Gowtham Ramesh


2023

pdf
Single Sequence Prediction over Reasoning Graphs for Multi-hop QA
Gowtham Ramesh | Makesh Narsimhan Sreedhar | Junjie Hu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent generative approaches for multi-hop question answering (QA) utilize the fusion-in-decoder method to generate a single sequence output which includes both a final answer and a reasoning path taken to arrive at that answer, such as passage titles and key facts from those passages. While such models can lead to better interpretability and high quantitative scores, they often have difficulty accurately identifying the passages corresponding to key entities in the context, resulting in incorrect passage hops and a lack of faithfulness in the reasoning path. To address this, we propose a single-sequence prediction method over a local reasoning graph that integrates a graph structure connecting key entities in each context passage to relevant subsequent passages for each question. We use a graph neural network to encode this graph structure and fuse the resulting representations into the entity representations of the model. Our experiments show significant improvements in answer exact-match/F1 scores and faithfulness of grounding in the reasoning path on the HotpotQA dataset and achieve state-of-the-art numbers on the Musique dataset with only up to a 4% increase in model parameters.

pdf
Towards Leaving No Indic Language Behind: Building Monolingual Corpora, Benchmark and Models for Indic Languages
Sumanth Doddapaneni | Rahul Aralikatte | Gowtham Ramesh | Shreya Goyal | Mitesh M. Khapra | Anoop Kunchukuttan | Pratyush Kumar
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Building Natural Language Understanding (NLU) capabilities for Indic languages, which have a collective speaker base of more than one billion speakers is absolutely crucial. In this work, we aim to improve the NLU capabilities of Indic languages by making contributions along 3 important axes (i) monolingual corpora (ii) NLU testsets (iii) multilingual LLMs focusing on Indic languages. Specifically, we curate the largest monolingual corpora, IndicCorp, with 20.9B tokens covering 24 languages from 4 language families - a 2.3x increase over prior work, while supporting 12 additional languages. Next, we create a human-supervised benchmark, IndicXTREME, consisting of nine diverse NLU tasks covering 20 languages. Across languages and tasks, IndicXTREME contains a total of 105 evaluation sets, of which 52 are new contributions to the literature. To the best of our knowledge, this is the first effort towards creating a standard benchmark for Indic languages that aims to test the multilingual zero-shot capabilities of pretrained language models. Finally, we train IndicBERT v2, a state-of-the-art model supporting all the languages. Averaged across languages and tasks, the model achieves an absolute improvement of 2 points over a strong baseline. The data and models are available at https://github.com/AI4Bharat/IndicBERT.

2022

pdf
Samanantar: The Largest Publicly Available Parallel Corpora Collection for 11 Indic Languages
Gowtham Ramesh | Sumanth Doddapaneni | Aravinth Bheemaraj | Mayank Jobanputra | Raghavan AK | Ajitesh Sharma | Sujit Sahoo | Harshita Diddee | Mahalakshmi J | Divyanshu Kakwani | Navneet Kumar | Aswin Pradeep | Srihari Nagaraj | Kumar Deepak | Vivek Raghavan | Anoop Kunchukuttan | Pratyush Kumar | Mitesh Shantadevi Khapra
Transactions of the Association for Computational Linguistics, Volume 10

We present Samanantar, the largest publicly available parallel corpora collection for Indic languages. The collection contains a total of 49.7 million sentence pairs between English and 11 Indic languages (from two language families). Specifically, we compile 12.4 million sentence pairs from existing, publicly available parallel corpora, and additionally mine 37.4 million sentence pairs from the Web, resulting in a 4× increase. We mine the parallel sentences from the Web by combining many corpora, tools, and methods: (a) Web-crawled monolingual corpora, (b) document OCR for extracting sentences from scanned documents, (c) multilingual representation models for aligning sentences, and (d) approximate nearest neighbor search for searching in a large collection of sentences. Human evaluation of samples from the newly mined corpora validate the high quality of the parallel sentences across 11 languages. Further, we extract 83.4 million sentence pairs between all 55 Indic language pairs from the English-centric parallel corpus using English as the pivot language. We trained multilingual NMT models spanning all these languages on Samanantar which outperform existing models and baselines on publicly available benchmarks, such as FLORES, establishing the utility of Samanantar. Our data and models are available publicly at Samanantar and we hope they will help advance research in NMT and multilingual NLP for Indic languages.