Existing neural models have difficulty generalizing to unseen combinations of seen components. To achieve compositional generalization, models are required to consistently interpret (sub)expressions across contexts. Without modifying model architectures, we improve the capability of Transformer on compositional generalization through consistency regularization training, which promotes representation consistency across samples and prediction consistency for a single sample. Experimental results on semantic parsing and machine translation benchmarks empirically demonstrate the effectiveness and generality of our method. In addition, we find that the prediction consistency scores on in-distribution validation sets can be an alternative for evaluating models during training, when commonly-used metrics are not informative.
Multilingual pre-trained language models have demonstrated impressive (zero-shot) cross-lingual transfer abilities, however, their performance is hindered when the target language has distant typologyfrom the source language or when pre-training data is limited in size. In this paper, we propose XLM-P, a method that contextually retrieves prompts as flexible guidance for encoding instances conditionally. Our space-efficient and model-agnostic XLM-P approach enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods. On the tasks of XTREME, which include text classification, sequence labeling, question answering, and sentence retrieval, both base- and large-size language models pre-trained with our proposed method exhibit consistent performance improvement. Furthermore, it provides substantial advantages for low-resource languages in unsupervised sentence retrieval and for target languages that differ greatly from the source language in cross-lingual transfer.
Pretrained language models (PLMs) trained on large-scale unlabeled corpus are typically fine-tuned on task-specific downstream datasets, which have produced state-of-the-art results on various NLP tasks. However, the data discrepancy issue in domain and scale makes fine-tuning fail to efficiently capture task-specific patterns, especially in low data regime. To address this issue, we propose Task-guided Disentangled Tuning (TDT) for PLMs, which enhances the generalization of representations by disentangling task-relevant signals from the entangled representations. For a given task, we introduce a learnable confidence model to detect indicative guidance from context, and further propose a disentangled regularization to mitigate the over-reliance problem. Experimental results on GLUE and CLUE benchmarks show that TDT gives consistently better results than fine-tuning with different PLMs, and extensive analysis demonstrates the effectiveness and robustness of our method. Code is available at https://github.com/lemon0830/TDT.
Grammatical Error Correction (GEC) aims to automatically detect and correct grammatical errors. In this aspect, dominant models are trained by one-iteration learning while performing multiple iterations of corrections during inference. Previous studies mainly focus on the data augmentation approach to combat the exposure bias, which suffers from two drawbacks. First, they simply mix additionally-constructed training instances and original ones to train models, which fails to help models be explicitly aware of the procedure of gradual corrections. Second, they ignore the interdependence between different types of corrections. In this paper, we propose a Type-Driven Multi-Turn Corrections approach for GEC. Using this approach, from each training instance, we additionally construct multiple training instances, each of which involves the correction of a specific type of errors. Then, we use these additionally-constructed training instances and the original one to train the model in turn. Experimental results and in-depth analysis show that our approach significantly benefits the model training. Particularly, our enhanced model achieves state-of-the-art single-model performance on English GEC benchmarks. We release our code at Github.
We present DualNER, a simple and effective framework to make full use of both annotated source language corpus and unlabeled target language text for zero-shot cross-lingual named entity recognition (NER). In particular, we combine two complementary learning paradigms of NER, i.e., sequence labeling and span prediction, into a unified multi-task framework. After obtaining a sufficient NER model trained on the source data, we further train it on the target data in a dual-teaching manner, in which the pseudo-labels for one task are constructed from the prediction of the other task. Moreover, based on the span prediction, an entity-aware regularization is proposed to enhance the intrinsic cross-lingual alignment between the same entities in different languages. Experiments and analysis demonstrate the effectiveness of our DualNER.
Contrastive learning has become a new paradigm for unsupervised sentence embeddings.Previous studies focus on instance-wise contrastive learning, attempting to construct positive pairs with textual data augmentation. In this paper, we propose a novel Contrastive learning method with Prompt-derived Virtual semantic Prototypes (ConPVP). Specifically, with the help of prompts, we construct virtual semantic prototypes to each instance, and derive negative prototypes by using the negative form of the prompts. Using a prototypical contrastive loss, we enforce the anchor sentence embedding to be close to its corresponding semantic prototypes, and far apart from the negative prototypes as well as the prototypes of other sentences. Extensive experimental results on semantic textual similarity, transfer, and clustering tasks demonstrate the effectiveness of our proposed model compared to strong baselines. Code is available at https://github.com/lemon0830/promptCSE.
