Dorsa Sadigh


2021

pdf
Open-domain clarification question generation without question examples
Julia White | Gabriel Poesia | Robert Hawkins | Dorsa Sadigh | Noah Goodman
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

An overarching goal of natural language processing is to enable machines to communicate seamlessly with humans. However, natural language can be ambiguous or unclear. In cases of uncertainty, humans engage in an interactive process known as repair: asking questions and seeking clarification until their uncertainty is resolved. We propose a framework for building a visually grounded question-asking model capable of producing polar (yes-no) clarification questions to resolve misunderstandings in dialogue. Our model uses an expected information gain objective to derive informative questions from an off-the-shelf image captioner without requiring any supervised question-answer data. We demonstrate our model’s ability to pose questions that improve communicative success in a goal-oriented 20 questions game with synthetic and human answerers.

2020

pdf
BLEU Neighbors: A Reference-less Approach to Automatic Evaluation
Kawin Ethayarajh | Dorsa Sadigh
Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems

Evaluation is a bottleneck in the development of natural language generation (NLG) models. Automatic metrics such as BLEU rely on references, but for tasks such as open-ended generation, there are no references to draw upon. Although language diversity can be estimated using statistical measures such as perplexity, measuring language quality requires human evaluation. However, because human evaluation at scale is slow and expensive, it is used sparingly; it cannot be used to rapidly iterate on NLG models, in the way BLEU is used for machine translation. To this end, we propose BLEU Neighbors, a nearest neighbors model for estimating language quality by using the BLEU score as a kernel function. On existing datasets for chitchat dialogue and open-ended sentence generation, we find that – on average – the quality estimation from a BLEU Neighbors model has a lower mean squared error and higher Spearman correlation with the ground truth than individual human annotators. Despite its simplicity, BLEU Neighbors even outperforms state-of-the-art models on automatically grading essays, including models that have access to a gold-standard reference essay.

pdf
Continual Adaptation for Efficient Machine Communication
Robert Hawkins | Minae Kwon | Dorsa Sadigh | Noah Goodman
Proceedings of the 24th Conference on Computational Natural Language Learning

To communicate with new partners in new contexts, humans rapidly form new linguistic conventions. Recent neural language models are able to comprehend and produce the existing conventions present in their training data, but are not able to flexibly and interactively adapt those conventions on the fly as humans do. We introduce an interactive repeated reference task as a benchmark for models of adaptation in communication and propose a regularized continual learning framework that allows an artificial agent initialized with a generic language model to more accurately and efficiently communicate with a partner over time. We evaluate this framework through simulations on COCO and in real-time reference game experiments with human partners.

pdf
Learning Adaptive Language Interfaces through Decomposition
Siddharth Karamcheti | Dorsa Sadigh | Percy Liang
Proceedings of the First Workshop on Interactive and Executable Semantic Parsing

Our goal is to create an interactive natural language interface that efficiently and reliably learns from users to complete tasks in simulated robotics settings. We introduce a neural semantic parsing system that learns new high-level abstractions through decomposition: users interactively teach the system by breaking down high-level utterances describing novel behavior into low-level steps that it can understand. Unfortunately, existing methods either rely on grammars which parse sentences with limited flexibility, or neural sequence-to-sequence models that do not learn efficiently or reliably from individual examples. Our approach bridges this gap, demonstrating the flexibility of modern neural systems, as well as the one-shot reliable generalization of grammar-based methods. Our crowdsourced interactive experiments suggest that over time, users complete complex tasks more efficiently while using our system by leveraging what they just taught. At the same time, getting users to trust the system enough to be incentivized to teach high-level utterances is still an ongoing challenge. We end with a discussion of some of the obstacles we need to overcome to fully realize the potential of the interactive paradigm.