Lucie-Aimée Kaffee

Also published as: Lucie-aimée Kaffee


2023

pdf
Thorny Roses: Investigating the Dual Use Dilemma in Natural Language Processing
Lucie-Aimée Kaffee | Arnav Arora | Zeerak Talat | Isabelle Augenstein
Findings of the Association for Computational Linguistics: EMNLP 2023

Dual use, the intentional, harmful reuse of technology and scientific artefacts, is an ill-defined problem within the context of Natural Language Processing (NLP). As large language models (LLMs) have advanced in their capabilities and become more accessible, the risk of their intentional misuse becomes more prevalent. To prevent such intentional malicious use, it is necessary for NLP researchers and practitioners to understand and mitigate the risks of their research. Hence, we present an NLP-specific definition of dual use informed by researchers and practitioners in the field. Further, we propose a checklist focusing on dual-use in NLP, that can be integrated into existing conference ethics-frameworks. The definition and checklist are created based on a survey of NLP researchers and practitioners.

pdf
Why Should This Article Be Deleted? Transparent Stance Detection in Multilingual Wikipedia Editor Discussions
Lucie-Aimée Kaffee | Arnav Arora | Isabelle Augenstein
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The moderation of content on online platforms is usually non-transparent. On Wikipedia, however, this discussion is carried out publicly and editors are encouraged to use the content moderation policies as explanations for making moderation decisions. Currently, only a few comments explicitly mention those policies – 20% of the English ones, but as few as 2% of the German and Turkish comments. To aid in this process of understanding how content is moderated, we construct a novel multilingual dataset of Wikipedia editor discussions along with their reasoning in three languages. The dataset contains the stances of the editors (keep, delete, merge, comment), along with the stated reason, and a content moderation policy, for each edit decision. We demonstrate that stance and corresponding reason (policy) can be predicted jointly with a high degree of accuracy, adding transparency to the decision-making process. We release both our joint prediction models and the multilingual content moderation dataset for further research on automated transparent content moderation.

pdf
Probing Pre-Trained Language Models for Cross-Cultural Differences in Values
Arnav Arora | Lucie-aimée Kaffee | Isabelle Augenstein
Proceedings of the First Workshop on Cross-Cultural Considerations in NLP (C3NLP)

Language embeds information about social, cultural, and political values people hold. Prior work has explored potentially harmful social biases encoded in Pre-trained Language Models (PLMs). However, there has been no systematic study investigating how values embedded in these models vary across cultures. In this paper, we introduce probes to study which cross-cultural values are embedded in these models, and whether they align with existing theories and cross-cultural values surveys. We find that PLMs capture differences in values across cultures, but those only weakly align with established values surveys. We discuss implications of using mis-aligned models in cross-cultural settings, as well as ways of aligning PLMs with values surveys.

2018

pdf
Learning to Generate Wikipedia Summaries for Underserved Languages from Wikidata
Lucie-Aimée Kaffee | Hady Elsahar | Pavlos Vougiouklis | Christophe Gravier | Frédérique Laforest | Jonathon Hare | Elena Simperl
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

While Wikipedia exists in 287 languages, its content is unevenly distributed among them. In this work, we investigate the generation of open domain Wikipedia summaries in underserved languages using structured data from Wikidata. To this end, we propose a neural network architecture equipped with copy actions that learns to generate single-sentence and comprehensible textual summaries from Wikidata triples. We demonstrate the effectiveness of the proposed approach by evaluating it against a set of baselines on two languages of different natures: Arabic, a morphological rich language with a larger vocabulary than English, and Esperanto, a constructed language known for its easy acquisition.