Luc Van Gool
2019
Talk2Car: Taking Control of Your Self-Driving Car
Thierry Deruyttere
|
Simon Vandenhende
|
Dusan Grujicic
|
Luc Van Gool
|
Marie-Francine Moens
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
A long-term goal of artificial intelligence is to have an agent execute commands communicated through natural language. In many cases the commands are grounded in a visual environment shared by the human who gives the command and the agent. Execution of the command then requires mapping the command into the physical visual space, after which the appropriate action can be taken. In this paper we consider the former. Or more specifically, we consider the problem in an autonomous driving setting, where a passenger requests an action that can be associated with an object found in a street scene. Our work presents the Talk2Car dataset, which is the first object referral dataset that contains commands written in natural language for self-driving cars. We provide a detailed comparison with related datasets such as ReferIt, RefCOCO, RefCOCO+, RefCOCOg, Cityscape-Ref and CLEVR-Ref. Additionally, we include a performance analysis using strong state-of-the-art models. The results show that the proposed object referral task is a challenging one for which the models show promising results but still require additional research in natural language processing, computer vision and the intersection of these fields. The dataset can be found on our website: http://macchina-ai.eu/
2016
A Dataset for Multimodal Question Answering in the Cultural Heritage Domain
Shurong Sheng
|
Luc Van Gool
|
Marie-Francine Moens
Proceedings of the Workshop on Language Technology Resources and Tools for Digital Humanities (LT4DH)
Multimodal question answering in the cultural heritage domain allows visitors to ask questions in a more natural way and thus provides better user experiences with cultural objects while visiting a museum, landmark or any other historical site. In this paper, we introduce the construction of a golden standard dataset that will aid research of multimodal question answering in the cultural heritage domain. The dataset, which will be soon released to the public, contains multimodal content including images of typical artworks from the fascinating old-Egyptian Amarna period, related image-containing documents of the artworks and over 800 multimodal queries integrating visual and textual questions. The multimodal questions and related documents are all in English. The multimodal questions are linked to relevant paragraphs in the related documents that contain the answer to the multimodal query.