Dirk Padfield


2024

pdf
Barriers to Effective Evaluation of Simultaneous Interpretation
Shira Wein | Te I | Colin Cherry | Juraj Juraska | Dirk Padfield | Wolfgang Macherey
Findings of the Association for Computational Linguistics: EACL 2024

Simultaneous interpretation is an especially challenging form of translation because it requires converting speech from one language to another in real-time. Though prior work has relied on out-of-the-box machine translation metrics to evaluate interpretation data, we hypothesize that strategies common in high-quality human interpretations, such as summarization, may not be handled well by standard machine translation metrics. In this work, we examine both qualitatively and quantitatively four potential barriers to evaluation of interpretation: disfluency, summarization, paraphrasing, and segmentation. Our experiments reveal that, while some machine translation metrics correlate fairly well with human judgments of interpretation quality, much work is still needed to account for strategies of interpretation during evaluation. As a first step to address this, we develop a fine-tuned model for interpretation evaluation, and achieve better correlation with human judgments than the state-of-the-art machine translation metrics.

2023

pdf
MultiTurnCleanup: A Benchmark for Multi-Turn Spoken Conversational Transcript Cleanup
Hua Shen | Vicky Zayats | Johann Rocholl | Daniel Walker | Dirk Padfield
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Current disfluency detection models focus on individual utterances each from a single speaker. However, numerous discontinuity phenomena in spoken conversational transcripts occur across multiple turns, which can not be identified by disfluency detection models. This study addresses these phenomena by proposing an innovative Multi-Turn Cleanup task for spoken conversational transcripts and collecting a new dataset, MultiTurnCleanup. We design a data labeling schema to collect the high-quality dataset and provide extensive data analysis. Furthermore, we leverage two modeling approaches for experimental evaluation as benchmarks for future research.

2022

pdf
Teaching BERT to Wait: Balancing Accuracy and Latency for Streaming Disfluency Detection
Angelica Chen | Vicky Zayats | Daniel Walker | Dirk Padfield
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In modern interactive speech-based systems, speech is consumed and transcribed incrementally prior to having disfluencies removed. While this post-processing step is crucial for producing clean transcripts and high performance on downstream tasks (e.g. machine translation), most current state-of-the-art NLP models such as the Transformer operate non-incrementally, potentially causing unacceptable delays for the user. In this work we propose a streaming BERT-based sequence tagging model that, combined with a novel training objective, is capable of detecting disfluencies in real-time while balancing accuracy and latency. This is accomplished by training the model to decide whether to immediately output a prediction for the current input or to wait for further context, in essence learning to dynamically size the lookahead window. Our results demonstrate that our model produces comparably accurate predictions and does so sooner than our baselines, with lower flicker. Furthermore, the model attains state-of-the-art latency and stability scores when compared with recent work on incremental disfluency detection.

2021

pdf
Residual Adapters for Parameter-Efficient ASR Adaptation to Atypical and Accented Speech
Katrin Tomanek | Vicky Zayats | Dirk Padfield | Kara Vaillancourt | Fadi Biadsy
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Automatic Speech Recognition (ASR) systems are often optimized to work best for speakers with canonical speech patterns. Unfortunately, these systems perform poorly when tested on atypical speech and heavily accented speech. It has previously been shown that personalization through model fine-tuning substantially improves performance. However, maintaining such large models per speaker is costly and difficult to scale. We show that by adding a relatively small number of extra parameters to the encoder layers via so-called residual adapter, we can achieve similar adaptation gains compared to model fine-tuning, while only updating a tiny fraction (less than 0.5%) of the model parameters. We demonstrate this on two speech adaptation tasks (atypical and accented speech) and for two state-of-the-art ASR architectures.

pdf
Inverted Projection for Robust Speech Translation
Dirk Padfield | Colin Cherry
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)

Traditional translation systems trained on written documents perform well for text-based translation but not as well for speech-based applications. We aim to adapt translation models to speech by introducing actual lexical errors from ASR and segmentation errors from automatic punctuation into our translation training data. We introduce an inverted projection approach that projects automatically detected system segments onto human transcripts and then re-segments the gold translations to align with the projected human transcripts. We demonstrate that this overcomes the train-test mismatch present in other training approaches. The new projection approach achieves gains of over 1 BLEU point over a baseline that is exposed to the human transcripts and segmentations, and these gains hold for both IWSLT data and YouTube data.