These sub-corpora are automatically sentence split, tokenized, lemmatized and morphologically and syntactically annotated. The monolingual sub-corpora are complemented by a thematically related parallel corpus (Croatian-English). The metadata and the annotations are uniformly provided for each language specific sub-corpus. Besides the standard morphosyntactic analysis plus named entity and dependency annotation, the corpus is enriched with the IATE and EUROVOC labels. The file format is CoNLL-U Plus Format, containing the ten columns specific to the CoNLL-U format and four extra columns specific to our corpora. The MARCELL corpora represents a rich and valuable source for further studies and developments in machine learning, cross-lingual terminological data extraction and classification.
This short paper presents the current (as of February 2020) state of preparation of the Polish Parliamentary Corpus (PPC)—an extensive collection of transcripts of Polish parliamentary proceedings dating from 1919 to present. The most evident developments as compared to the 2018 version is harmonization of metadata, standardization of document identifiers, uploading contents of all documents and metadata to the database (to enable easier modification, maintenance and future development of the corpus), linking utterances to the political ontology, linking corpus texts to source data and processing historical documents.
We present PAWS, a multi-lingual parallel treebank with coreference annotation. It consists of English texts from the Wall Street Journal translated into Czech, Russian and Polish. In addition, the texts are syntactically parsed and word-aligned. PAWS is based on PCEDT 2.0 and continues the tradition of multilingual treebanks with coreference annotation. The paper focuses on the coreference annotation in PAWS and its language-specific differences. PAWS offers linguistic material that can be further leveraged in cross-lingual studies, especially on coreference.
Multisłownik is an automated integrator of Polish lexical data retrieved from multiple available online sources intended to be used in various scenarios requiring access to such data, most prominently dictionary creation, linguistic studies and education. In contrast to many available internet dictionaries Multisłownik is WordNet-centric, capturing the core definitions from Słowosiec ́, the Polish WordNet, and linking external resources to particular synsets. The paper provides details of construction of the resource, discussed the difficulties related to linking different logical structures of underlying data and investigates two sample scenarios for using the resulting platform.
This paper presents results of an experiment integrating information from valency dictionary of Polish into a mention detection system. Two types of information is acquired: positions of syntactic schemata for nominal and verbal constructs and secondary prepositions present in schemata. The syntactic schemata are used to prevent (for verbal realizations) or encourage (for nominal groups) constructing mentions from phrases filling multiple schema positions, the secondary prepositions – to filter out artificial mentions created from their nominal components. Mention detection is evaluated against the manual annotation of the Polish Coreference Corpus in two settings: taking into account only mention heads or exact borders.
Language processing architectures are often evaluated in near-to-perfect conditions with respect to processed content. The tools which perform sufficiently well on electronic press, books and other type of non-interactive content may poorly handle littered, colloquial and multilingual textual data which make the majority of communication today. This paper aims at investigating how Polish Twitter data (in a slightly controlled ‘political’ flavour) differs from expectation of linguistic tools and how they could be corrected to be ready for processing by standard language processing chains available for Polish. The setting includes specialised components for spelling correction of tweets as well as hashtag and username decoding.
In this paper we present a new combination of existing language tools for Polish with a popular data mining platform intended to help researchers from digital humanities perform computational analyses without any programming. The toolset includes RapidMiner Studio, a software solution offering graphical setup of integrated analytical processes and Multiservice, a Web service offering access to several state-of-the-art linguistic tools for Polish. The setting is verified in a simple task of counting frequencies of unknown words in a small corpus.
This paper attempts a preliminary interpretation of the occurrence of different types of linguistic constructs in the manually-annotated Polish Coreference Corpus by providing analyses of various statistical properties related to mentions, clusters and near-identity links. Among others, frequency of mentions, zero subjects and singleton clusters is presented, as well as the average mention and cluster size. We also show that some coreference clustering constraints, such as gender or number agreement, are frequently not valid in case of Polish. The need for lemmatization for automatic coreference resolution is supported by an empirical study. Correlation between cluster and mention count within a text is investigated, with short characteristics of outlier cases. We also examine this correlation in each of the 14 text domains present in the corpus and show that none of them has abnormal frequency of outlier texts regarding the cluster/mention ratio. Finally, we report on our negative experiences concerning the annotation of the near-identity relation. In the conclusion we put forward some guidelines for the future research in the area.
This article presents the Polish Summaries Corpus, a new resource created to support the development and evaluation of the tools for automated single-document summarization of Polish. The Corpus contains a large number of manual summaries of news articles, with many independently created summaries for a single text. Such approach is supposed to overcome the annotator bias, which is often described as a problem during the evaluation of the summarization algorithms against a single gold standard. There are several summarizers developed specifically for Polish language, but their in-depth evaluation and comparison was impossible without a large, manually created corpus. We present in detail the process of text selection, annotation process and the contents of the corpus, which includes both abstract free-word summaries, as well as extraction-based summaries created by selecting text spans from the original document. Finally, we describe how that resource could be used not only for the evaluation of the existing summarization tools, but also for studies on the human summarization process in Polish language.
