Pre-trained language models (PLMs) are known to improve the generalization performance of natural language understanding models by leveraging large amounts of data during the pre-training phase. However, the out-of-distribution (OOD) generalization problem remains a challenge in many NLP tasks, limiting the real-world deployment of these methods. This paper presents the first attempt at creating a unified benchmark named GLUE-X for evaluating OOD robustness in NLP models, highlighting the importance of OOD robustness and providing insights on how to measure the robustness of a model and how to improve it. The benchmark includes 13 publicly available datasets for OOD testing, and evaluations are conducted on 8 classic NLP tasks over 21 popularly used PLMs. Our findings confirm the need for improved OOD accuracy in NLP tasks, as significant performance degradation was observed in all settings compared to in-distribution (ID) accuracy.
Machine learning (ML) systems in natural language processing (NLP) face significant challenges in generalizing to out-of-distribution (OOD) data, where the test distribution differs from the training data distribution. This poses important questions about the robustness of NLP models and their high accuracy, which may be artificially inflated due to their underlying sensitivity to systematic biases. Despite these challenges, there is a lack of comprehensive surveys on the generalization challenge from an OOD perspective in natural language understanding. Therefore, this paper aims to fill this gap by presenting the first comprehensive review of recent progress, methods, and evaluations on this topic. We further discuss the challenges involved and potential future research directions. By providing convenient access to existing work, we hope this survey will encourage future research in this area.
Target-oriented Opinion Words Extraction (TOWE) is a fine-grained sentiment analysis task that aims to extract the corresponding opinion words of a given opinion target from the sentence. Recently, deep learning approaches have made remarkable progress on this task. Nevertheless, the TOWE task still suffers from the scarcity of training data due to the expensive data annotation process. Limited labeled data increase the risk of distribution shift between test data and training data. In this paper, we propose exploiting massive unlabeled data to reduce the risk by increasing the exposure of the model to varying distribution shifts. Specifically, we propose a novel Multi-Grained Consistency Regularization (MGCR) method to make use of unlabeled data and design two filters specifically for TOWE to filter noisy data at different granularity. Extensive experimental results on four TOWE benchmark datasets indicate the superiority of MGCR compared with current state-of-the-art methods. The in-depth analysis also demonstrates the effectiveness of the different-granularity filters.