Long Doan


2021

pdf
PhoMT: A High-Quality and Large-Scale Benchmark Dataset for Vietnamese-English Machine Translation
Long Doan | Linh The Nguyen | Nguyen Luong Tran | Thai Hoang | Dat Quoc Nguyen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We introduce a high-quality and large-scale Vietnamese-English parallel dataset of 3.02M sentence pairs, which is 2.9M pairs larger than the benchmark Vietnamese-English machine translation corpus IWSLT15. We conduct experiments comparing strong neural baselines and well-known automatic translation engines on our dataset and find that in both automatic and human evaluations: the best performance is obtained by fine-tuning the pre-trained sequence-to-sequence denoising auto-encoder mBART. To our best knowledge, this is the first large-scale Vietnamese-English machine translation study. We hope our publicly available dataset and study can serve as a starting point for future research and applications on Vietnamese-English machine translation. We release our dataset at: https://github.com/VinAIResearch/PhoMT

2020

pdf
WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets
Dat Quoc Nguyen | Thanh Vu | Afshin Rahimi | Mai Hoang Dao | Linh The Nguyen | Long Doan
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

In this paper, we provide an overview of the WNUT-2020 shared task on the identification of informative COVID-19 English Tweets. We describe how we construct a corpus of 10K Tweets and organize the development and evaluation phases for this task. In addition, we also present a brief summary of results obtained from the final system evaluation submissions of 55 teams, finding that (i) many systems obtain very high performance, up to 0.91 F1 score, (ii) the majority of the submissions achieve substantially higher results than the baseline fastText (Joulin et al., 2017), and (iii) fine-tuning pre-trained language models on relevant language data followed by supervised training performs well in this task.