Knowledge-grounded dialogue generation is a challenging task because it requires satisfying two fundamental, yet often competing constraints: being responsive in a manner that is specific to what the conversation partner has said while also being attributable to an underlying source document. In this work, we bring this trade-off between these two objectives (specificity and attribution) to light, and ask the question: Can explicit content planning before the response generation help the model to address this challenge? To answer this question, we design a framework called PLEDGE, which allows us to experiment with various plan variables explored in prior work supporting both metric-agnostic and metric-aware approaches. While content planning shows promise, our results on whether it can actually help to navigate this trade-off are mixed – planning mechanisms that are metric-aware (use automatic metrics during training) are better at automatic evaluations but underperform in human judgment compared to metric-agnostic mechanisms. We discuss how this may be caused by over-fitting to automatic metrics, and the need for future work to better calibrate these metrics towards human judgment. We hope the observations from our analysis will inform future work that aims to apply content planning in this context.
In this work, we present the first dataset, MailEx, for performing event extraction from conversational email threads. To this end, we first proposed a new taxonomy covering 10 event types and 76 arguments in the email domain. Our final dataset includes 1.5K email threads and ~4K emails, which are annotated with a total of ~8K event instances. To understand the task challenges, we conducted a series of experiments comparing three types of approaches, i.e., fine-tuned sequence labeling, fine-tuned generative extraction, and few-shot in-context learning. Our results showed that the task of email event extraction is far from being addressed, due to challenges lying in, e.g., extracting non-continuous, shared trigger spans, extracting non-named entity arguments, and modeling the email conversational history. Our work thus suggests more future investigations in this domain-specific event extraction task.
This paper presents the approach taken for the shared task on Propaganda Detection in Arabic at the Seventh Arabic Natural Language Processing Workshop (WANLP 2022). We participated in Sub-task 1 where the text of a tweet is provided, and the goal is to identify the different propaganda techniques used in it. This problem belongs to multi-label classification. For our solution, we approached leveraging different transformer based pre-trained language models with fine-tuning to solve this problem. We found that MARBERTv2 outperforms in terms of performance where F1-macro is 0.08175 and F1-micro is 0.61116 compared to other language models that we considered. Our method achieved rank 4 in the testing phase of the challenge.
Relational web-tables are significant sources of structural information that are widely used for relation extraction and population of facts into knowledge graphs. To transform the web-table data into knowledge, we need to identify the relations that exist between column pairs. Currently, there are only a handful of publicly available datasets with relations annotated against natural web-tables. Most datasets are constructed using synthetic tables that lack valuable metadata information, or are limited in size to be considered as a challenging evaluation set. In this paper, we present REDTab, the largest natural-table relation extraction dataset. We have annotated ~9K tables and ~22K column pairs using crowd sourced annotators from MTurk, which has 50x larger number of column pairs than the existing human-annotated benchmark. Our test set is specially designed to be challenging as observed in our experiment results using TaBERT. We publicly release REDTab as a benchmark for the evaluation process in relation extraction.
AI researchers have posited Dungeons and Dragons (D&D) as a challenge problem to test systems on various language-related capabilities. In this paper, we frame D&D specifically as a dialogue system challenge, where the tasks are to both generate the next conversational turn in the game and predict the state of the game given the dialogue history. We create a gameplay dataset consisting of nearly 900 games, with a total of 7,000 players, 800,000 dialogue turns, 500,000 dice rolls, and 58 million words. We automatically annotate the data with partial state information about the game play. We train a large language model (LM) to generate the next game turn, conditioning it on different information. The LM can respond as a particular character or as the player who runs the game—i.e., the Dungeon Master (DM). It is trained to produce dialogue that is either in-character (roleplaying in the fictional world) or out-of-character (discussing rules or strategy). We perform a human evaluation to determine what factors make the generated output plausible and interesting. We further perform an automatic evaluation to determine how well the model can predict the game state given the history and examine how well tracking the game state improves its ability to produce plausible conversational output.
Compared to standard retrieval tasks, passage retrieval for conversational question answering (CQA) poses new challenges in understanding the current user question, as each question needs to be interpreted within the dialogue context. Moreover, it can be expensive to re-train well-established retrievers such as search engines that are originally developed for non-conversational queries. To facilitate their use, we develop a query rewriting model CONQRR that rewrites a conversational question in the context into a standalone question. It is trained with a novel reward function to directly optimize towards retrieval using reinforcement learning and can be adapted to any off-the-shelf retriever. CONQRR achieves state-of-the-art results on a recent open-domain CQA dataset containing conversations from three different sources, and is effective for two different off-the-shelf retrievers. Our extensive analysis also shows the robustness of CONQRR to out-of-domain dialogues as well as to zero query rewriting supervision.
Knowledge-grounded dialogue systems are intended to convey information that is based on evidence provided in a given source text. We discuss the challenges of training a generative neural dialogue model for such systems that is controlled to stay faithful to the evidence. Existing datasets contain a mix of conversational responses that are faithful to selected evidence as well as more subjective or chit-chat style responses. We propose different evaluation measures to disentangle these different styles of responses by quantifying the informativeness and objectivity. At training time, additional inputs based on these evaluation measures are given to the dialogue model. At generation time, these additional inputs act as stylistic controls that encourage the model to generate responses that are faithful to the provided evidence. We also investigate the usage of additional controls at decoding time using resampling techniques. In addition to automatic metrics, we perform a human evaluation study where raters judge the output of these controlled generation models to be generally more objective and faithful to the evidence compared to baseline dialogue systems.
Relation extraction (RE) aims to label relations between groups of marked entities in raw text. Most current RE models learn context-aware representations of the target entities that are then used to establish relation between them. This works well for intra-sentence RE, and we call them first-order relations. However, this methodology can sometimes fail to capture complex and long dependencies. To address this, we hypothesize that at times the target entities can be connected via a context token. We refer to such indirect relations as second-order relations, and describe an efficient implementation for computing them. These second-order relation scores are then combined with first-order relation scores to obtain final relation scores. Our empirical results show that the proposed method leads to state-of-the-art performance over two biomedical datasets.
We propose a model for tagging unstructured texts with an arbitrary number of terms drawn from a tree-structured vocabulary (i.e., an ontology). We treat this as a special case of sequence-to-sequence learning in which the decoder begins at the root node of an ontological tree and recursively elects to expand child nodes as a function of the input text, the current node, and the latent decoder state. We demonstrate that this method yields state-of-the-art results on the important task of assigning MeSH terms to biomedical abstracts.
We present a solution to the problem of paraphrase identification of questions. We focus on a recent dataset of question pairs annotated with binary paraphrase labels and show that a variant of the decomposable attention model (replacing the word embeddings of the decomposable attention model of Parikh et al. 2016 with character n-gram representations) results in accurate performance on this task, while being far simpler than many competing neural architectures. Furthermore, when the model is pretrained on a noisy dataset of automatically collected question paraphrases, it obtains the best reported performance on the dataset.