Irina Stenger


2023

pdf
Microsyntactic Unit Detection Using Word Embedding Models: Experiments on Slavic Languages
Iuliia Zaitova | Irina Stenger | Tania Avgustinova
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

Microsyntactic units have been defined as language-specific transitional entities between lexicon and grammar, whose idiomatic properties are closely tied to syntax. These units are typically described based on individual constructions, making it difficult to understand them comprehensively as a class. This study proposes a novel approach to detect microsyntactic units using Word Embedding Models (WEMs) trained on six Slavic languages, namely Belarusian, Bulgarian, Czech, Polish, Russian, and Ukrainian, and evaluates how well these models capture the nuances of syntactic non-compositionality. To evaluate the models, we develop a cross-lingual inventory of microsyntactic units using the lists of microsyntantic units available at the Russian National Corpus. Our results demonstrate the effectiveness of WEMs in capturing microsyntactic units across all six Slavic languages under analysis. Additionally, we find that WEMs tailored for syntax-based tasks consistently outperform other WEMs at the task. Our findings contribute to the theory of microsyntax by providing insights into the detection of microsyntactic units and their cross-linguistic properties.

2022

pdf
Modeling the Impact of Syntactic Distance and Surprisal on Cross-Slavic Text Comprehension
Irina Stenger | Philip Georgis | Tania Avgustinova | Bernd Möbius | Dietrich Klakow
Proceedings of the Thirteenth Language Resources and Evaluation Conference

We focus on the syntactic variation and measure syntactic distances between nine Slavic languages (Belarusian, Bulgarian, Croatian, Czech, Polish, Slovak, Slovene, Russian, and Ukrainian) using symmetric measures of insertion, deletion and movement of syntactic units in the parallel sentences of the fable “The North Wind and the Sun”. Additionally, we investigate phonetic and orthographic asymmetries between selected languages by means of the information theoretical notion of surprisal. Syntactic distance and surprisal are, thus, considered as potential predictors of mutual intelligibility between related languages. In spoken and written cloze test experiments for Slavic native speakers, the presented predictors will be validated as to whether variations in syntax lead to a slower or impeded intercomprehension of Slavic texts.

2021

pdf
incom.py 2.0 - Calculating Linguistic Distances and Asymmetries in Auditory Perception of Closely Related Languages
Marius Mosbach | Irina Stenger | Tania Avgustinova | Bernd Möbius | Dietrich Klakow
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

We present an extended version of a tool developed for calculating linguistic distances and asymmetries in auditory perception of closely related languages. Along with evaluating the metrics available in the initial version of the tool, we introduce word adaptation entropy as an additional metric of linguistic asymmetry. Potential predictors of speech intelligibility are validated with human performance in spoken cognate recognition experiments for Bulgarian and Russian. Special attention is paid to the possibly different contributions of vowels and consonants in oral intercomprehension. Using incom.py 2.0 it is possible to calculate, visualize, and validate three measurement methods of linguistic distances and asymmetries as well as carrying out regression analyses in speech intelligibility between related languages.

2020

pdf
The INCOMSLAV Platform: Experimental Website with Integrated Methods for Measuring Linguistic Distances and Asymmetries in Receptive Multilingualism
Irina Stenger | Klara Jagrova | Tania Avgustinova
Proceedings of the LREC 2020 Workshop on "Citizen Linguistics in Language Resource Development"

We report on a web-based resource for conducting intercomprehension experiments with native speakers of Slavic languages and present our methods for measuring linguistic distances and asymmetries in receptive multilingualism. Through a website which serves as a platform for online testing, a large number of participants with different linguistic backgrounds can be targeted. A statistical language model is used to measure information density and to gauge how language users master various degrees of (un)intelligibilty. The key idea is that intercomprehension should be better when the model adapted for understanding the unknown language exhibits relatively low average distance and surprisal. All obtained intelligibility scores together with distance and asymmetry measures for the different language pairs and processing directions are made available as an integrated online resource in the form of a Slavic intercomprehension matrix (SlavMatrix).

2019

pdf
incom.py - A Toolbox for Calculating Linguistic Distances and Asymmetries between Related Languages
Marius Mosbach | Irina Stenger | Tania Avgustinova | Dietrich Klakow
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

Languages may be differently distant from each other and their mutual intelligibility may be asymmetric. In this paper we introduce incom.py, a toolbox for calculating linguistic distances and asymmetries between related languages. incom.py allows linguist experts to quickly and easily perform statistical analyses and compare those with experimental results. We demonstrate the efficacy of incom.py in an incomprehension experiment on two Slavic languages: Bulgarian and Russian. Using incom.py we were able to validate three methods to measure linguistic distances and asymmetries: Levenshtein distance, word adaptation surprisal, and conditional entropy as predictors of success in a reading intercomprehension experiment.

2016

pdf
Orthographic and Morphological Correspondences between Related Slavic Languages as a Base for Modeling of Mutual Intelligibility
Andrea Fischer | Klára Jágrová | Irina Stenger | Tania Avgustinova | Dietrich Klakow | Roland Marti
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

In an intercomprehension scenario, typically a native speaker of language L1 is confronted with output from an unknown, but related language L2. In this setting, the degree to which the receiver recognizes the unfamiliar words greatly determines communicative success. Despite exhibiting great string-level differences, cognates may be recognized very successfully if the receiver is aware of regular correspondences which allow to transform the unknown word into its familiar form. Modeling L1-L2 intercomprehension then requires the identification of all the regular correspondences between languages L1 and L2. We here present a set of linguistic orthographic correspondences manually compiled from comparative linguistics literature along with a set of statistically-inferred suggestions for correspondence rules. In order to do statistical inference, we followed the Minimum Description Length principle, which proposes to choose those rules which are most effective at describing the data. Our statistical model was able to reproduce most of our linguistic correspondences (88.5% for Czech-Polish and 75.7% for Bulgarian-Russian) and furthermore allowed to easily identify many more non-trivial correspondences which also cover aspects of morphology.