Confidence estimation aims to quantify the confidence of the model prediction, providing an expectation of success. A well-calibrated confidence estimate enables accurate failure prediction and proper risk measurement when given noisy samples and out-of-distribution data in real-world settings. However, this task remains a severe challenge for neural machine translation (NMT), where probabilities from softmax distribution fail to describe when the model is probably mistaken. To address this problem, we propose an unsupervised confidence estimate learning jointly with the training of the NMT model. We explain confidence as how many hints the NMT model needs to make a correct prediction, and more hints indicate low confidence. Specifically, the NMT model is given the option to ask for hints to improve translation accuracy at the cost of some slight penalty. Then, we approximate their level of confidence by counting the number of hints the model uses. We demonstrate that our learned confidence estimate achieves high accuracy on extensive sentence/word-level quality estimation tasks. Analytical results verify that our confidence estimate can correctly assess underlying risk in two real-world scenarios: (1) discovering noisy samples and (2) detecting out-of-domain data. We further propose a novel confidence-based instance-specific label smoothing approach based on our learned confidence estimate, which outperforms standard label smoothing.
Unsupervised summarization methods have achieved remarkable results by incorporating representations from pre-trained language models. However, existing methods fail to consider efficiency and effectiveness at the same time when the input document is extremely long. To tackle this problem, in this paper, we proposed an efficient Coarse-to-Fine Facet-Aware Ranking (C2F-FAR) framework for unsupervised long document summarization, which is based on the semantic block. The semantic block refers to continuous sentences in the document that describe the same facet. Specifically, we address this problem by converting the one-step ranking method into the hierarchical multi-granularity two-stage ranking. In the coarse-level stage, we proposed a new segment algorithm to split the document into facet-aware semantic blocks and then filter insignificant blocks. In the fine-level stage, we select salient sentences in each block and then extract the final summary from selected sentences. We evaluate our framework on four long document summarization datasets: Gov-Report, BillSum, arXiv, and PubMed. Our C2F-FAR can achieve new state-of-the-art unsupervised summarization results on Gov-Report and BillSum. In addition, our method speeds up 4-28 times more than previous methods.
This paper describes Tencent Translation systems for the WMT21 shared task. We participate in the news translation task on three language pairs: Chinese-English, English-Chinese and German-English. Our systems are built on various Transformer models with novel techniques adapted from our recent research work. First, we combine different data augmentation methods including back-translation, forward-translation and right-to-left training to enlarge the training data. We also apply language coverage bias, data rejuvenation and uncertainty-based sampling approaches to select content-relevant and high-quality data from large parallel and monolingual corpora. Expect for in-domain fine-tuning, we also propose a fine-grained “one model one domain” approach to model characteristics of different news genres at fine-tuning and decoding stages. Besides, we use greed-based ensemble algorithm and transductive ensemble method to further boost our systems. Based on our success in the last WMT, we continuously employed advanced techniques such as large batch training, data selection and data filtering. Finally, our constrained Chinese-English system achieves 33.4 case-sensitive BLEU score, which is the highest among all submissions. The German-English system is ranked at second place accordingly.
Dominant sentence ordering models can be classified into pairwise ordering models and set-to-sequence models. However, there is little attempt to combine these two types of models, which inituitively possess complementary advantages. In this paper, we propose a novel sentence ordering framework which introduces two classifiers to make better use of pairwise orderings for graph-based sentence ordering (Yin et al. 2019, 2021). Specially, given an initial sentence-entity graph, we first introduce a graph-based classifier to predict pairwise orderings between linked sentences. Then, in an iterative manner, based on the graph updated by previously predicted high-confident pairwise orderings, another classifier is used to predict the remaining uncertain pairwise orderings. At last, we adapt a GRN-based sentence ordering model (Yin et al. 2019, 2021) on the basis of final graph. Experiments on five commonly-used datasets demonstrate the effectiveness and generality of our model. Particularly, when equipped with BERT (Devlin et al. 2019) and FHDecoder (Yin et al. 2020), our model achieves state-of-the-art performance. Our code is available at https://github.com/DeepLearnXMU/IRSEG.
