Jason Webster


2020

pdf
Participatory Research for Low-resourced Machine Translation: A Case Study in African Languages
Wilhelmina Nekoto | Vukosi Marivate | Tshinondiwa Matsila | Timi Fasubaa | Taiwo Fagbohungbe | Solomon Oluwole Akinola | Shamsuddeen Muhammad | Salomon Kabongo Kabenamualu | Salomey Osei | Freshia Sackey | Rubungo Andre Niyongabo | Ricky Macharm | Perez Ogayo | Orevaoghene Ahia | Musie Meressa Berhe | Mofetoluwa Adeyemi | Masabata Mokgesi-Selinga | Lawrence Okegbemi | Laura Martinus | Kolawole Tajudeen | Kevin Degila | Kelechi Ogueji | Kathleen Siminyu | Julia Kreutzer | Jason Webster | Jamiil Toure Ali | Jade Abbott | Iroro Orife | Ignatius Ezeani | Idris Abdulkadir Dangana | Herman Kamper | Hady Elsahar | Goodness Duru | Ghollah Kioko | Murhabazi Espoir | Elan van Biljon | Daniel Whitenack | Christopher Onyefuluchi | Chris Chinenye Emezue | Bonaventure F. P. Dossou | Blessing Sibanda | Blessing Bassey | Ayodele Olabiyi | Arshath Ramkilowan | Alp Öktem | Adewale Akinfaderin | Abdallah Bashir
Findings of the Association for Computational Linguistics: EMNLP 2020

Research in NLP lacks geographic diversity, and the question of how NLP can be scaled to low-resourced languages has not yet been adequately solved. ‘Low-resourced’-ness is a complex problem going beyond data availability and reflects systemic problems in society. In this paper, we focus on the task of Machine Translation (MT), that plays a crucial role for information accessibility and communication worldwide. Despite immense improvements in MT over the past decade, MT is centered around a few high-resourced languages. As MT researchers cannot solve the problem of low-resourcedness alone, we propose participatory research as a means to involve all necessary agents required in the MT development process. We demonstrate the feasibility and scalability of participatory research with a case study on MT for African languages. Its implementation leads to a collection of novel translation datasets, MT benchmarks for over 30 languages, with human evaluations for a third of them, and enables participants without formal training to make a unique scientific contribution. Benchmarks, models, data, code, and evaluation results are released at https://github.com/masakhane-io/masakhane-mt.