Digital libraries are frequently treated just as a new method of storage of digitized artifacts, with all consequences of transferring long-established ways of dealing with physical objects into the digital world. Such attitude improves availability, but often neglects other opportunities offered by global and immediate access, virtuality and linking ― as easy as never before. The article presents the idea of transforming a conventional digital library into knowledge source and research collaboration platform, facilitating content augmentation, interpretation and co-operation of geographically distributed researchers representing different academic fields. This concept has been verified by the process of extending descriptions stored in thematic Digital Library of Polish and Poland-related Ephemeral Prints from the 16th, 17th and 18th Centuries with extended item-associated information provided by historians, philologists, librarians and computer scientists. It resulted in associating the customary fixed metadata and digitized content with historical comments, mini-dictionaries of foreign interjections or explanation of less-known background details.
This article provides an overview of the dissemination work carried out in META-NET from 2010 until early 2014; we describe its impact on the regional, national and international level, mainly with regard to politics and the situation of funding for LT topics. This paper documents the initiatives work throughout Europe in order to boost progress and innovation in our field.
Measuring readability of a text is the first sensible step to its simplification. In this paper we present an overview of the most common approaches to automatic measuring of readability. Of the described ones, we implemented and evaluated: Gunning FOG index, Flesch-based Pisarek method. We also present two other approaches. The first one is based on measuring distributional lexical similarity of a target text and comparing it to reference texts. In the second one, we propose a novel method for automation of Taylor test ― which, in its base form, requires performing a large amount of surveys. The automation of Taylor test is performed using a technique called statistical language modelling. We have developed a free on-line web-based system and constructed plugins for the most common text editors, namely Microsoft Word and OpenOffice.org. Inner workings of the system are described in detail. Finally, extensive evaluations are performed for Polish ― a Slavic, highly inflected language. We show that Pisareks method is highly correlated to Gunning FOG Index, even if different in form, and that both the similarity-based approach and automated Taylor test achieve high accuracy. Merits of using either of them are discussed.
The aim of this paper is to present current efforts towards the creation of a comprehensive open repository of Polish language resources and tools (LRTs). The work described here is carried out within the CESAR project, member of the META-NET consortium. It has already resulted in the creation of the Computational Linguistics in Poland site containing an exhaustive collection of Polish LRTs. Current work is focused on the creation of new LRTs and, esp., the enhancement of existing LRTs, such as parallel corpora, annotated corpora of written and spoken Polish and morphological dictionaries to be made available via the META-SHARE repository.
This paper presents preliminary results of an effort aiming at the creation of a morphological dictionary of Polish, PoliMorf, available under a very liberal BSD-style license. The dictionary is a result of a merger of two existing resources, SGJP and Morfologik and was prepared within the CESAR/META-NET initiative. The work completed so far includes re-licensing of the two dictionaries and filling the new resource with the morphological data semi-automatically unified from both sources. The merging process is controlled by the collaborative dictionary development web application Kuźnia, also implemented within the project. The tool involves several advanced features such as using SGJP inflectional patterns for form generation, possibility of attaching dictionary labels and classification schemes to lexemes, dictionary source record and change tracking. Since SGJP and Morfologik are already used in a significant number of Natural Language Processing projects in Poland, we expect PoliMorf to become the Polish morphological dictionary of choice for many years to come.
This paper presents a robust linguistic Web service framework for Polish, combining several mature offline linguistic tools in a common online platform. The toolset comprise paragraph-, sentence- and token-level segmenter, morphological analyser, disambiguating tagger, shallow and deep parser, named entity recognizer and coreference resolver. Uniform access to processing results is provided by means of a stand-off packaged adaptation of National Corpus of Polish TEI P5-based representation and interchange format. A concept of asynchronous handling of requests sent to the implemented Web service (Multiservice) is introduced to enable processing large amounts of text by setting up language processing chains of desired complexity. Apart from a dedicated API, a simpleWeb interface to the service is presented, allowing to compose a chain of annotation services, run it and periodically check for execution results, made available as plain XML or in a simple visualization. Usage examples and results from performance and scalability tests are also included.
This document presents the first edition of the Polish Sejm Corpus -- a new specialized resource containing transcribed, automatically annotated utterances of the Members of Polish Sejm (lower chamber of the Polish Parliament). The corpus data encoding is inherited from the National Corpus of Polish and enhanced with session metadata and structure. The multi-layered stand-off annotation contains sentence- and token-level segmentation, disambiguated morphosyntactic information, syntactic words and groups resulting from shallow parsing and named entities. The paper also outlines several novel ideas for corpus preparation, e.g. the notion of a live corpus, constantly populated with new data or the concept of linking corpus data with external databases to enrich content. Although initial statistical comparison of the resource with the balanced corpus of general Polish reveals substantial differences in language richness, the resource makes a valuable source of linguistic information as a large (300 M segments) collection of quasi-spoken data ready to be aligned with the audio/video recording of sessions, currently being made publicly available by Sejm.
Although the availability of the natural language processing tools and the development of metrics to evaluate them increases, there is a certain gap to fill in that field for the less-resourced languages, such as Polish. Therefore the projects which are designed to extend the existing tools for diverse languages are the best starting point for making these languages more and more covered. This paper presents the results of the first attempt of the co\-re\-fe\-rence resolution for Polish using statistical methods. It presents the conclusions from the process of adapting the Beautiful Anaphora Resolution Toolkit (BART; a system primarily designed for the English language) for Polish and collates its evaluation results with those of the previously implemented rule-based system. Finally, we describe our plans for the future usage of the tool and highlight the upcoming research to be conducted, such as the experiments of a larger scale and the comparison with other machine learning tools.