Recent research questions the importance of the dot-product self-attention in Transformer models and shows that most attention heads learn simple positional patterns. In this paper, we push further in this research line and propose a novel substitute mechanism for self-attention: Recurrent AtteNtion (RAN) . RAN directly learns attention weights without any token-to-token interaction and further improves their capacity by layer-to-layer interaction. Across an extensive set of experiments on 10 machine translation tasks, we find that RAN models are competitive and outperform their Transformer counterpart in certain scenarios, with fewer parameters and inference time. Particularly, when apply RAN to the decoder of Transformer, there brings consistent improvements by about +0.5 BLEU on 6 translation tasks and +1.0 BLEU on Turkish-English translation task. In addition, we conduct extensive analysis on the attention weights of RAN to confirm their reasonableness. Our RAN is a promising alternative to build more effective and efficient NMT models.
Attention mechanisms have achieved substantial improvements in neural machine translation by dynamically selecting relevant inputs for different predictions. However, recent studies have questioned the attention mechanisms’ capability for discovering decisive inputs. In this paper, we propose to calibrate the attention weights by introducing a mask perturbation model that automatically evaluates each input’s contribution to the model outputs. We increase the attention weights assigned to the indispensable tokens, whose removal leads to a dramatic performance decrease. The extensive experiments on the Transformer-based translation have demonstrated the effectiveness of our model. We further find that the calibrated attention weights are more uniform at lower layers to collect multiple information while more concentrated on the specific inputs at higher layers. Detailed analyses also show a great need for calibration in the attention weights with high entropy where the model is unconfident about its decision.
Machine reading comprehension (MRC) is the task that asks a machine to answer questions based on a given context. For Chinese MRC, due to the non-literal and non-compositional semantic characteristics, Chinese idioms pose unique challenges for machines to understand. Previous studies tend to treat idioms separately without fully exploiting the relationship among them. In this paper, we first define the concept of literal meaning coverage to measure the consistency between semantics and literal meanings for Chinese idioms. With the definition, we prove that the literal meanings of many idioms are far from their semantics, and we also verify that the synonymic relationship can mitigate this inconsistency, which would be beneficial for idiom comprehension. Furthermore, to fully utilize the synonymic relationship, we propose the synonym knowledge enhanced reader. Specifically, for each idiom, we first construct a synonym graph according to the annotations from the high-quality synonym dictionary or the cosine similarity between the pre-trained idiom embeddings and then incorporate the graph attention network and gate mechanism to encode the graph. Experimental results on ChID, a large-scale Chinese idiom reading comprehension dataset, show that our model achieves state-of-the-art performance.
Previous studies on the domain adaptation for neural machine translation (NMT) mainly focus on the one-pass transferring out-of-domain translation knowledge to in-domain NMT model. In this paper, we argue that such a strategy fails to fully extract the domain-shared translation knowledge, and repeatedly utilizing corpora of different domains can lead to better distillation of domain-shared translation knowledge. To this end, we propose an iterative dual domain adaptation framework for NMT. Specifically, we first pretrain in-domain and out-of-domain NMT models using their own training corpora respectively, and then iteratively perform bidirectional translation knowledge transfer (from in-domain to out-of-domain and then vice versa) based on knowledge distillation until the in-domain NMT model convergences. Furthermore, we extend the proposed framework to the scenario of multiple out-of-domain training corpora, where the above-mentioned transfer is performed sequentially between the in-domain and each out-of-domain NMT models in the ascending order of their domain similarities. Empirical results on Chinese-English and English-German translation tasks demonstrate the effectiveness of our framework.
With great practical value, the study of Multi-domain Neural Machine Translation (NMT) mainly focuses on using mixed-domain parallel sentences to construct a unified model that allows translation to switch between different domains. Intuitively, words in a sentence are related to its domain to varying degrees, so that they will exert disparate impacts on the multi-domain NMT modeling. Based on this intuition, in this paper, we devote to distinguishing and exploiting word-level domain contexts for multi-domain NMT. To this end, we jointly model NMT with monolingual attention-based domain classification tasks and improve NMT as follows: 1) Based on the sentence representations produced by a domain classifier and an adversarial domain classifier, we generate two gating vectors and use them to construct domain-specific and domain-shared annotations, for later translation predictions via different attention models; 2) We utilize the attention weights derived from target-side domain classifier to adjust the weights of target words in the training objective, enabling domain-related words to have greater impacts during model training. Experimental results on Chinese-English and English-French multi-domain translation tasks demonstrate the effectiveness of the proposed model. Source codes of this paper are available on Github https://github.com/DeepLearnXMU/WDCNMT.